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A scheme in which carbon ion bunches are accelerated to a high energy and density by a laser

pulse (�1021 W/cm2) irradiating cone targets is proposed and investigated using particle-in-cell

simulations. The laser pulse is focused by the cone and drives forward an ultrathin foil located at

the cone’s tip. In the course of the work, best results were obtained employing target configurations

combining a low-Z cone with a multispecies foil transversely shaped to match the laser intensity

profile. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4882445]

I. INTRODUCTION

Ion bunches driven by intense laser pulses are of great

interest for potential applications in areas including ion

driven fast ignition,1 medical therapy,2 and proton prob-

ing.3,4 Various ion acceleration mechanisms have been pro-

posed and investigated in the past decades, such as target

normal sheath acceleration (TNSA),5,6 laser breakout after-

burner (BOA),7 and radiation pressure acceleration (RPA).8,9

TNSA is one of the most widely studied ion acceleration

mechanisms both in numerical simulations and experiments

and can accelerate ions to several tens of MeV by the

sheath’s electric field on the target’s rear surface. Such a

mechanism can be easily achieved in current laser facilities,

although the energy spectra of the ions driven by TNSA are

usually not mono-energetic but broad and exponentially

decaying with energy.10,11 In addition, since the energetic

ions are dependent on the hot electron characteristics, their

density is usually far below the critical density.12,13 In con-

trast, RPA is much more favorable for obtaining quasi-

mono-energetic and dense ion beams. In this mechanism, the

ions are accelerated by an intense space-charge field created

by the radiation pressure of the laser pulse, and, in an ideal

case, they co-move with an electron layer thanks to the bal-

ance between the radiation pressure and the space-charge

field.14 In order to reduce heating of the electrons, a circu-

larly polarized laser pulse is usually employed by particle-

in-cell (PIC) simulations, which have demonstrated that

RPA is a very efficient ion acceleration regime for an ultrare-

lativistic laser pulse interacting with thin foils.15–17 The

energy of the ions accelerated by RPA is proportional to

(Is=r)2 for a nonrelativistic laser pulse and to Is=r for the

ultrarelativistic limit,18 where I is the laser intensity, s is the

pulse duration, and r is the areal mass density of the foil.

The ion energy can reach GeV/nucleon energies for laser

intensities in the 1022 W/cm2 range.19 Such extremely high

intensities are still out of reach for current lasers but could

be achievable with the next generation of muti-petawatt

(PW) facilities such as, for example, the Extreme Light

Infrastructure (ELI).20 Recently, RPA mechanisms in multi-

species targets have received particular attention, as simula-

tions indicate that, in these targets, acceleration of the lighter

ion species can acquire enhanced stability.21,22

In a number of TNSA experiments, flat-top conical

targets have been used as a means to enhance the energy

conversion in hot electrons using a linearly polarized laser

pulse and have also been proposed as a possible way to

enhance the laser intensity near the tip, in addition, to any

external focusing.23–28 We investigate here by means of 2D

PIC simulations whether such enhancement in intensity can

be useful for RPA schemes, and for this purpose, we have

tested a number of different target configurations irradiated

by circularly polarized laser pulses at high intensities.

The configuration tested initially was that of a gold

plasma cone and a multi-species slab foil composed by C6þ

and Cu24þ, as shown in Fig. 1(a) and used, for example, in

Ref. 29. We see that this configuration does not lead to stable

RPA conditions, but instead the foil is quickly fragmented

by the laser pulse, which propagates through it, pushing side-

ways the remaining plasma clumps. The carbon ion energy

spectrum is complex showing several peaks at low energies,

and a monotonously decreasing distribution in the high

energy end above 500 MeV.

In an attempt to improve the stability of the foil acceler-

ation, we have then run simulations by varying the composi-

tion of the target, namely, by using (1) a lower density,

hydrogen plasma cone instead of the gold plasma cone and

(2) a Gaussian-shaped foil, thicker at the center and thinner

at the periphery, instead of a slab foil, as pictured in Fig.

1(b). In this case, the ion layer does not fragment under the

pressure of the radiation, but it is effectively accelerated as a

a)Electronic mail: xuhanemail@gmail.com
b)Electronic mail: hongbin.zhuo@gmail.com
c)Electronic mail: m.borghesi@qub.ac.uk

1070-664X/2014/21(6)/063105/7/$30.00 VC 2014 AIP Publishing LLC21, 063105-1

PHYSICS OF PLASMAS 21, 063105 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

143.117.13.205 On: Thu, 02 Oct 2014 10:02:39

http://dx.doi.org/10.1063/1.4882445
http://dx.doi.org/10.1063/1.4882445
http://dx.doi.org/10.1063/1.4882445
mailto:xuhanemail@gmail.com
mailto:hongbin.zhuo@gmail.com
mailto:m.borghesi@qub.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4882445&domain=pdf&date_stamp=2014-06-11


whole along the laser axis. In these simulations, the laser

pulse is seen to break through the H-plasma cone wall or

from the thinner foil periphery. As a result, the C6þ ion layer

is accelerated along the laser axis like a bullet and the laser

radiation transmitted at the edges can wrap around and help

compress the ion layer, as observed in Ref. 30. In our simula-

tions, using a 1021 W/cm2 laser, a quasi-mono-energetic peak

at �790 MeV appears in the energy spectrum of C6þ ions,

which contains about 31% of the total C6þ ion energy. The

maximum energy density of the resulting ion bunch is

�7� 1010 J/cm3. It seems therefore that such an approach

may, in principle, be of interest for achieving the radiation

pressure drive of high energy ion beams with reachable laser

intensities in the near future.

II. SIMULATION MODEL

The aim of this study is to propose a scheme for efficient

acceleration of the ions located at the tip of the conical target

under the effect of intense radiation pressure. The simula-

tions are performed using the relativistic 2D3V PIC code

LAPINE.31,32 Our initial target set-up contains a cone and a

foil at the tip, as depicted in Fig. 1. A circularly polarized

laser pulse is incident normally from the left boundary. A

cone with a half-aperture of 20� is located initially between

z¼ 5k0 and 40k0, where k0¼ 1 lm is the laser wavelength.

The thickness of the cone wall is 1.5k0. For the first configu-

ration, the cone plasma consists of an initially neutral mix-

ture of electrons and Au40þ ions with mass mAu ¼ 197mp,

where mp ¼ 1836me is the proton mass. The density of the

Au40þ is set to 5nc, corresponding to an electron density of

200nc, where nc ¼ 1:12� 1021cm�3 is the critical density.

The thickness of the attached foil is set to be 0.14k0 and its

radius is 2k0. In order to facilitate RPA,21,22 the foil at the

cone tip is composed of C6þ with mass mC ¼ 12mp and

Cu24þ with mass mCu ¼ 63:5mp, whose densities are both set

to 8nc, and the electron density is 240nc. Using such a multi-

species foil, the lower-Z ion species can acquire supplemen-

tary electrons from those associated with the high-Z

ion species. This can preserve a locally quasi-neutral space-

charge and lead to a stable RPA.22 The simulation box is

70k0 � 40k0 with 3500� 2000 cells. Each cell contains 49

numerical macroparticles per species in the simulations. In

order to resolve the Debye length, the initial temperature of

both electrons and ions is set to 1 keV. It is noted that, by

using such an initial temperature, the foil expands to twice

the initial thickness, with a pedestal electron density of

�12nc, and the maximum density of the electrons becomes

�200nc before the laser pulse impacts it. The laser pulse has

a trapezoidal temporal profile, which rises up linearly for a

duration 1 T0 to the peak intensity, stays at constant intensity

for 10 T0, then decreases linearly over a duration 1 T0, where

T0� 3.3 fs is the laser cycle. The dimensionless maximum

amplitude of the laser electric field is a0 ¼ eE0=mecx0 ¼ 25,

where E0 and x0 are the electric field and frequency of the

laser pulse, respectively. The spatial profile of the laser pulse

is Gaussian with a spot radius of 13.5k0, corresponding to a

laser power of 9.8 PW. Laser pulses of high contrast in

excess of 1010 are available,33–38 allowing good target integ-

rity to be maintained before the main pulse irradiates the

cone tip. Thus, the effect of a characterized laser pre-pulse is

not intentionally simulated here. However, the thermal

expansion of the 1 keV initial condition target is akin to the

effect of an uncharacterized pre-pulse to the main pulse,

which is fortuitous as even the highest contrast lasers still

have 10 s–100 s of ps of pre-pulse. The time step is 0.007 T0.

The simulations are run until 150 T0. For both the transverse

and longitudinal boundaries, absorbing boundary conditions

are used for the fields and particles.

III. RESULTS AND DISCUSSION

In case A, the target is composed of a gold plasma cone

wall and a multi-species slab foil at the tip. Characteristics of

the laser pulse and of the target for case A are presented in

Table I. Figure 2 shows the distribution of the transverse

electric field (Ey)(a) at t¼ 55T0 and the charge density of

C6þ ions (ZCnC) (b) at t¼ 70T0 for case A. It is seen that the

laser pulse is focused due to the nonlinear interaction

between the laser pulse and the gold cone.25 To avoid the

influence of the reflected laser pulse from the cone tip and

obtain enhancements of the laser intensity by the cone, a

gold cone without a cone tip is employed. It is found that the

FIG. 1. Simulation setup: The cone target (blue) having a thickness of 1.5k0

and a half-cone-angle of 20� is located between z¼ 5k0 and 40k0 in the sim-

ulation box. The inner radius of the cone tip is 2k0. (a) and (b) The cases

with a slab cone tip and with a Gaussian-shaped cone tip, respectively. The

target is irradiated by a circularly polarized laser pulse (red) from the left

boundary.

TABLE I. Characteristics of the laser and of the target employed in the cases A, B, and C, where hh and hl are the maximum and minimum thicknesses of the

Gaussian-shaped foil, respectively.

Intensity of

the laser

Spot radius

of the laser Half-aperture

Thickness of

the cone wall

Composition of

the cone wall

Profile of the

cone tip

Thickness of

the cone tip

Composition of

the cone tip

Case A Au40þþ e� Slab 0.14k0

Case B 1.7� 1021 W/cm2 13.5k0 20� 1.5k0 Hþþ e� Slab 0.14k0 C6þþCu24þþ e�

Case C Hþ þ e� Gaussian-shaped hh ¼ 0:2k0 hl ¼ 0:1k0
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dimensionless amplitude near the laser axis increases from

a0¼ 25 (intensity at the entrance of the cone) to a0¼ 50 (in-

tensity at the cone tip) at t¼ 50T0, corresponding to a laser

intensity of 6.85� 1021 W/cm2, i.e., a 4-fold intensity

enhancement. The enhanced laser intensity is now concen-

trated on a slab foil of 2k0 radius as compared with the origi-

nal laser spot radius of 13.5k0.

When the laser impacts the slab foil, the radiation pres-

sure at the foil center is much stronger than at the periphery.

The slab foil is strongly deformed along the laser axis, until

it disassembles. The corresponding C6þ ion distribution is

shown in Fig. 2(b). As the laser pulse overtakes the frag-

mented foil along the laser axis, the longitudinal component

acts on the fragments, while the radial component tends to

impart transverse momentum to them. The laser pulse is

modulated by the cone structure (see Fig. 2(a)). Figure 2(c)

shows the spectra of C6þ ions at t¼ 70T0 (red), 90T0 (black),

and 120T0 (blue). Note that all C6þ ion spectra in this paper

are integrated over the whole simulation box. The other

parameters are the same as in Figs. 2(a) and 2(b). It can be

seen that the spectra evolve slowly after t¼ 90T0. In addition

to some peaks at lower energy, we observed energetic C6þ

ions of energy >500 MeV, which, as shown in Figure 2(c),

have a monotonously decreasing distribution. Although the

maximum energy of C6þ ions is 1.5 GeV as seen in Fig. 2(c),

the number of ions at this energy is extremely small (only

�0.4% of the total C6þ ions). We note that in case A, the

gold plasma cone wall stays intact during the laser interac-

tion with the cone, as shown by Fig. 3(a), at t¼ 65T0. It

is clear that the approach of case A is not a promising one,

if the objective is to obtain an ion beam with high

energy density and a narrow-band spectral distribution for

C6þ ions.

Prior publications have shown that it is possible to stabi-

lize the radiation pressure drive of a compressed foil if the

pulse can wrap around the plasma.31,39 For this purpose, a

hydrogen cone is used in case B instead of the gold cone.

The cone has a wall density of 50nc, while the other parame-

ters for the laser and the foil are the same as that in case A.

Figure 3(b) shows the cone charge density at t¼ 65T0 after

laser irradiation. The H-plasma wall is broken near the tip,

with small radiation leaks in these regions. Figure 4 shows

the distribution of the transverse electric field (Ey) (a), the

charge density (b), and the energy spectrum (c) of C6þ ions

for case B. The pulse here can be transmitted not only as a

result of foil fragmentation but also through the broken cone

wall. As a result, the laser electric field distribution around

the cone tip becomes more uniform compared to that of case

A. We note that, as the laser penetrates through the broken

cone wall and propagates outward, it wraps around the foil

clumps near the tip, and the radial radiation pressure tends to

FIG. 2. Distribution of the transverse electric field (Ey) at t¼ 55T0 (a) and of

the charge density of C6þ ions at t¼ 70T0 (b) for case A. Energy spectra

of the C6þ ions at t¼ 70T0, t¼ 90T0, and 120T0 for case A (c). The electric

field and density are expressed in units of mecx0=e and nc, respectively

(same as in the other figures).

FIG. 3. Charge density distributions of the Au40þ ions at t¼ 65T0 for case A

(a) and protons for case B (b), respectively.
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stabilize, to some extent, their acceleration. One can see that,

in Fig. 4(b), the density distribution of the C6þ ions is more

localized than in Fig. 2(b). Fig. 4(c) shows that the distribu-

tion of C6þ ions with energies >500 MeV is no longer

monotonously decreasing and that a peak emerges in the

spectrum near 800 MeV. However, this peak is not very pro-

nounced and only contains a small number of C6þ (�10% of

the total C6þ ions).

To further improve the quality of the laser-accelerated

C6þ ion bunches, we consider a different target design in

case C, which is composed of a hydrogen plasma cone and a

Gaussian-shaped foil at the cone tip, as suggested in Ref. 16.

The composition of the Gaussian-shaped foil is identical to

that of cases A and B. The thickness of the foil is given by

h ¼ maxfhh � expð�ðy� 20k0Þ=y2
0Þ; hlg, where y0 ¼ 2k0 is

the spot radius and hh ¼ 0:2k0 and hl ¼ 0:1k0 are the maxi-

mum and minimum thicknesses of the Gaussian-shaped foil,

as shown in Fig. 1(b).

At the center of the Gaussian-shaped foil, where both

the foil thickness and the laser intensity are at their

maximum, the multi-species foil is effectively accelerated as

a plasma bunch along the laser axis. The laser can escape the

cone from breaks in the H-plasma cone wall, as well as from

the thinner periphery of the Gaussian-shaped foil. The trans-

mitted radiation then enfolds the plasma layer accelerated

from the cone tip with beneficial effects toward its stabiliza-

tion, as discussed in Ref. 30. We note that the electric field

distribution in case C is obviously different from that of case

A, i.e., the electric field at the center of the foil is weaker

than that at the periphery. Moreover, in case C, the acceler-

ated and compressed C6þ ions concentrate along the laser

axis, with densities up to 3nc at t¼ 70T0, which is much

higher than that of cases A and B. Since our current PIC

code does not have the capability of tracking the particles,

here we do not track the particles of the bunches. The Cu24þ

ions spread widely in space and do not form a clear

bunch, whose energy spectra are monotonously decreasing.

Figure 5(c) shows the spectrum of the C6þ ions. The most

prominent feature here is the quasi-mono-energetic peak at

FIG. 4. Distribution of the transverse electric field at t¼ 55T0 (a) and of the

charge density of C6þ ions at t¼ 70T0 (b) for case B. Energy spectra of the

C6þ ions at t¼ 70T0, t¼ 90T0, and 120T0 for case B (c).

FIG. 5. Distribution of the transverse electric field at t¼ 55T0 (a) and of the

charge density of C6þ ions at t¼ 70T0 (b) for case C. Energy spectra of the

C6þ ions at t¼ 70T0, t¼ 90T0, and 120T0 for case C (c).
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�720 MeV, which contains about 37% of the total C6þ ion

energy at t¼ 70T0. The energy spread of the peak is

DE=E � 14%. The energy of this peak increases to 790 MeV

at t¼ 90T0, when 31% of the total C6þ ion energy is con-

tained in the peak. It is noted that the ion bunch can maintain

the quasi-mono-energetic peak for a long period (Dt > 80T0)

after the laser is turned off. The ions contained in the peak

leave the simulation box at t¼ 140T0.

Figure 6(a) shows the distribution of the kinetic energy

density of the C6þ ions at t¼ 70T0. It is shown that the

accelerated ion bunch has a very high energy density

(�7� 1010 J/cm3), which is comparable to the energy den-

sity of the incident laser pulse (�1011 J/cm3). For compari-

son, in Fig. 6(b), we also show the kinetic energy density

distribution of the C6þ for case A. In this case, the ions

become very divergent, leading to the energy density

around the laser propagation axis being significantly lower

than that in Fig. 6(a). Note that LAPINE is a very efficient

PIC code, and both the initial amount of energy and the

effect of numerical heating are negligible compared to the

energy from the laser (i.e., only 0.05% of the energy from

the laser).

Figure 7 shows the time evolution of the total energy of

the C6þ ions in case C. One can see that the total energy

grows rapidly as soon as the laser pulse impacts the

Gaussian-shaped foil. The energy keeps growing at later

times, as the laser penetrates the cone from the foil periphery

and wraps around the accelerated ion bunch. The energy

conversion efficiency from laser to C6þ ions is �4%, and

about 1.5% laser energy is contained in the 720 MeV quasi-

mono-energetic peak at t¼ 70T0.

For completeness, we also study the cases of a slab foil

only and with dimensionless amplitudes a0¼ 25 and 50,

respectively. The foil here has the same composition and

thickness (i.e., 0.14k0) as that of the tip of case A. The charge

density distributions and energy spectra of the C6þ ions for

the two cases are presented in Fig. 8. It can be seen that, in

Fig. 8(a), the foil is not broken up by the laser pulse due to

the relatively lower laser intensity. The corresponding energy

spectra are monotonously decreasing (see Fig. 8(c)), whose

cutoff energies are only �170 MeV, significantly lower than

that of case C. As the laser intensity increases to the focused

intensity (a0¼ 50), one can see that the laser pulse can greatly

push forward the foil target and drive the C6þ ions to higher

energies, as shown in Figs. 8(b) and 8(d). However, there is

also no obvious energy peak appearing in the spectra.

Due to the limited computing resources, it is impossible

to simulate the whole distance of laser ion acceleration and

following propagation. Despite the fact that only a small

region including the cone and tip was simulated, the

enhanced effect of the cone on the laser intensity and the

optimized effect on the following ion acceleration can be

observed well. From the simulations, we note that the spec-

trum of ions becomes quasi-mono-energetic rapidly during

the laser interaction and evolves slowly after the laser is

turned off. Such ion bunches might spread widely at a much

later time due to the loss of the electrons. However, several

schemes have been proposed to further enhance the stability

and reduce the divergence of high-energy-density ion

bunches during the long distance propagation, such as using

a background plasma to partially neutralize the space-

charge40 or using an extra laser-driven micro-lens to control

the emission of protons.41

Considering a realistic 3D cone target, the laser pulse

would be focused to a much tighter spot due to the fact that

the laser intensity at the cone tip is / Iðr0=rtÞ2, where r0 and

rt are the inner radius of the cone hatch and tip, respectively.

Therefore, ion bunches with a much higher energy and den-

sity might be obtained employing our scheme with a less

intense laser pulse, which would have to be examined in

future studies.

FIG. 6. Kinetic energy density distribution of the C6þ ions at t¼ 70T0 for

cases C (a) and A (b), respectively. The kinetic energy density is expressed

in units of mec2nc.

FIG. 7. Total energy of the C6þ ions as a function of time for case C.
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IV. CONCLUSION

In summary, we have examined intense laser-

irradiation, with circularly polarized pulses, of a number of

cone-foil target configurations, with the aim of identifying

possible combinations suitable for producing high-energy,

narrow-band carbon ions. In particular, we have searched for

configurations in which the intensity enhancement deter-

mined by pulse constriction within the cone can be used to

efficiently drive the RPA of an ultrathin foil. We found an

interesting configuration by combining a hydrogen cone with

a multispecies foil with thickness varying radially according

to a Gaussian function (as suggested in prior publication16).

A narrow-band, high energy density C6þ ion bunch, with a

peak energy of 790 MeV, results from the combination of a

number of factors which provide a stable and efficient accel-

eration of the carbon ion layer: (1) intensity (and radiation

pressure) enhancement due to cone guiding; (2) matching of

the foil thickness to the intensity profile;16 (3) multispecies

effects;21,22 and (4) enfolding of the accelerated clump by

transmitted radiation.30
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