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Abstract

Background: Increasing number of eQTL (Expression Quantitative Trait Loci) datasets facilitate genetics and systems
biology research. Meta-analysis tools are in need to jointly analyze datasets of same or similar issue types to improve
statistical power especially in trans-eQTL mapping. Meta-analysis framework is also necessary for ChrX eQTL discovery.

Results: We developed a novel tool, meta-eqtl, for fast eQTL meta-analysis of arbitrary sample size and arbitrary
number of datasets. Further, this tool accommodates versatile modeling, eg. non-parametric model and mixed effect
models. In addition, meta-eqtl readily handles calculation of chrX eQTLs.

Conclusions: We demonstrated and validated meta-eqtl as fast and comprehensive tool to meta-analyze multiple
datasets and ChrX eQTL discovery. Meta-eqtl is a set of command line utilities written in R, with some computationally
intensive parts written in C. The software runs on Linux platforms and is designed to intelligently adapt to high
performance computing (HPC) cluster. We applied the novel tool to liver and adipose tissue data, and revealed
eSNPs underlying diabetes GWAS loci.
Background
Expression quantitative trait loci (eQTLs) are genomic
loci that regulate expression levels of mRNAs, and
eQTLs play important roles in genetics and systems
biology studies. To date, multiple eQTL datasets (where
both transcriptome and DNA genotype are profiled on
the same individuals) exist for a given tissue type, e.g.
liver and lung [1,2]. It is necessary to jointly analyze
these sets to further improve statistical power especially
for trans-eQTL discovery. Even for the same tissue type,
the eQTL datasets (transcriptome and genotype data)
could be heterogeneous due to platform and lab differ-
ences, and meta-analysis (but not pooled analysis) would
be the method of choice. Meta-analysis is also desirable
the analysis of chromosome X eQTLs in dataset consist-
ing of both males and females. The interpretation of
genotype effects on gene expression varies between gen-
ders. For example, an allele count of 1 in a female indi-
cates a heterozygote genotype (one reference and one
alternative allele), while a count of 1 in a male means
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only alternative allele exists and may cause more pro-
found effects. The variance of the genetic effect may also
differ between genders. In such scenario, directly pooling
males and females in chromosome X eQTL discovery is
invalid, while meta-eQTL tackles this issue elegantly by
deriving eQTLs per gender and then combining the test
statistics.
The typical strategy of meta-analysis has two steps: (1)

calculate and record raw test statistics (e.g. β and pvalue)
of every transcript-SNP pair per individual dataset, and
(2) combine the statistics using meta-analysis approach.
However, this strategy is not practical in eQTL setting,
where each dataset requires evaluation of >1011 tests.
Storing the raw statistics of every test is prohibitive due
to massive disk and I/O demand. The common practice
is only recording the top hits (e.g. pvalue < 1e-4) per
dataset and meta-analysis. This strategy will miss the
eQTLs that have consistent small-to-moderate effect in
multiple datasets [3]. Herein, we propose the solution of
parallel and synchronized eQTL computation of mul-
tiple datasets, and conducting meta-analysis on the fly.
By these means, the above steps (1) and (2) are per-
formed in memory, and only the meta-analysis results
which pass a user-defined significance level are output-
ted to disk. Moreover, meta-eqtl offers versatile features:
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Table 1 Application of meta-eqtl in meta-analysis of chrX
eQTLs by gender*

Tissue #eQTL # peak eSNP
in RegDB

RegDB enrichment† # GWAS loci‡

Liver

cis 131 80 2.36 (2.01 - 2.75) 34

trans 52 9 1.98 (1.17 - 3.16) 2

Omental

cis 207 115 2.92 (2.56 -3.32) 54

trans 28 10 1.04 (0.64 -1.60) 0

SubQ

cis 163 83 3.23 (2.81 - 3.72) 30

trans 18 8 1.39 (0.80 - 2.10) 1

*10% FDR eQTLs on chromosome X. Omental: omental fat tissue, SubQ:
Subcutaneous fat tissue; †Enrichment of ChrX eSNP in RegulomeDB database
[10], odds ratio (95% confidence interval) are presented; ‡Number of ChrX
eQTLs underlying GWAS loci.
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implementation of peak finding algorithm, various statis-
tical models (eg. non-parametric and mixed effect model),
consistent handling of missing data, easy deployment on
high performance computing (HPC) clusters, etc.

Implementation
Meta-eqtl is a set of command line utilities written in R,
with some computationally intensive parts written in C.
Optimized linear algebra code (which is included in the
R package) is used to fit linear models in absence of
missing values. When missing values are present, in ei-
ther the gene expression or SNP data, C code is called
to compute the pairwise minimal sufficient statistics.
The data format is based on plain text, tab-delimited
files, which make the data easy to inspect and manipu-
late with standard UNIX utilities. Within meta-eqtl, sev-
eral modules are dedicated to specific functionality, and
can be called individually by user.
Linear regressions meta-analysis is implemented in the

R script lm-meta. The computation occurs in multiple
threads, where the number of threads corresponds to
the number of datasets in the meta-analysis. The mul-
tiple threads proceed concordantly, therefore, the same
set of gene expression-SNP tests are evaluated in each
individual dataset at the same moment. When statistics
are obtained from multiple threads, the meta-analytical
test statistic is computed as:

Zmeta ¼ ΣwkZkð Þ= Σwk
2

� �1=2

where the weights are assigned either based on sample
size or the standard error of β in each dataset. The soft-
ware output comprehensive statistics of the fitted model,
including effective sample size, regression coefficients,
standard error of regression coefficients, transcriptome
variance explained (ie, r2), T statistics (T) and pvalues
(p). The T and p were presented for both meta-analysis
and each individual cohort. A separate utility, lm-fdr,
compares the output from observed and permuted data
and quantify FDR. In brief, the meta-analysis results
enter the downstream peak finding and empirical FDR
calibration by permuting the sample IDs in the gene ex-
pression files. To our experience, this empirically esti-
mated FDR is more robust than Benjamini-Hochberg
procedure, such as used in MatrixEQTL [4], which is heav-
ily biased when gene expression follows a non-Gaussian
distribution. The tool set also contains the eqtl-sex-peaks
utility, specially designed for meta-analysis of regression re-
sults by gender. kruskal is provided as a non-parametric
Kruskal-Wallis test for eQTL detection. Since eQTL com-
putation involves big data sets, gene expression and SNP
data are accessed sequentially and concordantly by each
thread, and results are reported on the fly, as they are com-
puted. This allows for the analysis of files of arbitrary
sample size and arbitrary number of datasets with constant
memory usage. Also, this framework enables a natural de-
ployment on HPC and Hadoop clusters as it can trivially
distribute the analysis into multiple computing nodes.
Results and discussions
To our knowledge, meta-eqtl is the first software to per-
form meta-analysis on arbitrary number of eQTL data-
sets. We thus compared our results with those obtained
with METAL [5,6], a tool which performs meta-analysis
on pre-stored test statistics. On a data of four individual
sets (sample size of 1000, 1000, 500 and 500, respect-
ively), we tested 10,000 SNPs, and the two software gave
the identical results to the available numerical precision.
We also benchmarked the performance on a large data
of three cohorts (N = 450, 400 and 350) with 44,000
transcripts profiled and 1000 genome imputed genotype
(~8 million SNPs). Meta-eqtl distributed the computa-
tion on a cluster of 800 computing cores (each core allo-
cated 824 Mb to 1013 Mb of memory), and was able to
complete within three days. The top eQTLs (10% FDR)
statistics were identical to those computed by the R
package “meta”. On a single cohort, we further con-
ducted head-to-head comparison to the MatrixEQTL
software [4], which to our knowledge is the fastest soft-
ware available to date for large scale eQTL analysis, and
found that meta-eqtl was about 2–3 times slower,
reflecting the expense of missing data handling and the
more flexible pipeline. Nevertheless, meta-eqtl is still
one of the fastest eQTL tools available.
We also leverage another large-scale published eQTL

study data [7], where custom 44 K RNA microarray were
run on 651 liver, 848 adipose fat and 701 subcutaneous
fat samples of 1,008 patients. 950 samples from the same
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patients were successfully genotyped on the Illumina
650Y BeadChip array, and further imputed on the 1000
Genome reference for 14 million SNPs using the MACH
[8] pipeline. Applying meta-eQTL, we derived ChrX
eQTL for each tissue (Table 1). The meta-analysis of
males and females provides increased power in detecting
genetic regulation of gene expression, while still cor-
rectly keeping separate the analysis of the two sets. In
Figure 1 Results of ChrX eQTL meta-analysis in Liver: cis-regulation of D
expression. Position (in Mb) on the horizontal axis; −log10(pvalue) on the vertic
males; bottom panel: meta-analysis results. Highlighted in gray the position of
DUSP9 is already observed in males and females separately, the meta-analysis o
Figure 1, we illustrate e.g. how the X chromosome gene
DUSP9 shows some evidence of cis-regulation in the
liver of both females (top panel) and males (middle
panel), with the meta-analytical results pointing to a
sharper and more conclusive signal (bottom panel).
Further, we employed the ChrX eQTLs to inform type
1 and type 2 diabetes (T1D and T2D) GWAS SNPs
(where liver and adipose are disease relevant issues)
USP9. Significance of association between genotype variants and DUSP9
al axis. Top panel: associations in females; middle panel: associations in
DUSP9 on the genome. Although some evidence of cis-regulation of
f the two datasets provides a sharper and more conclusive signal.



Table 2 ChrX diabetes GWAS hits with significant eQTLs in liver and adipose tissues

rsID Position Reported gene Mapped gene Disease Risk Allele GWAS pvalue

rs2664170 153945602 Intergenic GAB3 Type 1 diabetes G 8e-9

rs5945326 152899922 DUSP9 KRT18P48 - DUSP9 Type 2 diabetes A 7e-16

rs12010175 152862638 FAM58A FAM58A Type 2 diabetes G 2e-9
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documented in the NHGRI catalog [9]. Three chrX
SNPs associated with T1D or T2D were also eQTLs in
at least one of these three tissues (Table 2). Genes close
to these SNPs were proposed as underlying the disease
etiology in the original GWAS reports, herein, we identify
additional plausible candidates (Table 3). For examples,
rs2664170 is associated with T1D and has profound influ-
ence on gene expression levels of IKBKG in all tissues.
IKBKG (inhibitor of nuclear factor kappa-B kinase subunit
gamma) is the regulatory subunit of the inhibitor of IκB
kinase (IKK) complex, which activates NF-κB resulting in
activation of genes involved in inflammation, immunity,
cell survival, and other pathways. Given the inflammatory
basis of T1D, IKBKG is a highly relevant genetic risk fac-
tor. The direction of eQTL is consistent among the three
tissues; that is the disease risk allele (rs2664170-G) is asso-
ciated with lower level of IKBKG, leading to higher IκB
kinase activity and elevated inflammation and in turn in-
crease T1D risks.
Table 3 eQTL statistics on ChrX diabetes GWAS hits

eQTL Gene eSNP rsID* eQTL Eff Allele eQTL pvalue

F8 rs2664170 A 3.8E-07

AK095886 rs2664170 A 9.6E-04

CTAG2 rs2664170 A 1.2E-03

IKBKG rs2664170 A 7.4E-03

CTAG1B rs2664170 A 8.7E-03

AK095886 rs2664170 A 7.0E-07

IKBKG rs2664170 A 5.1E-05

F8A1 rs2664170 A 2.4E-04

SLC10A3 rs2664170 A 2.7E-04

AK095886 rs2664170 A 8.1E-07

IKBKG rs2664170 A 5.5E-04

Contig21200_RC rs2664170 A 4.3E-08

XM_210086 rs5945326 A 7.0E-03

SLC6A8 rs12010175 G 2.8E-04

ARHGAP4 rs12010175 G 8.2E-03

BC030106 rs12010175 G 1.8E-03

HSS00085101 rs12010175 G 3.2E-03

PLXNB3 rs12010175 G 3.0E-04

BC030106 rs12010175 G 7.6E-04

*SNPs rs2664170, rs5945326 and rs12010175 were identified as eQTL, and these SN
(summarized in Table 2).
Conclusions
In summary, we describe a novel package, meta-eqtl. To
our knowledge, it is the only tool to allow fast meta-
analysis of eQTLs for today's large genotype and gene
expression data with reasonable memory requirement
and fast speed. It can also be used as a flexible and fast
tool for eQTL discover on a single dataset, where it fea-
tures flexible model specification (e.g. non-parametric and
mixed effect models), missing data handling and imple-
ments significance peaks extraction. Meta-eqtl features
computation speed comparable to the fastest alternative
available to date, and is further well suited to distribute
parallel jobs onto a HPC system. Another major advantage
is the ability to handle chrX eQTLs. In recent year, in-
creasing number of eQTL studies and dataset become
available [3,7,11], joint analyses of same/similar tissue sets
are of great interest. Meta-eqtl enables meta-analysis of
arbitrary number of eQTL dataset and will greatly facili-
tate this research field.
β T meta T male T female eQTL Type Tissue

−3.60 −5.08 −2.93 −4.26 cis Liver

−2.36 −3.30 −0.93 −3.43 cis Liver

2.35 3.25 0.69 3.46 cis Liver

1.92 2.68 1.07 2.53 cis Liver

1.88 2.62 1.35 2.27 cis Liver

−3.56 −4.96 −2.56 −4.34 cis Omental

2.90 4.05 2.48 3.26 cis Omental

−2.61 −3.67 −1.53 −3.52 cis Omental

2.59 3.64 2.99 2.30 cis Omental

−3.52 −4.93 −2.88 −4.10 cis SubQ

2.45 3.46 3.35 1.77 cis SubQ

−3.91 −5.48 −2.69 −4.96 trans SubQ

1.94 2.70 0.61 2.86 cis Liver

2.62 3.63 2.99 2.41 cis Liver

1.91 2.64 0.13 3.08 cis Liver

2.28 3.12 2.81 2.00 cis Omental

−2.11 −2.94 −1.15 −2.82 cis Omental

2.62 3.61 1.42 3.41 cis SubQ

2.38 3.37 2.07 2.71 cis SubQ

Ps are also reported in association with diabetes by large GWA studies
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Availability and requirements
The meta-eQTL software package is freely available to all
readers under https://haok01.u.hpc.mssm.edu/meta_eQTL/
Project name: meta-eQTL
Project home page: https://haok01.u.hpc.mssm.edu/
meta_eQTL/
Operating system(s): Linux
Programming language: R (version 3.0.2) and C
License: none
Any restrictions to use by non-academics: none
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