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Nature News and Views 

 

Trawling for Complements 

 

A method has been invented for determining nanoscale variations in the distribution of 

electric charge on surfaces. It has so far been used to examine specific inorganic materials, but 

could find widespread applications in imaging. 

 

J. Marty Gregg & Amit Kumar 

 

Thunderstorms are among nature’s most awe-inspiring spectacles. Lightning flashes pierce the 

gloom causing vast amounts of electrical charges, built up at the base of clouds, to find their way to 

Earth. Even without flashes, static electricity in the clouds affects the charge distribution on the 

Earth’s surface below. Localized regions of land, and all objects contained within them, become 

either enriched in or denuded of electrons, producing a localised net charge opposite in sign to that 

of the clouds directly above. Although most of the cloud base is negative, charge densities vary. As 

the storm passes overhead, these variations are reflected by complementary charge variations on 

Earth. To facilitate charge redistribution, electrical currents must flow. So, by monitoring the 

currents at fixed locations on Earth, variations in the charge densities of the passing storm clouds 

can be mapped. This is almost exactly what Hong et al.1 have done except, rather than map large-

scale electrical storms, they have invented an analogous technique to determine nanoscale charge 

variations on the surfaces of inorganic functional materials. 

 To do their experiments, Hong and colleagues made relatively minor adaptations to an 

atomic force microscope (AFM), if anything simplifying its mode of operation over that 

conventionally used. They brought a sharp conducting tip, on the end of a flexible cantilever, into 

contact with the surface of a lithium niobate crystal. They then trawled this metallic tip across the 



crystal surface and, using a sensitive detection circuit, monitored minute currents associated with 

charge redistribution between the tip and its grounded electrode. 

 Lithium niobate is an insulating oxide, important in telecommunications applications. 

Within each of the unit cells of this crystalline material, ions are naturally arranged such that the 

centres of positive and negative charge are slightly spatially separated. This results in what is 

termed an electrical dipole, a vector entity which points from negative to positive within the crystal. 

In lithium niobate, the orientation of this dipole can be reversed by an electric field, defining the 

material as a ferroelectric. For applications, reversals in dipole orientation induced by an electric 

field are deliberately engineered to make spatially periodic stripe patterns, where positive and 

negative charges are alternately closest to the crystal surface, in distinct regions called domains. 

When electrodes are brought into contact, the proximity of the near-surface charges in the 

ferroelectric induces charge redistribution in the electrode: charges of opposite sign to the near-

surface charges in the ferroelectric are attracted to the electrode-ferroelectric interface and like 

charges are repelled away.  

 The same thing happens when an AFM tip is used as an electrode (Fig. 1). If this tip is 

moved within a single domain, because dipoles are uniformly oriented, the initial charge 

redistribution that occurs in the tip remains unchanged. However, whenever the tip passes over the 

junction between one domain and the next (over a domain wall), dipole reversal causes 

complementary charges to flow between the tip and its grounded electrode. Because the current 

associated with this charge redistribution between the tip and ground is proportional to the rate of 

change of charge at the tip, it increases as the scanning speed of the AFM tip increases (complete 

charge redistribution is forced to occur in a shorter time). Moreover, because the nature of the 

charge redistribution in the tip depends on the sense in which a specific domain wall is traversed, 

the sign of the current changes whenever the scan direction is reversed. Hong et al. point out that 

the total current that is generated as the tip passes over each domain wall equates to a charge-

density change at the ferroelectric surface around twice that of the dipole density in lithium niobate, 



exactly as should be expected. Importantly, this confirms that the new technique can quantitatively, 

as well as qualitatively, map nanoscale charge density variations. Hong et al. do highlight the 

confounding influence of ions or dipolar molecules in the air that nullify the electric fields 

generated by the near-surface charges in the ferroelectric. However, they note that their novel 

imaging technique, which they call charge gradient microscopy, is largely immune to such air-borne 

layers, as it seems that the rastered tip scrapes them away. 

 While this new methodology for imaging charge variation is conceptually rather simple, its 

potential importance cannot be overstated. It has recently become evident that ferroelectric domain 

walls can possess diverse functional characteristics that are completely different from the domains 

that they delineate: they can be conducting2, or even superconducting3, when the domains 

themselves are insulating. Moreover, they can be moved, injected and annihilated by external 

electric fields4, so that their potential use in ‘active’ two-dimensional electronic devices is 

overwhelmingly clear. Hong and colleagues’ imaging technique rapidly locates ferroelectric domain 

walls and could therefore be invaluable in supporting the quest for “domain wall nanoelectronics”5. 

Moreover, its discovery comes at a point when shortcomings in the most common method for 

ferroelectric domain imaging (piezoresponse force microscopy) are starting to become 

uncomfortably apparent: for example, high-quality images of ‘domains’ have been obtained using 

piezoresponse force microscopy in materials in which ferroelectricity is extremely unlikely6,7.

 Restricting the authors’ charge gradient microscopy to imaging ferroelectric domain walls, 

exciting as they are, would probably be a mistake. Variation in nanoscale charge distribution must 

be crucial in many aspects of science, from understanding communications in cell biology to 

teasing out details in battery electrochemistry. Perhaps it will be through the adoption of this 

imaging technique by other areas of science, that its full potential will be realized. 

 

Figure 1 | Charge gradient mapping. Hong and colleagues1 have developed a technique to 

determine charge variations on the surfaces of ferroelectric materials. A metallic tip connected via 



an electrode to the ground rasters rapidly across the surface of the material, which is also connected 

to the ground. The tip only records a current in a device equivalent to an ammeter (A) when it 

encounters a charge gradient at a junction between two distinct domains, in which positive and 

negative charges are alternately closest to the surface; the black arrows denote the electrical-dipole 

vectors in each domain. The magnitude of the current (blue and brown curves), which is associated 

with charge redistribution in the tip (grey curve), is proportional to the charge gradient as well as 

the tip velocity; its sign is governed by the sense of the charge gradient, as well as the scan 

direction. 
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