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Abstract

In this article, we investigate the interference alignment (IA) solution for a K-user MIMO interference channel. Proper
users’ precoders and decoders are designed through a desired signal power maximization model with IA conditions
as constraints, which forms a complex matrix optimization problem. We propose two low complexity algorithms, both
of which apply the Courant penalty function technique to combine the leakage interference and the desired signal
power together as the new objective function. The first proposed algorithm is the modified alternating minimization
algorithm (MAMA), where each subproblem has closed-form solution with an eigenvalue decomposition. To further
reduce algorithm complexity, we propose a hybrid algorithm which consists of two parts. As the first part, the
algorithm iterates with Householder transformation to preserve the orthogonality of precoders and decoders. In each
iteration, the matrix optimization problem is considered in a sequence of 2D subspaces, which leads to one
dimensional optimization subproblems. From any initial point, this algorithm obtains precoders and decoders with
low leakage interference in short time. In the second part, to exploit the advantage of MAMA, it continues to iterate to
perfectly align the interference from the output point of the first part. Analysis shows that in one iteration generally
both proposed two algorithms have lower computational complexity than the existed maximum signal power (MSP)
algorithm, and the hybrid algorithm enjoys lower complexity than MAMA. Simulations reveal that both proposed
algorithms achieve similar performances as the MSP algorithm with less executing time, and show better
performances than the existed alternating minimization algorithm in terms of sum rate. Besides, from the view of
convergence rate, simulation results show that the MAMA enjoys fastest speed with respect to a certain sum rate
value, while hybrid algorithm converges fastest to eliminate interference.

Keywords: Interference alignment, Power maximization, Courant penalty function, Alternating minimization
algorithm, Householder transformation

Introduction
Interference alignment (IA) technique is recently brought
to show that each user can achieve half degree of free-
dom (DoF) in the K-user interference channel. It jointly
optimizes precoding matrices for all transmitters, so that
all interferences at one receiver fall into a reduced dimen-
sional subspace. Then by multiplying decoding matrix
orthogonal to this subspace, the certain receiver can
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extract the desired signals without interference. By uti-
lizing the IA techniques, Cadambe and Jafar[1] showed
that the achieved sum capacity of the K-user interference
channel scales linearly with the number of users, in the
high signal-to-noise-ratio (SNR) regime. Generally, the IA
solutions are required to satisfy the following conditions
simultaneously:

(1) all the interferences are eliminated;
(2) all the subspaces for desired signals are full rank;
(3) precoders and decoders are required to be

orthogonal.

The Yetis et al. [2] related the feasibility of the IA con-
ditions in fully connected interference channel to the
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problem of determining the solvability of a multivariate
polynomial system, with arbitrary antenna configurations.
The achievable DoFs are also discussed based on this poly-
nomial system, relating to users’ number of antennas and
the number of users [3]. The analysis is further extended
to that in partially connected channels [4-6].
From the signal processing point of view, the proce-

dure of IA is to solve precoders and decoders according
to the three conditions with a feasible IA system. How-
ever, the solution to this feasible problem is still not
known in general. There are available closed form solu-
tions only for certain cases, such as 3-user MIMO channel
with N antennas each user equips with and N/2 DoFs
each user requires, and K-user channel where each user
equips with K − 1 antennas and wishes to achieve 1
DoF. For general cases, the system is turned into an
optimization problem minimizing the total leakage inter-
ference and preserving the orthogonality of precoders
and decoders as constraints, which is denoted as leak-
age interference minimization (LIM) problem. With the
solution, the IA condition 2 can be almost surely satisfied
if channels have no special structures [7]. LIM problem
is proved to be NP-hard when the number of antennas
each user equips with are greater than 3[8]. Thus, itera-
tive algorithms rather than the analytical solutions should
be considered. Gomadam et al. [7] exploited the chan-
nel reciprocity and proposed an alternating minimization
algorithm (AMA) to design precoders and decoders in
a distributed way. Then each subproblem is equivalent
to an eigenvalue problem with eigenvalue decomposition
required. In the AMA, although the leakage interference
can be perfectly canceled after convergence, its perfor-
mance in terms of sum rate is not optimal. In fact, it is
pointed out that for general interference channels the con-
structed LIM problem has a large number of different IA
solutions obtained from different initial points, which lead
to different achieved sum rate values[9]. The main reason
is that the AMA only eliminates the interference in the
desired signal space without considering the system sum
rate, which results in a suboptimal sum rate achieved with
finite signal power.
Gomadam et al.[7] also noticed the disadvantage of

AMA, and then proposed the Max signal-to-interference-
and-noise-ratio (SINR) algorithm as well. In each iter-
ation, the basic idea of the Max-SINR algorithm is to
choose the precoders and decoders stream by stream,
with aim to maximize the SINR of each stream instead
of minimizing the leakage interference. Due to the relax-
ation of the IA condition 3, the IA condition 2 does not
hold anymore in this algorithm, whichmeans the required
DoFs might not be satisfied. This analysis accords with the
performances shown in [7], that it achieves higher sum
rate than the AMA sin intermediate SNR regime, how-
ever suffers from the loss of required DoFs in the high

SNR regime. Many other algorithms can also be designed
to perform like Max-SINR, however none of them can
achieve the optimal DoFs without IA conditions[10]. Fur-
ther, IA scheme provides the receivers interference-free
subspaces, with which receivers completely get rid of com-
plicated cancelation of interference. Thus, it is important
to improve IA algorithms in general SNR scenarios.
Prior study in [11] proposes an iterative algorithm using

the gradient descent method to solve the new IA model,
where the utility function of either sum rate or the desired
signal power is maximized with the IA conditions 1 and
3 as constraints. The corresponding MSP algorithm is
shown to obtain higher sum rate than the AMA generally
regardless of the initial point and higher than Max-SINR
in high SNR regime. However, it requires a series of
eigenvalue decompositions and compact singular value
decompositions (SVDs), which lead to high computational
complexity. Besides, the MSP algorithm has much slower
convergence rate than the AMA.
Nevertheless, in practical systems, receivers have lim-

ited computational complexity, which might be a bot-
tleneck for the complexity of the algorithms. Besides,
channel reciprocity requires TDD operations which
restrict the executing time of the algorithms. Therefore,
the principal question here is how to design proper algo-
rithms to balance the achieved sum rate with computa-
tional complexity and computing time. In this article, we
aim to propose algorithms to maintain the advantage of
the MSP algorithm with faster convergence, lower com-
plexity and less executing time. Two efficient algorithms
are proposed to solve the desired signal power maximiza-
tion IA problem. First we propose a modified alternating
minimization algorithm (MAMA) with Courant penalty
function technique. Then, to further reduce the algorithm
complexity, a new algorithm with Householder trans-
formation (AHT) is proposed, where a two-dimensional
subspace method is applied to solve subproblems. It acts
to obtain precoders and decoders with low leakage inter-
ference in short time, and then theMAMA continues iter-
ating to get perfect IA, which forms the hybrid algorithm.
The remaining article is organized as follows: In Section

“Desired signal power maximization interference align-
ment model”, the desired signal power maximization
model is presented. The two algorithms, MAMA and
hybrid algorithm, are proposed in Sections “Modified
alternating minimization algorithm” and “A hybrid algo-
rithm”, respectively. The computational complexity of
the proposed algorithms and MSP algorithm are ana-
lyzed in Section “Analysis of computational complex-
ity”. Numerical results and further remarks are shown in
Section “Simulations”.
Notation: Lowercase and uppercase boldface represent

vectors and matrices, respectively. C represents the com-
plex domain. Re(a) means the real part of scalar a. tr(A)



Sun et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:137 Page 3 of 13
http://asp.eurasipjournals.com/content/2012/1/137

and ‖A‖F are the trace and the Frobenius norm of matrix
A, respectively. Id represents the d × d identity matrix.
K represents the set of the user indices {1, 2, . . . ,K}.
CN (μ, σ 2)means the complex Gaussian distribution with
mean μ and variance σ 2. And we use EX(·) to denote the
statistical expectation with the variableX.O(n)means the
same order amount of n.

Desired signal power maximization IAmodel
Consider a K-user interference MIMO channel (M ×
N , d)K as in Figure 1, where each transmitter equips with
M antennas, each receiver with N antennas and each user
pair wishes to achieve dDoFs. Suppose sk ∈ C

d×1 denotes
the transmit signal vector of the kth user with power
covariance as E(sksHk ) = (P/d)Id, where P is the total
transmit power of each user. For convenience we unify the
transmit power of each stream, i.e. P/d = 1. After receiv-
ing the signal yk , the kth receiver multiplies decoding
matrix to it on the left, which is expressed as:

UH
k yk = UH

k HkkVksk︸ ︷︷ ︸
desired signal

+
∑

l �=k,l∈K
UH
k HklVlsl

︸ ︷︷ ︸
interference

+UH
k nk︸ ︷︷ ︸
noise

,

(1)

where Hkl ∈ C
N×M denotes the channel matrix between

the kth transmitter and the lth receiver, and Vk ∈ C
M×d ,

Uk ∈ C
N×d represent the precoder and decoder of the kth

user, respectively. The three terms of (1) on the right side
represent the desired signal, the interference from other
users and the noise with distribution of CN (0, σ 2

k IN ) at
the kth receiver, respectively. In this article we assume all
the noises have the same covariance, that is σ 2

k = σ 2,
k ∈ K.
Following the feasible condition for IA system, IA

scheme is defined as[7]:

UH
k HklVl = 0, k �= l, k, l ∈ K; (2)
rank(UH

k HkkVk) = d, k ∈ K; (3)
VH
k Vk = Id,UH

k Uk = Id, k ∈ K. (4)

The original idea of IA only consists of (2) and (3).
Noticing that for any precoding and decoding matri-
ces {Vk ,Uk , k ∈ K} that satisfy these two conditions,
{VkPk ,UkQk , k ∈ K} also satisfy (2) and (3) as long as
{Pk ,Qk ∈ C

d×d , k ∈ K} are all non-singular matrices.
This indicates that the solutions of the IA system are not
unique and the solutionmatrices form d-dimensional sub-
spaces. Therefore, we require the columns of Vk ,Uk , k ∈
K to be the orthogonal basis of the corresponding sub-
spaces, which is the condition (4).
Besides the requirement of (2) and (4), we wish to

maximize the desired signal power, in order to achieve suf-
ficiently high sum rate. Suppose all the transmit signals are

Figure 1 K-user MIMO interference channel.
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statistically independent of each other. We can obtain the
expected total desired signal power

PS =
∑
k∈K

Es(‖UH
k HkkVksk‖22) =

∑
k∈K

‖UH
k HkkVk‖2F .

Based on the above analysis, we present the desired
signal power maximization (PM) model as follows:

max
Uk ,Vk
k∈K

PS(Uk ,Vk) =
∑
k∈K

‖UH
k HkkVk‖2F (5a)

s. t. UH
k HklVl = 0, k �= l, k, l ∈ K, (5b)

VH
k Vk = Id,UH

k Uk = Id, k ∈ K. (5c)

This model was first brought in [11], in which its per-
formance is compared with the sum rate maximization
(SRM) model. The PM model can achieve similar perfor-
mance as the SRM model, while its related optimization
problem is much simpler. Therefore it is a good way to
approximate the SRM model by the PM model [11]. Thus
in this article we only focus on solving (5) to design proper
precoders and decoders.
The sum of squares of the residuals of constraints (5b) is

the total leakage interference, which is given by:

PI (Uk ,Vk) =
∑
k∈K

Es

⎛
⎜⎝

∥∥∥∥∥∥
∑

l �=k,l∈K
UH
k HklVlsl

∥∥∥∥∥∥

2
⎞
⎟⎠

=
∑
k∈K

∑
l �=k,l∈K

‖UH
k HklVl‖2F .

(6)

The essential idea of the AMA given by [7] is to mini-
mize PI alternately for Uk and Vk . From the formulation
of (5), we know that the MSP algorithm in [11] solves it
by increasing PS while reducing PI towards zero at the
same time. Here we briefly introduce the framework of
MSP. In each iteration for each precoder and decoder,
an AMA step is first taken to reduce PI . And then the
iterative point go along the gradient direction of PS to
increase it, whose stepsize gradually shrinks to 0 in order
to perfectly align the interference by simply taking AMA
steps in the last few iterations. MSP algorithm requires
a series of eigenvalue decompositions and SVDs, which
bring in high computational complexity and complicated
matrix computations. Therefore we wish to propose algo-
rithms for (5) with lower complexity and less complicated
computations.

Modified alternatingminimization algorithm
(MAMA)
In this section, we present our first low complexity algo-
rithm, the MAMA. The main difficulty for solving the
highly nonlinear nonconvex optimization problem (5) is
to deal with the nonlinear constraint (5b). Noticing that

(5a) and the penalty term (6) for (5b) have quite simi-
lar expressions, we can combine these two together by
the Courant penalty function technique [12] as in the
next section.

Courant penalty function technique
Courant penalty function technique is a classic penalty
function technique, which avoids dealing with constraints
by moving them to the objective function. The basic idea
is to replace the constraints with a penalty term scaled by a
parameter C. The penalty term is the sum of squares of all
the constraint violations. In (5), we apply Courant penalty
technique to (5b) and keep the constraints (5c) in order to
obtain the following simple constrained problem:

min
Uk ,Vk
k∈K

P(Uk ,Vk ,C) = CPI(Uk ,Vk) − PS(Uk ,Vk)

(7a)
s. t. VH

k Vk = Id,UH
k Uk = Id, k ∈ K, (7b)

where PI is defined by (6).
It is well known that if (5) is feasible, the solution of

(7) converges to that of (5) as C approaches infinity[13].
Thus the solution of (5) can be approximated by that of (7).
As pointed out in [13], the approximated error between
the solutions of (7) and (5) is of the level O( 1

C ), which
concerns about the choice of the penalty parameter C.
Therefore, theoretically, (7) with larger C would get bet-
ter approximation of (5). However, in real computations,
large C may lead to ill-conditioned objective function and
consequently bring in numerical calculation difficulties.
To avoid such difficulties caused by unnecessarily large C
in the first few iterations, we initially set C as a small pos-
itive number such as C = 1. If sufficient reduction in
PI is not achieved, we increase C to σ0C, where σ0 > 1
is a constant. The solution of (7), (Uk(C),Vk(C), k ∈ K)

provides a good initial point for solving (7) again when
C is replaced by σ0C. In this way we force PI to reduce
towards 0 eventually and the optimal solution of (5) can
be obtained.

The overall algorithm
Via Courant penalty function technique our main task is
now how to solve (7), which is quite similar to the LIM
problem in which PI is to be minimized. We can rewrite
(7) as:

min
Uk ,Vk
k∈K

P(Uk ,Vk ,C) (8a)

=
∑
k∈K

tr

⎛
⎝UH

k

⎛
⎝C

∑
l �=k,l∈K

HklVlVH
l H

H
kl − HkkVkVH

k H
H
kk

⎞
⎠Uk

⎞
⎠

=
∑
k∈K

tr

⎛
⎝VH

k

⎛
⎝C

∑
l �=k,l∈K

HH
lkUlUH

l Hlk − HH
kkUkUH

k Hkk

⎞
⎠Vk

⎞
⎠

s. t. VH
k Vk = Id ,UH

k Uk = Id , k ∈ K. (8b)
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The only difference between the LIM problem and (8) is
the objective function, as LIMminimizes the total leakage
interference PI subject to (8b). Thus, we can borrow the
idea of the AMA in [7], to iterate Vk , k ∈ K and Uk , k ∈ K
alternatively in each iteration. Fixing all Vk , k ∈ K in (8),
Uk , k ∈ K become independent of each other. In this case,
(8) turns into K independent subproblems with formulas
as:

min
Uk

tr

⎛
⎝UH

k

⎛
⎝C

∑
l �=k,l∈K

HklVlVH
l H

H
kl − HkkVkVH

k H
H
kk

⎞
⎠Uk

⎞
⎠

s. t. UH
k Uk = Id .

(9)

We can obtain the closed-form solution of (9) as Uk =
νdmin(Jk), k ∈ K, which means the columns of Uk are
eigenvectors corresponding to the d smallest eigenvalues
of

Jk = C
∑
l �=k

HklVlVH
l H

H
kl − HkkVkVH

k H
H
kk .

Similar solutions of Vk can be achieved when fixing all
Uk , k ∈ K. Of course, we need a technique to update the
penalty parameter C according to PI during iterations.
Based on the above descriptions, our MAMA for the

PM model (5) is stated as follows (Algorithm 1).

Algorithm 1: modified alternating minimization algorithm

1. Set initial precoders Vk and decoders Uk , k ∈ K, the
initial penalty parameter C and σ0 > 1.
P̄I = PI(Uk ,Vk).

2. For decoders: Uk = νdmin(Jk), k ∈ K from above.
3. For precoders: Vk = νdmin(J̃k), k ∈ K, where

J̃k = C
∑

l �=k HH
lkUlUH

l Hlk − HH
kkUkUH

k Hkk .
4. If the algorithm converges, then stop and output

Vk ,Uk , k ∈ K. If PI(Uk ,Vk) > P̄I − 1/C, then
increase the penalty parameter C := σ0C. If
PI(Uk ,Vk) < P̄I , let P̄I = PI(Uk ,Vk). Go to step 2.

In the original AMA of [7], eigenvectors correspond-
ing to the d smallest eigenvalues of positive semi-definite
matrices {∑l �=k HklVlVH

l H
H
kl , k ∈ K} and those of

{∑l �=k HH
klUlUH

l Hkl, k ∈ K} are required. In our MAMA,
the matrices Jk and J̃k are not necessarily positive semi-
definite, since the objective function value of (8) might be
negative with feasible solution of quite low PI and high PS.
Although our MAMA avoids calculating SVD which is

required by the MSP algorithm given by [11], eigenvalue
decompositions are still required for solving subproblems.
This lends an impetus to further improvement.

A hybrid algorithm
In order to further reduce the complexity of our MAMA,
we propose a hybrid technique in this section. First, we
give an AHT, which is a very low complexity algorithm for
(5). This algorithm is free from complicated matrix com-
putation, such as eigenvalue decomposition, SVD and QR
factorization, and enjoys lower computational complexity
than MAMA.

Algorithmwith Householder transformation
In this algorithm, we still use the Courant penalty function
technique. Thus we focus on problem (7). The only con-
straints of (7) are orthogonal constraints. We require all
the iterative pointsUk andVk generated by our algorithms
are feasible, namely (7b) are always satisfied. By requir-
ing feasibility, basically we are solving an unconstrained
optimization problem on the Grassmann manifold. Oth-
erwise, if we allow iterations go outside the feasible region,
we will have to adopt some technique, such as projec-
tion, to draw the iterations back to the feasible region,
which can be complicated. For example, the projection to
the set of orthogonal matrices can be a non-differentiable
operator and time-consuming to compute.

Preserving orthogonality
Let Vi

k denotes the precoder of the kth user in the ith iter-
ation. Suppose both Vi

k and Vi+1
k are orthogonal, there

should exist a unitary matrix Pi
k ∈ C

M×M such that

Pi
kV

i
k = Vi+1

k .

The straightforward approach is to search for all uni-
tary matrices Pi

k ∈ C
M×M , but this can be computa-

tionally very expensive. We consider a special class of
unitary matrices, the Householder matrices, which can
be represented as P = I − 2ppH with pHp = 1. The
use of Householder transformation can not only preserve
orthogonality, but also turn the problem from a matrix
optimization into a vector optimization problem. In the
ith iteration with fixed Vi

k ,U
i
k , k ∈ K as certain feasi-

ble solution of (7), we try to obtain orthogonal vectors
vk ,uk , k ∈ K and set

Vi+1
k = (IM−2vkvHk )Vi

k ,U
i+1
k = (IN−2ukuHk )Ui

k , k ∈ K
(10)

as the precoders and decoders in the (i + 1)th iteration.
Here, vk ,uk , k ∈ K are regarded as optimal (or subopti-
mal) solutions to minimize the objective function value
of (7), P(Ui+1

k ,Vi+1
k ,C) = P((IN − 2ukuHk )Ui

k , (IM −
2vkvHk )Vi

k ,C).
As precoding and decoding matrices are updated

according to Householder transformation in each itera-
tion, the new algorithm is denoted as AHT.
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Alternating directions
Substituting (10) into (7), we get (11) with variables
vk ,uk , k ∈ K:

minuk ,vk
k∈K

∑
k∈K

⎛
⎝C

∑
l �=k,l∈K

‖(Ui+1
l )HHlkVi+1

k ‖2F − ‖(Ui+1
k )HHkkVi+1

k ‖2F
⎞
⎠

=
∑
k∈K

⎛
⎝C

∑
l �=k

‖(Ui
l)
H (IN −2uluHl )Hlk(IM−2vkvHk )Vi

k‖2F

−‖(Ui
k)

H (IN −2ukuHk )Hkk(IM−2vkvHk )Vi
k‖2F

⎞
⎠

s. t. vHk vk = 1,uHk uk = 1, k ∈ K.

(11)

With the fact that

‖(Ui+1
l )HHlk(IM − 2vkvHk )Vi

k‖2F
= tr

(
(Vi

k)
H(IM − 2vkvHk )HH

lkU
i+1
l (Ui+1

l )

HHlk(IM − 2vkvHk )Vi
k
)

= 4tr
(
(Vi

k)
HvkvHk H

H
lkU

i+1
l (Ui+1

l )HHlkvkvHk V
i
k
)

− 2tr
(
(Vi

k)
HvkvHk H

H
lkU

i+1
l (Ui+1

l )HHlkVi
k

+ (Vi
k)

HHH
lkU

i+1
l (Ui+1

l )HHlkvkvHk V
i
k
)

+ tr
(
(Vi

k)
HHH

lkU
i+1
l (Ui+1

l )HHlkVi
k
)

= 4(vHk H
H
lkU

i+1
l (Ui+1

l )HHlkvk)(vHk V
i
k(V

i
k)

Hvk)
− 2(vHk H

H
lkU

i+1
l (Ui+1

l )HHlkVi
k(V

i
k)

Hvk
+ vHk V

i
k(V

i
k)

HHH
lkU

i+1
l (Ui+1

l )HHlkvk)
+ tr

(
(Vi

k)
HHH

lkU
i+1
l (Ui+1

l )HHlkVi
k
)
,

(12)

we can rewrite the objective function of (11) as:
∑
k∈K

[
4(vHk Akvk)

(
vHk V

i
k(V

i
k)

Hvk
)

− 2
(
vHk AkVi

k(V
i
k)

Hvk + vHk V
i
k(V

i
k)

HAkvk
)

+tr
(
(Vi

k)
HAkVi

k
)]
,

(13)

where Ak = C
∑

l �=k,l∈K HH
lkU

i+1
l (Ui+1

l )HHlk −
HH

kkU
i+1
k (Ui+1

k )HHkk , k ∈ K.
Fixing all ul, l ∈ K in (11), Ui+1

l , l ∈ K are determined
according to (10), and thus vk , k ∈ K become indepen-
dent of each other. Therefore, (11) is decomposed into K
subproblems with the same form as follows:

min
x∈CM

f (x) = (xHAx)(xHBx) − xHCx

s. t. xHx = 1. (14)

Here x represents vk . A = 2
(
C

∑
l �=k,l∈K HH

lkU
i+1
l

(Ui+1
l )HHlk − HH

kkU
i+1
k (Ui+1

k )HHkk
)
, B = 2Vi

k(V
i
k)

H and
C = (AB + BA)/2. Similarly, fixing all vk , k ∈ K, it yields
K subproblems like (14) from (11). Based on the analysis

above, the alternating direction method can be applied to
optimize vk , k ∈ K and uk , k ∈ K alternatively.

Subproblem: 2D subspacemethod
Subproblem (14) is a nonlinear optimization on the Stiefel
manifold in complex field, which is not easy to han-
dle. With the aim of low complexity, we abandon the
second order method where Hessian matrix information
is required. Instead, we apply a 2D subspace method to
solve it iteratively [14]. We define the subspace spanned
by x0 and g̃ as

S(x0, g̃)=
{
x : x=bx0+ag̃.a ∈[−1, 1] , b=

√
1 − a2

}
,

where x0 is the current iterative feasible point and g̃ repre-
sents its normalized gradient of the Lagrangian function
of (14). In each step, the feasible domain of x shrinks from
the Stiefel manifold xHx = 1 to S(x0, g̃).
Here g̃ is calculated as follows. First, the Lagrangian

function of (14) is expressed as:

L(x, λ) = f (x) − λ(xHx − 1), (15)

where λ is the Lagrange multiplier. Then the gradient of
(15) is

g = g0 − λx0, (16)

where g0 is the gradient of the objective function f at the
point x0:

g0 = 2[ (xH0 Ax0)Bx0 + (xH0 Bx0)Ax0 − Cx0] .

As a necessary condition of the first order optimal-
ity condition of (14), we require gHx0 = 0. Thus λ =
2(xH0 Ax0)(x

H
0 Bx0) − xH0 Cx0 is deduced due to xH0 x0 = 1.

Once λ is computed, g can be chosen by (16) and we can
let g̃ = g/‖g‖2.
To maintain S(x0, g̃) on the Stiefel manifold, any point

x ∈ S(x0, g̃) should satisfy xHx = b2‖x0‖2 + a2‖g̃‖2 = 1.
Thus a2 + b2 = 1, a ∈[−1, 1], namely b = ±√

1 − a2.
For any a ∈[−1, 1], the objective function of (14) share the
same function value at

√
1 − a2x0+ag̃ and−√

1 − a2x0−
ag̃. Therefore, we only consider the case b = √

1 − a2 to
avoid redundant solutions.
Taking the expression of x ∈ S(x0, g̃) into (14), it turns

into a one dimensional constraint optimization problem
with variable a:

min
a∈[−1,1]

p1a
√
1 − a2+p2a2+p3a3

√
1 − a2+p4a4, (17)

where the current iterative point x0 corresponds to a = 0,
and

p1 = 2[ Re(xH0 Ag̃)(x
H
0 Bx0) + Re(xH0 Bg̃)(x

H
0 Ax0) − Re(xH0 Cg̃)] ,

p2 = (xH0 Ax0)(g̃
HBg̃)+(xH0 Bx0)(g̃

HAg̃)−2(xH0 Ax0)(x
H
0 Bx0)

+ 4Re(xH0 Ag̃)Re(x
H
0 Bg̃) + xH0 Cx0 − g̃HCg̃,

p3 = 2[ Re(xH0 Bg̃)(g̃
HAg̃ − xH0 Ax0) + Re(xH0 Ag̃)(g̃

HBg̃ − xH0 Bx0)] ,

p4 = (g̃HAg̃ − xH0 Ax0)(g̃
HBg̃ − xH0 Bx0) − 4Re(xH0 Ag̃)Re(x

H
0 Bg̃).
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Newton’s method with line search is applied to solve
(17) and a local minimizer is guaranteed to be found [13].
The method to solve subproblem (14) is summarized as

follows:

Subalgorithm: two dimensional subspace method

1. Given any initial feasible point x0 and the maximum
iteration number T inner, t1 = 1.

2. Calculate g̃ and construct subproblem (17).
3. Solve (17) by Newton’s method with line search and

x0 :=
√
1 − a2x0 + ag̃. If the objective function of

(14) does not reduce or t1 = T inner, stop and output
x0; else t1 := t1 + 1, go to Step 2.

The maximum iteration number T inner relates to the
efficiency of the algorithm. It should not be too large
or too small, in order to avoid spending too much time
for subproblem or insufficient reduction of the objec-
tive function value. We will discuss its specific choice in
Section “Simulations”.
As the projection to the Stiefel manifold xHx = 1 is very

easy to compute, projected gradient method is also a com-
mon approach to solve (14). In the following theorem and
remark, we compare our 2D subspace method with the
projected gradient method and show the advantage of our
method.
Theorem 1. Denote the projected gradient step started
from x0 with stepsize α as:

x(α) = x0 − αg0
‖x0 − αg0‖ . (18)

On one hand, for any vector x ∈ S(x0, g̃), there exists a
stepsize α ∈ R, such that x is expressed as (18); on the other
hand, for any α ∈ R, the projected gradient step x(α) can
be expressed as the linear combination of x0 and g̃, which
means x(α) ∈ S(x0, g̃).
Proof. See the Appendix.

Remark 1. Theorem 1 shows that step in certain 2D sub-
space and the projected gradient step can be mutually
expressed. Thus the minimization of the objective function
f on the 2D subspace S(x0, g̃) and that along the projected
gradient step are essentially the same. The 2D subspace
problem is easy to handle, as shown above; but the search
for (18) may be quite difficult, because the projection oper-
ator would make the objective function nondifferentiable
and lose the common Taylor expansion, consequently it is
nontrivial to search for proper stepsize α. Due to these con-
siderations, we use the 2D subspacemethod rather than the
projected gradient method to solve (14).

Framework of AHT algorithm
According to the above discussions, the framework
of the AHT algorithm can be concluded as follows
(Algorithm 2).

Algorithm 2: algorithmwith Householder transformation

1. Set initial precoders and decoders as V0
k ,U

0
k , k ∈ K,

parameter T inner in 2D subspace, the maximum
inner iteration number Touter, the initial penalty
parameter C, parameter σ0 > 1 for C and the
stopping parameter ε. i = 0.

2. Solve (11) iteratively: fix Ui
k ,V

i
k , k ∈ K, and set the

initial normalized vectors uk , vk , k ∈ K. t = 1.

(2.1) For precoders: fix uk , k ∈ K. For k ∈ K,
construct A,B,C in (14) and solve it with 2D
subspace method to obtain vk .

(2.2) For decoders: fix vk , k ∈ K. Similarly to Step
2.1, obtain new uk , k ∈ K by solving (14).

(2.3) Calculate Ui+1
k ,Vi+1

k , k ∈ K from (10). If
t = Touter or
PI(Ui+1

k ,Vi+1
k ) ≤ PI(Ui

k ,V
i
k) − 1/C, go to

Step 3; else t := t + 1, go to step 2.1.

3. If PI(Ui+1
k ,Vi+1

k ) > PI(Ui
k ,V

i
k) − 1/C, increase the

penalty parameter C := σ0C. If PI(Ui+1
k ,Vi+1

k ) < ε,
stop and output Uk := Ui+1

k ,Vk := Vi+1
k , k ∈ K; else

i := i + 1, go to Step 2.

In our simulations, t is usually no more than 5 when
PI(Ui+1

k ,Vi+1
k ) ≤ PI(Ui

k ,V
i
k) − 1/C is achieved in Step

2. Touter, the maximum number of inner iterations inside
Step 2, acts to avoid extreme situation with too much time
to solve subproblems. Thus we suggest Touter = 5.

Hybrid algorithm
Although the AHT algorithm enjoys lower complexity
than MAMA as analyzed in the next section, it solves
subproblem (14) inexactly by successive 2D subspace
minimizations. This reduces the objective function value
rapidly at first, however the speed becomes much more
slowly when the iterative point approaches a local optimal
solution. Simulation also verifies that it is quite difficult to
align the interference perfectly with the AHT algorithm.
In contrast, MAMA solves subproblem (9) exactly with
closed form solution. The sequence generated by MAMA
converges fast near the solution, which is complementary
to that of AHT.
In order to make full use of the low complexity of AHT

and the fast local convergence property of MAMA, it
seems reasonable for us to combine these two methods
together into a hybrid algorithm. We believe that such a
hybrid algorithmwill enjoy the properties of low complex-
ity and fast local convergence, which are verified by our
simulation tests reported in Section “Simulations”.
This hybrid algorithm consists of two stages. In the

first stage, it uses the AHT algorithm to iterate from any
starting point to a point near the solution. Then, the
algorithm switches to MAMA, namely it applies MAMA
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to converge to the solution, by starting from the point
obtained by AHT (Algorithm 3).

Algorithm 3: hybrid algorithm

1. Set initial precoders and decoders as V0
k ,U

0
k , k ∈ K,

the penalty parameter C = 1.
2. Input the initial iterative point and penalty parameter

into the AHT algorithm. Set its stopping criterion as
PI(Uk ,Vk) < 0.01PI(U0

k ,V
0
k). Output the

corresponding Vk ,Uk , k ∈ K and the current penalty
parameter CAHT = C.

3. Input Vk ,Uk , k ∈ K and C = CAHT as the initial
iterative point and penalty parameter of MAMA,
respectively. Iterate until convergence by the
MAMA. Output the corresponding precoders and
decoders Vk ,Uk , k ∈ K.

In some sense, it can be viewed that the AHT algorithm
acts as a method to rapidly find a good initial point
with low interference for MAMA. Starting from the good
initial point, MAMA can converge very fast to a local
optimal solution with perfect IA.

Analysis of computational complexity
In this section, we analyze the computational complexity
of IA algorithms for PM model, including our two pro-
posed algorithms MAMA and AHT, as well as the MSP
algorithm from [11].

Advantages of low complexity algorithms
Before presenting the detailed analysis on the computa-
tional complexities of different algorithms, we provide the
reasons for constructing low computational complexity IA
algorithms for the PM model.

1. No matter our algorithms or the existed IA
algorithms, they all exploit the channel reciprocity to
design the transmit precoders and receiver decoders
in a distributed way. Such reciprocity is based on the
time division duplex (TDD) operation with
synchronized time-slot in the practical system.
However, due to the time varying property of wireless
channel, perfect reciprocity may be hard to achieve
and result in residual interference at the receivers.
This requires algorithms with short computing time
to reduce the possibility of performance loss due to
the imperfect reciprocity in practical systems[15].

2. Furthermore, that the receivers generally have
limited computational complexity, might be a
bottleneck for the complexity of the algorithms. Thus
we need to design algorithms with low complexity
and simple computation, to satisfy the computation
restriction of communication equipments.

3. Also, algorithms with lower complexity are easier to
be extended to large scale problems. For small scale
problems, algorithms with low or high complexity do
not differ much from each other. However as the
problem dimension grows, high complexity
algorithms can be very very slow for large scale
problems because of too much computing time,
while algorithms with lower complexity are more
preferable.

Detailed analysis
Here we consider the number of complex multiplica-
tions as the complexity criterion. The AHT, MAMA and
MSP algorithm are analyzed and compared. Their main
computations in one iteration are listed as follows:

1. The computation ofHklVlVH
l H

H
kl and

HH
lkUlUH

l Hlk , k, l ∈ K are required for all the three
algorithms. Let H̃kl = HklVl. Then we can calculate
HklVlVH

l H
H
kl as H̃klH̃H

kl . Similarly we can compute
HH

lkUlUH
l Hlk by introducing H̄lk = HH

lkUl. As k and l
traverse all the elements in K, the entire complexity
is K2[ (dMN + dN2) + (dMN + dM2)]=
K2d(2MN + N2 + M2).

2. Besides term 1, the AHT algorithm requires to
compute UkUH

k and VkVH
k , with complexity of

Kd(M2 + N2).
3. PI is computed in both the AHT and MAMA.

Noticing that

PI =
∑
k∈K

∑
l �=k,l∈K

‖UH
k HklVl‖2F =

∑
k∈K

∑
l �=k,l∈K

‖VH
k H

H
lkUl‖2F ,

we can compute ‖UH
k H̃kl‖2F if N < M, or ‖VH

k H̄lk‖2F
otherwise, where H̃kl and H̄lk are the pre-computed
parameters in term 1. With the above analysis, the
corresponding complexity is
K(K − 1)d2(min(M,N) + 1).

4. AHT algorithm requires to update precoders and
decoders by computing Ui+1

k ,Vi+1
k , k ∈ K in (10).

With Ui+1
k = Ui

k − 2uk(uHk U
i
k), the complexity is

K[ (d2 + dM) + (d2 + dN)]= Kd(2d + M + N).
5. In each inner iteration of our 2D subspace method

for (14) in the AHT algorithm, it mainly requires
computation of Ax, Bx, Cx =[A(Bx) + B(Ax)] /2,
Ag and Bg, the complexity of which is 6n2, where n
is the dimension of x. Suppose for each 2D subspace
method, there are mostly T inner inner iterations, we
can see that each iteration of AHT requires the total
complexity of 6KT inner(M2 + N2).

6. One eigenvalue decomposition of matrix with
dimensionM × M requires 9M3 complexity [16].
Both the MAMA and MSP algorithm need K
eigenvalue decompositions ofM × M matrices and K
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with dimension N × N . The entire complexity is
9K(M3 + N3).

7. The complexity of one compact SVD of matrix with
dimensionM × d (d < M) is 14Md2 + 8d3 [16]. The
MSP algorithm requires K compact SVDs for
matrices with dimensionM × d and K with
dimension N × d, whose complexity is
Kd2(14M + 14N + 16d).

Table 1 shows the specific computational complexity of
the three algorithms. Comparing the AHT and MAMA,
besides the common terms, AHT owns term 2,4,5, while
MAMA has term 6. With the fact that 1 ≤ d ≤
min(M,N), we can deduce that:

Kd(2d + M + N) + Kd(M2 + N2)

≤ 2Kd(M + N) + Kd(M2 + N2)

≤ 3K(M2 + N2) < 3K(M3 + N3). (19)

For term 5, as long as T inner ≤ min(M,N), we have

6KT inner(M2 + N2) ≤ 6K(M3 + N3). (20)

Adding both sides of (19) and (20), we conclude that AHT
has lower complexity than MAMA.
Similarly, we compare term 3 and term 7 to see the dif-

ference between the complexity of MAMA and MSP. As
long as K ≤ 23 (which is usually the case in practical
considered IA problems), the following inequality holds:

K(K − 1)d2(min(M,N) + 1) ≤ 22Kd2(min(M,N) + 1)

≤ Kd2(22min(M,N) + 22d) ≤ Kd2(14M + 14N + 16d).

So the complexity of MAMA is lower than that of the
MSP algorithm. Thus the algorithms ranked from low to
high complexity in one iteration are AHT, MAMA and
MSP. This also implies that the hybrid algorithm has lower
complexity than MAMA and MSP.
Our above analysis compares the complexity of each

iteration of different algorithms. However, in order to
compare the computational complexity of different algo-
rithms, we need to estimate the total number of iterations
of all the algorithms under considerations, which is not

Table 1 Comparison of computational complexity

AHT MAMA MSP

Matrix multiplication: K2d(2MN + N2 + M2)
√ √ √

UkU
H
k ,VkV

H
k , k ∈ K: Kd(M2 + N2)

√

PI : K(K − 1)d2(min(M,N) + 1)
√ √

Ũk , Ṽk , k ∈ K: Kd(2d + M + N)
√

Subproblem construction: 6KT inner(M2 + N2)
√

Eigenvalue decomposition: 9K(M3 + N3)
√ √

Compact SVD: Kd2(14M + 14N + 16d)
√

easy. Therefore, we try to explain it by convergence curves
with consuming time in simulations.

Simulations
In this section, we analyze our proposed algorithms the
MAMA, AHT and hybrid algorithm by simulations, and
compare them with the existed AMA [7] and MSP algo-
rithm proposed in [11]. (5 × 5, 2)4 interference channels
are considered, that is, K = 4,M = N = 5, d = 2, which
satisfy the general feasibility condition [2,3]. Each compo-
nent of Hkl, k, l ∈ K is i.i.d complex Gaussian distribution
CN (0, 1).
We use sum rate as the measure of quality of service.

The sum rate of the K-user MIMO interference channel is
expressed as follows:

R =
∑
k∈K

log
∣∣∣∣IN + F−1

k Lkk
∣∣∣∣

=
∑
k∈K

log
∣∣∣∣IN +

⎛
⎝σ 2IN +

∑
l �=k,l∈K

Lkl

⎞
⎠

−1

Lkk
∣∣∣∣, (21)

where Lkl = HklVlVH
l H

H
kl , k, l ∈ K, Fk = σ 2IN +∑

l �=k,l∈K Lkl and σ 2 is the covariance of the additive white
Gaussian noise at the receivers. Here we define the SNR as
SNR = P/σ 2 = d/σ 2.
In the AHT algorithm, we set Touter = 5 and ini-

tially C = 1. For each figure, 250 random realization
of different channel coefficients are generated to evaluate
the average performance. For each realization the initial
values of precoders and decoders V0

k ,U
0
k , k ∈ K are ran-

domly generated and remain the same in the compared
algorithms.

Parameter analysis
As mentioned before, the choice of T inner relates to the
efficiency of the AHT algorithm and also the hybrid algo-
rithm. In Figure 2 we plot the convergence curves of
the hybrid algorithms with parameter T inner = 3, 5, 10,
respectively. SNR equals 30 dB and σ0 = 20 here.
Figure 2 reveals that, both the converged average sum

rate and the convergence rate of the hybrid algorithms
with different T inner are quite similar. The curve with
T inner = 10 seems to be the worst, which accords with our
complexity analysis as T inner > min(M,N) = 5. In the
upcoming simulations we set T inner = 5 with which the
hybrid algorithm obtains the highest sum rate, to improve
the efficiency of our proposed algorithms.
Besides T inner, we also compare the performances of

the hybrid algorithms with different σ0. σ0 determines the
growth speed of the penalty parameter C, which repre-
sents the weight of PI in the objective function of (7). If
σ0 is too small, it would take many iterations for C to
grow large, and thus affects the efficiency of the hybrid
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Figure 2 Convergence of the average sum rate of the hybrid
algorithms with T inner = 3, 5, 10.

algorithm. On the other side, too large σ0 forces C to
grow too fast, which makes (7) degenerate into the LIM
problem in short time and that PS cannot be increased
efficiently.
Based on the aforementioned analysis, we plot the con-

vergence curves of the hybrid algorithms with σ0 =
10, 20, 50 in Figure 3. SNR is also set as 30 dB here. The
three curves are very close to each other, which indicates
that the algorithm is not sensitive to σ0. In the following
simulations we set σ0 = 20.

AHT algorithm
In this section, the relative iteration number to achieve
certain leakage interference of the AHT and MSP algo-
rithm are displayed in Figure 4, to show the property of
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Figure 3 Convergence of the average sum rate of the hybrid
algorithms with σ0 = 10, 20, 50.
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Figure 4 Comparison of AHT andMSP: total leakage interference
versus normalized iteration number.

AHT algorithm. The stopping criterion is PI ≤ 0.01.
The average number of iterations of the MSP and AHT
algorithm to solve one problem are 1233 and 583, respec-
tively. To analyze the relative convergence performance,
we use the normalized iterations, the ratio of the itera-
tions at the certain point and the total iterations, as the
x-axis. And the y-axis represents the total leakage interfer-
ence PI . Figure 4 implies that to achieve the interference
of 0.5 from the initial point, the AHT algorithm requires
7.5% of its total iterations while MSP requires 45%. Com-
pared to the MSP algorithm, the AHT algorithm iterates
rapidly to a point with low leakage interference PI . Actu-
ally the main consuming time of AHT algorithm is used to
reduce PI from less than 1 towards 0.01, and the conver-
gence rate becomes much slower when PI is smaller. The
performances here accords with the previous analysis.

Comparison of different IA algorithms
In this section, the performances of different IA
algorithms are compared and analyzed, including our pro-
posed MAMA, AHT and hybrid algorithm, as well as
the existed MSP and AMA. The number of iterations
of each algorithm to solve each problem is set as 3000,
in order to perfectly align the interference. To take full
advantage of AHT, we set its stopping parameter ε =
0.01PI(U0

k ,V
0
k), where V0

k ,U
0
k , k ∈ K are the initial pre-

coders and decoders.
The average sum rate and relative computing time of

the four algorithms (MAMA, Hybrid, MSP and AMA)
with respect to different SNRs are depicted in Figures 5
and 6, respectively. Both our proposed algorithms show
good performances, especially the hybrid algorithm. As
reflected in Figure 5, the curves representing the aver-
age sum rate of MSP, MAMA and the hybrid algorithms
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Figure 5 Comparison of MAMA, Hybrid, MSP and AMA: average
sum rate versus SNR.

are quite close to each other. The solutions of the three
algorithms are quite different, whereas they get similar
sum rate under the same SNR. And all the three algo-
rithms gain about 5 bps/Hz higher sum rate than the AMA
undermedium and high SNR. In Figure 6, both of our pro-
posed two algorithms require much less computing time
than the MSP algorithm. Particularly, the hybrid algo-
rithm gain almost as high sum rate as MSP with as little
time as the AMA.
To further compare the convergence performances of

these four algorithms as well as AHT algorithm, we plot
their convergence curves of sum rate with respect to the
running time in Figure 7. As AHT algorithm is difficult to
converge and eliminate interference, it is shown as the first
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Figure 6 Comparison of MAMA, Hybrid, MSP and AMA: average
relative computing time versus SNR. Time of AMA is set as standard.
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Figure 7 Convergence of the average sum rate of MAMA, AHT,
Hybrid, MSP and AMAwith respect to SNR=5, 15, 30 dB.

stage of the hybrid algorithm. Its output point is used to
continue iteration in the hybrid algorithm. SNR are set as
5, 15 and 30 dB to represent the scenarios of low, medium
and high SNR, respectively. In all three scenarios, both
MAMA and the hybrid algorithm achieve similar con-
verged average sum rate as theMSP algorithm, which gain
more sum rate than the AMA. To achieve a certain sum
rate, MAMA consumes the least time. We also observe an
interesting phenomenon, that in the low andmedium SNR
scenario each of the MAMA, hybrid and MSP algorithm
achieves high sum rate during iteration before conver-
gence, after that it reduces and converges to a lower rate.
This may be relevant to the value of σ 2. As shown at the
beginning of this section, SNR value is inversely propor-
tional to σ 2. For the low SNR scenario, σ 2 is considerably
high and σ 2IN takes the main part of Fk in (21). Then,
the sum rate mainly increases with large PS. All the three
concerned algorithms are designed to increase PS in the
first few iterations and gradually reduce the weight of this
requirement. This may lead to the phenomenon that PS
increases to a peak value and then decreases gradually,
which explains the similar phenomenon of sum rate in
Figure 7.
Similar as Figure 7, for the five compared algorithms

(MSP, AHT, Hybrid, MAMA and AMA), we also plot
the convergence curves of the leakage interference with
respect to the running time in Figure 8. As the conver-
gence curves of the same algorithm are quite close for
different SNR scenarios, here we only display the sce-
nario that SNR is 30 dB for representation. Among the
algorithms, the hybrid algorithm converges fastest to a
point with interference less than 10−4. The MAMA also
converges faster than the MSP and AMA.
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Figure 8 Convergence of the leakage interference of MAMA,
AHT, Hybrid, MSP and AMAwith respect to SNR=30dB.

Comparing the proposed MAMA and hybrid algorithm
from both aspects of computing time and convergence
rate in Figures 6, 7 and 8, we should admit that the
improvement of the hybrid algorithm over MAMA is lim-
ited in the examples that we tested. The main reason of
this phenomenon is due to the quite small scale of the
test problems, for which lower complexity algorithm does
not have much gain. Nevertheless, as the dimension of the
problem increases, the hybrid algorithm will save more
consuming time and benefit more. Moreover, in similar
applications in other fields, there might be large scale sim-
ilar matrix optimization problems, we believe that the
hybrid algorithm will improve MAMA greatly.
Remark 2. We have pointed out in Section “A hybrid algo-
rithm” that the sequence generated by the hybrid algorithm
converges to a local optimal solution. Although it is not
guaranteed to be global optimal, the obtained local opti-
mal solution performs with high sum rate (almost the same
as MSP algorithm and higher than the AMA, as depicted
in Figure 5) and perfect IA. Such solution satisfies our
requirement for an IA solution.
The performances of MAMA and the hybrid algorithm

in this section indicates that the Courant penalty function
technique is an effective way to combine the leakage inter-
ference and the desired signal power together. Through this
technique, both algorithms achieve high average sum rate
in short time. In the last few iterations when C becomes
very large, the algorithm essentially tries to minimize PI
with the part of −PS being nearly ignored. Therefore,
MAMA (also the hybrid algorithm) eventually behaves
very similar to the original AMA, which can perfectly align
the interference.

Conclusion
This article proposed two low complexity algorithms for
the desired signal power maximization IA problems of
MIMO channels. The IA constraints are added to the
objective function and combined with the desired signal
power via the Courant penalty function technique. First,
a MAMA is proposed following the similar approach of
the AMA. Then, a hybrid algorithm is proposed to fur-
ther reduce complexity. In the hybrid algorithm, the AHT
is proposed to iterate rapidly from any initial point to pre-
coders and decoders with low leakage interference. This
step provides a good point around the local optimal solu-
tion. From this point, MAMA is applied to converge fast
to the local optimal solution satisfying our requirement.
Analysis shows that, among the compared algorithms the
hybrid algorithm has the lowest computational complex-
ity, followed by MAMA, with MSP being the highest.
Simulations indicate that both the hybrid algorithm and
MAMA achieve similar sum rate as the MSP algorithm
with less computing time, and higher sum rate than the
AMA.

Appendix
Proof of Theorem 1
As stated in (16), g0 is the linear combination of x0 and g̃.
Suppose

g0 = c1x0 + c2g̃,

where c1 and c2 are scalars.
First prove that the projected gradient step can be

expressed by 2D subspace step. For the projected gradi-
ent step x(α) with any α ∈ R, we would like to find
corresponding scalars a and b, such that

x(α) = x0 − αg0
‖x0 − αg0‖ = (1 − c1α)x0 − c2αg̃

‖(1 − c1α)x0 − c2αg̃‖ = bx0+ag̃.

(22)

Let the coefficients of x0 and g̃ remain unchanged, then

a = −c2α
‖(1 − c1α)x0 − c2αg̃‖ , b = 1 − c1α

‖(1 − c1α)x0 − c2αg̃‖ .

Next show that 2D subspace step can also be expressed
by the projected gradient step. For any x ∈ S(x0, g̃), we
have x = bx0 + ag̃. As we wish to find α ∈ R such that
x = x(α), then (22) holds. Similar to the proof above, we
can induce that

b
a

= c1α − 1
c2α

,α = a
c1a − c2b

.

Thus we have proved Theorem 1.
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