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1 Introduction
The aim of the paper is two-fold: first, to study nonlinear elliptic problems under non-
homogeneous Dirichlet boundary condition; second, to incorporate in the problem state-
ment nonlinearities exhibiting derivatives of the solution. These requirements need to
develop a nonstandard approach, in particular prevent the use of variational methods.
Specifically, we study two problems on a bounded domain � ⊂ R

N (N ≥ ) with Lips-
chitz boundary ∂�. We first consider the problem

⎧⎨
⎩div(a(x,u)∇u) = divb(x,u,∇u) + f (x,u) in �,

u = g on ∂�,
()

where a : � × R → SN (R), b : � × R × R
N → R

N , f : � × R → R are Carathéodory
functions (that is, they are measurable in x ∈ � and continuous in the other variables),
g ∈ H(�), and SN (R) denotes the space of N × N sized symmetric matrices. In the fol-
lowing definition we make clear what we understand by solution to problem ().

Definition  A (weak) solution of problem () is an element u ∈ H(�) such that u – g ∈
H

(�), a(·,u)∇u ∈ L(�)N , b(·,u) ∈ L(�)N , f (·,u) ∈ L(�), and

∫
�

(
a(x,u)∇u

) · ∇vdx =
∫

�

b(x,u,∇u) · ∇vdx –
∫

�

f (x,u)vdx for all v ∈ H
(�).

Next we focus on nonhomogeneous Dirichlet problems where, contrary to problem (),
the dependence with respect to the gradient ∇u of the solution u is not expressed in a
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divergence form, namely

⎧⎨
⎩div(a(x,u)∇u) = divb(x,u) +

∑N
i= bi(x,u)

∂u
∂xi

+ f (x,u) in �,

u = g on ∂�.
()

Here a :�×R → SN (R), f : �×R→ R and g are as in problem (), while b : �×R→ R
N

and bi : � ×R → R (i ∈ {, . . . ,N}) are Carathéodory functions. The meaning of solution
of problem () is as follows.

Definition  A (weak) solution of problem () is an element u ∈ H(�) such that u –
g ∈ H

(�), a(·,u)∇u ∈ L(�)N , b(·,u) ∈ L(�)N , bi(·,u) ∂u
∂xi

∈ L(�) for all i ∈ {, . . . ,N},
f (·,u) ∈ L(�), and

∫
�

(
a(x,u)∇u

) · ∇vdx =
∫

�

b(x,u) · ∇vdx –
N∑
i=

∫
�

bi(x,u)
∂u
∂xi

vdx –
∫

�

f (x,u)vdx

for all v ∈H
(�).

Problems of type () and () have been investigated in settings that are different from
ours (see, e.g., [–]). For instance, problem () is studied in [] when N =  and N = 
with functions a(x, s) and b(x, s, ξ ) = b(x, s) corresponding to certain physical models, as
described by Reynolds equationwhere b(x, s) = h(x)ρ(s)V with h(x) ∈R, ρ(s)≥ , ρ() = ,
and V ∈ R

N . Whereas many of the previous results on problems () and () involve tech-
nical and somewhat restrictive assumptions on the data, the purpose of the present paper
is to provide an elementary resolution of problems () and () in geometrically relevant
situation. As an example of such a geometrically relevant situation, we mention the as-
sumption on the term b(x, ·, ξ ) in problem () to vanish at two points.
Our results are stated as Theorems  and . They are existence and location theorems

on problems () and (), respectively, guaranteeing solutions in the sense of Definitions 
and  that fulfill an estimate γ∗ ≤ u ≤ γ ∗ with given constants γ∗ ≤ γ ∗. This a priori esti-
mate of the solution is derived through natural geometric hypotheses that can be directly
checked. It is also worthwhile to remark that we cannot drop by translation the nonhomo-
geneous boundary conditions to become homogeneous because our hypotheses would be
no longer verified. The arguments used in the proof are based on truncation techniques
and Schauder’s fixed point theorem. We emphasize that, due to the type of assumptions
we impose, it is essential in our approach to keep separate the two terms in divergence
form appearing in the statement of () and (). A careful inspection of our proofs shows
that we rely on the linearity with respect to the gradient ∇u in the first divergence term
and on the vanishing at suitable points in the second divergence term.
The rest of the paper is organized as follows. Section  is devoted to problem (). Sec-

tion  studies problem ().

2 Result on problem (1)
Throughout the paper the notation ‖ · ‖L and ‖ · ‖H stands for the usual norms on L(�)
(or L(�,RN )) and H(�), respectively. By | · | we denote the Euclidean norm of RN .

http://www.boundaryvalueproblems.com/content/2014/1/6
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Let λ be the first eigenvalue of the negative Laplacian differential operator on H
(�),

which is known to be positive and characterized by

λ = inf

{‖∇v‖L
‖v‖L

: v ∈H
(�), v 
= 

}
. ()

We suppose the following hypotheses on the data a, b, f , and g in problem ():

(H) There is a Carathéodory function λ :� ×R→ (, +∞) such that

(
a(x, s)ξ

) · ξ ≥ λ(x, s)|ξ | for a.a. x ∈ �, all s ∈ R, all ξ ∈R
N .

(H) There are constants γ∗,γ ∗ ∈R with γ∗ ≤ g(x) ≤ γ ∗ on ∂� such that

b(x,γ∗, ξ ) = b
(
x,γ ∗, ξ

)
=  for a.a. x ∈ �, all ξ ∈R

N ,

f (x,γ∗) = f
(
x,γ ∗) =  for a.a. x ∈ �.

(H) The functions a, f are bounded on the setM := {(x, s) ∈ � ×R : γ∗ ≤ s ≤ γ ∗} and
∣∣b(x, s, ξ )∣∣ ≤ C

(
 + |ξ |) for a.a. x ∈ �, all s ∈ [

γ∗,γ ∗], all ξ ∈R
N .

(H) There is a Carathéodory function ν :� ×R → (, +∞) such that

ρ := inf
(x,s)∈M

(
λ(x, s) – ν(x, s)

)
> 

and

(
b(x, s, ξ ) – b(x, s,η)

) · (ξ – η) ≤ ν(x, s)|ξ – η|

for a.a. x ∈ �, all s ∈R, ξ ,η ∈ R
N .

Remark  The constants γ∗ and γ ∗ are not solutions of problem (), unless g ≡ γ∗ or
g ≡ γ ∗ on ∂�. Thus, in general, problem () has no evident solution.

Remark  Due to their different structure and requirements, the two terms in () that are
in divergence form cannot be combined.

Remark  The last part of hypothesis (H) incorporates the monotonicity condition

(
b(x, s, ξ ) – b(x, s,η)

) · (ξ – η) ≤  for a.a. x ∈ �, all s ∈R, all ξ ,η ∈R
N ,

as well as the Lipschitz condition

∣∣b(x, s, ξ ) – b(x, s,η)
∣∣ ≤ ν(x, s)|ξ – η| for a.a. x ∈ �, all s ∈R, all ξ ,η ∈R

N ,

and it is more general than both of them.

The result that we set forth in this section is the following theorem ensuring existence
and location of solution for problem ().

http://www.boundaryvalueproblems.com/content/2014/1/6
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Theorem  Assume that hypotheses (H)-(H) are satisfied. Then problem () has at least
one solution u ∈ H(�) in the sense of Definition  satisfying

γ∗ ≤ u(x)≤ γ ∗ for a.a. x ∈ �,

with γ∗ and γ ∗ given in (H).

Proof Consider the set

C =
{
u ∈ L(�) : γ∗ ≤ u(x) ≤ γ ∗ a.e. x ∈ �

}
,

which is a nonempty, bounded, closed, convex subset in L(�).
Claim : Given u ∈ C, there is a unique solution wu ∈ H(�) of the problem

⎧⎨
⎩

∫
�
(a(x,u)∇wu) · ∇vdx =

∫
�
b(x,u,∇wu) · ∇vdx –

∫
�
f (x,u)vdx for all v ∈H

(�),

wu – g ∈H
(�).

Note that Claim  is equivalent to solving uniquely the problem

⎧⎨
⎩〈A(w), v〉 = B(v) for all v ∈H

(�),

w ∈H
(�).

()

Here A :H
(�) →H–(�) and B ∈H–(�) in () are expressed by

〈
A(w), v

〉
=

∫
�

(
a(x,u)∇w – b

(
x,u,∇(w + g)

)) · ∇vdx

and

B(v) = –
∫

�

(
a(x,u)∇g

) · ∇vdx –
∫

�

f (x,u)vdx

for allw, v ∈H
(�). Notice that the operatorsA and B are well defined due to our hypothe-

ses.
With the fixed element u ∈ C, let us introduce the Carathéodory map ã :�×R

N → R
N

by

ã(x, ξ ) = a
(
x,u(x)

)
ξ – b

(
x,u(x), ξ +∇g(x)

)
for a.a. x ∈ �, all ξ ∈ R

N .

From hypotheses (H), (H), (H), and because u ∈ C, it follows that ã satisfies the prop-
erties: there is a constant c >  such that

∣∣ã(x, ξ )∣∣ ≤ c
(
 + |ξ |) for a.a. x ∈ �, all ξ ∈ R

N ()

and

(
ã(x, ξ ) – ã(x,η)

) · (ξ – η) ≥ ρ|ξ – η| for a.a. x ∈ �, all ξ ,η ∈R
N . ()

http://www.boundaryvalueproblems.com/content/2014/1/6
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Estimate () guarantees that the operator A is bounded (in the sense to be bounded on
bounded sets). It is easily seen that () implies that A is coercive, that is,

lim‖∇v‖L→+∞
〈A(v), v〉
‖∇v‖L

= +∞.

Moreover, relations ()-() ensure that the operator A is maximal monotone, so pseu-
domonotone (see, e.g., [, §..]). Since A is bounded, coercive, and pseudomonotone,
it is surjective (see, e.g., [, Theorem .]), whence the existence of wu in Claim . The
uniqueness ofwu is a direct consequence of () (notice that ρ > ). This establishesClaim .
Now, taking advantage of Claim , we define the operator T : C → H(�) by T(u) = wu

for all u ∈ C, where wu is the unique element corresponding to u ∈ C as proved in Claim .
Claim : The mapping T : C →H(�) is continuous.
Let u ∈ C and let {un}n≥ ⊂ C be a sequence such that un → u in L(�). Denote wn =

T(un) and w = T(u). Using the definition of T and choosing v = wn – w ∈ H
(�) as a test

function in Claim  (written with un and u), we have∫
�

(
a(x,un)∇(w –wn)

) · ∇(w –wn)dx

=
∫

�

((
a(x,un) – a(x,u)

)∇w
) · ∇(w –wn)dx +

∫
�

(
a(x,u)∇w

) · ∇(w –wn)dx

–
∫

�

(
a(x,un)∇wn

) · ∇(w –wn)dx

=
∫

�

((
a(x,un) – a(x,u)

)∇w + b(x,u,∇w) – b(x,un,∇wn)
) · ∇(w –wn)dx

–
∫

�

(
f (x,u) – f (x,un)

)
(w –wn)dx.

Combining this formula with (H), (H), (H), () and the Cauchy-Schwarz inequality, we
obtain∫

�

λ(x,un)
∣∣∇(w –wn)

∣∣ dx
≤ ∥∥(

a(x,un) – a(x,u)
)∇w + b(x,u,∇w) – b(x,un,∇w)

∥∥
L

∥∥∇(w –wn)
∥∥
L

+
√
λ

∥∥f (x,un) – f (x,u)
∥∥
L

∥∥∇(w –wn)
∥∥
L +

∫
�

ν(x,un)
∣∣∇(w –wn)

∣∣ dx.
Taking into account hypothesis (H) leads to

ρ
∥∥∇(w –wn)

∥∥
L ≤ ∥∥(

a(x,un) – a(x,u)
)∇w + b(x,u,∇w) – b(x,un,∇w)

∥∥
L

+
√
λ

∥∥f (x,un) – f (x,u)
∥∥
L . ()

Set

hn(x) =
(
a(x,un) – a(x,u)

)∇w + b(x,u,∇w) – b(x,un,∇w).

We claim that

hn →  in L(�). ()

http://www.boundaryvalueproblems.com/content/2014/1/6
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To this end, we show that any subsequence of {hn}n≥ possesses a subsequence converg-
ing to  in L(�). Since un → u in L(�), we have that, along a relabeled subsequence,
hn(x)→  for a.a. x ∈ �. Invoking (H), we have that |hn(x)| ≤ c(|∇w(x)| + ), with some
constant c > . Through Lebesgue’s dominated convergence theorem, we conclude that
‖hn‖L →  as n→ ∞, so () holds true.
Similarly, we have

f (x,un) – f (x,u) →  in L(�).

Then, in view of (), we infer that ‖∇(wn – w)‖L → . Since the domain � is bounded
and wn –w ∈ H

(�), we can make use of the Poincaré inequality for wn –w, which yields
‖wn –w‖L → , whence wn → w in H(�). This establishes Claim .
With the truncation function τ :R →R defined by

τ (s) =

⎧⎪⎪⎨
⎪⎪⎩

γ∗ if s < γ∗,

s if γ∗ ≤ s ≤ γ ∗,

γ ∗ if s > γ ∗,

()

consider the operator S : C → C introduced as follows

S(u)(x) = τ
(
T(u)(x)

)
for a.a. x ∈ �. ()

Note that S takes values in C ∩H(�).
Claim : The mapping S : C → C has a fixed point.
Since T : C → H(�) is continuous by Claim  (thus a fortiori T : C → L(�) is contin-

uous) and τ is a bounded continuous function, we infer that S : C → C is continuous. We
claim that S : C → C is a compact operator. To this end, it suffices to check that S(C) is
relatively compact in L(�). Because of the compact embedding of H(�) in L(�), it is
sufficient to prove that S(C) is bounded in H(�).
Let u ∈ C and denote w = T(u). By the definition of T and inserting therein the test

function v = w – g ∈H
(�), we see that

∫
�

(
a(x,u)∇(w – g)

) · ∇(w – g)dx

=
∫

�

(
–a(x,u)∇g + b(x,u,∇w)

) · ∇(w – g)dx –
∫

�

f (x,u)(w – g)dx.

Then, as in the proof of Claim , from assumptions (H) and (H) we obtain that
∫

�

λ(x,u)
∣∣∇(w – g)

∣∣ dx ≤ ∥∥–a(x,u)∇g + b(x,u,∇g)
∥∥
L

∥∥∇(w – g)
∥∥
L

+
√
λ

∥∥f (x,u)∥∥L
∥∥∇(w – g)

∥∥
L +

∫
�

ν(x,u)
∣∣∇(w – g)

∣∣ dx,
whence, by (H),

ρ
∥∥∇(w – g)

∥∥
L ≤ c ()

with a constant c >  independent of u.

http://www.boundaryvalueproblems.com/content/2014/1/6
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Using (), we derive

∥∥S(u)∥∥
H =

∫
�

∣∣τ(
w(x)

)∣∣ dx + ∫
�

∣∣∇(τ ◦w)(x)∣∣ dx
≤

∫
�

(|γ∗| +
∣∣γ ∗∣∣) dx + ∫

{γ∗≤w≤γ ∗}
|∇w| dx

≤ c
(
 +

∥∥∇(w – g)
∥∥
L

) ≤ c

with constants c, c >  independent of u. It follows that the set S(C) is bounded in
H(�), so according towhat was said before, themap S : C → C is compact. Consequently,
Schauder’s fixed point theorem can be applied (see, e.g., [, p.]), through which it fol-
lows that S admits a fixed point in C. This shows Claim .
Claim : Let u ∈ C be a fixed point of S. Then there holds T(u) = u.
The existence of a point u ∈ C such that S(u) = u is ensured by Claim . Fix such a point

u and set w = T(u). In order to deduce the desired conclusion from S(u) = u, it suffices to
check that γ∗ ≤ w≤ γ ∗ a.e. in�. We only verify the inequality γ∗ ≤ w a.e. in� because the
proof of the other inequality is similar. By virtue of hypothesis (H), we have w = g ≥ γ∗
on ∂� (in the sense of traces), hence (w – γ∗)– =  on ∂� and so the function (w – γ∗)–

belongs toH
(�) (see, e.g., [, p.]). Using v = (w–γ∗)– as a test function in the definition

of T gives

∫
�

(
a(x,u)∇w

) · ∇(w – γ∗)– dx =
∫

�

b(x,u,∇w) · ∇(w – γ∗)– dx

–
∫

�

f (x,u)(w – γ∗)– dx,

which reads as
∫

{γ∗≥w}

(
a(x,u)∇w

) · ∇wdx =
∫

{γ∗≥w}
b(x,u,∇w) · ∇wdx

–
∫

{γ∗≥w}
f (x,u)(w – γ∗)dx. ()

By the assumption that S(u) = u and from () we know that u(x) = S(u)(x) = τ (w(x)) for
a.a. x ∈ �, hence u = γ∗ a.e. in {γ∗ ≥ w}. Then hypothesis (H) implies that b(x,u,∇w) = 
and f (x,u) =  a.e. in {γ∗ ≥ w}. Consequently, (), (H), and (H) entail

∫
{γ∗≥w}

|∇w| dx ≤ ,

whence ∇(w– γ∗)– = –∇w =  a.e. in {γ∗ ≥ w}. On the other hand, we have ∇(w– γ∗)– = 
in {γ∗ < w}. Altogether, we obtain that ∇(w – γ∗)– =  in �. Since (w – γ∗)– ∈ H

(�), we
conclude that (w – γ∗)– =  a.e. in �, thus w ≥ γ∗ a.e. in �. This proves Claim .
By Claims  and , the operator T admits a fixed point u ∈ C. Then the definition of T

implies that u = T(u) ∈ g + H
(�), so u is a solution of problem (). In addition, the fact

that u ∈ C guarantees that γ∗ ≤ u ≤ γ ∗ a.e. in �. The proof of Theorem  is complete.
�

http://www.boundaryvalueproblems.com/content/2014/1/6
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3 Result on problem (2)
The hypotheses on the data a, bi (i ∈ {, , . . . ,N}), f , and g in problem () that we suppose
are as follows: (H) in Section ,

(H′
) There exist constants γ∗,γ ∗ ∈R such that γ∗ ≤ g(x)≤ γ ∗ on ∂� and

bi(x,γ∗) = bi
(
x,γ ∗) =  for a.a. x ∈ �, all i ∈ {, , . . . ,N},

f (x,γ∗) = f
(
x,γ ∗) =  for a.a. x ∈ �.

(H′
) There exist constants m >  and m̃,m ≥  such that

∣∣a(x, s)∣∣ ≤m,
∣∣f (x, s)∣∣ ≤ m̃, and

∣∣b(x, s)∣∣ ≤m

for a.a. x ∈ �, all s ∈ [
γ∗,γ ∗].

(H′
) μ := inf(x,s)∈�×[γ∗,γ ∗] λ(x, s) >  and there exist constants mi ≥ , i ∈ {, . . . ,N}, with

m :=
√∑N

i=m
i < μ

√
λ, such that

∣∣bi(x, s)∣∣ ≤mi for a.a. x ∈ �, all s ∈ [
γ∗,γ ∗], i ∈ {, . . . ,N}.

Remark  As in the case of problem (), we note that the constant functions u ≡ γ∗ and
u≡ γ ∗ are not solutions of problem (), unless g ≡ γ∗ or g ≡ γ ∗ on ∂�.

Now we state our result of existence and location of solutions for problem ().

Theorem  Assume that (H), (H′
), (H

′
), and (H′

) are satisfied. Then problem () has at
least one solution u ∈ H(�) in the sense of Definition  satisfying

γ∗ ≤ u(x)≤ γ ∗ for a.a. x ∈ �,

with γ∗ and γ ∗ as in (H′
).

Proof We follow the pattern of proof of Theorem . Hence, using the constants γ∗ and γ ∗

prescribed in (H′
), we consider

C =
{
u ∈ L(�) : γ∗ ≤ u(x) ≤ γ ∗ for a.a. x ∈ �

}

which is a nonempty, bounded, closed, convex subset of L(�). We proceed by proving
four claims regarding problem () that correspond to those in the proof of Theorem  for
problem (). We provide the proof since there are some differences with respect to the
proof of Theorem .
Claim : For every u ∈ C, there is a unique solution wu ∈H(�) of the problem

⎧⎪⎪⎨
⎪⎪⎩

∫
�
(a(x,u)∇wu) · ∇vdx

=
∫
�
b(x,u) · ∇vdx –

∑N
i=

∫
�
bi(x,u) ∂wu

∂xi
v dx –

∫
�
f (x,u)vdx for all v ∈H

(�),

wu – g ∈H
(�).

http://www.boundaryvalueproblems.com/content/2014/1/6
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As in the proof of Theorem , first we note that Claim  is equivalent to proving that the
problem

⎧⎨
⎩A(w, v) = B(v) for all v ∈H

(�),

w ∈H
(�)

()

admits a unique solution, where

A(w, v) =
∫

�

(
a(x,u)∇w

) · ∇vdx +
N∑
i=

∫
�

bi(x,u)
∂w
∂xi

vdx

and

B(v) =
∫

�

(
b(x,u) – a(x,u)∇g

) · ∇vdx –
N∑
i=

∫
�

bi(x,u)
∂g
∂xi

vdx –
∫

�

f (x,u)vdx.

For u ∈ C, by the Cauchy-Schwarz inequalities in L(�) and in R
N , as well as (H′

) and
(), we derive the estimate

∣∣∣∣∣
N∑
i=

∫
�

bi(x,u)
∂w
∂xi

vdx

∣∣∣∣∣ ≤
N∑
i=

∫
�

∣∣∣∣bi(x,u) ∂w∂xi

∣∣∣∣|v|dx

≤ ‖v‖L
N∑
i=

(∫
�

∣∣bi(x,u)∣∣
∣∣∣∣ ∂w∂xi

∣∣∣∣


dx
) 



≤ ‖v‖L
N∑
i=

mi

(∫
�

∣∣∣∣ ∂w∂xi

∣∣∣∣


dx
) 



≤ ‖v‖L
( N∑

i=

m
i

) 

( N∑

i=

∫
�

∣∣∣∣ ∂w∂xi

∣∣∣∣


dx

) 


= ‖v‖Lm
(∫

�

|∇w| dx
) 



≤ m√
λ

‖∇v‖L‖∇w‖L ()

for all w, v ∈ H
(�). Using the Cauchy-Schwarz inequality in L(�), the fact that u ∈ C,

(H′
) and (), we get

∣∣A(w, v)∣∣ ≤ ∥∥a(x,u)∇w
∥∥
L‖∇v‖L +

∣∣∣∣
N∑
i=

∫
�

bi(x,u)
∂w
∂xi

vdx
∣∣∣∣

≤
(
m +

m√
λ

)
‖∇w‖L‖∇v‖L for all w, v ∈H

(�),

which ensures that A :H
(�)×H

(�) → R is a continuous bilinear form. From (H), the
fact that u ∈ C, (H′

) and (), we have

A(v, v)≥
(

μ –
m√
λ

)
‖∇v‖L for all v ∈ H

(�).
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Since m < μ
√

λ (as postulated in (H′
)), we infer that A : H

(�) × H
(�) → R is also

coercive.
On the basis of the reasoning in (), the following estimate holds

∣∣∣∣∣
N∑
i=

∫
�

bi(x,u)
∂g
∂xi

vdx

∣∣∣∣∣ ≤ m√
λ

‖∇g‖L‖∇v‖L ()

for all v ∈H
(�). Taking into account that u ∈ C, (H′

), () and (), we see that

∣∣B(v)∣∣ ≤
((

m +
m√
λ

)
‖∇g‖L +

(
m +

m̃√
λ

)
|�| 

)
‖∇v‖L for all v ∈H

(�),

where |�| stands for the Lebesgue measure of �. Therefore B : H
(�) → R is linear and

continuous. The properties of the mappings A and B permit to apply the Lax-Milgram
theorem, through which we conclude that problem () admits a unique solution. This
establishes Claim .
As in the proof of Theorem , we introduce the operator T : C → H(�) defined by

T(u) = wu for all u ∈ C, with wu given in Claim .
Claim : The mapping T : C →H(�) is continuous.
In order to prove this assertion, we proceed as in the proof of Claim  in Theorem .

Fix u ∈ C and consider a sequence {un}n≥ ⊂ C such that un → u in L(�). Denoting wn =
T(un) and w = T(u), we find that

∫
�

(
a(x,un)∇(w –wn)

) · ∇(w –wn)dx

=
∫

�

((
a(x,un) – a(x,u)

)∇w + b(x,u) – b(x,un)
) · ∇(w –wn)dx

–
N∑
i=

∫
�

[(
bi(x,u) – bi(x,un)

) ∂w
∂xi

+ bi(x,un)
∂(w –wn)

∂xi

]
(w –wn)dx

–
∫

�

(
f (x,u) – f (x,un)

)
(w –wn)dx. ()

A straightforward calculation entails

∣∣∣∣∣
N∑
i=

∫
�

bi(x,un)
∂(w –wn)

∂xi
(w –wn)dx

∣∣∣∣∣ ≤ m√
λ

∥∥∇(w –wn)
∥∥
L . ()

Combining (H), (H′
), (H

′
), (), (), (), and the Cauchy-Schwarz inequality yields

μ
∥∥∇(w –wn)

∥∥
L ≤ ∥∥(

a(x,un) – a(x,u)
)∇w + b(x,u) – b(x,un)

∥∥
L

+
√
λ

∥∥∥∥∥
N∑
i=

(
bi(x,u) – bi(x,un)

) ∂w
∂xi

∥∥∥∥∥
L

+
√
λ

∥∥f (x,u) – f (x,un)
∥∥
L +

m√
λ

∥∥∇(w –wn)
∥∥
L , ()

with μ andm in (H′
).
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Proceeding as in () we show that

(
a(x,un) – a(x,u)

)∇w + b(x,u) – b(x,un) →  in L(�), ()

N∑
i=

(
bi(x,u) – bi(x,un)

) ∂w
∂xi

→  and f (x,u) – f (x,un)→  in L(�). ()

Now it suffices to combine (), (), () and recall thatm < μ
√

λ (see (H′
)) to conclude

that ‖∇(wn–w)‖L → . Then, becausewn–w ∈ H
(�) and� is bounded, by the Poincaré

inequality, we also deduce that ‖wn – w‖L → . This amounts to saying that wn → w in
H(�), which proves Claim .
Following the approach developed in the proof of Theorem , we introduce the operator

S : C → C given by (), with the truncation function τ :R →R defined in () correspond-
ing to the constants γ∗ and γ ∗ in (H′

).
Claim : The mapping S : C → C has a fixed point.
Claim  readily implies that the mapping S : C → C is continuous. Let us check that

S : C → C is a compact operator. To see this, it suffices to check that S(C) is relatively
compact in L(�). Thanks to the compactness of the embedding of H(�) into L(�), this
reduces to show that S(C) is bounded inH(�). To this end, let u ∈ C and denotew = T(u).
We can argue as in the proof of Theorem  by relying now on the present hypotheses. We
obtain from w = T(u) with the test function v = w – g ∈ H

(�), in conjunction with (H),
(H′

), (H
′
), that

μ
∥∥∇(w – g)

∥∥
L ≤ ∥∥b(x,u) – a(x,u)∇g

∥∥
L +

√
λ

(
m‖∇w‖L + m̃

)

≤ m√
λ

∥∥∇(w – g)
∥∥
L + c,

where c >  is a constant independent of u. In view of hypothesis (H′
), it follows that

‖∇w‖L ≤ c, ()

with a constant c >  independent of u. Using () and the definition of S, we get the
estimate

∥∥S(u)∥∥
H =

∫
�

∣∣τ(
w(x)

)∣∣ dx + ∫
�

∣∣∇(τ ◦w)(x)∣∣ dx
≤

∫
�

(|γ∗| +
∣∣γ ∗∣∣) dx + ∫

{γ∗≤w≤γ ∗}
|∇w| dx ≤ c,

with c >  independent of u. We conclude that the set S(C) is bounded in H(�), so rela-
tively compact in L(�). Therefore themap S : C → C is compact. This enables us to apply
Schauder’s fixed point theorem (see, e.g., [, p.]), which implies that S possesses a fixed
point in C. Claim  is thus shown.
Claim : If u ∈ C is a fixed point of S, then T(u) = u.
Let u ∈ C be a fixed point of S and set w = T(u). In order to show that u is a fixed point

of T , it is needed to be fulfilled γ∗ ≤ w ≤ γ ∗ a.e. in �. The proof is done following the

http://www.boundaryvalueproblems.com/content/2014/1/6
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pattern of the corresponding part in the proof ofTheorem.Weoutline the proof ofw≥ γ∗
a.e. in � (the proof of the other inequality is similar).
Testing in w = T(u) with v = (w – γ∗)– ∈H

(�) yields

∫
{γ∗≥w}

(
a(x,u)∇w

) · ∇wdx =
∫

{γ∗≥w}
b(x,u) · ∇wdx

–
∫

{γ∗≥w}

( N∑
i=

bi(x,u)
∂w
∂xi

+ f (x,u)

)
(w – γ∗)dx. ()

In {γ∗ ≥ w} it is true that

u(x) = S(u)(x) = τ
(
w(x)

)
= γ∗ for a.e. x ∈ �.

Then hypothesis (H′
) implies that

bi(x,u) = f (x,u) =  a.e. in {γ∗ ≥ w}, i ∈ {, , . . . ,N}.

Combining with (), (H), and (H′
) entails

∫
{γ∗≥w}

|∇w| dx ≤ .

It turns out that ∇(w – γ∗)– = –∇w =  a.e. in {γ∗ ≥ w}. Also, it is clear that ∇(w – γ∗)– =
 in {γ∗ < w}. Consequently, the equality ∇(w – γ∗)– =  in � is valid, which results in
(w–γ∗)– =  a.e. in� because (w–γ∗)– ∈H

(�). This reads asw≥ γ∗ a.e. in�, so Claim 
is fulfilled.
Now we can conclude the proof. Claims  and  ensure that there exists a fixed point

u ∈ C of the operator T . This means that u = T(u) ∈ g +H
(�) and u is a solution of prob-

lem (). Moreover, since u ∈ C, we also have γ∗ ≤ u≤ γ ∗ a.e. in �. The desired conclusion
is achieved. �
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