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Abstract
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1 Introduction
In this paper, we are concerned with the following problem for the sixth-order Cahn-
Hilliard type equation:

∂u
∂t

– γDu =Dψ(u, t) + νuDu + f (x, t), (x, t) ∈Q, (.)

u|x=, =Du|x=, =Du|x=, = , t ≥ , (.)

u(x, ) = u(x,T), x ∈ (, ), (.)

where Q ≡ (, ) × (, +∞), D = ∂
∂x , ψ(u, t) = –a(t)u + b(t)u, a(t) and b(t) are Hölder

continuous functions defined on R
+ with period T , f (x, t) belongs to the space Cα, α (Q)

for some α ∈ (, ) with f (x, ) = f (x,T). Furthermore, we assume that M ≤ a(t) ≤ M,
|b(t)| ≤ N , |a′(t)| ≤ L, |b′(t)| ≤ �, where γ , ν ,M,M, N , L and � are positive constants.
Equation (.) with f (x, t) =  arises naturally as a continuummodel for the formation of

quantum dots and their faceting; see []. It can also be used to describe competition and
exclusion of biological population []. If we consider that the perturbation function f (x, t)
(for example, source) has the influence, then we obtain equation (.).
Korzec et al. [] studied equation (.) with f (x, t) = . New types of stationary solutions

of one-dimensional driven sixth-order Cahn-Hilliard type equation (.) are derived by
an extension of the method of matched asymptotic expansions that retains exponentially
small terms. Liu et al. [] proved that equation (.) with f (x, t) =  possesses a global
attractor in the Hk (k ≥ ) space, which attracts any bounded subset of Hk(�) in the
Hk-norm.
During the past years, many authors have paid much attention to other sixth-order thin

film equations such as the existence, uniqueness and regularity of the solutions [–].
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However, as far as we know, there are few investigations concerned with the time-periodic
solutions of equation (.), even though there is some literature for population models
and Cahn-Hilliard [, ]. In fact, it is natural to consider the time-periodic solutions of
equation (.) when it is used to describe the models of the growth and dispersal in the
population which is sensitive to time-periodic factors (for example, seasons). In this pa-
per, we prove the existence of time-periodic solutions of problem (.)-(.) based on the
framework of the Leray-Schauder fixed point theoremwhich can be found in any standard
textbook of PDE (see, for example, []). For this purpose, we first introduce an operator
L by considering a linear sixth-order equation with a parameter σ ∈ [, ]. After verifying
the compactness of the operator and some necessary a priori estimates for the solutions,
we then obtain a fixed point of the operator in a suitable functional space with σ = , which
is the desired solution of problem (.)-(.).
The main difficulties for treating problem (.)-(.) are caused by the nonlinearity of

both the fourth-order term and the convective factors. The main method that we use is
based on the Schauder-type a priori estimates, which here are obtained by means of a
modified Campanato space. We note that the Campanato spaces have been widely used
for the discussion of partial regularity of solutions of parabolic systems of secondorder and
fourth order. So, in the following section we give a detailed description and the associated
properties of such a space, and subsequently, in the next section we prove the existence of
classical time-periodic solutions of problem (.)-(.).

2 Hölder norm estimates
Let QT = (, )× (,T), y = (x, t) ∈QT . For any fixed R > , we define

BR = BR(x) = (x – R,x + R), IR = IR(t) =
(
t – R, t + R),

QR =QR(y) = IR(t)× BR(x), SR =QR ∩QT ,

ER = ER(x) = BR(x)∩ (, ), JR = JR(t) = IR(t)∩ (,T).

Let u be a function defined on QT , and set

uR = uy,R =


|SR|
∫∫

SR
udxdt, ûR = ûy,R =

⎧⎨
⎩
uR if QR ∩ ∂pQT = ∅,
 if QR ∩ ∂pQT 
= ∅,

where ∂pQT denotes the parabolic boundary of QT and |SR| denotes the area of SR.
For any u ∈ C(QT ) and λ > , define

M[u] = sup
y∈QT

sup
<R≤R


Rλ

∫∫
SR(y)

∣∣u(x, t) – ûy,R
∣∣ dxdt,

where R = diamQT . By the space L,λ(QT ) we mean the subset of C(QT ), each element of
which satisfiesM[u] < +∞. For u ∈L,λ

 , its norm is defined as

‖u‖L,λ

(QT ) = sup

QT

∣∣u(x, t)∣∣ +M[u].

Now, we give some useful lemmas.
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Lemma . [] Let λ > ,

‖u‖
Cα, α

≤ C(λ)‖u‖L,λ

(QT ),

where α = λ–
 .

Now we consider the following linear periodical problem:

∂u
∂t

– γDu = �(x, t), (x, t) ∈QT = (, )× (,T), (.)

u|x=, =Du|x=, =Du|x=, = , t ∈ (,T), (.)

u(x, ) = u(x,T), x ∈ (, ). (.)

Here we simply assume that �(x, t) is sufficiently smooth. Our main purpose is to find the
relation between the Hölder norm of the solution u and �(x, t).
Let y = (x, t) ∈QT be a fixed point and define

ϕ(u,ρ) =
∫∫

Sρ

(∣∣u(x, t) – ûρ

∣∣ + ρ∣∣Du(x, t)
∣∣)dxdt (ρ > ).

Let u be an arbitrary solution of problem (.)-(.).We split u on SR = SR(y) as u = u +u
so that u solves the problem

∂u
∂t

– γDu = , (x, t) ∈ SR, (.)
∫
ER

u(x, t)dx =
∫
ER

u(x, t)dx, t ∈ (,T), (.)

u|∂JR – u|∂JR = u|∂JR – u|∂JR , Pi(x,D)u|∂ER = Pi(x,D)u|∂ER , (.)

and u solves the problem

∂u
∂t

– γDu = �(x, t), (x, t) ∈ SR, (.)
∫
ER

u(x, t)dx = , t ∈ (,T), (.)

u|∂JR – u|∂JR = Pi(x,D)u|∂ER = , (.)

where

Pi(x,D) =

⎧⎨
⎩
Di if x = , ,

Di+ if x 
= , ,
i = , , 

and ∂JR, ∂JR are the down-side and up-side points of JR, and ∂ER is the boundary of ER.
Some essential estimates on u and u are based on the following lemmas.

Lemma . For the solution u of problem (.)-(.), we have
∫∫

SR

(
Diu

) dxdt + R
∫∫

SR

(
Di+u

) dxdt ≤ CR–i
∫∫

SR
� dxdt, (.)

where C is a positive constant, i = , , .

http://www.boundaryvalueproblems.com/content/2013/1/73
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Proof Noticing the condition (.) and the boundary value condition (.), we use the
Poincaré inequality and interpolation method (see Chapter  in []) and get

∫∫
SR
u dxdt ≤ CR

∫∫
SR
(Du) dxdt,

∫∫
SR
(Du) dxdt ≤ ε

R

∫∫
SR
u dxdt +CR

∫∫
SR

(
Du

) dxdt,
(.)

which implies that

∫∫
SR
u dxdt ≤ CR

∫∫
SR

(
Du

) dxdt. (.)

Multiplying equation (.) by u, integrating the result over SR and using the boundary
value condition (.), we have

γ

∫∫
SR

(
Du(x, t)

) dxdt =
∫∫

SR
�(x, t)u(x, t)dxdt. (.)

Using the Young inequality and (.), we obtain

∣∣∣∣
∫∫

SR
�(x, t)u(x, t)dxdt

∣∣∣∣ ≤ ε

R

∫∫
SR
u dxdt +CR

∫∫
SR

� dxdt

≤ ε

∫∫
SR

(
Du

) dxdt +CR
∫∫

SR
� dxdt. (.)

Combining (.), (.) and (.) yields the estimate (.) with i = .
Similarly, multiplying (.) by Du and Du, we can obtain the estimates (.) with

i = , i = . �

Lemma . For any (x, t), (x, t), (x, t), (x, t) ∈ Sρ ,

∣∣u(x, t) – u(x, t)
∣∣ ≤ CM(u,ρ)|x – x|, (.)

∣∣u(x, t) – u(x, t)
∣∣ ≤ CM(u,ρ)|t – t|/, (.)

where

M(u,ρ) = sup
t∈Jρ

∫
Eρ

(
Du(x, t)

) dx +
∫∫

Sρ

(
Du

) dxdt,

and C is a constant number. Further, (.) and (.) still hold if u is replaced by Du or
Du.

Proof The estimate (.) is obvious. In fact, by the Hölder inequality,

∣∣u(x, t) – u(x, t)
∣∣ =

∣∣∣∣
∫ x

x
Du(x, t)dx

∣∣∣∣


≤
(∫ x

x

∣∣Du(x, t)∣∣dx
)

≤ M(u,ρ)|x – x|.

http://www.boundaryvalueproblems.com/content/2013/1/73
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For (.), we only consider the case when �t = t – t > , x,x+ (�t)/ ∈ Eρ . Integrating
equation (.) over the region (t, t)× (z, z + (�t)/), we have

∫ z+(�t)/

z

[
u(ξ , t) – u(ξ , t)

]
dξ – γ

∫ t

t

[
Du

(
z + (�t)/, s

)
–Du(z, s)

]
ds = .

Integrating the above equation with respect to z over (y, y + (�t)/), and then integrating
the result with respect to y over (x,x + (�t)/), we have

∫ x+(�t)/

x

∫ y+(�t)/

y

∫ z+(�t)/

z

[
u(ξ , t) – u(ξ , t)

]
dξ dzdy

= γ

∫ t

t

∫ x+(�t)/

x

[(
Du

(
y + (�t)/, s

)
–Du

(
y + (�t)/, s

))

–
(
Du

(
y + (�t)/, s

)
–Du(y, s)

)]
dyds.

By virtue of the mean value theorem and the Hölder inequality, we see that there exists
ξ ∗ ∈ (x,x + (�t)/) such that

(�t)/
∣∣u(ξ ∗, t

)
– u

(
ξ ∗, t

)∣∣ ≤ C(�t)/
(∫∫

Sρ

(
Du

) dxdt
)/

≤ C(�t)/
(
M(u,ρ)

)/.
Combining the above result with (.), it follows that

∣∣u(x, t) – u(x, t)
∣∣ ≤ CM(u,ρ)|t – t|/.

To prove the results on Du or Du, we only need to differentiate equation (.) once
or twice with respect to x. And the next procedures are completely similar to the above
argument. �

Lemma .

sup
t∈J R



∫
E R


(
Diu

) dx +
∫∫

S R


(
Di+u

) dxdt ≤ C
R

∫∫
SR

(
Di–u – λ

) dxdt, (.)

where C is a constant and i = , , ,

λ =

⎧⎨
⎩
arbitrary constant if QR ∩ ∂pQT = ∅,
 if QR ∩ ∂pQT 
= ∅.

Proof In order to prove (.) with i = , we first prove that

sup
t∈J R



∫
E R


(
u(x, t) – λ

) dx +
∫∫

S R


(
Du

) dxdt ≤ C
R

∫∫
S R


(u – λ) dxdt. (.)

We discuss it in the following two cases.

http://www.boundaryvalueproblems.com/content/2013/1/73
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(I) We first prove (.) in the case ,T ∈ JR. In such a case, JR = (,T), λ = . Choose a
smooth function χ (x) satisfying the following requirements.
If ,  /∈ ER, then suppχ ⊂ (x – R

 ,x +
R
 ), χ (x) =  when x ∈ (x – R

 ,x +
R
 ),  ≤ χ (x) ≤ ,

∣∣χ ′(x)
∣∣ ≤ C

R
,

∣∣χ ′′(x)
∣∣ ≤ C

R ,
∣∣χ ′′′(x)

∣∣ ≤ C
R ,

∣∣χ ()(x)
∣∣ ≤ C

R .

If  ∈ ER, then the value of χ (x) for x≤ x is changed into .
If  ∈ ER, then the value of χ (x) for x≥ x is changed into .
Multiplying equation (.) by χu and integrating the result over SR, then using the

boundary value condition (.), we have

 =
∫∫

SR
DuD(χu

)
dxdt

=
∫∫

SR
χ(Du

) dxdt + 
∫∫

SR
χχ ′DuDu dxdt + 

∫∫
SR

χχ ′DuDu dxdt

+ 
∫∫

SR
χχ ′′DuDu dxdt +

∫∫
SR

(
χ)′′′uDu dxdt.

By the Young inequality and the definition of χ (x), we have


∫∫

SR
χχ ′DuDu dxdt

≤ ε

∫∫
SR

χ(Du
) dxdt +C

∫∫
SR

χχ ′(Du
) dxdt.

Similarly, we can estimate other three terms. Combining the above expressions yields

∫∫
SR

χ(Du
) dxdt

≤ C
(∫∫

SR
χχ ′(Du) dxdt +

∫∫
SR

χχ ′′(Du) dxdt

+
∫∫

SR
χχ ′(Du

) dxdt + 
R

∫∫
S R


u dxdt
)

≡ C(I + I + I + I). (.)

As for I, we have

I = –
∫∫

SR
uD

(
χχ ′Du

)
dxdt

= –
∫∫

SR
χχ ′uDu dxdt –

∫∫
SR

(
χχ ′)′uDu dxdt

≤ εI +C
∫∫

SR
χ ′u dxdt +




∫∫
SR

(
χχ ′)′′u dxdt

≤ εI +CI. (.)

http://www.boundaryvalueproblems.com/content/2013/1/73
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As for I, we have

I = –
∫∫

SR
uD

(
χχ ′′Du

)
dxdt

=
∫∫

SR
χ ′D

(
χχ ′′uDu

)
dxdt +




∫∫
SR

(
χχ ′′)′′u dxdt

≤
∫∫

SR
χ ′(χχ ′′)′uDu dxdt

+
∫∫

SR
χχ ′χ ′′(DuDu + uDu

)
dxdt +CI

= εI +CI + ε

∫∫
SR

χ(Du
) dxdt – 



∫∫
SR

(
χχ ′χ ′′)′(Du) dxdt

= εI +CI + ε

∫∫
SR

χ(Du
) dxdt – 


I

–



∫∫
SR

(
χχ ′χ ′′′ + χχ ′χ ′′)(Du) dxdt,

that is,

I ≤ εI +CI + ε

∫∫
SR

χ(Du
) dxdt

–



∫∫
SR

(
χχ ′χ ′′′ + χχ ′χ ′′)(Du) dxdt.

On the other hand,

–
∫∫

SR

(
χχ ′χ ′′′ + χχ ′χ ′′)(Du) dxdt

=
∫∫

SR

(
χχ ′χ ′′′ + χχ ′χ ′′)uDu dxdt

+
∫∫

SR

((
χχ ′χ ′′′)′ + 

(
χχ ′χ ′′)′)uDu dxdt

≤ εI +CI.

Combining the above two yields

I ≤ εI +CI + ε

∫∫
SR

χ(Du
) dxdt. (.)

Notice that

I = –
∫∫

SR
χχ ′DuDu dxdt

–
∫∫

SR

(
χχ ′ + χχ ′χ ′′)DuDu dxdt

≤ ε

∫∫
SR

χ(Du
) dxdt +CI + εI +CI + εI +CI,

http://www.boundaryvalueproblems.com/content/2013/1/73
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that is,

I ≤ C(I + I) + ε

∫∫
SR

χ(Du
) dxdt. (.)

Finally, from (.), (.) and (.), we see that

Ii ≤ ε

∫∫
SR

χ(Du
) dxdt +CI, i = , , ,

which combined with (.) yields

∫∫
S R


(
Du

) dxdt ≤
∫∫

SR
χ(Du

) dxdt ≤ CI =
C
R

∫∫
S R


u dxdt. (.)

We can imitate all the above procedures and derive a similar result on ER, that is,

∣∣∣∣
∫
ER

DuD(χu
)
dx

∣∣∣∣ ≤
∫
ER

H
(
χ ,χ ′,χ ′′,χ ′′′,χ ())u dx, (.)

where H is a polynomial with respect to χ , χ ′, χ ′′, χ ′′′, χ () and satisfies |H| ≤ C
R . Using

the Sobolev inequality on JR, we have

sup
t∈JR

∫
ER

χu (x, t)dx ≤ C
R

∫∫
S R


u dxdt + 
∫
JR

∣∣∣∣
∫
ER

χu
∂u
∂t

dx
∣∣∣∣dt

= CI + γ
∫
JR

∣∣∣∣
∫
ER

χuDu dx
∣∣∣∣dt

≤ CI +C
∫
JR

∣∣∣∣
∫
ER

DuD(χu
)
dx

∣∣∣∣dt.

Combining the above with (.) yields

sup
t∈J R



∫
E R


u (x, t)dx≤ C
R

∫∫
S R


u dxdt.

Combining the above with (.) yields the desired estimate (.).
(II) Then we prove (.) in the case  or T /∈ JR. Take the case ,T /∈ JR as an example.

Choose another smooth function η(t) such that η(t) =  when x ∈ (t – (R )
, t + (R )

);
η(t) =  when x ∈ (, t – (R )

)∪ (t + (R )
,T);  ≤ η(t) ≤ ; |η′(t)| ≤ C

R for all t ∈ (,T).
With λ stated in the lemma, we multiply (.) by χη(u – λ) and integrate the result

over SR. Then we can derive equalities similar to the above argument in which u is re-
placed by u – λ and a term

–



∫∫
SR

χη′(u – λ) dxdt

is added. Then following the argument as in Case I, we can complete the proof of (.).

http://www.boundaryvalueproblems.com/content/2013/1/73
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Nowwemultiply (.) byD(χDu) and follow the above argument. Then we derive the
same result on Du:

sup
t∈J R



∫
E R


(
Du(x, t)

) dx +
∫∫

S R


(
Du

) dxdt ≤ C
R

∫∫
S R


(Du) dxdt. (.)

Using the interpolation inequality, we have

∫∫
S R


(Du) dxdt ≤ C
R

∫∫
S R


u dxdt +CR
∫∫

S R


(
Du

) dxdt.

Replacing R in (.) by R, and combining the result with the above inequality, we have

∫∫
S R


(Du) dxdt ≤ C
R

∫∫
SR
u dxdt,

which together with (.) yields (.) with i = .
For (.) with i =  and i = , we should firstmultiply (.) byD(χDu) andD(χDu)

respectively, and the remaining parts are similar and easier. �

Lemma . For any  < ρ < R,

ϕ(u,ρ)≤ C
(

ρ

R

)

ϕ(u,R), (.)

where C is a constant number. Further, (.) still holds, if u is replaced by Du or Du.

Proof It suffices to show (.) for ρ ≤ R
 , otherwise we only need to set C = . By

Lemma . and Lemma ., we have

∫∫
Sρ

|u – ûρ | dxdt ≤ CM
(
u,

R


)
ρ ≤ C

(
ρ

R

) ∫∫
SR
(u – λ) dxdt.

Taking λ = ûR , we obtain

∫∫
Sρ

|u – ûρ | dxdt ≤ C
(

ρ

R

) ∫∫
SR
(u – ûR )

 dxdt. (.)

On the other hand, by (.),

∫∫
Sρ

ρ(Du(x, t)
) dxdt

≤ C
∫∫

Sρ

ρ(Du(x, t)) dxdt +C
∫∫

Sρ

ρ(Du(x, t)
) dxdt

≤ C
(

ρ

R

)[∫∫
SR

|u – ûρ | dxdt +
∫∫

SR
R(Du

) dxdt
]

= C
(

ρ

R

)

ϕ(u,R),

http://www.boundaryvalueproblems.com/content/2013/1/73
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which combined with (.) implies (.). The proofs of the results on Du or Du are
similar. �

Lemma . Let ϕ(ρ) be a nonnegative and nondecreasing function satisfying

ϕ(ρ)≤ A
(

ρ

R

)α

ϕ(R) + BRβ ,  < ρ ≤ R ≤ R,

where A, B, α, β are positive constants and β < α. Then there exists a constant C only
depending on A, B, α, β such that

ϕ(ρ)≤ C
(

ρ

R

)β[
ϕ(R) + BRβ

]
,  < ρ ≤ R ≤ R.

The proof of this lemma can be found in [].

Theorem . Let �(x, t) be an appropriately smooth function, and let u be the smooth so-
lution of problem (.)-(.). Then, for any α ∈ (,  ), there exists a coefficient K depending
only on α,

∫∫
QT

u dxdt,
∫∫

QT
(Du) dxdt,

∫∫
QT

� dxdt such that

∣∣u(x, t) – u(x, t)
∣∣ ≤ K

(|x – x|α + |t – t| α

)
. (.)

Further, (.) still holds if u is replaced by Du or Du.

Proof For any fixed point (x, t) ∈QT , consider the function ϕ(u,ρ), which is clearly non-
decreasing with respect to ρ . By Lemma .,

ϕ(u,ρ) ≤ ϕ(u,ρ) + ϕ(u,ρ)

≤ C
(

ρ

R

)

ϕ(u,R) + ϕ(u,R)

≤ C
(

ρ

R

)

ϕ(u,R) +Cϕ(u,R)

holds for any  < ρ < R. By Lemma .,

ϕ(u,R) =
∫∫

SR

[
(u – ûR )

 + R(Du
)]dxdt

≤ 
∫∫

SR
u dxdt + R

∫∫
SR

(
Du

) dxdt

≤ CR
∫∫

SR
� dxdt.

Thus,

ϕ(u,ρ)≤ C
(

ρ

R

)

ϕ(u,R) +CR
∫∫

QT

� dxdt.

http://www.boundaryvalueproblems.com/content/2013/1/73
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By Lemma ., we have

ϕ(u,ρ)≤ C
(

ρ

R

)λ[
ϕ(u,R) + R

λ

∫∫
QT

� dxdt
]

for some  < λ < . Hence,

M[u] ≤ C
[

Rλ

ϕ(u,R) +

∫∫
QT

� dxdt
]
.

Using Lemma ., we immediately obtain (.). The proofs of the results on Du or Du
are similar. �

3 Themain result and its proof
In this section, we represent the main result of this paper.

Theorem . Problem (.)-(.) admits a time-periodic solution u ∈ C+α,+ α
 (Q).

To prove the existence of this solution, we employ the Leray-Schauder fixed point theo-
rem which enables us to study the problem by considering the following equation:

∂u
∂t

– γDu = σDg(x, t) + σ f (x, t), (.)

subject to the conditions (.)-(.), where σ is a parameter taking value on the in-
terval [, ], and g(x, t) ∈ W is periodic in time t with period T , where W ≡ {w|w ∈
C+α, α (QT ),w(x, t) is periodic in time t with period T}. For any given function g(x, t) ∈W ,
from linear classical theory (see []), we see that problems (.) and (.)-(.) admit a
unique solution u ∈ C+α,+ α

 (QT ) ⊂ C+α, α (QT ), and hence we can define a mapping L as
follows:

L :W × [, ] →W , (g,σ ) �→ u,

together with its composition with �(v, t) =Dψ(v, t) + νv, namely

L
(
�(·, ·), ·) :W × [, ]→W .

Obviously, for any given v ∈ W , L(v, ) = . By virtue of the Leray-Schauder fixed point
theorem, to prove the existence of solutions of problem (.)-(.), we only need to show
that the mapping L is compact and prove that there exists a constant independent of uσ

and σ such that, for any u and σ satisfying u =L(�(u),σ ), ‖uσ ‖
C+α, α (QT )

≤ C. Moreover,
it follows from the above arguments that u is a classical solution. Then we consider the
problem in Q(T ,T), . . . ,Q((n–)T ,nT), . . . in turn. Finally, we know that initial boundary value
problem (.)-(.) admits a classical solution in Q.

Lemma . The mapping L : (v,σ ) �→ u is compact.

This result can be directly obtained by a compact embedding theorem, so we omit the
details here.
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Lemma . Let uσ be a time-periodic solution of the equation

∂uσ

∂t
– γDuσ = σDψ(uσ , t) + σνuσDuσ + σ f (x, t), (.)

subject to the conditions (.)-(.), where σ ∈ [, ]. Then

‖uσ ‖∞ ≤ C, ‖Duσ‖∞ ≤ C,
∥∥Duσ

∥∥∞ ≤ C, (.)

where C is a constant independent of the solution u and σ .

Proof First, let ωσ (x, t) be a time-periodic solution of the problem

Dω = uσ , Dω|x=, = ,
∫ 


ωdx = ,

then from the Poincaré inequality we know that

∫ 


ω

σ dx ≤
∫ 


(Dωσ ) dx ≤

∫ 



(
Dωσ

) dx =
∫ 


uσ dx. (.)

Multiplying (.) by ωσ (x, t), integrating the result over QT and using the condition (.),
then using the Young inequality and (.), we have

γ

∫∫
QT

(
Duσ

) dxdt + σ

∫∫
QT

a(t)uσ (Duσ ) dxdt

= σ

∫∫
QT

b(t)(Duσ ) dxdt – σ

∫∫
QT

νuσDuσωσ dxdt – σ

∫∫
QT

f (x, t)ωσ dxdt

≤ C
∫∫

QT

(Duσ ) dxdt +
Mσ



∫∫
QT

uσ (Duσ ) dxdt +C
∫∫

QT

ω
σ dxdt +C, (.)

which implies that
∫∫

QT

(
Duσ

) dxdt ≤ C
∫∫

QT

uσ dxdt +C. (.)

Moreover,
∫∫

QT

(Duσ ) dxdt = –
∫∫

QT

uσDuσ dxdt

≤ C
∫∫

QT

(
Duσ

) dxdt +C
∫∫

QT

uσ dxdt

≤ C
∫∫

QT

uσ dxdt +C. (.)

It follows from (.) that
∫∫

QT

uσ (Duσ ) dxdt ≤ N
M

∫∫
QT

(Duσ ) dxdt +
�

M

∫∫
QT

ω
σ dxdt +C

≤ C
∫∫

QT

uσ dxdt +C. (.)

http://www.boundaryvalueproblems.com/content/2013/1/73
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By (.), we have

uσ (x, t) =
∫ x


D

(
uσ (s, t)

)
ds≤

∫ 



∣∣Duσ ∣∣dx = 
∫ 



∣∣uσDuσ

∣∣dx.

Integrating the above inequality overQT and using (.) together with the Young inequal-
ity, we have

∫∫
QT

uσ dxdt ≤ 
∫∫

QT

∣∣uσDuσ

∣∣dxdt

≤ 
(∫∫

QT

uσ dxdt
)/(∫∫

QT

uσ (Duσ ) dxdt
)/

≤ 
(∫∫

QT

uσ dxdt
)/(

C
∫∫

QT

uσ dxdt +C
)/

,

that is,

∫∫
QT

uσ dxdt ≤ C
∫∫

QT

uσ dxdt +C.

On the other hand, by the Young inequality,

∫∫
QT

uσ dxdt ≤ ε

∫∫
QT

uσ dxdt +C.

Combining the above expressions, we obtain

∫∫
QT

uσ dxdt ≤ C,
∫∫

QT

uσ dxdt ≤ C. (.)

Combining the above with (.) and (.), we see that

∫∫
QT

(Duσ ) dxdt ≤ C,
∫∫

QT

(
Duσ

) dxdt ≤ C. (.)

Set

F(t) =
∫ 



[
γ


(Duσ ) + σ

(
H(uσ , t) + λ

)]
dx,

where H(u, t) = –
∫ u
 ψ(s, t)ds = a(t)

 u – b(t)
 u ≥ –λ, λ is a positive constant depending

only onM and N . Then F(t) ≥ . Integrating |F(t)| over (,T), by (.) and (.), we get

∫ T



∣∣F(t)∣∣dt ≤
∫∫

QT

∣∣∣∣γ (Duσ ) + σ

(
a(t)


u –
b(t)


u + λ

)∣∣∣∣dxdt

≤ C
∫∫

QT

(Duσ ) dxdt +C
∫∫

QT

uσ dxdt +C
∫∫

QT

uσ dxdt +C

≤ C. (.)

http://www.boundaryvalueproblems.com/content/2013/1/73
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On the other hand, integrating by parts and using (.), we have

dF
dt

= –
∫ 



(
γDuσ + σDψ

) dx – σ

∫ 



(
γDuσ + σψ

)
νuσDuσ dx

– σ

∫ 



(
γDuσ + σψ

)
f dx + σ

∫ 



(
a′(t)


uσ –
b′(t)


uσ

)
dx.

Integrating the above equality over (,T) and noticing the periodicity of F , we have

∫∫
QT

(
γDuσ + σDψ

) dxdt

= –σ

∫∫
QT

(
γDuσ + σψ

)
νuσDuσ dxdt – σ

∫∫
QT

(
γDuσ + σψ

)
f dxdt

+ σ

∫∫
QT

(
a′(t)


uσ –
b′(t)


uσ

)
dxdt.

Integrating | dFdt | over (,T), using (.) and (.), we have

∫ T



∣∣∣∣dFdt
∣∣∣∣dt

≤ 
∫∫

QT

∣∣(γDuσ + σψ
)
νuσDuσ

∣∣dxdt + 
∫∫

QT

∣∣(γDuσ + σψ
)
f
∣∣dxdt

+ 
∫∫

QT

∣∣∣∣a
′(t)


uσ –
b′(t)


uσ

∣∣∣∣dxdt

≤ C
∫∫

QT

(
Duσ

) dxdt +C
∫∫

QT

uσ dxdt +C
∫∫

QT

|uσ | dxdt

+C
∫∫

QT

uσ dxdt +C ≤ C. (.)

By virtue of (.) and (.), we have F(t)≤ C. Noticing the definition of F(t), we get

∫ 


(Duσ ) dx ≤ C. (.)

By (.), we know that ‖uσ ‖∞ ≤ C.
In order to prove the rest of this lemma, we need to give a priori estimate onDuσ . First,

by the Gagliardo-Nirenberg inequality, we can obtain

‖Duσ ‖ ≤ C
∥∥Duσ

∥∥ 

 ‖Duσ‖ 


 ,

‖Duσ ‖ ≤ C
∥∥Duσ

∥∥ 

 ‖Duσ‖ 


 ,

∥∥Duσ

∥∥
 ≤ C

∥∥Duσ

∥∥ 

 ‖Duσ‖ 


 ,

∥∥Duσ

∥∥
 ≤ C

∥∥Duσ

∥∥ 

 ‖Duσ‖ 


 ,
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where ‖ ∗ ‖p denotes the Lp norm on (, ). Regulating the exponents and using the Young
inequality for every of the above three expressions, we get

∫ 


(Duσ ) dx≤ ε

∫ 



(
Duσ

) dx +C
(∫ 


(Duσ ) dx

)/

,

∫ 


(Duσ ) dx ≤ ε

∫ 



(
Duσ

) dx +C
(∫ 


(Duσ ) dx

)/

,

∫ 



(
Duσ

) dx≤ ε

∫ 



(
Duσ

) dx +C
(∫ 


(Duσ ) dx

)

,

∫ 



(
Duσ

) dx ≤ ε

∫ 



(
Duσ

) dx +C
(∫ 


(Duσ ) dx

)

.

Integrating the above inequalities over (,T) and noticing (.), we see that the terms
of left hand side in these inequalities can all be estimated by ε

∫∫
QT

(Duσ ) dxdt and a
constant number C. Then by the boundary value condition and (.), we have

∫∫
QT

(
Duσ

) dxdt ≤ ε

∫∫
QT

(
Duσ

) dxdt +C, (.)

and also, by the above discussion, we have

∫∫
QT

(
Duσ

) dxdt ≤ C
∫∫

QT

(
Duσ

) dxdt +C
∫∫

QT

(
DuσDuσ

) dxdt

+C
∫∫

QT

(|Duσ |Duσ

) dxdt +C
∫∫

QT

(∣∣Duσ

∣∣) dxdt

≤ ε

∫∫
QT

(
Duσ

) dxdt +C. (.)

Multiplying (.) by Duσ , integrating the result over QT , using (.), (.) and the
Young inequality, we get

∫∫
QT

(
Duσ

) dxdt ≤ ε

∫∫
QT

(
Duσ

) dxdt +C
∫∫

QT

(
Dψ(uσ , t)

) dxdt +C

≤ ε

∫∫
QT

(
Duσ

) dxdt +C, (.)

that is,

∫∫
QT

(
Duσ

) dxdt ≤ C. (.)

By (.) and the approach similar to (.), we can derive

∫∫
QT

(
Duσ

) dxdt ≤ C,
∫∫

QT

(
Duσ

) dxdt ≤ C,

∫∫
QT

(
Duσ

) dxdt ≤ C.
(.)
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Now we set

F(t) =
∫ 



(
Duσ

) dx.

Obviously,

∫ T



∣∣F(t)∣∣dt ≤ C. (.)

On the other hand, by (.), (.) and (.), we have

∫ T



∣∣∣∣dFdt

∣∣∣∣dt =
∫ T



∣∣∣∣
∫ 


Duσ

(
γDuσ + σDψ + σνuσDuσ + σ f

)
dx

∣∣∣∣dt

≤ C
∫∫

QT

(
Duσ

) dxdt +C
∫∫

QT

(
Duσ

) dxdt

+C
∫∫

QT

(
Dψ

) dxdt +C ≤ C. (.)

By virtue of (.) and (.), we have F(t) ≤ C. Noticing the definition of F(t), we get

∫ 



(
Duσ

) dx ≤ C.

Applying the Poincaré inequality and the Friedrichs inequality [], we conclude that
‖Duσ ‖∞ ≤ C.
Finally, we set

F(t) =
∫ 



(
Duσ

) dx.

By an approach similar to the above argument, we can obtain the last result that
‖Duσ ‖∞ ≤ C. The proof of this lemma is complete. �

Proof of Theorem . Now we apply Theorem . to complete the proof of Theorem ..
For the smooth function �(x, t) in Theorem ., let

�(x, t) = σDψ(uσ , t) + σνuσDuσ + σ f .

From the proof of Lemma ., we see that
∫∫

QT
(Diuσ ) dxdt (i = , , . . . , ) and∫∫

QT
� dxdt can be all uniformly bounded by a constant number C. Therefore the co-

efficient K in Theorem . now only depends on the Hölder exponent α. So, for uσ , we
have

∣∣Diuσ (x, t) –Diuσ (x, t)
∣∣ ≤ K(α)

(|x – x|α + |t – t| α

)
, i = , , ,

which combineswith the results of Lemma ..We know that ‖uσ ‖
C+α, α (QT )

≤ C, whereC
is independent of u and σ . Then, it follows from the results in [] that ‖uσ ‖

C+α, α (QT )
≤ C.
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Recalling the discourse in the beginning of this section, we conclude from the Leray-
Schauder fixed point theorem thatL(∗, ) admits a fixed point u in the spaceC+α,+ α

 (QT ),
which is the desired solution of problem (.)-(.). The proof of Theorem . is com-
pleted. �
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