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Abstract

Idiopathic pulmonary fibrosis (IPF) is a complex disease in which a multitude of proteins and networks are disrupted.
Interrogation of the transcriptome through RNA sequencing (RNA-Seq) enables the determination of genes whose
differential expression is most significant in IPF, as well as the detection of alternative splicing events which are not easily
observed with traditional microarray experiments. We sequenced messenger RNA from 8 IPF lung samples and 7 healthy
controls on an Illumina HiSeq 2000, and found evidence for substantial differential gene expression and differential splicing.
873 genes were differentially expressed in IPF (FDR,5%), and 440 unique genes had significant differential splicing events
in at least one exonic region (FDR,5%). We used qPCR to validate the differential exon usage in the second and third most
significant exonic regions, in the genes COL6A3 (RNA-Seq adjusted pval = 7.18e-10) and POSTN (RNA-Seq adjusted
pval = 2.06e-09), which encode the extracellular matrix proteins collagen alpha-3(VI) and periostin. The increased gene-level
expression of periostin has been associated with IPF and its clinical progression, but its differential splicing has not been
studied in the context of this disease. Our results suggest that alternative splicing of these and other genes may be involved
in the pathogenesis of IPF. We have developed an interactive web application which allows users to explore the results of
our RNA-Seq experiment, as well as those of two previously published microarray experiments, and we hope that this will
serve as a resource for future investigations of gene regulation in IPF.
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Introduction

Idiopathic pulmonary fibrosis (IPF) is a progressive disease of

unknown aetiology, characterized by fibrotic scarring in the lungs

which leads to shortness of breath and eventual respiratory failure.

The disease typically presents in patients 50–70 years old, with

prevalence increasing with age, and has been shown to have both

genetic and environmental predisposing factors [1], [2]. Median

survival time after diagnosis is only 4–5 years [3], and there is

currently no effective treatment for IPF except lung transplanta-

tion [4].

Current theory of pathogenesis in IPF holds that chronic injury

to alveolar epithelial cells induces aberrant activation of wound-

healing pathways, leading to an increase in inflammatory signals

and subsequent differentiation of fibroblasts, epilthelial-mesenchy-

mal transition in alveolar cells, and accumulation of myofibro-

blasts. This results in the formation of fibroblastic foci and

deposition of collagen, fibronectin, and other extracellular matrix

(EM) components. In contrast with normal wound-healing and for

unknown reasons, apoptosis is not properly initiated in myofibro-

blasts, and secretion of EM proteins does not terminate. This

results in contraction and ultimately destruction of the lung

parenchyma [3], [4].

The primary cause of alveolar injury and dysregulated repair is

still poorly understood, but recent genome-wide association studies

have implicated abnormalities in mucosal defense, cell-cell

adhesion and DNA repair in the development of IPF [5]. Previous

studies have indicated that many other pathways are perturbed in

IPF as well, including TGF-b and WNT signaling and others

related to coagulation, angiogenesis, oxidative stress, and devel-

opment [4]. Genes associated with these pathways have been

found to have differential expression in IPF cases as compared to

healthy controls; however, no effective treatment has yet been

developed which targets any individual gene.

The ability to interrogate mRNA transcripts through RNA

sequencing allows us to find genes whose differential expression

reaches genome-wide significance, and to investigate differential

splicing events on a broad scale. Furthermore this transcriptome-

wide information can be used to inform the study of pathways and

networks which may be dysregulated in IPF. We performed RNA

sequencing on whole lung tissue samples obtained from 8 patients

with IPF and 7 healthy controls in order to investigate these

phenomena and their potential role in the pathogenesis of this

complex disease.
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In addition, a large number of microarray-based gene

expression studies of IPF have been published and the data are

publicly accessible, but there is currently no easy way to visualize

differential expression results across various studies. We further

wanted to make splicing visualizations from our study easily

available and searchable. With this in mind, we have developed an

internet application which allows users to view the results of our

RNA-Seq study interactively, and to compare them with results of

previously published microarray studies: The IPF Gene Explorer,

available from the project website link at http://montgomerylab.

stanford.edu/resources.html. We hope that this application will

make gene expression results more accessible to researchers and

will be a valuable tool in future investigations.

Results

Differential Gene Expression
In comparing the healthy (n = 7) and diseased (n = 8) lung

samples, the Bioconductor package DESeq [6] produced a list of

873 genes showing significant differential expression (DE) at an

FDR of 5%, where sex and demographic group were included as

covariates. These genes had fold changes in the range

0:573vD log2 (fold change)Dv6:894

with one gene (LGALS7) having no counts in the healthy samples.

Overall, we observed more up-regulated genes in the IPF samples

than down-regulated genes (Figure 1). The top ten genes with

smallest p-value are listed in Table 1.

There were 82 unique named genes which showed highly

significant DE (FDR,1%) in both our RNA-Seq data and in two

recent microarray studies [7], [8]. At an FDR of ,1%, our study

identified 475 differentially expressed (DE) genes (8 IPF samples

and 7 controls), whereas microarray experiment GSE24206 (17

IPF, 6 controls) identified 3083 DE genes and microarray

experiment GSE32537 (119 Idiopathic Interstitial Pneumonias,

50 controls) identified 6291 DE genes. The direction of change

found in the RNA-Seq data agrees with that from both microarray

studies for all 82 genes in this overlap. A list of these genes,

together with their p-values and fold changes, may be viewed on

the ‘‘Gene Set’’ page of our web application, by selecting the gene

set ‘‘Microarray overlap’’ and clicking on the ‘‘Table’’ tab.

Figure 1. Differential expression analysis reveals more upregulation than down regulation. This plot depicts fold change vs. mean
expression. Points depict genes, with red indicating those genes that show significant differential expression (FDR,5%).
doi:10.1371/journal.pone.0092111.g001

Table 1. Top ten differentially expressed genes (by p-value).

gene pval padj log2FC description

COMP 4.17e-20 1.28e-15 3.46 cartilage oligomeric matrix protein

DIO2 1.35e-18 2.08e-14 2.75 deiodinase, iodothyronine, type II

CXCL14 1.19e-15 1.22e-11 4.11 chemokine (C-X-C motif) ligand 14

IGLC3 6.04e-15 4.65e-11 4.14 immunoglobulin lambda constant 3 (Kern-Oz+ marker)

PDGFD 1.18e-14 7.29e-11 2.51 platelet derived growth factor D

MMP13 4.11e-14 2.11e-10 3.52 matrix metallopeptidase 13 (collagenase 3)

CDH3 6.83e-14 3.01e-10 2.00 cadherin 3, type 1, P-cadherin (placental)

RP11-731F5.2 3.17e-13 1.22e-09 4.36 lincRNA

IGHG2 4.96e-13 1.70e-09 4.21 immunoglobulin heavy constant gamma 2 (G2m marker)

IGHGP 1.26e-12 3.87e-09 4.41 immunoglobulin heavy constant gamma P (non-functional)

doi:10.1371/journal.pone.0092111.t001
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GWAS Genes are Enriched for Differential Expression
198 SNPs were retrieved from the discovery set of a recent

GWAS study [5] of idiopathic interstitial pneumonia (IIP), a class

of diseases which includes IPF and similar fibrotic diseases of the

lung. The discovery SNPs were those having GWAS pvalue ,

0.0001. We identified 111 genes which were associated with these

SNPs via biomaRt [9] and for which we had sufficient read depth

to test for DE in our RNA-Seq data; of these genes, 8 showed

significant differential expression at an FDR of 5% and are listed

in Table 2. We calculated a hypergeometric p-value of 0.0132 for

the likelihood of seeing 8 significant hits in a gene set of this size

(see Methods), indicating that it is unlikely to see this many genes

showing differential expression by chance alone. Because questions

have been raised about the validity of the hypergeometric (or

Fisher’s exact) test in this context [10], we also calculated an

empirical p-value of 0.01 by a sample permutation method.

The definition of significant differential expression above relies

on an arbitrary FDR cutoff, but we similarly found enrichment for

differential expression using FDR cutoffs of 1% (p-value = 0.093)

and 10% (p-value = 0.040). An alternative view is given by the

QQ-plot in Figure 2, which depicts the quantiles of 2log10 p-

values for the 111 GWAS-identified genes versus the means of

quantiles of 2log10 p-values across 10,000 random gene sets, with

error bars depicting one standard deviation from the mean. This

plot suggests that the GWAS genes are enriched for more

significant DE p-values, even among those that do not pass our 5%

FDR cutoff for significance.

For the 45 SNPs identified as being significantly associated with

IIP in the meta-analysis of [5], 25 corresponded to genes we tested

in DESeq with 2 being significant, giving a hypergeometric p-

value of 0.158. Although this p-value is not as low as the p-value

for the discovery set of GWAS SNPs, the QQ-plots in Figure 3 and

Figure 4 show that the distribution of p-values in validated GWAS

SNPs has a larger deviation from the diagonal, indicating that

these higher confidence GWAS SNPs may still have a greater

enrichment for DE genes than the discovery set.

The most striking observation about the genes in Table 2 is that

all have been implicated in cellular adhesion, migration, or

invasion, underscoring the observation made in [5] that cell-cell

Table 2. Genes associated with GWAS [5] validation SNPs which are differentially expressed in RNA-Seq data at 5% FDR.

gene pval padj log2FC description GWAS significant rsids

RNF5 9.46e-07 2.04e-04 22.16 ring finger protein 5, E3 ubiquitin protein ligase rs3134943

MUC5B 6.50e-06 9.05e-04 4.63 mucin 5B, oligomeric mucus/gel-forming rs12417955, rs2735727, rs2857476, rs868903

DSP 8.83e-05 6.40e-03 1.16 desmoplakin rs10484325, rs10484326, rs2076295,
rs2076302, rs3778337

AGER 1.03e-04 7.27e-03 22.28 advanced glycosylation end product-specific receptor rs3134943

SRGAP3 2.45e-04 1.41e-02 1.31 SLIT-ROBO Rho GTPase activating protein 3 rs12638703

MAPK10 7.46e-04 3.23e-02 0.76 mitogen-activated protein kinase 10 rs4488910

FAT1 9.27e-04 3.71e-02 0.93 FAT atypical cadherin 1 rs2130910

HBEGF 1.33e-03 4.76e-02 21.05 heparin-binding EGF-like growth factor rs13385

The two genes in bold have corresponding SNPs which were validated by the GWAS meta-analysis.
doi:10.1371/journal.pone.0092111.t002

Figure 2. GWAS genes identified from discovery SNPs appear
to be enriched for differential expression. X-axis values of dots
indicate the mean 2log10(pval) from 10,000 randomly permuted sets,
and error bars indicate one standard deviation from the mean in these
permutations.
doi:10.1371/journal.pone.0092111.g002

Figure 3. GWAS genes identified from validated SNPs appear
to be enriched for differential expression. X-axis values of dots
indicate the mean 2log10(pval) from 10,000 randomly permuted sets,
and error bars indicate one standard deviation from the mean in these
permutations.
doi:10.1371/journal.pone.0092111.g003
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adhesion should be high on the list of processes considered for

further research and potential therapeutic interventions.

Our results confirm those of [5] showing that MUC5B and DSP

are significantly over-expressed in IPF lungs as compared to

controls, and these genes are discussed in detail in this previous

study; in particular DSP is involved in cell adhesion via the

connection of cytoskeleton to cell membrane.

RNF5 is an E3 ubiquitin ligase which has been associated with

focal adhesion as well as endoplasmic reticulum stress response

[11], and is proposed to be a regulator of breast cancer progression

through its effects on actin cytoskeleta [12]. RNF5 acts by

ubiquitination of the protein paxillin, decreasing its localization in

focal adhesions and impairing cell motility [13].

AGER encodes a receptor for advanced glycosylation end-

product which is normally highly expressed in adult lung, and

which has been shown to be significantly down-regulated in IPF

lungs as compared to controls [14], [15]. A decrease in this gene’s

protein product (RAGE) has been shown to impede cellular

adhesion to collagen, leading to increased migration of epithelial

cells and fibroblasts [15]. RAGE is also associated with the

differentiation of alveolar epithelial type II cells into alveolar type I

cells [16].

SRGAP3 (MEGAP) is a small GTPase involved in the Slit-Robo

pathway which plays a role in neuronal development and has been

implicated in X-specific mental retardation [17]. In this context it

has been shown that SRGAP3 inhibits the formation of focal

complexes and alters the actin and microtubule cytoskeleton,

thereby impeding cell migration [18].

MAPK10 is the gene encoding the enzyme mitogen-activated

protein kinase 10, also known as JNK3. The related kinase JNK1

contributes to TGFb1-induced epithelial to mesenchymal transi-

tion and collagen deposition, and has been shown to be necessary

for the development of pulmonary fibrosis in a mouse model [19];

however contrary to our findings, this study reports that JNK3

expression is limited to heart, testis, and brain. JNK has been

shown to be activated in IPF tissues [20], where it appears to play

a role in persistence of myofibroblasts [21], and inhibition of JNK

has been shown to enhance cell-cell adhesion [22].

FAT1 encodes a protein that belongs to the cadherin

superfamily of membrane proteins. Previous research has shown

that FAT1 is involved with actin dynamics and cellular

polarization in mammalian (rat/mouse) cell lines; in particular it

was shown to be necessary for regulation of cellular motility in

wound closing, in that a knockdown of this protein led to a

decrease in cell migration [23]. FAT1 has also been associated

with liver fibrosis [24].

Heparin-binding EGF-like growth factor (HBEGF) is an

epidermal growth factor which affects multiple cell types, including

fibroblasts, keratinocytes, and vascular smooth muscle cells, and

has been associated in various ways with fibrosis occuring in the

heart, liver, and pancreas of mice or rats [25], [26], [27]. It

promotes the survival and proliferation of mesenchymal cells like

fibroblasts and myofibroblasts, which is a key element in the

progression of a normal response to lung injury to a pathologic

state of fibrosis [28]. HBEGF has been shown to enhance cellular

adhesion to the extracellular matrix, as well as invasion,

angiogenesis and EMT in the context of ovarian cancer [29]. It

has also been shown to increase migration in keratinocytes [30]

and human peritoneal membrane cells [31].

Network Analysis
The results of our network analysis recapitulate those described

in other studies, underscoring that IPF is a disease in which many

pathways are disrupted. Tables 3, 4, and 5 list those pathways

identified by SPIA [32] as being significantly perturbed at an FDR

of ,10%, where we provided SPIA with a list of genes found to be

significantly differentially expressed in our RNA-Seq data at FDRs

of 1%, 5% and 10%, respectively.

We also performed a gene-set enrichment analysis (see Methods)

on the results of the differential expression analyses for our RNA-

Seq data, first for gene-level expression and then for differential

exon usage. Five pathways showed up as being significant at FDR

10% in both analyses; these are listed in Table 6.

Alternative Splicing
The Bioconductor package DEXSeq [33] discovered 675

differentially expressed exonic regions (FDR,5%), which lie in

436 unique named genes. The top ten significant regions are listed

in Table 7. We were unable to perform PCR validation for the first

Figure 4. GWAS identified genes appear to be enriched for
differential expression. We see smaller differential expression p-
values for GWAS genes than for randomly selected genes.
doi:10.1371/journal.pone.0092111.g004

Table 3. SPIA results when provided with DE genes significant at 1% FDR.

Name FDR Status

Salivary secretion 0.0329 Inhibited

Pancreatic secretion 0.0441 Inhibited

ECM-receptor interaction 0.0441 Activated

Focal adhesion 0.0785 Activated

doi:10.1371/journal.pone.0092111.t003
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exonic hit, RPS24, because the GC-content of the region

prevented us from designing a high-quality primer within the

differentially expressed exon. However we did validate differential

usage in the second and third most significant regions, within the

genes POSTN and COL6A3, by using a second exon in each

respective gene as a control and proxy for gene-level expression.

PCR confirmed that usage of these exons was depressed in IPF as

compared to controls, with both exons giving a Wilcoxon rank-

sum p-value of 3.108e-4, the smallest p-value possible in this

nonparametric rank-based test.

POSTN. The third most significant result lies in the gene

encoding periostin (POSTN). Figure 5 shows that exon 21,

labelled as bin E013 in the figure, is more likely to be spliced out in

IPF samples than in controls; shown are the fitted expression and

fitted splicing coefficients, for which E013 is relatively lower in IPF

than other exonic regions in the gene (see [33] for more on fitted

coefficients). To perform real-time PCR validation, we designed

primers to amplify exon 21 as well as exon 20, an adjacent exon

that is present in all annotated transcripts of POSTN. For this

reason, the expression of exon 20 was used as an internal baseline

from which to estimate the proportion of POSTN transcripts

lacking exon 21.

The ratios calculated for the expression of exon 21 versus exon

20 by PCR are in good linear agreement with the ratios calculated

from normalized counts in the RNA-Seq data: a linear regression

with intercept 0 has adjusted R2 = 0.946, F = 261.9 with p-value

1.86e-10 (Figure 6). In addition the PCR data validates the finding

that these ratios are smaller in IPF samples than in healthy

controls (Wilcoxon rank-sum p-value = 3.108e-4, Figure 7).

POSTN encodes the secreted extracellular matrix protein

periostin, whose increased expression has previously been associ-

ated with IPF [34], and whose expression levels have been

reported to be predictive of clinical progression in IPF [35]. Other

studies have implicated periostin in murine models of lung fibrosis,

where it has been shown to induce chemokines to recruit

neutrophils and macrophages [36]. Like the proteins associated

with GWAS SNPs in the previous section, periostin is involved in

cell adhesion and migration. It has been implicated in tumor

invasion via a contribution to epithelieal-mesenchymal transition

[37], [38], and it enhances TGF-b-induced myofibroblast

differentiation in neonatal lungs [39].

Although our RNA-Seq data does indicate that gene-level

expression of POSTN is increased in IPF samples by a factor of 2,

this increase did not reach genome-wide significance in our study

(p-value = 9.5e-3), adjusted p-value = 0.1685), whereas relative

down-regulation of exon 21 was highly significant (p-va-

lue = 3.01e-14, adjusted p-value = 2.06e-9).

Full length periostin consists of 23 exons and there are nine

reported isoforms [40]; some of these isoforms were detected only

in fetal lung or renal tissue and not in adult lungs. The N-terminal

region of the protein is conserved. Isoforms vary in the cassette

exons 17–21 of the C-terminal region, and it has been proposed

that this region binds ECM proteins like collagen and fibronectin,

so that differences in the constitutive exons of this region should

affect interactions with the ECM [41]. Indeed it has been shown

that periostin isoforms have differential effects on cell invasiveness

in several models [42].

Table 4. SPIA results when provided with DE genes significant at 5% FDR.

Name FDR Status

Salivary secretion 0.0007 Inhibited

TGF-beta signaling pathway 0.0022 Activated

Amoebiasis 0.0483 Inhibited

ECM-receptor interaction 0.0483 Activated

Basal cell carcinoma 0.0643 Inhibited

Wnt signaling pathway 0.0866 Inhibited

doi:10.1371/journal.pone.0092111.t004

Table 5. SPIA results when provided with DE genes significant at 10% FDR.

Name FDR Status

Amoebiasis 0.0008 Inhibited

Salivary secretion 0.0008 Inhibited

TGF-beta signaling pathway 0.0035 Activated

Complement and coagulation cascades 0.0254 Inhibited

ECM-receptor interaction 0.0523 Activated

Arrhythmogenic right ventricular cardiomyopathy (ARVC) 0.0523 Activated

Pathways in cancer 0.0523 Inhibited

Dilated cardiomyopathy 0.0676 Activated

Wnt signaling pathway 0.0729 Inhibited

Transcriptional misregulation in cancer 0.0729 Inhibited

Basal cell carcinoma 0.0729 Inhibited

doi:10.1371/journal.pone.0092111.t005
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COL6A3. The second most significant result lies in exon 4 of

the gene COL6A3, and is more likely to be spliced out in IPF

samples than in controls. A probe within exon 9 of COL6A3,

which did not show differential splicing in the RNA-Seq data or

evidence of SNPs within our samples, was chosen as an internal

reference. Ratios calculated for the expression of exon 4 to exon 9

by PCR agree linearly with those calculated by RNA-Seq, giving

adjusted R2 = 0.803 and F = 62.24 with p-value 1.61e-6, calculated

as for POSTN (Figure 8). Furthermore the PCR data validates

that these ratios are smaller in IPF samples than in healthy

controls (Wilcoxon rank-sum p-value = 3.108e-4), as shown in

Figure 9).

COL6A3 does not show differential gene-level expression in our

RNA-Seq data, but it is significantly upregulated in IPF in the two

previously published microarray experiments described above

(GSE24206 padj = 3.16e-02, GSE32537 padj = 8.26e-17). Like

periostin, collagen VI is an extracellular matrix protein which is

involved in cellular adhesion [43]; it is also associated with integrin

signaling. Differential splicing of COL6A3, and in particular of

exon 4, has previously been associated with pancreatic cancer [44]

and colon cancer [45], though in these studies it was inclusion as

opposed to exclusion of exon 4 that associated with the disease

phenotype. COL6A3 has been shown to be a target of the TGF-

b/Smad signaling pathway [46], which is believed to play a role in

the pathogenesis of idiopathic pulmonary fibrosis [4].

IPF Gene Explorer
We created a web application built from the shiny package for

R [47] to visualize the results of our gene expression study as well

as previously published microarray studies. The website consists of

two pages: one dedicated to viewing information about a single

gene (Figure 10), and another for visualizing sets of genes

(Figure 11), such as genes involved in a biological pathway or

genes which are significantly differentially expressed.

The single gene page takes as input a gene by its HGNC gene

symbol, and displays the p-values, adjusted p-values, and fold

changes found in our study and in two recent microarray

experiments [7], [8]. Boxplots of expression data are shown; for

RNA-Seq data the user may choose to see counts, log-normalized

counts, or variance stabilized expression data [6]. For the

microarray experiments, expression data has been processed as

described in the respective papers: briefly, log transformed data is

normalized by Robust Multi-array Average (RMA), and in the

case of GSE32537, expression values for probes in the same gene

are averaged and a variance filter is employed [7], [8].

The gene set page provides a number of ways for visualizing the

relative expression of genes across our 15 samples, including an

interactive barchart, an expression plot, and a heatmap. The user

may also view and download a table showing p-values, adjusted p-

values, and log fold changes for the genes in the set.

Discussion

Interrogation of transcription through RNA sequencing enabled

us to discover genes whose differential expression reaches genome-

wide significance in IPF, and to detect alternative splicing events

which are not easily observed with traditional microarray

experiments. We identified many differentially expressed genes

and exonic regions, and validated two alternative splicing events

by quantitative PCR. We believe these results indicate a potential

role for alternative splicing of periostin and collagen VI alpha-3 in

IPF, but more investigation is needed to determine the cell types in

which alternative splicing is operative, and to identify causal

Table 6. Pathways enriched for differentially expressed genes and for differentially spliced genes in the RNA-Seq data.

pathway DE padj DEX padj

KEGG: ECM-receptor interaction ,0.00275 0.010267

Reactome: Steroid metabolism ,0.00275 0.076444

Reactome: Integrin cell-surface interactions 0.018419 0.083849

Reactome: Signaling by VEGF 0.069841 0.023158

Reactome: Hemostasis 0.095437 0.017600

doi:10.1371/journal.pone.0092111.t006

Table 7. Top ten differentially expressed exons (by p-value).

gene pval padj exon description in IPF

RPS24 1.67e-15 3.42e-10 chr10:79800373–79800428 ribosomal protein S24 down-regulated

COL6A3 6.99e-15 7.18e-10 chr2:238296225–238296720 collagen, type VI, alpha 3 down-regulated

POSTN 3.01e-14 2.06e-09 chr13:38143437–38143520 periostin, osteoblast specific factor down-regulated

DLC1 5.82e-12 2.99e-07 chr8:13356583–13357330 deleted in liver cancer 1 up-regulated

COL3A1 4.03e-11 1.66e-06 chr2:189867756–189867788 collagen, type III, alpha 1 down-regulated

ZFP36L1 4.97e-11 1.70e-06 chr14:69261464–69262759 ZFP36 ring finger protein-like 1 down-regulated

COL3A1 5.84e-10 1.66e-05 chr2:189868460–189868513 collagen, type III, alpha 1 down-regulated

GM2A 6.46e-10 1.66e-05 chr5:150646857–150650001 GM2 ganglioside activator up-regulated

COL3A1 9.89e-10 2.26e-05 chr2:189868149–189868190 collagen, type III, alpha 1 down-regulated

TRA2B 1.75e-09 3.30e-05 chr3:185652294–185654025 transformer 2 beta homolog (Drosophila) down-regulated

doi:10.1371/journal.pone.0092111.t007
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variants and mechanisms of this effect and their relationship to

IPF. We were not able to reproduce POSTN splicing results in a

smaller sample of IPF lung fibroblasts (4 IPF samples and 4 healthy

controls); this could indicate that the effect manifests primarily in a

different cell type, or that we had insufficient power to detect the

effect with this small sample size. We looked at SNPs from the

1000 Genomes CEU population (Utah residents with Northern

European ancestry) lying within 50bp of periostin and COL6A3

splice sites, and found that none of these variants were significantly

associated with IPF in the recent GWAS study [5]. Our results

indicate that RNA-Seq has the potential to identify novel gene

targets for further research, and larger studies and follow-up

experiments will shed further light on the mechanisms underlying

IPF. We believe that public access and easy visualization of results

will enhance research efforts across disciplines in understanding

this disease.

To our knowledge there has been only one published study

examining gene expression in IPF lung tissues via RNA-Seq [48],

which used samples from three IPF lungs and three COPD

controls. Although this previous study did find differential splicing

of periostin at an FDR of ,10% (adjusted p-value = 0.0694),

overall the set of genes which they find to have significant

differential splicing at FDR ,5% has small overlap with the set of

genes having at least one differentially expressed exonic region

(FDR,5%) in our data: only 7 genes are claimed to be

significantly differentially spliced in both experiments, which is

not more than expected by chance alone (1628 genes tested by

both experiments, of which 147 are called significant here and 132

are called significant in [48]). There could be many reasons for this

lack of replication. First, control samples are drawn from different

clinical groups; second, [48] uses transcript quantification where

we use differential exon usage, which introduces an extra layer of

statistical modelling and estimation; third, both study sizes are

relatively small, though our larger sample size should give us

greater power to detect effects.

Materials and Methods

Unprocessed fastq files and processed gene and exon counts are

available at NCBI’s Sequence Read Archive (SRA) and NCBI’s

Gene Expression Omnibus [49] through the GEO Series accession

number GSE52463 (http://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc = GSE52463). Scripts for downstream quantitative

analyses are available at https://github.com/datapixie/ipf.

Figure 5. Periostin (POSTN) shows evidence of differential splicing at exon 21. In this splicing plot produced by DEXSeq, exon 21 (labelled
E013) is highlighted in magenta.
doi:10.1371/journal.pone.0092111.g005
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IRB Protocols
Sample collection and research activities approved by Univer-

sity of Pittsburgh IRB protocol: IRB970946 and by Stanford IRB

protocol: 18891 (Pathogenesis and progression of interstitial lung

disease). Participants provided written consent to participate in

study. The ethics committees approved the consent procedure. All

data was analyzed anonymously.

Human Lung Samples
We obtained 8 healthy lung samples and 8 IPF lung samples

from resources within Stanford University and the University of

Pittsburgh. IPF tissue was obtained from patients undergoing

surgical biopsy or transplantation for the diagnosis of interstitial

lung disease or lung transplant for IPF. Control lung tissue was

taken from patients undergoing lung cancer resection, remote

from the cancer, or from donor explant lung which was not

deemed suitable for transplantation. These samples were taken

from heart-beating patients without prior flushing of the lungs.

One healthy sample was determined to have extreme-outlier

patterns of gene expression relative to the other 15 lung samples,

and was excluded from downstream analyses (Figure 12). In

particular, it showed extremely low expression of lung surfactant

proteins SFTPA, SFTPC, and SFTPB (Table 8).

Genotyping and Determination of Covariates
All samples were genotyped on Illumina Human Exome

BeadChips, which give allelic information at .200,000 SNPs.

Principal components (PC) analysis [50] was performed on these

genotypes, with the first two PCs revealing three distinct clusters

(Figure 13). Comparison to data from the Phase-One Thousand

Genomes project [51] showed that this clustering corresponded to

demographic structure among samples (Figure 14). We identified

two IPF samples as coming from individuals of Asian descent and

three samples from admixed or American descent, while the rest

cluster with samples of European descent. The inclusion of each

sample into one of these three demographic groups was used as a

covariate in downstream differential expression analyses. We used

Plink’s sex check tool (based on heterozygosity rates on the X

chromosome [52]) to identify the sex of each sample, which was

also used as a covariate.

Figure 6. Ratios of periostin exon usage calculated from qPCR
vs. RNA-Seq. The grey area indicates 95% confidence interval for the
linear regression.
doi:10.1371/journal.pone.0092111.g006

Figure 7. qPCR confirms down-regulation of POSTN exon 21 in
IPF lung tissue. Shown are PCR ratios of POSTN exon usage for IPF vs
controls (Wilcoxon p-value = 3.108e-4).
doi:10.1371/journal.pone.0092111.g007

Figure 8. Ratios of COL6A3 exon usage calculated from qPCR vs.
RNA-Seq. The grey area indicates 95% confidence interval for the linear
regression.
doi:10.1371/journal.pone.0092111.g008

Figure 9. qPCR confirms down-regulation of COL6A3 exon 4 in
IPF lung tissue. Shown are PCR ratios of COL6A3 exon usage for IPF vs
controls (Wilcoxon p-value = 3.108e-4).
doi:10.1371/journal.pone.0092111.g009
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Library Preparation and Sequencing
RNA was isolated from all lung samples with Trizol and rRNA

was depleted using the Ribo-Zero Magnetic Kit (Epicentre,

Madison, WI). Briefly, 1 mg total RNA was incubated with rRNA

removal solution containing rRNA specific probes according to

instructions at 68uC for 10 minutes. rRNA bound to probes was

removed by magnetic bead pull-down. The final ribosomal

depleted RNA was recovered following sodium acetate/glycogen

addition and ethanol precipitation overnight. Samples were

centrifuged at 10,0006g for 30 min, washed once per instruction,

and resuspended with RNAse-free water. The remaining ribo-

somal depleted RNA was used to generate cDNA libraries using

the Illumina TruSeq RNA preparation kit. Strand specificity was

performed using dUTP during second strand synthesis. All

samples were indexed with Illumina adapters and sequenced

using an Illumina HiSeq 2000.

Figure 10. The IPF Gene Explorer displays expression data for a single user-selected gene.
doi:10.1371/journal.pone.0092111.g010

Figure 11. The IPF Gene Set Explorer displays expression data for a set of user-selected genes.
doi:10.1371/journal.pone.0092111.g011
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Alignment and Counting of RNA-Seq Reads
Reads were aligned to the UCSC hg19 human reference

genome using default parameters with STAR v2.0.2c [53], which

was provided with splice junction information from Gencode v.14

annotation. The median number of reads for all 16 samples was

about 26 million, and the median number of uniquely mapped

reads was about 22.5 million (Table 9). Nonuniquely mapped

reads and reads mapping to mitochondrial DNA were discarded.

An in-house script was used to count reads over each gene in the

gencode annotation, and DEXSeq-bundled scripts were used to

count reads lying in non-overlapping exonic parts, as described in

[54]. Read mappings were required to be properly stranded when

performing these counts.

Differential Expression Analysis
The bioconductor package DESeq tests for differential gene

expression by modeling read counts with a negative binomial

distribution, where means are predicted via a generalized linear

model (GLM) with logarithmic link and dependencies of variance

on mean are estimated from the data. DESeq tests for differential

expression by comparing the fit of the GLM with disease-state

coefficient to one without, via a x2 likelihood-ratio test [6]. After

filtering out the 40% lowest-expressed genes (Figure 15), we used

DESeq v.1.10.1 to identify genes that were differentially expressed

between IPF samples and healthy controls. The ‘‘pooled-CR’’

option was used to estimate dispersions and resulting p-values were

adjusted by the method of Benjamini-Hochberg (BH) to account

for multiple testing [55]. The related package DEXSeq v.1.0.2

[33] was used to find differential exon usage between the two

cohorts. Overlapping genes were excluded from the differential

exon analysis. Demographic group and sex were added as

covariates in the generalized linear models used by both DESeq

and DEXSeq.

Microarray Comparison
We compared differentially expressed genes found in the RNA-

Seq data with two recently published studies which used

microarrays to estimate relative transcript expression [7], [8].

The data for these studies are publicly available on the Gene

Expression Omnibus (GEO) website (accession IDs GSE24206

and GSE32537) [49]. Differential expression analysis was

performed using the limma package [56], [57], via R scripts

produced by GEO’s geo2R application.

Gene Network Analysis
We determined pathway enrichment for differentially expressed

or spliced genes by a method using p-value enrichment

permutation analysis [58]. Gene sets were obtained from the

following online databases: BioCarta (www.biocarta.com), KEGG

(www.genome.jp/kegg), Pathway Interaction Database (pid.nci.-

nih.gov), Reactome (www.reactome.org), SigmaAldrich (www.

sigmaaldrich.com/life-science.html), Signaling Gateway (www.

signaling-gateway.org), Signal Transduction KE (stke.sciencema-

g.org), SuperArray (www.superarray.com). A score for each gene

(resp., exon) was computed as the negative log10 of the p-value

output from DESeq, and the median of scores in each gene set was

used as the gene set’s score. Gene (exon) scores were permuted so

as to preserve the number of genes (exons) in each pathway and

the number of pathways corresponding to each gene; gene set

scores were then recomputed, and this was repeated 10,000 times.

The distribution of scores for each gene set was used to establish

an empirical p-value, and p-values for gene sets were adjusted by

BH.
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Figure 12. Norm 7 is an outlier in gene expression. This heatmap shows the top 50 most highly expressed genes (average across all samples)
and corresponding hierarchical clustering of samples.
doi:10.1371/journal.pone.0092111.g012
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We compared these results with those from SPIA [32], a

Bioconductor network analysis package which incorporates

knowledge of network topology and gene expression fold change

to determine if a pathway is activated or inactivated in IPF relative

to healthy samples. We provided SPIA with the fold changes of

genes which were found to have significant differential expression

at 1%, 5%, and 10% FDR. Because SPIA utilizes information at

the gene-level, this analysis could not be used to identify pathways

enriched for alternative splicing events.

GWAS Enrichment
In order to determine whether the overlap between the set of

differentially expressed genes and the set of GWAS-identified

genes (both considered as subsets of those genes tested for

differential expression) is larger than expected by chance alone, we

calculated a p-value of 0.013 from the hypergeometric distribution

in R as:

phyper(q~8{1, m~873, n~30762{873,

k~110, lower:tail~FALSE)

where q is the size of the overlap minus one, m is the number of

genes found to be significantly differentially expressed at FDR 5%,

n is the number of ensembl IDs tested for differential expression

which were not called significant, and k is the number of GWAS-

identified genes which were tested for differential expression. This

p-value is equal to the probability of drawing 8 or more green balls

from an urn containing 873 green balls and 29889 red balls, when

you have drawn a total of 110 balls randomly from the urn. Since

the p-value indicates that it is unlikely to see an intersection of 8

genes by chance alone, we conclude that the GWAS-identified

genes are enriched for differential expression. Other hypergeo-

metric p-values were calculated similarly.

Figure 13. Subject genotypes cluster into three demographic groups. The first two principal components of sample genotype scores
separate samples into three clusters.
doi:10.1371/journal.pone.0092111.g013

Figure 14. The three genotype clusters correspond to sample population-of-origin. The first two principal components for sample
genotypes combined with corresponding Thousand Genomes genotypes are shown.
doi:10.1371/journal.pone.0092111.g014
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For the sample-based permutation approach, we permuted the

disease status (IPF or healthy) of our 15 subjects. For each

permutation, DESeq was rerun and the size of overlap between

significant genes and GWAS genes was computed. We ran 200

permutations, and of these only two had overlaps of size 8 or

larger, giving an empirical p-value of 0.01.

PCR Validation
POSTN primers for exons 20 and 21 were designed to produce

amplicons of approximately the same length that were solely

contained within each respective exon at final concentrations of

500nM (POSTN 20FWD-2: ACTAGGATTTCTACTGGAGG-

TGGA; POSTN 20REV-2: ACAATTTCTTCAGAGTTTCT-

TCTGT; POSTN 21 FWD-2: AGGTCACCAAGGTCACCA-

AA; POSTN 21REV-3 TCAAATAAATGACCATCACCAC-

CT). Phusion High-Fidelity Polymerase (0.02U/ul) and 1x buffer

(NEB, Ipswich, MA) were used with a final concentration of 0.6x

SYBR Green (Molecular Probes, Eugene OR) and 0.2mM dNTPs

for 40 cycles on a StepOnePlus Real-Time Q-PCR machine (Life

Technologies, Carlsbad, CA). cDNA libraries used for RNA-Seq

representing healthy and IPF lung samples were diluted over 5

Table 9. Numbers of reads sequenced for each sample.

sample number of reads uniquely mapped reads

Norm1 20623466 17354393

Norm2 19711643 16939631

Norm3 23850384 21326596

Norm4 27568156 25210789

Norm5 21328567 18264192

Norm6 26054686 22831687

Norm7 29606940 26957981

Norm8 27182913 23959608

IPF1 21822005 18861962

IPF2 26696309 23524193

IPF3 28104723 24908240

IPF4 26197318 23168922

IPF5 23401239 20251950

IPF6 26780342 22191034

IPF7 23413788 20835580

IPF8 29640467 25248566

doi:10.1371/journal.pone.0092111.t009

Figure 15. Genes with low read count are filtered prior to testing for differential expression. Each point represents a gene. We are able to
increase our detection power by eliminating tests which have read counts below the 40th percentile, and therefore would have small probability of
attaining significance [6].
doi:10.1371/journal.pone.0092111.g015
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two-fold dilutions for Q-PCR and amplified to produce standard

curves.

Real time PCR was performed for each sample and each of the

two primers at five different dilutions. For each sample, the

machine-calculated optimal threshold was found for each exon

primer and concentration separately, and Ct values were calculated

by using the mean of these thresholds for both exons. We then

calculated standard curves for each (sample, exon) pair as a quality

control to confirm linearity between Ct and log concentration. The

expression ratio for each sample was calculated as

expression of exon 21

expression of exon 20
~2Ct(20){Ct(21)

where Ct(j) is the Ct value found for exon j at the most concentrated

dilution (0.1).

PCR validation for COL6A3 was performed similarly (primers

COL6A3 E057-FWD: CCGATATTGGCCAACTCCCC; CO-

L6A3 E057-REV: GACACCTACTCCACCAAGGC; COL6A3

E050-FWD: ATGAGGGTGCGAACGTACTG; COL6A3 E050-

REV: GCAAGAGGGACGTGGTCTTT).
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