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Abstract

Background: With the amount of influenza genome sequence data growing rapidly, researchers
need machine assistance in selecting datasets and exploring the data. Enhanced visualization tools
are required to represent results of the exploratory analysis on the web in an easy-to-comprehend
form and to facilitate convenient information retrieval.

Results: We developed an approach to visualize large phylogenetic trees in an aggregated form
with a special representation of subscale details. The initial aggregated tree representation is built
with a level of resolution automatically selected to fit into the available screen space, with terminal
groups selected based on sequence similarity. The default aggregated representation can be refined
by users interactively.

Structure and data variability within terminal groups are displayed using small trees that have the
same vertical size as the text annotation of the group. These subscale representations are
calculated using systematic sampling from the corresponding terminal group. The aggregated tree
containing terminal groups can be annotated using aggregation of structured metadata, such as
seasonal distribution, geographic locations, etc.

Awvailability: The algorithms are implemented in JavaScript within the NCBI Influenza Virus
Resource [1].

Background

Interactive analysis of large amounts of data using web
resources requires specialized visualization tools for rep-
resenting the results of the analysis in an easy-to-compre-
hend form that allows convenient manipulation of the
data. With the amount of influenza genome sequence
data growing rapidly, researchers need machine assistance
in selecting datasets and mining the data by looking into
sequence similarity as well as metadata. The number of
influenza virus sequences available in public databases is

rapidly increasing due to collaborative genome sequenc-
ing efforts [2,3]. The National Center for Biotechnology
Information (NCBI) has developed the Influenza Virus
Resource, which provides public access to influenza
sequence data and a convenient interface for constructing
and viewing multiple sequence alignments and phyloge-
netic and clustering trees, as well as performing other data
analyses [4]. The visualization approaches used in earlier
releases of the NCBI Influenza Virus Resource were based
on a sequence-level representation of the data. They pro-
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vided a convenient interface for viewing the entire dataset
using multiple sequence alignments and trees built using
various algorithms. However, manipulating individual
sequences was not very efficient for large datasets.
Detailed schematic representations of a large dataset with
a fine level of detail are very hard to comprehend. The
problem with such representations is the inclusion of all
information regardless of relevance [5,6]. The user needs
guidance to scan through a complex set of data. It is much
more convenient for a user to work with a representation
that is adapted to the specific task. In the case of sequence
datasets, the information could be shown not only at the
level of individual sequences but also groups of
sequences, depending on the task. Frequently, it is desira-
ble to structure the dataset and provide meaningful aggre-
gated representations with an ability to adapt the
aggregation level. We have enhanced the tree representa-
tion in the Influenza Virus Resource in that direction.

Different aspects of data representation by trees have been
widely discussed in literature. Several tree visualization
systems have been developed to support interactive tree
browsing with zooming ability ([7-10]). The issues of
scalability, performance and robustness of tree visualiza-
tion [11], exploration of complex trees and tree pattern
matching [12], dynamic graphics and annotation of trees
[13], and handling complexity through abstraction [14]
have been discussed in relation to various applications.
The problem of labeling a tree at low magnification has
been approached in PhyloWidget [15] by setting the min-
imum text size and using a so-called competitive occlu-
sion process.

Our approach to adaptive tree representation is also
inspired by map visualization technologies [16]. Geo-
graphic information systems (GIS) widely used in mobile
devices provide adaptively-coarsened visual representa-
tions of maps changing in real time to provide the best vis-
ualization suiting a specific task. They fulfill their task by
serving necessary information, with knowledge being rep-
resented in an easy-to-comprehend form and the amount
of information is limited in a way that a human (driver)
can process it and make a reasonable decision in real time.

Results

The approach presented in this paper allows the display of
a large tree in an aggregated form with special representa-
tion of subscale details, while aggregating structured
metadata consistently with tree aggregation. We presented
the initial results at the ISBRA 2007 symposium [17]. This
paper describes the method in more detail and discusses
recent algorithm enhancements.

In our method, aggregated tree representation is calcu-
lated from the full phylogenetic tree, and terminal groups

http://www.biomedcentral.com/1471-2105/9/237

are created based on sequence similarity with the degree
of aggregation determined by the amount of available
screen space. Structure and data variability within termi-
nal groups are displayed using a special subscale representa-
tion by a small tree that has the same vertical size as the
textual annotation of the group and that is constructed
using systematic sampling from the terminal group. The
terminal groups are annotated using aggregation of struc-
tured metadata, such as seasonal distribution. This repre-
sentation can be refined interactively. Datasets
represented by trees can also be searched using both struc-
tured and unstructured metadata, including sequence
names. The search results are shown as individual
sequences, when resolved, or otherwise, as number of
sequences in named groups satisfying the search criteria.
An improved algorithm utilizes systematic sampling from
the terminal group for building a subscale representation:
a set of well-scattered leaves is identified, and the corre-
sponding subtree is extracted from the full tree. This
allows a more accurate and unbiased subscale-resolution
representation of terminal groups than the technique we
presented at ISBRA 2007 [17].

Figures 1 and 2 illustrate usage of the method for display-
ing influenza virus sequence datasets. Figure 1 shows an
aggregated tree with subscale representation of terminal
groups for a hemagglutinin dataset containing 375
sequences from 1970-2000. Obviously, this dataset could
not be displayed with full resolution on the page and on
the screen. One can compare a full resolution tree and an
aggregated tree shown in Figure 2 for a hemagglutinin
dataset from 1970-1985.

Aggregated tree representation

We propose a new algorithm for constructing an aggre-
gated tree representation for a given phylogenetic tree. To
build an aggregation representation, terminal subtrees
that would be represented in less detail are selected. To
identify terminal subtrees and control visual representa-
tion, we assign status values to tree nodes of the full tree.
Status values provide guidance for tree visualization. The
status value s(i) is assigned to each node i of the full tree:
setting s(i) = 1 if node i is the root of the terminal subtree,
or s(i) = 0 otherwise.

The algorithm works as follows. We start with all leaves
assigned to one group, e.g., tree fully collapsed, and per-
form disaggregation up to available screen space. Techni-
cally, disaggregating node i results in setting the status
value of the node to 0 and the status values of its children
to 1. The nodes are disaggregated starting from the root of
the tree 7. At each step, a node with the largest diameter!
of the corresponding subtree is chosen for disaggregation
among available candidates. To control the order of node
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Aggregated tree built for a dataset containing 375 HA protein coding sequences for Influenza A H3N2 viruses
extracted from human hosts during a 30-year period 1970-2000. The full tree has been built using F84 distance and

the neighbor-joining method.

disaggregation, we use a max-priority queue @. It contains
records Ry = (i}, d; ), where i, is the index of the tree node,

d;, is the diameter of the corresponding subtree, and k =

0, 1, 2,... . The front element of the priority queue R, = (i,

d; ) has the maximal diameter of the subtree. Our current

implementation of the priority queue © utilizes a JavaS-
cript Array object, where records are kept sorted by non-

increasing subtree diameters: d; > d; foranyk <m, 0 <
4 m

k, m < |@®|. A binary search is performed to find the inser-
tion position for each new record, while the JavaScript
method Array::splice is used for inserting a record in the
array.

Denote the maximal number of terminal groups allowed
as N,,,» and the current number of groups in the aggre-
gated tree as N. Let A; be the set of children of node i. The
disaggregation algorithm can be formally described as fol-
lows.

ALGORITHM 1. Building an aggregated tree

Set root status s(r) = 1;
Set N to 1.

Include root r in the max-priority queue ©;
While (|©] >0and N + max(|A; [ -1,0) <N,,) {

Set 5(i,) = 0, where i, is the node index of the front ele-
ment of ©;

If(A;, #D){
For (allk e A; ){

Include k in ©;

Sets(k) =1;
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Figure 2

A full-resolution tree (top) and aggregated tree (bottom) built for 60 HA protein coding sequences for Influ-
enza A H3N2 viruses extracted from human hosts during a 15-year period 1970-1985 (we used F84 distance

and the neighbor-joining method).

SetN « N+|A; |-1.

Remove the front record from the max-priority queue
G;

1Diameter of the subtree is defined as the maximum of
tree distances between subtree leaves. In turn, distance
between two tree nodes is defined as the length of the
shortest path between them.

Building subscale representations for terminal groups
Each terminal group is shown using a single-line text
annotation and a small tree occupying the same vertical
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size as the text annotation, which we call subscale represen-
tation. While many details of the subtree structure for the
terminal group are abandoned, branch length variation
within the group and overall structure of the group are dis-
played (see Figures 1 and 2).

In this section we present a new algorithm for building
subscale representations. An earlier algorithm that we pre-
sented at ISBRA 2007 [17] was similar to Algorithm 1: it
started with a single group, and several cycles of disaggre-
gation were performed until all available vertical space
was utilized. Unresolved groups of nodes were shown by
their shortest and longest branches. This earlier algorithm
allowed visualization of the branch length variability in
terminal groups and group structure. However, it did not
always represent the structures of large terminal groups
accurately. Particularly, we observed good representation
of balanced terminal subtrees, while poor representation
of unbalanced terminal trees was due to biased sampling.
The new algorithm described below utilizes systematic
sampling from the terminal group. First, a set of well-scat-
tered leaves is found among the elements of the terminal
group, then a tree with leaves consisting of the elements
of the selected set is extracted from the full subtree corre-
sponding to the terminal group. Because of the explicit
sampling, the new algorithm avoids the bias problem and
allows a much more accurate and meaningful subscale
representation. We propose selecting a representative set
of leaves from the terminal group by systematic sampling
[18]. When a set of well-scattered leaves is found in the
terminal subtree, we select a tree spanned by them and the
subtree root.

If the tree is binary, and the vertical size of the subscale
subtree is approximately N, pixels, then the maximal
number of leaves N, in the subscale tree is N;= [(N,,,+ 1)/
2]. Let d” (x, y) be the length of the path between nodes x
and y (also known as tree distance between the nodes),
and d’(x, S) be a tree distance between node x and set of
nodes S defined as

dT(x, S) = min,d"(x, v).
Let F be a set of leaves of the subtree. The algorithm com-
putes a set of well-distributed nodes M c F of size N;.
Without loss of generality we can assume that |F| > 2 and
Nl 2 2.
ALGORITHM 2. Systematic sampling leaves of the subtree
Find x_e F closest to the root of the subtree;

Find x, € F furthest from the root of the subtree;

SetM = {x,x,} and A=F\ {x,x,}.

http://www.biomedcentral.com/1471-2105/9/237

While (A=3) {
Select an ¢ = arg max,_, dT(v, M);
Move ¢ from A to M.

}

Each time a new element 7 is included in set M, the value
of the distance from each remaining element x to set M is
updated as follows:

dT(x, M) = min(d"(x, 1), dT(x, M,)),
wherex e F Myc Fnpe Fand M =M, U {7n}.

Figure 3 shows a subtree of a phylogenetic tree and a sub-
scale representation of that subtree built using a system-
atic sample of its leaves.

Terminal group annotation using aggregated structural
metadata

Aggregated groups of sequences need abstracted descrip-
tions for tree annotation. It is possible to summarize the
group using descriptive characteristics: virus type, sub-
type, year of extraction, season of extraction, geographical
location (country, continent). Aggregation by year is
shown in Figures 1 and 2). However, abstracting or sum-
marizing less formal descriptions, such as strain name, is
more challenging [19].

Implementation and availability

The algorithms described in this paper are implemented
using JavaScript and work on the client site. They are part
of the new AJAX-based implementation of the NCBI Influ-
enza Virus Resource [1]. Information about service availa-
bility and access to the code at the NCBI is provided
separately [see Additional file 1].

Discussion

Influenza A viruses are known to exhibit primarily
directed evolution, with small lineages branching out and
dying, and new major lineages rarely appearing. An atten-
tive observer will find even smaller lineages branching out
from minor branches and "dying" faster (in mathematical
terms, a typical influenza dataset has a very low estimated
value of Kolmogorov dimension, also known as box-
counting dimension [20]). The seemingly linear character
of influenza evolution inspired scientists and practition-
ers to look for methodologies to predict a major influenza
strain using past data (see [21] and references therein).
However, long intervals of slow linear change are inter-
rupted by short intervals of rapid change [22]. The low
dimensionality of structure of typical influenza datasets
and their multiscale properties allow the use of the aggre-
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A subtree of the phylogenetic tree in Figure | shown in full resolution (top) and its subscale representation
(bottom). The tree spanned by sampled leaves and the root is shown in red color.

gated representation described above. Our aggregated rep-
resentation design makes it possible to focus on
important properties of the dataset, and in particular,
adapt to the speed of change. This is due to the choice of
criteria to prioritize node disaggregation and the choice of
sampling method for unresolved terminal groups. At both
stages, the decision is based on "importance" as measured
by sequence diversity (maximal diameter of the group in
disaggregation; well-distributed set in sampling, with dis-
tribution measured by distance). Our importance-based
approach allows automatic adaptation to the speed of
change: time intervals with rapid change are resolved in
greater detail than the ones with slow change. Further
refinements can be conveniently performed by the user.

Note that the importance-based systematic sampling tech-
nique for constructing subscale-resolution representa-
tions of the terminal groups that is used in this approach
could also be used for reducing the dataset in multiple
sequence alignments and in bootstrap analysis. From a
computational point of view, it may be feasible to per-
form sampling using approximate information provided
for the dataset (say, by BLAST), and perform more costly
multiple sequence alignments only for a sample. It can

also be used to reduce the dataset in a bootstrap analysis
used for building a consensus tree for the dataset, since
bootstraping requires computing multiple trees from ran-
domized distance matrices [23-25]. The user can use a
computer-generated systematic sample directly or correct
it manually.

Conclusion

Adaptive aggregated trees provide a convenient way of
representing the results of a preliminary analysis of large
sequence datasets and enables the user to manipulate the
data hierarchically, performing each operation at the
appropriate resolution level. Subscale representation
allows the display of an overall structure and branch
length variability within terminal group. A new algorithm
for building subscale representations based on the system-
atic sampling from the terminal groups allows an unbi-
ased subscale resolution representation of the group.
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