View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by D-Scholarship@Pitt

Parameterized Exercises in Java Programming:
using Knowledge Structure for Performance
Prediction

Shaghayegh Sahebi', Yun Huang!, and Peter Brusilovsky!?

! Intelligent Systems Program, University of Pittsburgh
2 School of Information Sciences, University of Pittsburgh
{shs106, yuh43, peterb}@pitt.edu

Abstract. In this paper, we study the effect of using domain knowledge
structure on predicting student performance with parameterized Java
programming exercises. Domain knowledge structure defines connections
between elementary knowledge items. While known to be beneficial in
general, it has not been used to predict performance. We compare five dif-
ferent approaches for this purpose: Bayesian Knowledge Tracing (BKT),
Performance Factor Analysis (PFA), and three dimensional Bayesian
Probabilistic Tensor Factorization (3D-BPTF), that are not able to take
into account knowledge structure; and four-dimensional Bayesian Prob-
abilistic Tensor Factorization (4D-BPTF) and Feature-Aware Student
Knowledge Tracing (FAST), that can take into account knowledge struc-
ture. We approach the problem using both topic-level and question-level
Knowledge Components (KCs) and test the methods on a dataset of
parameterized questions. Our work is the first in the field that models
students’ behavior in a four dimensional tensor. Our experiments show
that, when having only the knowledge-item-level information, all of the
models work similarly in predicting student performance, but adding
the topic-level information that integrates knowledge items changes the
performance of these models in different directions.

1 Introduction

Parameterized questions and exercises have recently emerged as an important
tool for online assessment and learning. A parameterized question is essentially a
template for the question, created by an author. At presentation time, the tem-
plate is instantiated with randomly generated parameters. Parameterized ques-
tions are considerably harder to implement than traditional “static" questions
since they need some special infrastructure to dynamically check the correctness
of student answers. However, the benefits offered by this technology make this ad-
ditional investment worthwhile. During assessment, they can be used to produce
online individualized assessments for large classes minimizing cheating problems.
Even more importantly, in the self-assessment context, the same question can
be used again and again with different parameters, allowing every student to
achieve understanding and mastery. These properties of parameterized exercises
made them very attractive for the large-scale online systems. In turn, it made
platforms that supported parameterized questions such as LON-CAPA [9] or
edX very popular for college-offered online learning and MOOCs.

https://core.ac.uk/display/20535979?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Due to the complexity of parameterized assessment, the majority of work
in this field was done in physics and other math-related domains. However,
this technology is becoming more and more popular in the domain of program-
ming. In particular, Brusilovsky and Sosnovsky [1] developed and explored the
QuizPACK platform for C-programming and Hsiao et. al explored the similar
QuizJET [5] platform for Java programming. In all these domains, the results of
many studies have confirmed the value of parameterized questions as e-learning
tools [6, 10,1, 5]. At the same time, Hsiao et al.’s research on parameterized ex-
ercises in the programming domain [5| demonstrated that the ability to try the
same question again and again is not always beneficial, especially for students
who are not good at managing their learning. The analysis of a large number
of student logs revealed some considerable number of unproductive repetitions.
For example, we can observe many cases where students repeatedly try to cor-
rectly solve the same exercise with different parameters (which is easy for them
at the repetition) instead of focusing on new, more challenging questions. We
can also observe repetitive failed attempts to solve the same exercise for which
the students are apparently not ready, instead of focusing on simpler exercises
and missing knowledge.

We believe that this unproductive practice could be avoided if a personal-
ized e-learning system featuring parameterized exercises can predict the success
of students’ future problem-solving attempts in the same way a recommender
system can predict, for example, whether a user would or would not like a new
movie. The ability to predict student performance in the context of solving pa-
rameterized exercises could enable the system to intercept non-productive be-
havior and recommend a more efficient learning path.

Predicting Student Performance (PSP) is a popular topic in the area of cog-
nitive tutors. In this category of systems each problem or problem-solving step
(item) is associated with specific units of knowledge (Knowledge Components or
KCs) to be mastered. Observing students’ past successes and failures, a cognitive
modeling system attempts to model student mastery for each unit of knowledge.
The traditional approach for cognitive modeling is Bayesian Knowledge Trac-
ing (BKT) [2], which employs a two-state dynamic Bayesian network estimat-
ing the latent cognitive state (student knowledge) from students’ performance.
More recently Performance Factor Analysis (PFA) [12] emerged as an alterna-
tive approach for cognitive modeling and performance prediction. PFA takes into
account the effects of the initial difficulty of the KCs and prior successes and
failures of a student on the KCs associated with the current item.

In addition, many relevant ideas have been explored in the field of collabora-
tive recommender systems [11]. While collaborative filtering approaches were de-
signed to predict user taste, not user performance, technically they are resolved
to predict a score for unknown items based on the past experiences of users.
We can consider users of a collaborative filtering system as students, items as
skills/questions/steps in solving the problem, and user rating as the predicted
value representing the student’s success or failure. In recent years, more modern
approaches, such as matrix factorization [8] and tensor factorization [7] have
been used in recommender systems. There are several works applying factor-

ization techniques to student modeling, such as Thai et. al’s three dimensional
tensor factorization [13]. However, none of these works are focused on predicting
user performance in parameterized questions at the question level nor have they
used four-dimensional tensors to model students’ behavior.

The problem of PSP in the context of solving parameterized problems, how-
ever, is harder than predicting solving regular “solve-once” problems. Traditional
modeling approaches both from cognitive tutors and collaborative recommenda-
tion areas are not fully adequate for the parameterized problem case since they
can’t distinguish repeated attempts to solve the same problem from solving a
new problem related to the same skills. As a result, we cannot name any attempts
to explore approaches for predicting success in solving parameterized exercises.
While there are some works focused on performance prediction in classes with
parameterized exercises, they focus on a much coarser level of prediction, such

as PSP in the whole class [10].
This paper attempts to bridge this gap by exploring a range of techniques

for performance prediction in the challenging context of parameterized exercises
for Java programming. The main idea of our work is that the quality of PSP
in parameterized problems could be increased by using additional data, such
as domain knowledge structure, that are not typically considered by traditional
approaches. Current prediction approaches in both areas, cognitive tutors and
collaborative recommendation, assume that performance of every item should
be measured independently and it provides too little data for these approaches
to learn from data. We argue that relatively simple knowledge structure such as
the information that several items belong to the same broader topic could be
very helpful in this context. To explore this idea, we compare advanced log-driven
prediction approaches such as Bayesian Knowledge Tracing [2], Performance Fac-
tor Analysis [12], advanced collaborative filtering approach (tensor factorization)
[7], and FAST (Feature-Aware Student Knowledge Tracing) [3]. Our results show
that the latter two approaches that can take into account knowledge structure
do produce better performance.

2 The approaches

As we discussed in the introduction section, we believe that using extra informa-
tion, such as the domain knowledge structure of the items should increase the
accuracy of PSP. We experiment on five student modeling approaches in PSP:
BKT |[2], PFA [12], three dimensional and four dimensional Tensor factorization
[7], and FAST [3]. BKT and PFA are the pioneer PSP methods that we choose

as our baselines.
For predicting the performance of students without modeling the domain

knowledge structure, we choose BKT, PFA. Also, as for the recommender sys-
tem method for this purpose, we choose three-dimensional tensor factorization
that can include the same level of information as BKT and PFA. The three
dimensional tensor factorization model that we choose is Bayesian Probabilistic

Tensor Factorization (BPTF) [14].
To include domain knowledge structure in PSP, we have to utilize the meth-

ods that can incorporate this information in their models. We select FAST as a

new approach to this problem that can include both knowledge tracing and other
models’ information (such as PFA variables) in the form of additional features.
Also, we model student behavior in a four-dimensional tensor that can include
each of the domain knowledge structure aspects as one new dimension. Tensors
are a very good fit for this problem because each type of information can be
modeled as a new dimension of a tensor. We extended the tensor factorization
model in [14] from a three dimensional tensor factorization to a four dimensional
tensor factorization for this purpose.

Each of these methods has their positive and negative aspects; e.g., BKT
can model the time sequence of student attempts explicitly, while PFA considers
this information as a form of summary of the number of past successes and
failures. PFA can handle multiple KCs, while BKT can only consider one KC.
Tensor factorization methods predict personalized performance for each student,
while BKT and PFA are not personalized in their original form. FAST has the
positive characteristics of both BKT and PFA. In the following, we provide a
brief description of each of the methods.

Bayesian Knowledge Tracing: The Bayesian Knowledge Tracing [2] model
assumes a two-state learning model where each Knowledge Component (skill,
or rule) is either in the learned or unlearned state. It uses a simple dynamic
Bayesian network where the observable variable represents student performance
(correct or incorrect) and the hidden variable represents student knowledge state.
There are four parameters in BKT : the initial knowledge parameter (p(Lg))
represents the probability that the student knows a KC before practicing on
any items associated with the KC; the learning rate parameter (p(7T')) represents
the probability that a student learns a KC by practicing; the guess parameter
(p(@)) represents the probability when a student doesn’t know a KC but answers
the item correctly; the slip parameter (p(S)) represents the probability when a
student knows the KC but answers the item incorrectly.

Performance Factor Analysis: Performance Factor Analysis [12] predicts the
student’s performance based on the easiness of the current KC(s), the student’s
prior correct responses and incorrect responses on the KC(s) associated with
the current item using a standard logistic regression model. The correctness of
response of a student on an item is modeled as the dependent variable here.
Feature-Aware Knowledge Tracing: FAST [3] is a method that combines
PFA with Knowledge Tracing. It is able to infer students’ knowledge, like BKT
does, while allowing for arbitrary features, like PFA. FAST allows general fea-
tures into Knowledge Tracing by replacing the generative emission probabilities
(guess and slip probabilities) with logistic regression, so that these probabilities
can change with time to infer a student’s knowledge.

Tensor Factorization Methods: A tensor is a multi-dimensional or N-way
array. A matrix is a 2-way tensor. Matrix factorization is a popular approach in
the recommender systems field. In recommender systems, user ratings on items
are represented in a matrix: one dimension of the matrix shows the users and
the other dimension shows the items; each element of the matrix represents a
user’s rating on a specific item. In the educational data mining domain, to pre-
dict student performance, we can model users’ success or failure on all items in

a matrix: if a user succeeds in solving that item, the value for that element will
be one and zero otherwise. Since there is only one element per student per ques-
tion, we should consider only one value for the success or failure of each student
on each item. This is problematic when a student has more than one attempt
with different results on an item, such as in parameterized exercises. Thus, we
should consider a method to incorporate time into the factorization model. To
address this problem, we use a three dimensional tensor consisting of students,
items, and attempts dimensions. Each element of this tensor represents the suc-
cess/failure (one/zero) of a student on an item in a specific attempt. The task of
predicting user performance here aims to find the success or failure of a student
in each attempt of an item. Tensor factorization methods try to decompose a
tensor into lower-dimensional space and predict the missing values of the ten-
sor by approximating them using this lower-dimensional representation. In this
paper, we use the three dimensional Bayesian probabilistic tensor factorization
(3D-BPTF) introduced by Xiong et. al [14] to predict the success or failure of
students.

The items considered in one dimension of the three dimensional tensor can
be one type of KC, such as questions or topics. As a result, we cannot model
various KC types in a three dimensional tensor. To deal with this problem, we
represent the data in a four dimensional tensor and extend the 3D-BPTF to a
four dimensional tensor factorization (4D-BPTF). In this model, the dimensions
are: students, KC type 1, KC type 2, and attempts. For example, in this study
we model the questions along with the topics associated with these questions.
The tensor model of the data has the students, questions, topics, and attempts
dimensions. Note that tensors are able to have as many dimensions as needed
to model the data. But adding each dimension will add to the sparsity of the
tensor.

3 The Dataset

Our dataset was collected from the online self-assessment system QuizJET [5],
which provides parameterized questions for learning Java programming. FEach
parameterized question is generated from a template filling parameters inside
the question with random (and reasonable) values to avoid providing the exact
same question to the student. Students can try different versions of the same
question multiple times until they acquire the knowledge or give up. The dataset
was collected from Fall 2010 to Spring 2013 (six semesters). The subject domain
is organized into reasonably coherent topics, each topic has several questions.
Each question is assigned to one topic. We experimented on 27,302 records of
166 students on 103 questions. The average number of attempts on each question
is equal to three. Students have at least one attempt to at most 50 attempts in
one question. Our dataset is imbalanced: the total number of successful attempts
in the data equals to 18,848 (69.04%) and the total number of failed attempts
is 8454. We used user-stratified 5-fold cross-validation to split the data, so that
the training set has 80% of the users (with all their records) randomly selected
from original dataset, while the remaining 20% of the users were retained for

testing. We performed a 5-fold cross-validation to perform the comparison in
our studies. We ensured that all questions seen in the test set have at least one
student attempt in the training set. In this way, all models are predicting unseen
students on observed questions in each run. Simple statistics of our dataset are
shown in Table 1.

Table 1: Dataset Statistics

Average|Min|Max
#attempts per sequence 3 1 |50
#attempts per question 265 25 |582
#attempts per student 165 2 |772
#different students per question|87 7 142
#different questions per student|54 1 |101

4 The Studies

Cognitively-based approaches for knowledge prediction expect any success or
failure to solve a problem to be attributed to one or more knowledge compo-
nents that are practiced during problem solving. The most natural choice for
this knowledge component is a topic that represents a coarse-grained level of
information. With this approach, working with any question belonging to the
same topic could be considered a chance to practice this topic. The problem of
this approach is that problems belonging to the same topic might still be con-
siderably different. As a result, the success or failure with one of the problems
might carry too little evidence to predict performance on other problems in the
same topic. An alternative approach is to consider each question to be a distinct
subtopic and to use questions as knowledge components for modeling. We expect
that including the domain knowledge structure, by having both questions and
topic information, results in a better modeling for PSP. Since these approaches
have both strong and weak aspects, we explored them in the hopes of finding

the one that allows the best quality of prediction.
Each of the approaches models information of the domain (knowledge com-

ponents) in different ways: BKT models each KC (either question or topic) sep-
arately; PFA models items (either questions or topics) with multiple KCs; 3-D
tensor factorization considers items (either questions or topics) as KCs; 4-D
tensor factorization includes both question and topic information (includes do-
main knowledge structure); and FAST considers each KC (topic or question)
separately, in addition to the extra information (e.g. question information) in
the form of features. Because of these characteristics, we expect FAST and 4D-
BPTF to perform better than the aforementioned methods while having extra
information about the domain knowledge structure. On the other hand, when
we consider each question as a KC, and thus we do not have any information
about the topics, we expect FAST and 3D-BPTF to perform similarly to other
methods. The reason is that, in this case, the regression-based features of FAST

contain only redundant information that can be captured by those models natu-
rally. Also, 3D-BPTF does not have the extra dimension for topics. To examine
the performance of these approaches and compare them using different infor-
mation resources, we designed two studies with various granularity: one with
question as the knowledge unit, and the other with topic as the knowledge unit
(and extra question information for FAST and 4D-BPTF).

4.1 Study 1: Question as Knowledge Unit

The Procedure For BKT, FAST, and PFA, we treat a question (item) as a
knowledge component (KC) in this set of experiments. By using question (item)
level KCs, we would be able to capture a question’s characteristic for predicting
different attempts on the same question. To model the tensor, we used the three

dimensions of student, question, and attempt.
We used existing tools implementing the above methods to perform our ex-

periments. We used Expectation Maximization (EM) algorithm for BKT and set
the initial parameters as follows: p(Lg) = 0.5 (for Initial Knowledge), p(G) = 0.2
(for Guessing), p(S) = 0.1 (for Slipping), p(T) = 0.3 (for Learning). For running
PFA, we used the implementation of logistic regression in WEKA [4]. For 3D-
BPTF, we used the Matlab code prepared by Xiong et. al.3. We experimented
with different latent space dimensions for 3D-BPTF (5, 10, 20 and 30) and chose
the best one, which has the latent space dimension as 10 to compare with other
models.

Table 2: Results of the Methods with Question as Unit to Predict Student Performance
Methods |Accuracy |RMSE|TP |TN |FP FN [Maj. Min. Mayj. |Min.

precision |precision|recall|recall

FAST 73.64(0.8)[0.4209 [3063.4|953.6/737.2 |706.2|80.61 57.54 81.45(56.15
BKT 74.38(0.8)]0.4152(3527.6|534.8|1156.0|242.0(75.33 68.69 93.43132.00
PFA 74.69(1.0)(0.4185|3381.4|701.4|989.4 |388.2|77.34 64.16 89.56(41.63
3D-BPTF|74.26(0.9)|0.4189 [3423.4|636.2|1054.6|346.2|76.42 64.59 90.60(37.88

The Results The results of our experiments are shown in Table 2. We used
Accuracy, RMSE (Root Mean Squared Error), TP (True Positive), TN (True
Negative), FP (False Positive), FN (False Negative), Maj. (Majority) and Min.
(Minority) recall and precision to evaluate the methods. Numbers in parenthesis
show the confidence interval with P < 0.05. We can see that the accuracy of
all models is very close to each other. Among the models, BKT has slightly
more true positives and false positives. It means that BKT tends to predict
more positive values (successes) for the students. It over estimates the student’s
performance. Confusion matrix values of PFA and 3D-BPTF are in between
FAST and BKT. Contrary to BKT, FAST has more true negatives and false
negatives. It means that FAST tends to predict more failures for the students.
BKT has the highest minority precision and significantly highest majority recall.

3 http://www.cs.cmu.edu/ Ixiong/bptf/bptf.html

FAST has the highest majority precision and highest minority recall. It means
that if FAST predicts a success for a student and if BKT predicts a failure
for students, their prediction is more likely to be true compared to the other
methods.

4.2 Study 2: Topic as Knowledge Unit

The Procedure In our dataset, each question is related to only one topic, but
each topic can include multiple questions. In this study, we treat a topic (item)
as a knowledge component (KC) for BKT and PFA. In FAST, each topic is a
KC but it includes the question that the topic is related to as an additional
feature. For 4D-BPTF, the tensor dimensions are students, topics, questions,
and attempts. To perform the methods, we used the same tools as in Study
1, and extended the 3D-BPTF to a four-dimensional tensor factorization (4D-
BPTF). To compare the results, we also modeled a three dimensional tensor
with students, topics, and attempts (ignoring the question information) and
performed 3D-BPTF on that.

Table 3: Results of the Methods with Topic as Unit to Predict Student Performance
Methods |Accuracy [RMSE|TP |TN |FP FN |Maj. Min. Maj. [Min.

precision|precision|recall |recall

FAST 75.34(0.7)(0.4134 |3360.8|740.4|943.8 [402.4|78.08 65.00 89.47143.63
4D-BPTF|74.40(1.2)|0.4192 |3374.8|783.6(917.2 |506.4|78.63 60.71 86.76146.30
BKT 71.93(1.1)(0.4355 [3510.8|403.0{1281.2|252.4|73.33 61.68 93.38(23.81
(0-8)
(1.3)

PFA 71.16 0.4392 |3452.8|419.2|1265 |310.4|73.21 57.90 91.95(24.49
3D-BPTF|69.66

0.8317 (3758 |37 |1647.2|5.2 [69.16 91.06 100 |2.13

The Results The results of our experiments are shown in Table 3. Numbers in
parenthesis show the confidence interval with P < 0.05. As we can see, FAST
and 4D-BPTF’s performance do not have a significant difference from each other.
Also, FAST and 4D-BPTF perform significantly better than all other approaches
in terms of accuracy and RMSE. This is because of their ability to model and
capture both topic-level and question-level information. While FAST has the
topics as KCs, it is using question features, such as the number of successes and
failures, in its model. In addition, 4D-BPTF models topics and questions explic-
itly as different dimensions of one tensor. Compared to the first study’s results,
FAST performs better while using topic-level KCs compared to using question-
level KCs (Study 1). Also, 4D-BPTF performs better than 3D-BPTF both using
question-level information (Study 1) and topic-level information (Study 2). BKT
and PFA perform similarly to their results in Study 1 and 3D-BPTF on topics
is slightly weaker than 3D-BPTF on questions in terms of accuracy. 3D-BPTF
has a very high minority precision and majority recall. It means that it over es-
timates the students’ ability to solve the problems. Eventually, we can conclude
that having information on both questions and topics (in various granularity)

can significantly improve the accuracy of predicting students performance in
parameterized questions.

5 Discussion

As we have seen in the results presented above, each method’s accuracy in pre-
dicting students performance depends on the input of the method. When we
ignore the topic of questions as KCs, all models perform similarly. On the other
hand, when we include topic information, in addition to the question informa-
tion, in the models, the methods that can leverage this extra information perform
much better than the ones that cannot consider that information. FAST and
4D-BPTF perform the best because they can include both question-level and
topic-level information in addition to the time sequence of students. BKT and
PFA cannot include the question-level information, but they still have the time
sequence of attempts or the number of successes and failures. 3D-BPTF does
not have any information for the questions and it cannot distinguish between
the topics and questions.

Also, we can see that adding the extra topic data in the methods that cannot
model this information well decreases the method’s accuracy. FAST is the only
model that performs better, compared to itself, in Study 2 versus Study 1. Also,
4D-BPTF performs better than 3D-BPTF in both question-level and topic-level

models. BKT and PFA perform worse in Study 2 compared to Study 1.
We can conclude that, in the case of predicting students performance on mul-

tiple attempts, adding to the granularity of information is useful if the method
we are using can model this extra information explicitly. Otherwise, this extra
information may harm the accuracy of the results.

6 Conclusion and Future Work

In this study, we explored several advanced student modeling approaches in
predicting student performance in solving parameterized exercises, particularly
in the programming area. This is the first work that models students’ data as a
four-dimensional tensor (in 4D-BPTF).

We performed two sets of studies with different granularity using these meth-
ods: one considering questions as Knowledge Components (KCs) and the other
one considering topics as KCs. We discovered that FAST and 4D-BPTF performs
best in the second study. Also, we saw that the models do not differ significantly
in the first study. We can conclude that, in the case of predicting students per-
formance on parameterized exercises, adding to the granularity of information
can be useful for the methods that can model and leverage this extra information
explicitly. The methods that could not include both question-level information
and topic-level KCs at the same time are not suitable for this granularity of data
and did not perform well in the second study.

In addition, the success of using tensor factorization, which is one of the ad-
vanced techniques in the recommendation area, in both studies encourages more
research on applying more recommendation techniques in PSP. Giving that fac-
torization techniques do not need to know the exact Knowledge Components

that influence students’ performance, they reduce the manual effort in exercis-
ing authoring for student modeling, which is promising for providing student
modeling in a larger scale.

Our first effort in this work in treating a question (item) as a KC and our
second study in having a topic as a KC, in addition to question information, for
FAST and 4D-BPTF proved effective. However, we haven’t explored whether
using more coarse-grained or fine-grained level KCs would give better prediction
performance. Particularly, since PFA is designed for modeling multiple KCs, we
need further experiments to compare these models when each item is associated
with multiple KCs.

References

1. P. Brusilovsky and S. Sosnovsky. Individualized exercises for self-assessment of
programming knowledge: An evaluation of quizpack. ACM Journal on Educational
Resources in Computing, 5(3):Article No. 6, 2005.

2. A. T. Corbett and J. R. Anderson. Knowledge tracing: Modeling the acquisition of
procedural knowledge. User modeling and user-adapted interaction, 4(4):253-278,
1994.

3. J. P. Gonzalez-Brenes, Y. Huang, and P. Brusilovsky. Fast: Feature-aware student
knowledge tracing. In NIPS Workshop on Data Driven Education, 2013.

4. M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The
weka data mining software: an update. ACM SIGKDD FExplorations Newsletter,
11(1):10-18, 20009.

5. I.-H. Hsiao, S. Sosnovsky, and P. Brusilovsky. Adaptive navigation support for
parameterized questions in object-oriented programming. In ECTEL 2009, volume
5794 of LNCS, pages 88-98. Springer-Verlag.

6. E. Kashy, M. Thoennessen, Y. Tsai, N. E. Davis, and S. L. Wolfe. Using networked
tools to enhanse student success rates in large classes. In FIE, volume I, pages 233—
237. Stipes Publishing L.L.C., 1997.

7. T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM,
51(3):455-500, 2009.

8. Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recom-
mender systems. Computer, 42(8):30-37, 2009.

9. G. Kortemeyer, E. Kashy, W. Benenson, and W. Bauer. Experiences using the
open-source learning content management and assessment system lon-capa in in-
troductory physics courses. American Journal of Physics, 76(438), 2008.

10. B. Minaei-Bidgoli, D. A. Kashy, G. Kortemeyer, and W. F. Punch. Predicting
student performance: an application of data mining methods with an educational
web-based system. In FIE 2003.

11. D. Parra and S. Sahebi. Recommender systems: Sources of knowledge and evalua-
tion metrics. In J. V. et al. (Eds.), editor, Advanced Techniques in Web Intelligence-
2, chapter 7, pages 149-175. Springer-Verlag, Berlin Heidelberg, 2013.

12. P. I. Pavlik, H. Cen, and K. R. Koedinger. Performance factors analysis-a new
alternative to knowledge tracing. In AIFEd, pages 531-538, 2009.

13. N. Thai-Nghe, T. Horvath, and L. Schmidt-Thieme. Context-aware factorization
for personalized student’s task recommendation. In Int. Workshop on Personal-
ization Approaches in Learning Environments, volume 732, pages 13-18, 2011.

14. L. Xiong, X. Chen, T.-K. Huang, J. G. Schneider, and J. G. Carbonell. Temporal
collaborative filtering with bayesian probabilistic tensor factorization. In SDM,
volume 10, pages 211-222, 2010.

