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Abstract

Adjuvant therapy of stage IIB/III melanoma with interferon reduces relapse and mortality by up to 33% but is accompanied
by toxicity-related complications. Polymorphisms of the CTLA-4 gene associated with autoimmune diseases could help in
identifying interferon treatment benefits. We previously genotyped 286 melanoma patients and 288 healthy (unrelated)
individuals for six CTLA-4 polymorphisms (SNP). Previous analyses found no significant differences between the
distributions of CTLA-4 polymorphisms in the melanoma population vs. controls, no significant difference in relapse free
and overall survivals among patients and no correlation between autoimmunity and specific alleles. We report new analysis
of these CTLA-4 genetic profiles, using Network Phenotyping Strategy (NPS). It is graph-theory based method, analyzing the
SNP patterns. Application of NPS on CTLA-4 polymorphism captures allele relationship pattern for every patient into 6-
partite mathematical graph P. Graphs P are combined into weighted 6-partite graph S, which subsequently decomposed
into reference relationship profiles (RRP). Finally, every individual CTLA-4 genotype pattern is characterized by the graph
distances of P from eight identified RRP’s. RRP’s are subgraphs of S, collecting equally frequent binary allele co-occurrences
in all studied loci. If S topology represents the genetic ‘‘dominant model’’, the RRP’s and their characteristic frequencies are
identical to expectation-maximization derived haplotypes and maximal likelihood estimates of their frequencies. The graph-
representation allows showing that patient CTLA-4 haplotypes are uniquely different from the controls by absence of
specific SNP combinations. New function-related insight is derived when the 6-partite graph reflects allelic state of CTLA-4.
We found that we can use differences between individual P and specific RRPs to identify patient subpopulations with clearly
different polymorphic patterns relatively to controls as well as to identify patients with significantly different survival.
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Introduction

Adjuvant therapy of patients with stage IIB/III melanoma

(high-risk) with interferon was approved by FDA (United States

Food and Drug administration) and subsequently by regulatory

authorities worldwide [1]. Despite the ability of this regimen to

reduce relapse and mortality by up to 33% [2–4] acceptance has

been limited due to toxicity of this regimen. Attempts to identify

the subset of patients destined to benefit from adjuvant treatment

with IFNa-2b have failed to discover clinical or demographic

features of the patient population that are capable of predicting the

benefit from high dose interferon (HDI) therapy. Correlative

studies have been undertaken over the years, demonstrating a

variety of immunological responses subsequent to therapy [5,6].

We recently published a paper in which six CTLA-4

polymorphisms were evaluated in a cohort of patients treated

with adjuvant interferon [7]. The human CTLA-4 gene is located

on chromosome 2q33, in a region that is associated with

susceptibility for autoimmune disease [8] and multiple polymor-

phisms of the CTLA-4 gene have been found to be associated with

susceptibility to autoimmune diseases (e.g. the GG allele of the +49

AG polymorphism is associated with decreased expression of
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CTLA-4 upon T-cell activation and thus a higher proliferation of

T-cells) [9–12].

We genotyped DNA isolated from the peripheral blood of a

total of 286 patients with high-risk melanoma who participated in

a prospective multicenter randomized phase III trial of adjuvant

interferon and a panel of 288 randomly selected healthy unrelated

Greek individuals from the Donor Marrow Registry of the

National Tissue Typing Center, Athens, Greece that served as a

control population for 6 CTLA4-SNPs of potential interest –

namely CT 60, AG 49, CT 318, JO 27, JO 30 and JO 31. CT 318

is located within the promoter region of the CTLA-4 gene, A/G49

is located at exon 1, while the rest of the SNPs tested are located at

the 39 untranslated region of CTLA-4.

High levels of association among the different polymorphisms

were found (Fisher’s exact p value,0.001 for all associations).

Genotypes corresponding to the six CTLA-4 polymorphisms did

not significantly deviate from the Hardy-Weinberg equilibrium.

This indicates significant linkage disequilibrium among the six

polymorphisms. We analyzed the segregation pattern of CT 318,

AG 49, CT 60, JO 27, JO 30, JO 31 SNPs on 572 chromosomes

and identified 5 major haplotypes. No statistically significant

differences for relapse free survival or overall survival were found

for the presence of each of the 3 most common haplotypes. When

the respective polymorphisms were considered separately for

outcome analysis by the allele status, or when the three most

significant haplotypes were considered, two results emerged:

1. No significant differences were found between the distributions

of CTLA-4 polymorphisms in the melanoma population

compared with healthy controls.

2. Relapse free survival (RFS) and overall survival (OS) did not

differ significantly among patients with the alleles represented

by these polymorphisms. No correlation between autoimmu-

nity and specific alleles was evident.

The results reported in the original paper [7] considered

‘‘dominant model’’ in which both homozygous and heterozygous

copies of the six assayed SNP loci were assumed to have similar

effect on altering the CTLA-4 function.

We use the original experimental genotyping results on CTLA-4

genotype profile as risk factor as the basis for the new analysis

designed and undertaken in this paper. A novel general method of

pattern analysis, referred below as network phenotyping strategy

(NPS), was introduced for integrative, relationship-based analysis

of clinical data [13–15]. In the particular application described in

this paper, NPS replaces analysis of CTLA-4 individual alleles and

allele frequencies by the analysis of relationships between CTLA-4

alleles for every individual in the study. NPS solves two types of

problems: First, the ‘‘power’’ problem is addressed, which

complicates the use of methods that approach such complete-

relationship based analysis by using large number of interaction

terms, which requires large number of subjects for informative

statistical analyses. NPS captures instead the actual polymorphism

relationship patterns cumulatively into special mathematical

graphs. Second, NPS-processing of genotyping data eliminates

using a priori hypothesis about the role of homozygous and

heterozygous allelic forms of the studied genomic variants. Graph-

theory based representation of the genotyping results through NPS

provides unifying quantitative representation of the complete

status of all CTLA-4 variants individually for each patient. In our

CTLA-4 genotyping data, we thus do not analyze independent

interrelationships among the 153 possible combinations of AA, AB

and BB alleles of the six studied CTLA-4 polymorphism. Instead,

we take advantage of the fact that all those 153 relationships can

be captured in a single relationship pattern graph. A path in this

graph then encodes the actual complete experimental CTLA-4

genotyping results for every studied subject. In this way, the

complete information about all allele relationships for an

individual is captured by a single mathematical object. An

important property of the NPS analysis is that, from the collection

of all individual SNP relationship patterns, we can additionally

compute (in a deterministic, non-statistical way) a framework of

directly clinically and functionally interpretable reference relation-

ship profiles (RRP). These RRP’s represent ‘‘landmarks’’ in the

(multidimensional) clinical/genotypic relationship data space. The

clinical significance of the RRP landmarks is then measurable in

terms of how many patients have close (but not necessarily

identical) personal CTLA-4 genotype relationship patterns to

those ‘‘landmarks’’. For the concrete example of CTLA-4

polymorphisms studied in this paper, RRP’s represent limiting

characterization of the CTLA-4 SNP co-occurrence patterns. The

main advantage of the NPS approach is its identification of any

significant heterogeneity that might be captured in the data from

the clinical, or in this case the CTLA-4 based immune regulation

mechanism that we focused upon in this study of subjects with and

without melanoma. These results can be then used in designing

follow-up clinical studies.

Materials and Methods

Materials
Genotyping of DNA isolated from the peripheral blood of a

total of 286 patients with melanoma and a panel of 288 randomly

selected healthy unrelated Greek individuals that served as a

control population was described in detail previously. Details of

the institutional review board and ethics committee approval have

previously been published [16]. Six CTLA-4 SNPs were studied,

namely CT 60 (rs3087243), AG 49 (rs231775), CT 318

(rs5742909), JO 27 (rs11571297), JO 30 (rs7565213) and JO 31

(rs11571302). CT 318 is located within the promoter region of the

CTLA-4 gene, A/G49 is located at exon 1, while the rest of the

SNPs tested are located at the 39 untranslated region of CTLA-4.

Methods
Characterization of personal CTLA-4 genotype

relationship pattern by 6-partite graphs: Identifying the

part of the study data in which we have maximal

information to extract additional components of

information. We present two levels of CTLA-4 genotype

analysis. In the first one, we do not distinguish between

homozygous or heterozygous status of the six alleles. In the

second one, we will expand the genotype characterization using

the known zygosity of the six SNP’s. Fig. 1a shows how an

observed CTLA-4 genotype for one patient may be represented by

a 6-partite graph that will be called a personal relationship profile

prp, which we use for the purpose of the first analysis type,

considering the major/minor allele relationships only (Fig. 1a). In

Fig. 1b we define the type of personal relationship profile, for

which symbol PRP is used to emphasize that allele relationships

include observed allele zygosity. In both these representations,

each assayed SNP is represented by one of six partitions in the prp
or PRP. Each partition contains two or three vertices, representing

the allele for a given polymorphism (a = major allele, b = minor

allele in prp, a = major homozygous, ab = heterozygous, b =

minor homozygous allele in PRP). Edges in both graphs connect

only those vertices in different partitions that represent observed

(genotyped) alleles in the two different polymorphic sites. The

complete CTLA-4 genotype profile for an individual is then a

Mathematical Model Evaluating CTLA-4 Polymorphisms
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collection of edge-connected vertices in prp/PRP, forming a cycle

in prp/PRP. Because the edges in prp/PRP represent relation-

ships between the allelic states of the studied SNP’s, there is clear

meaning for each segment of the CTLA-4 genotype illustrated in

the hexagonal cycle. We can understand these lines in as

conditional relationships of type ‘‘if AG49 contains minor allele

then CT60 contains also minor allele and J031 contains minor

allele and then …. ‘‘. Note that the experimentally defined cycle in

e.g. prp represents not only the pair wise conditional relationships

shown by lines such as (AG49 = b when CT60 = b), but also all

other co-occurrences such as (AG49 = b when JO30 = b) etc. The

prp/PRP cycle representation of the CTLA-4 SNP allele status

co-occurrences is the simplest one capturing all co-occurrence

relationships while maintaining convenient mathematical simplic-

ity.

Collective characterization of CTLA-4 genotype profile

distribution in a cohort by cumulative weighted 6-partite

graph G. While PRP’s are exact ‘‘qualitative’’ representation of

the studied polymorphism relationship patterns in CTLA-4, we

need to convert this qualitative information into quantitative

characterization of these individual relationship patterns. It has

been shown by exact mathematical theorem [17] that the maximal

quantitative information captured by graphs is obtained when

PRP’s are compared to one another in graphs of the same type,

which we call reference relationship patterns (RRP). Therefore,

the next step of NPS transformation of the CTLA-4 polymorphism

relationship patterns into quantitative descriptors is to use the

actual data to derive the 6-partite graphs, representing the RRP’s

we need.

For this purpose, the individual prp or PRP graphs, describing

the SNP co-occurrences for all subjects were assembled into

cumulative 6-partite ‘‘study graphs’’ g and G. By adding every

individual patient CTLA-4 genotype profile representation prp to

the cumulative g graph, the weightings of every edge in g is

increased by one, and similarly but independently for PRP’s and

G. As a consequence of this construction, these g and G graphs

will have weighted edges defined by the co-occurrence frequencies

of all SNP pairs. The distribution of all individual CTLA-4

genotype profiles in case cohort is now represented by graph g.

In Fig. 2, the relative edge weights, resulting from adding all

individual case graphs prp and PRP to g and G, respectively, are

graphically represented by the variable relative thickness of the

edge lines. By converting these edge counts to frequencies,

statistical interpretation of the basic vertex-weighted edge-vertex

(a–b), (a–a), (b–a) and (b–b) motifs in study graphs is obtained.
The weights of study graph edges connecting, for example, the

major and minor allele vertices in the AG49 and CT60 partitions

define the estimates of the following conditional probabilities:

a{b*P AG49?aDCT60?bð Þ

a{a*P AG49?aDCT60?að Þ

b{a*p AG49?bDCT60?að Þ

b{b*P AG49?bDCT60?bð Þ

In the next step, the complete sets of reference

relationship patterns for CTLA-4 genotypes in both study

graphs g and G are identified and in case of g identified as

haplotypes. Haplotype is defined as a series of polymorphisms

in CTLA-4 genotype profile that are co-occurring with identical

probabilities, P(1),P(2), … ,P(6). Using the conditional

probability interpretation of edges in the study graphs shown in

above example, we can derive from the Bayes’ theorem, that if

sub-graphs of the study graph with equal weights (co-occurrence

frequency components) are found, the condition of P(1),P(2), …

, P(6) is automatically fulfilled. Thus, in our representation, a

complete set of haplotypes is represented by all RRP cycle

subgraphs with equal weights of all edges, which can be found in g
or G by ‘‘greedy’’ algorithm (Fil S1 and Figure S1).

For validation of this study graph-based approach to haplotype

identification, established procedures were additionally used where

the maximum likelihood estimates of haplotype frequencies given

a multi-locus sample of genetic marker genotypes [3 different

genotypes of the 6 polymorphisms] were generated using the

expectation-maximization (EM) algorithm under the assumption

of Hardy-Weinberg equilibrium (HWE). Linkage disequilibrium

was explored for each pair of the 6 polymorphisms (PROC

HAPLOTYPE). SAS 9.1 (SAS Institute Inc., Cary, NC, USA),

was used for the statistical analysis (reported in [7]).

Quantitative characterization of differences of personal

CTLA-4 genotype profiles prp and PRP from haplotypes,

Figure 1. Example how experimentally determined CTLA-4
genotype (top panel) for a patient (id = 55) is transformed into
a) prp graph and b) PRP graph. a-major allele, b-minor allele, ab-
heterozygous allele status vertices. Each SNP is represented by a graph
partition (rectangles), identified by the SNP code. Lines – graph edges,
representing the co-occurrences of all alleles in the patient’s CTLA-4
genotype.
doi:10.1371/journal.pone.0086375.g001
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represented by rrp’s and RRP’s. For the quantification of the

graph-graph distances between individual patient relationship

patterns and haplotype-reference relationship patterns, we use the

mathematical results of [17,18], showing that one of the possible

definitions of graph-graph distances with all necessary mathemat-

ical properties is obtained simply by counting the number of edge

mismatches between the two graphs, as is shown by example in

Fig. 3. As the result, with haplotype decomposition of study graph

g resulting in 8 haplotype components, each subject (j) is

characterized by an 8-element vector ~ddj~ dj 1ð Þ,dj 2ð Þ, . . . ,dj 8ð Þ
� �

of eight distances of the personal CTLA-4 genotype profile from

compositions of all 8 respective haplotypes identified. Difference

vectors~ddj were computed for all patients and controls using a) the

control cohort-defined haplotypes and b) the case cohort-defined

haplotypes.

Developing the hierarchical model for differentiating

between healthy controls and melanoma cases using the

CTLA-4 based personal genotype profiles from

haplotypes. Weka package (v. 3-6-6) implementation of J48

pruned tree algorithm was used to construct optimal model

recognizing the controls from cases using personal difference

vectors ~ddj . Ten-fold cross-validation was used and characterized

the model quality by confusion matrices and ROC parameters.

Results

Fig. 4 shows decomposition of the g graphs for healthy controls

(Fig. 2a) and melanoma cases (Fig. 2b) into component cycles

rrpi, representing the haplotypes derived from individual geno-

typed profiles, containing CT60 (rs3087243), AG49 (rs231775),

CT318 (rs5742909), JO27 (rs11571297), JO30 (rs7565213) and

JO31 (rs11571302) SNPs.

Decomposing the 6-partite graph G constructed with explicit 3

allele states resulted in 20 RRP. We then computed a 20-

component vector of distances ~ddj for every personal CTLA-4

genotype relationship pattern from all 20 RRP’s.

Results for study graph g
In both cohorts, the respective g graphs were decomposed into 8

cycles rrpi (i = 1…8). Interestingly (and importantly) the three

haplotype graphs with the largest frequency were identical for

control and case cohorts. Table 1 shows that our g-based graph

algorithm also identified the same dominant haplotypes and

comparable frequencies of occurrence as the statistical algorithm

in (PROC HAPLOTYPE). SAS 9.1 (SAS Institute Inc., Cary, NC,

USA).

A unique feature of this approach in comparison to the analysis

of differences in haplotype frequencies that were tested in our

previous paper is that we can quantitatively characterize the

difference of the individual genotype profile from ‘‘averaged’’

CTLA-4 haplotype profiles. Fig. 3 demonstrates the meaning of

the differences. In this example, patient’s P55 CTLA-4 genotype

profile captured into ppr(55) matches the composition of the

graph representation of haplotype rrp3 in just three edges, thus

the d55 3ð Þ is 3. In the second example, CTLA-4 genotype profile

of the same patient is compared to C2 haplotype. Here no edges in

ppr(55) coincide with those of rrp2, thus the d55 2ð Þis 6. This is the

example of maximal difference between any haplotype subgraph

rrpi and individual CTLA-4 genotype profile prp(j) that can be

found in g.

Fig. 5 explains the main finding of this paper. Top level of

CTLA-4 genotype profile-based differentiation between cases and

controls is related to SNP pattern rrp8 = (bbabab) for (CT318-

AG49-CT60-JO30-JO27) cycle (see Fig. 4 and 5). 77% of

melanoma cases (219 patients) are recognized from healthy

controls by the ABSENCE of the rrp8 = (bbabab) allele pattern

for (CT318-AG49-CT60-JO30-JO27) SNP cycle. By surveying all

219 CTLA-4 individual genotype profiles for patients

withdi 8ð Þ~6 it was found that all have one of the five co-

occurring patterns, shown by solid line cycles in Fig. 5a–e. By

overlaying the rrp8 = (bbabab) case-control differentiating

pattern (dashed line cycles) over these actual case-specific genotype

profiles it is shown that the rrp8 pattern does not share any

relationship with these 5 melanoma-characteristic CTLA-4 SNP

co-occurrence patterns, indicating the possibility of disease risk

identification not by presence, but actually absence of specific

genotype profile. Graph mathematics opens the previously

overlooked half of the marker identification ‘‘Universe’’ – allowing

us to study invariants (such as our personalized differences of

CTLA-4 genotype profiles from the haplotype reference) and

identifying multiple SNP relationship patterns that share certain

properties (simultaneous presence or absence of a specific

combination of parameters).

Results for study graph G
The first information that comes from NPS-graph of the CTLA-

4 genotype considering the ‘‘collective allelic status’’ of all six

studied SNP’s (see Fig. 2b). With exception of CT318, there is a

strong preference for ‘‘allelic state conservation’’ in all remaining

Figure 2. Study graphs g (a) and G (b) constructed as union of all prp’s (g) or PRP’s (G). Symbols as in Fig. 1, thickness of edges in g and G are
proportional to co-occurrence frequencies of respective SNP pairs, connected by the edge.
doi:10.1371/journal.pone.0086375.g002
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loci: most frequent allelic status for (CT318-AG49-CT60-JO30-

JO27) SNP is heterozygous (a-ab-ab-ab-ab-ab) profile, the

second most frequent is profile with all homozygous wild-type

alleles, followed by homozygous (a-b-b-b-b-b) profile. Subjects

who had mixed type zygosity (a-ab-a-b-a… etc) CTLA-4 profiles

are minority in this study cohort. Because it was known that there

are no characteristic simple CTLA-4 genotype patterns that would

differentiate healthy controls from melanoma cases, we instead

looked for differences in distances from the all possible

RRP12RRP20 pairs that would maximize the separation of the

two sub-cohorts. The motivation for this approach is as follows:

The pattern-based genotype data transformation captures more

details of inter-subject differences in genetic status of CTLA-4 than

can be captured by any conventional analytical approach. This

information enhancement can be further increased by explicitly

considering the actual allele statuses. as discussed above, the

identification of the clinically relevant context relationship CTLA-

4 genotype pattern is obtained by looking for a higher frequency of

patients or controls with smaller distances from selected RRP’s,

relative to others.

An element of the ~ddj vector characterizes the distance of the

personal CTLA-4 genotype pattern from reference, but does not

include directionality and distances of the personal CTLA-4

genotype pattern from other reference patterns. To include that

information into processed data, we therefore computed a

complete set of 190 pairwise distance differences~ddi{~ddj , with i

and j going through all 20 elements of the CTLA-4 differences

from the four maximally case-control biased reference patterns

RRPi–RRPj identified in Fig. 6. These differences include

directionality of the closeness of the personal genotype to one of

the reference genotype patterns: D ijð Þ~dRRPi
kð Þ{dRRPj

kð Þ can

be positive or negative. Assume thatdRRPi
kð Þ

= 27,dRRPj
kð Þ~{3.ThenD ijð Þ~{7{({3)~{4v0. Thus,

D ijð Þv0 indicates that a personal CTLA-4 genotype profile is

closer to RRji while D ijð Þ§0 indicates that personal CTLA-4

genotype profile is closer to RRPi and D ijð Þ~0 means that the

personal CTLA-4 genotype profile has the same number of

differences when compared either to reference profile RRPi or

RRPj. We computed the D ijð Þ using distances from all 190

possible RRP’s pairs, separately for cases and controls and

averaged them for each sub-cohort, obtaining case mean Dp ijð Þ
and control mean Dc ijð Þ for each RRP’s pair. Plotting these case

and cohort averages against each other in the two-dimensional

scheme allows direct identification of the reference CTLA-4

genotype pattern combinations that separate maximally the two

sub-cohorts. For uniformly or randomly distributed CTLA-4

genotype pattern positions we obtain Dp ijð Þ~Dc ijð Þ seen in the

2D plot as the diagonal y = x line. The combinations with

maximal Dp ijð ÞwDc ijð Þ or Dp ijð ÞvDc ijð Þ, which are the desired

clinically characteristic contexts will be in the 2D plot maximally

distant from the diagonal. Fig. 6 shows the resulting 2D plot with

the extreme combinations of the references indicated. The region

of D ijð Þ smaller than 0.5 is not considered, as there the subject’s

CTLA-4 genotype patterns are on average equally distant from

both reference pairs.

Fig. 7 shows histogram of patients with observed valued of

D ijð Þ. The patient or control distribution in the CTLA-4 genotype

pattern space is not uniform or normal. We see clear heteroge-

neity: In both groups, there are three main patient subgroups.

One, common for cases and controls has CTLA-4 genotypes

equally different from all reference CTLA-4 allele relationships

(central peak). Then there are two groups with their individual

Figure 3. Three examples showing how elements of distance
vectors ~ddjare computed for the same patient #55. In all figures,
prp (RRP in c)) for this patient = dashed lines, rrp’s (or RRP in c)) =
solid lines. Double arrows indicate mismatch in SNP co-occurrences.
Elements of~ddj are sums of these mismatches (in computations, we add
negative sign to make identity (zero mismatches) mathematically
largest). a,b) Comparison of patient’s genotype to the second and third
reference SNP relationship patterns rrp3 and rrp2. c) Comparison of
patient’s genotype to the 4th reference SNP relationship pattern RRP4.
doi:10.1371/journal.pone.0086375.g003

Mathematical Model Evaluating CTLA-4 Polymorphisms
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CTLA-4 genotype patterns significantly closer to one than to the

other reference genotype relationship network.

Fig. 8 shows the actual composition of these reference CTLA-4

genotype patterns for cases and controls. For controls, the

dominant reference CTLA-4 genotype pattern is all major allele

combination (RRP2) while for cases, RRP1 dominates, where

majority of studied CTLA-4 polymorphisms are in the heterozy-

gous state. This heterogeneity might be utilized in focused

prospective study of patients within the three subgroups identified:

One being characterized by the minimally genetically affected

CTLA-4, another having majority of CTLA-4 polymorphisms

with heterozygous state and the third with mixed CTLA-4

genotype relationship patterns, equally different from the two

extremes. It is clear that, contrary to melanoma patients, the

healthy biosystem of controls can accommodate the CTLA-4

genetic variation where a majority of studied polymorphisms relate

to the minor allele states that are identified as reference contexts

for two groups with CTLA-4 genotype patterns different from

‘‘normal’’ RRP2.

Figure 4. Decomposition of study graphs g (picture represents both cases and control subcohorts) into rrp’s 1–8. Case rrp’s are shown
by solid, control by dashed edges. Coefficients show the multiplicities of respective rrp’s in the g-decompositions (top = case graph, bottom =
control graph). Symbols as in Fig. 1.
doi:10.1371/journal.pone.0086375.g004

Table 1. CTLA-4 most frequent haplotypes identified by two methods – using HAPLOTYPE procedure in SAS (ref. [5]) and from
multiplicity of rrp’s in decomposition of study graph g.

AG49 CT60 CT318 JO27 JO30 JO31
CTLA-4 haplotype
frequencies from ref.[5]

rs231775 rs3087243 rs5742909 rs11571297 rs7565213 rs11571302 Frequency [%]
Standard
Error

Haplotype
frequency
using rrp’s – this
work [%]

A A C C A T 46.99 2.089 45.7

G G C T G G 29.34 1.91 23.0

A G T T G G 9.77 1.24 10.2

A G C T G G 6.49 1.031 6.0

A G C C A T 2.81 0.69 2.5

doi:10.1371/journal.pone.0086375.t001

Mathematical Model Evaluating CTLA-4 Polymorphisms
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Figure 5. Case-control discrimination by ‘‘missing’’ CTLA-4 genotype reference profile rrp8 (dashed lines in all figures). Solid lines in
schemes a) – e) show five prp CTLA-4 genotype profiles, found exclusively for 219 (77%) patients identified from the complete case cohort by
condition that their prp have maximal possible distance from the rrp8. Symbols as in Fig. 1.
doi:10.1371/journal.pone.0086375.g005

Figure 6. Selection of maximally case-control survival discrim-
inating combination of distances from all RRP’s. Points are
defined by the Dp ijð Þ,Dc ijð Þ

� �
coordinates (see text) computed by

averaging the distance differences over all patients separately in case
and control sub-cohorts for all 190 possible RRP pairs. In the
neighborhood of diagonal line Dp ijð Þ~Dc ijð Þ are non-discriminatory
combinations. The two lines are used to identify the combinations, with
maximal case – control and control-case bias in PRP-RRP distances. The
optimal selection is shown by boxes.
doi:10.1371/journal.pone.0086375.g006

Figure 7. Histograms showing heterogeneity of distributions of
individuals shown in the CTLA-4 genotype landscape, defined
by the inter-personal differences in prp’s for the five most
discriminating RRP combinations. Two selected combination of
dj ið Þ{dk ið Þ distance differences are plotted on x and y axes, on the z
axis are numbers of subjects having a given combination of the
distance differences. Blue-controls, red-cases.
doi:10.1371/journal.pone.0086375.g007
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Differentiation of the CTLA-4 genotype contexts
between the long and short surviving sub cohorts of
melanoma patients

Out of the 286 melanoma cases, we had 282 with survival data.

Characterization of the possible differences between the long- and

short-surviving patients now requires a different analysis strategy.

First, we tested the choice of CTLA-4 genotype reference

relationship patterns. After separate testing of results from NPS

analysis of melanoma case CTLA-4 genotype relationship profiles,

we found the simplest and statistically most significant results were

obtained when the RRP12RRP20 resulting from the analysis of

combined case/control cohort were used. That makes sense in

light of previous standard statistical analysis indicating no

significant differences in the actual CTLA-4 genotype patterns.

A larger cohort combined from cases and controls provided better

coverage of the possible reference CTLA-4 genotype relationship

patterns. Moreover, the results were significant when the case sub-

cohort was analyzed separately, and overlapped with the patterns

identified using differences of distances from the combined

analysis.

For the analysis of CTLA-4 genotype relationship pattern

differences between the survival categories, we used a different

strategy to make sure that what was found was indeed significant.

We defined an overall survival threshold and separated the cohort

into patients who lived longer or shorter than the selected

threshold. We then ran the complete analysis described below and

compared the statistical significance and performed logistic

regression models to recognize the survival categories from the

D ijð Þ. We systematically iterated through a threshold of 800 days

to a threshold 1900 days, and found the optimal threshold at

1820 days (5 years). This threshold separated the cohort into

balanced sub cohorts of 145 shorter and 137 longer surviving

patients.

We then computed the D ijð Þ separately for both these survival-

defined sub cohorts and tested the distributions of the results for all

190 CTLA-4 reference relationship pattern pairs. Out of the 190,

only 4 combinations resulted in the statistically significantly

different means of these distributions (see p-value Table 2). Here,

RRP10 reference pattern is the common context in all these

CTLA-4 genotype relationship patterns, which are significantly

biased between the longer and shorter surviving melanoma

patients. Similar interpretation is now possible for the localization

of the typical CTLA-4 genotype relationship patterns for these

outcome different patients: For example, shorter surviving patients

have typically positive D ijð Þ for RRP82RRP10, so they are closer

to RRP8, meaning that their CTLA-4 genotype tend to converge

to 4 minor, one heterozygous and one major allele (see Figure 9).

Similar interpretation is possible for remaining significantly

different genotype pattern pairs: RRP102RRP13 pairing have

typically zero D ijð Þ for shorter surviving patients, and positive for

longer survivals, indicating that RRP10 pattern with 4 major and 2

heterozygous alleles provides better functioning CTLA-4. Note

that – contrary to genotype profiles with conserved allelic states of

CTLA-4 polymorphisms – the CTLA-4 genomic profiles typical

for cases-only cohort describe states of mixed allelic states of the six

polymorphisms. For (CT318-AG49-CT60-JO30-JO27) profile,

the RRP8 has (a-a-b-ab-ab-a) allelic pattern, for RRP10 it is

(a-a-ab-a-a-ab) pattern.

Similar interpretation is possible for remaining significantly

different genotype pattern pairs: RRP10-RRP13 pairing have

typically zero for shorter surviving patients, and positive for longer

survivals, indicating that RRP10 pattern with 4 major and 2

heterozygous alleles provides better functioning CTLA-4. Note

that – contrary to genotype profiles with conserved allelic states of

CTLA-4 polymorphisms – the CTLA-4 genomic profiles typical

for cases-only cohort describe states of mixed allelic states of the six

polymorphisms. For (CT318-AG49-CT60-JO30-JO27) profile,

the RRP8 has (a-a-b-ab-ab-a) allelic pattern, for RRP10 it is (a-

a-ab-a-a-ab) pattern. These results allow characterization of the

odds for overall survival shorter than 5 years for new patients with

known status of six CTLA-4 SNP’s. We implemented this

computation into a Excel worksheet, which is available as

Table S1, together with instructions for its use (Manual S1).

Discussion

Using a novel approach to the analysis of SNP results for the

CTLA4 gene, we have hypothesized that recognition of melanoma

risk genotype profile requires an added dimension of analysis. This

second step in the analysis progression moves from analyzing the

means and variance of independent SNPs to analyzing the

distributions of differences of individual CTLA-4 genotype profiles

in the studied cohorts, in reference to normative reference profiles.

We argue that the observed haplotypes are the proper reference

for this purpose, and that we need to use them to account for

interpersonal variability in CTLA-4 genotype profiles. The

approach generates 6-partite graphical depictions which are based

upon algorithms that identified the same haplotypes and their

frequencies in established statistical procedures. Importantly, this

Figure 8. Comparison of CTLA-4 genotype relationship profiles
of five most case-control discriminating RRP’s. RRP2 (dashed
edges) is shown in both panels for reference. Symbols as in Fig. 1.
doi:10.1371/journal.pone.0086375.g008
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algorithm has shown that the haplotypes are not markers by

themselves, but rather that their averaged constructs, identifying

common co-occurrences of CTLA-4 SNPs in case and control

cohorts are useful. Having both personal CTLA-4 genotype

profiles and the normative reference co-occurring CTLA-4 SNP

haplotype patterns represented by the K-partite graphs has two

main advantages:

A. It determines from the data used to construct the g and

through the decomposition algorithm we developed from the

statistical conditions used in general characterization of haplotype

the actual TOTAL number of haplotypes in the cohort (8 in both

our cohorts). Considering that the theoretical number of

haplotypes for g is 64, this is an important data reduction

outcome of this approach. We know from other applications that

in cases where deconstructed 6-partite graphs are close to random

distributions of the conditional probabilities, the number of

components needed to fully deconstruct the model increases

significantly. Thus, small number of components in the g
deconstruction implies the commonality/regularity in the

CTLA-4 genotype profile composition and frequency in our study

population. This is in agreement with the previous study results.

B. The component graphs rrpi are data-driven, information-

rich references for exact quantitative computation of the ~ddj

descriptors, which are tools enabling to change the focus of the

analysis from means and averages to where we need it (i.e. towards

differentiating features). Importantly, the rrpi’s are not just

mathematical constructs, but have well-defined genomic meaning,

being haplotypes. This facilitates clinically relevant interpretation

of the results in general and the individual (personalized) disease

related markers in particular. Results validate the hypothesis.

Another important aspect of this work is its ‘‘translation’’ of the

main molecular result of this paper to design of tools and

algorithms that use the relationship-patterns between genotyped

CTLA-4 variants to enable differential outcome analysis. Our

approach allows to show, that in the relationship patterns picture

of the individual CTLA-4 genotype, differential outcome can be

caused by a ‘‘majority rule’’, understood as a larger than critical

deviation from an ideal, reference haplotype relationship pattern.

Thus, same impact can be observed for different combinations of

the personal CTLA-4 variants, which is clearly quantitatively

captured in our NPS (relationship) based analysis, but causes

problems in conventional approaches. This sharing of a certain

level of differences from a reference normative pattern is very

specific in relation to the kinds of patterns that share a particular

property. This linkage of several heterogeneous patterns to one

‘‘functional’’ patient’s individual difference is that other side of

clinical data understanding, which can be brought to the plate

using this approach.

Without the pattern-based approach, we would never recognize

the relationship between those patterns and could not ask what is

unique about them. More importantly, this common distance of

personal CTLA-4 genotype profiles from reference genotype

patterns may group patients that would conventionally not have

been thought to be potentially grouped for interpretation. By

definition, they have different patterns of CTLA-4 parameters, the

conventional approach will tell you that these are different, so that

you would never ask whether they have something in common.

Our approach – by contrast – has brought together patients

with five different CTLA-4 genotypes so that we are forced to ask

what these patterns have in common. We can now clearly identify

that the absence of one common pattern from these five

different, is what distinguishes cases and controls.

The combination of SNP’s, shared by all individual patients’

profiles that satisfy the condition of having the largest distance

from one specific haplotype allows then discussing the mechanistic

details in future studies (for example, why it is just this combination

of major and minor allele in the 6 genotyped loci, which separates

cases from healthy controls).

We also see how NPS helps in extracting collective properties of

the CTLA-4 genotype through RRP’s characterizing different

cohorts. In the processing of complete study data, i.e. from the

subject set where about 50% are healthy controls, we observe

clearly the dominance of ‘‘allelic uniformity’’ of the CTLA-4

Figure 9. Comparison of RRP’s, distances from which are most
significantly different in the two survival groups (overall
survival longer or shorter than 5 years). RRP10 is shown by solid
edges in both panels (a,b) for reference.
doi:10.1371/journal.pone.0086375.g009

Table 2. p-values for difference in mean difference
distributions for distances of PRP’s from RRP’s pairs,
differentiating two survival groups (longer and shorter than
5 years).

RRP combination p-values

RRP8–RRP10 0.022

RRP10–RRP13 0.024

RRP10–RRP16 0.025

RRP10–RRP15 0.043

doi:10.1371/journal.pone.0086375.t002
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landmarks (RRP’s in Fig. 8). On contrary, when only melanoma

case sub-cohort is analyzed, the resulting characteristic CTLA-4

genotype RRP’s patterns, that are separate the long and short

survival categories (Fig. 9) are indicating that for melanoma cases,

the ‘‘allelic heterogeneity’’ dominates the functionally relevant

CTLA-4 genotype status.

Key issue is that detailed characterization of the genotype by

explicit consideration of the actual state of each SNP provides the

significant clustering (for one survival group) or difference/

distance (for the other survival group) of the prp’s relatively to

perhaps interesting and interpretable CTLA-4 genotype relation-

ship patterns.

The limitations of this study are: (a) the size of the study cohort

and (b) the number of the SNPs studied. Consequently, we did not

fully exploit NPS to combine clinical and genomic information.

However, this study was an effort at proof of principle for NPS and

with this accomplished, these goals will now readily be undertaken.

Specifically we will attempt to identify a priori, the compensatory

and detrimental haplotypes through finding their function-related

positive and negative descriptors.

In summary: Pattern based polymorphism relationship

analysis revealed that in healthy controls, the context in which

the CTLA-4 and its genetic variants operates is compatible with

the genotype with relationship pattern with ‘‘consensus’’ alleles in

all six sites. While we see some relationship pattern differences

between long and short overall survival groups, these are not

independently recognized, we need to know who is long and who

is short surviving. To obtain really independent, statistically

significant, prediction of the long or short survival we thus need to

go one additional step: consider that there is coherence pattern

between assayed regions of CTLA-4 gene and that this coherence

pattern is affected by the polymorphisms in the personal genotype

in exactly computable way. This is provided by the categorization

of disease outcome via analysis of thermodynamic changes in the

in CTLA-4 SNPs discovered by entromics [19], and quantified by

the differences in matrices that quantify the energy weights

associated with the various genotype profiles in individual patient

entromic coherence networks.

Supporting Information

Figure S1 Iterative algorithm steps involved in decom-
position of study graph g into rrp’s. Shown are residual

graphs after greedy removal of respective reference relationship

patterns in the order of their decreasing multiplicity.

(TIF)

File S1 Algorithm for the identification of haplotypes.

(DOC)

Manual S1 Instructions for using the Excel worksheet
implementation of CTLA-4 allelic patter based survival
category prognosis model for melanoma patients.

(DOC)

Table S1 Excel worksheet implementation of the cate-
gorization of melanoma patients into shorter/longer
survival subgroups using distances between personal
and reference allelic patterns of six CTLA-4 polymor-
phisms studied in this paper.

(XLSX)
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