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ABSTRACT 
With the advent of ubiquitous web, programming is no longer a sole 
prerogative of computer science schools. Scripting languages are 
taught to wider audiences and programming has become a flag post 
of any technology related program. As more and more students are 
exposed to coding, it is no longer a trade of the select few. As a 
result, students who would not opt for a coding class a decade ago 
are in a position of having to learn a rather difficult subject. The 
problem of assisting students in learning programming has been 
explored in several intelligent tutoring systems. The key component 
of such systems is a student model that keeps track of student 
progress. In turn, the foundation of a student model is a domain 
model – a vocabulary of skills (or concepts) that structures the  
representation of student knowledge. Building domain models for 
programming is known as a complicated task. In this paper we 
explore automated approaches for extracting domain models for 
learning programming languages and modeling student knowledge 
in the process of solving programming exercises. We evaluate the 
validity of this approach using large volume of student code 
submission data from a MOOC on introductory Java programming.   
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1. INTRODUCTION 
Today, information and computer technology is all around us. 
Programming is not an art accessible to the few and taught at select 
computer science schools anymore. Scripting and programming 
languages are taught to wider student audiences and programming 
courses have become a flag post of any technology related program. 
As more and more students are taking on programming, it becomes 
a universal skill, a necessity for every student studying increasingly 
computerized technology. As a result, the distribution of talent in 
programming classes shifts from the mathematically gifted to the 
overall population mean.  

There have long existed a number of educational systems that have 
served the purpose of teaching students an abundance of 
programming languages and since then have greatly advanced the 
field of online learning. LISPTUTOR – a system teaching students a 

language of LISP – was the precursor of the modern intelligent 
tutoring systems [1] and SQL-tutor – a constraint-based system that 
instructed students who learned SQL [6], to name just a few. 

A classical educational system always has a user model – an integral 
component responsible for keeping track of student progress. The 
core of a student model is a vocabulary of skills (concepts) that 
structure the representation of student knowledge. Conceptualizing a 
set of skills is a hard task in and of itself. However, programming is 
an inherently structured domain. The basis of a programming 
language is the grammar that imposes a structure on any code that 
compiles. 

There were several attempts to exploit the inherent structure of the 
programming language with respect to student modeling tasks. For 
example, authors of [7] used a parsed concept map of C and Java to 
perform cross-adaptation of the content while [11] and [4] used the 
concept structure of parameterized questions for C and Java to 
provide within-domain adaptive navigation support.  

Until now, to the best of our knowledge, there were no attempts to 
utilize an auto-parsed structure of the code as a substitute for a 
conceptualization of the knowledge model. The benefits of such 
automation with respect to programming are many. First of all, it is 
inherently transferrable to any programming or scripting language: 
one just has to have a parser for that language. Second, given the 
parsed concepts, student modeling can be done on the fly. Third, 
with recent popularity of massive open online courses, there are 
volumes of data potentially available to experiment. 

The challenge of this approach is that, besides relative easiness of 
extraction, when programs start to get more complex so grows the 
volume of concepts parsed and the signal becomes noisier. 
Additionally, identifying programming constructs essential for 
passing a particular test is not trivial. And finally, high accuracy of 
such models can ensure help is given to a student while selecting the 
next problem, while a model’s capacity to aid students during 
problem solving requires a different form of validation. 

In this paper, we report on our investigation of automatically 
generated user models for the assignment-grading system deployed 
in a set of introductory programming classes. The data intensity of 
the code submission stream makes the task of knowledge modeling 
truly a “big data” problem. Results of our retrospective analysis 
demonstrate that the models created automatically can successfully 
support students during problem solving activity. 

2. DATA 
To explain our idea and a set of explored user modeling approaches, 
it is important to start with a description of data that we had at our 
disposal and how the data was processed for our studies. Our data 
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came from three introductory programming courses organized by 
the University of Helsinki; two local courses held during Fall 2012 
and Fall 2013, and a MOOC held during Spring 2013. Although the 
MOOC course lasted 12 weeks in total (see [9] for details of an 
instance offered in 2012), we included only the first six weeks in the 
analysis to be able to compare the results directly with the 
introductory programming courses.  

The courses emphasized students’ personal effort and constant 
practice. New topics were always accompanied by a set of 
programming exercises where the first tasks provided clear 
guidelines that outlined both the required program structure and 
required functionality, and latter ones were open-ended, giving 
students more freedom on the application design. During the six 
weeks, the students worked on over 100 exercises that were further 
split into a total of some 170 tasks. All exercises were done using an 
industry-strength IDE with a plugin that provided textual on-
demand feedback that had been encoded into the tasks, records 
students’ progress, and allowed students to submit their solutions for 
grading directly from within the IDE [10]. 

Table 1. Overall student population statistics. 

Course N. students 
(M/F) 

Age: Avg./ 
Med./Max. 

N. snapshots: 
all/median 

Fall 2012: Introduction 
to Programming 185(121/64) 18/22/65 204460 / 1131 

Fall 2013: Introduction 
to Programming 207(147/60) 18/22/57 263574 / 1126 

Spring 2013: MOOC 
on Programming1 683(492/60) 13/23/75 842356 / 876 

 

Due to this unique problem-solving approach and careful data 
archiving, each of the three courses produced a unique picture of 
student behavior. For each exercise and for each student, the system 
stored a relatively large sequence of code snapshots that were taken 
on save, compile and run -events, each representing a complete or 
incomplete attempt to solve the programming problem. Moreover, 
since each snapshot was tested on a set of tests designed for the 
corresponding exercise, information on tests that passed and failed 
was available. This data provides an excellent start for exploring 
various approaches to student modeling. 

Student population statistics are given in Table 1. Each in-class 
version of the course had about one half of the MOOC’s attendance. 
All three courses were mostly taken by male students (more so in 
the case of the MOOC). Age distribution was roughly the same. 
Around 40% of the students were CS major (in-class courses) and 
around half of the students had previous programming experience 
(MOOC). In terms of student activity (the number of snapshots) 
student medians were quite close for the two in-class course, and for 
the MOOC this number is lower due to the dropout rates. 

3. APPROACH 
We investigated an automated approach to creating concept models 
and student modeling for the domain of introductory Java 
programming. Our approach was based on two principal ideas: (1) 
modeling knowledge behind every program submission using the 

                                                                    
1 We only include data on the students that answered the survey 

inherent structure of the programming language and (2) automatic 
testing of program correctness using a set of tests. In brief, we 
considered every program submitted or saved as a solution of a 
programming exercise as an application of a range of concepts that 
were present in the submitted code. Once this program passed one 
or more tests, we considered it as a successful application of these 
concepts in an absolute sense or relative to the earlier submission. In 
the specific case explored in the paper, concept extraction from the 
body of submitted program was done by our concept extraction tool 
“Java Parser” [3] while the correctness of the submitted student 
code was determined by the system infrastructure introduced above. 
Thus, the main body of the paper is focused not on the tools, but on 
using the large body of collected data to explore the plausibility of 
the approach - the correctness of the student model itself and its 
usefulness in assisting students while they work on the code. 

3.1 Data Preprocessing 
For our analysis we preprocessed the raw student submissions. First 
the code was compiled and run against the suite of tests recording 
which tests passed. Each snapshot was also analyzed using 
JavaParser [3]. The extracted concepts were recorded both as an 
exhaustive list of all concepts in the snapshot and as a difference 
from the previous snapshot accounting for additions and removals 
(initial snapshot copied in full). An additional data-thinning 
procedure removed all snapshots that had an empty list of concept 
changes to filter out insignificant changes to the code. 

3.2 Hypotheses 
First, it is possible to model student knowledge acquisition (models 
can detect learning). Second, only a subset of code constructs is 
important for solving a particular problem. Third, constructed 
models are useful beyond modeling student knowledge acquisition 
and can be used as a basis for creating a recommendation 
component to help students with the code. 

4. MODELS 
We chose a set of models that are widely used in the field of student 
modeling. We first set the modeling lower boundary with the Null 
model (the majority class model). The next model of our choice was 
the Rasch model (1PL IRT) [5]. Although the Rasch model does not 
capture learning by definition, it is frequently used in psychometrics 
and would set a baseline for us. The model is given in Eq. (1). Here, 
Pr denotes probability of student i to correctly solve problem j. 
Inverse.logit is the sigmoid function, θi is the student proficiency 
parameter, and βj is the item complexity parameter. Since the result 
of compiling and running a problem is a binary mask of passed and 
failed tests, we treated the problem-test tuples as unique items. We 
broke each student transaction from the data into n, where n is the 
number of tests submission is checked against. Passed tests would 
yield a result of 1, failed a result of 0. Student and concept data were 
copied across the broken transactions accordingly. We fit Rasch 
model using mixed effect regression, treating both student and item 
complexity parameters as random factors. 

)(log.),|1Pr(Pr iiitinverseijYij βθβθ +===  Eq. (1) 

Prij = Pr(Yij =1|θ,β,δ,γ ) = inverse. logit(θi +βi + (δkj +γ kj
k
∑ tikj ))

 
Eq. (2) 

To actually model student learning we would use a variant Additive 
Factors Model (AFM) [2]. In addition to the parameters in Rasch 
model, AFM (Eq. (2)) has skill complexity – δkj (intercept), and skill 
learning rate – γkj (slope). Although standard AFM does not have 
item complexity, we will have it in our AFM models to account for 
item variability. For each student submission we will count the 
number of prior attempts to use a particular coding construct – tikj. 



In AFM it is customary to fit concept intercepts and slopes across all 
items. We will treat concepts as within-item effects. 

When the standard AFM model is used, for each item or problem 
step a set of relevant concepts is known. Often, a table relating 
concepts to items is called a Q-matrix. We do not have information 
on what programming constructs are relevant for the successful 
passing of the tests. We used three different rules to select concepts. 
Rule A selects all concepts that were parsed from the student code. 
Rule B uses the concepts that were different from the previous code 
snapshot (added or removed alike). Rule C used concept differences 
just like Rule B, but treating addition and removal as different 
instances of one concept (appending a suffix to the concept 
identifier in case of concept removal). 

First, the AFM model is to use all parsed concepts or concepts 
difference lists. It is, however, safe to assume that not all concepts 
are relevant for solving a problem and different subsets of concepts 
could be relevant for each particular test the problem is verified 
against. To set aside the concepts that have a significant influence 
on the successful passing of the problem’s test, we used a PC 
algorithm for systematic conditional independence search 
implemented in the Tetrad – a data-mining tool developed at 
Carnegie Mellon University [8]. For each problem in our three 
datasets we composed a data-mining problem for the PC algorithm 
to find a bipartite graph where arcs go from concepts to tests 
denoting causal links (but not between tests or concepts). We 
admittedly violate i.i.d. assumptions and, although we are mining 
for these graphs across multiple students, we are using multiple data 
points from the same student. However, we are not going to draw 
causal conclusions on the included arcs and are only using the 
results of the algorithm to filter out concepts. For the tests of 
independence we used a p-value of 0.05. Our experimentation with 
different p-values did not result in tangible changes of the output. 

One important phenomenon we noticed in the data is that students 
have different submission speeds. One student might submit one 
code snapshot per 10-20 minutes of work, while the other would 
submit every change to the code with several submissions per 
minute. As a result, the number of attempts per code construct per 
unit of time would vastly differ across students and the estimations 
of the concept learning rates would be extremely noisy. To 
compensate for these differences, we applied natural logarithm 
function to the student opportunity counts (tikj). 

Four different versions of AFM models were constructed by turning 
on and off of the two features: whether or not to filter concepts, and 
whether or not to log counts of concept opportunities, together with 
one Rasch and one null model, give us 14 models in total.  In order 
to go beyond model-fitting accuracy and to check our third 
hypothesis and to make sure that our models can potentially serve as 
a basis for a component to recommend changes to the code, we ran a 
specialized validation procedure. In this procedure we distinguished 
four changes between passing and failing of a particular problem’s 
test in successive code snapshots. Namely, from fail to fail (NN – 
not passing to not passing), from pass to pass (YY – passing to 
passing), from pass to fail (YN), and from fail to pass (NY). In each 
of the four cases we looked at which concepts students added and 
which concepts they removed between the snapshots. For additions 
and removals, we computed support scores – sums of concept slopes 
in the model giving us model’s judgment in favor of all addition and 
all removals. These two sums were either positive (P), negative (N), 
or zero (0), giving us 9 different combinations. Thus each 
successive code snapshot was assigned a 4-letter code. For example, 
NYP0 would denote that a student went from failing to passing a 
test and the model has a positive support score for concept addition 

and a neutral 0-score for concepts removal. Based on these codes, 
for each of our models we computed four conditional probabilities.  

Probability A: the non-negative support of the changes to the 
concepts in cases of two successful passes of the test. 
Rationale: Since in two consecutive attempts student’s code passed 
the test, model negative support of code changes is undesirable. 
Probability B: negative code changes support in the case of pass 
changes to fail. Rationale: Since students apparently made the code 
worse, we want the model to vote against it.   
Probability C: non-positive support for the code changes in the 
case of two successive fails. Rationale: The code did not improve 
and the model should not support any changes made.  
Probability D: positive support for the changes made between a 
failure and a success. Rationale: When a student is on the right path, 
the model should be supportive of that. 

We performed validation with respect to the three rules of the 
concept selection (A – all concepts, B – changed concepts, and C – 
changed accounting for removals and additions) as well as filtering 
of the concepts (only considering slopes for concepts that were 
selected by the PC algorithm). 

5. RESULTS 
Table 2 is a summary of the model fitting and validation results for 
the 14 models we discussed. The dataset was balanced: with the 
majority class model performing only a little better than chance. The 
Rasch model that assumes no learning is a tangible improvement 
with 71% accuracy. AFM models perform better with respect to 
accuracy. Models considering all concepts in the snapshot (A) are 
doing better, and models considering changes on concepts 
distinguishing additions and removals (C) being second. Filtering 
concept lists using PC algorithm improves model accuracies, while 
taking logs of opportunity counts does a little bit of the opposite. 
Out of the top three models with respect to accuracy, two are 
picking all concepts available and two are using PC algorithm for 
concept filtering. 

An important consideration is the size of the input data. More data 
complicates training the models as well as online-prediction of 
potential modifications to the code. Models using concept selection, 
rule A, are more data hungry. Applying the PC algorithm to only 
leave influential concepts reduces the data requirement. Logging 
opportunity counts increases the data requirement mostly due to the 
text representation of our data. Model accuracy and data 
requirements together paint a mixed picture. 

Reviewing the validation columns of Table 2, We see in the average 
validation probabilities columns, probabilities A and C described 
model quality with respect to situations when a student neither 
improves the code nor makes it worse (in terms of passing the tests). 
In these cases, we would like our models to not discourage changes 
when students’ code did not improve beyond an already passing 
rating (probability A) and we would like models to not support 
changes when students do not improve their code and the tests still 
fail to pass (probability C). Arguably, A and C are secondary to 
probabilities B and D, where we want them to positively reinforce 
changes from pass to fail (probability D) and negatively reinforce 
changes from fail to pass (probability B). In an attempt to make 
model selection more rigorous we take an average of all 
probabilities (A through D), and an average of the columns of the 
primary interest (B and D). 

Looking at validation results alone, models with logged opportunity 
counts using concept selection rules A and B are in the lead, model 
AFM B +PC+Log has a slight edge (third and first with respect to 



the two averages of the conditional probabilities). This model also 
has a top average rank overall. It is only 5% over the accuracy of the 
Rasch model, but it is quite low on data requirements and performs 
well in the validation. 

Table 2. Summary of model fitting and validation statistics. 
Models ranked among top three in each category are bold faced. 
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A-D B, D 

Null .56 - - - - - - - - 

Rasch .71 - 49 - - - - - - 

AFM A .81 4 1312 11 .61 5 .39 7 6.75 

AFM B .73 11 446 8 .62 4 .39 8 7.75 

AFM C .78 6 445 7 .59 9 .23 12 8.50 

AFM A+PC .84 1 1528 12 .57 11 .34 10 8.50 

AFM B+PC .77 7 526 9 .60 7 .44 4 6.75 

AFM C+PC .83 2 530 10 .56 12 .30 11 8.75 

AFM A+Ln .75 10 242 5 .62 2 .45 3 5.00 

AFM B+Ln .71 12 123 1 .63 1 .43 5 4.75 

AFM C+Ln .77 8 139 2 .60 6 .35 9 6.25 

AFM A+PC+Ln .82 3 284 6 .59 8 .47 2 4.75 

AFM B+PC+Ln .75 9 141 3 .62 3 .49 1 4.00 

AFM C+PC+Ln .78 5 161 4 .58 10 .40 6 6.25 

* Null and Rasch models are not ranked and given as a reference 
 

It is particularly interesting whether accuracy, data requirements, 
and validation conditional probabilities correlate. Naturally, 
accuracy grows with the data necessary to fit the model and explains 
35% of its variance. The average of four conditional probabilities is 
negatively related to the accuracy and explains 71% of its variance. 
However, despite the fact that the average of negative support for 
going from pass to fail and positive support for going from fail to 
pass, respectively correlates with model accuracy negatively, the 
percent of variance explained is low. 

6. DISCUSSION 
In this work we investigated the value of using student models for 
programming domain without a priori conceptualization of the 
problem domain. We hypothesized that, thanks to the inherent 
structure of the programming language, it could be possible to skip 
tedious development of a concept vocabulary overall. 

Serving as a basis for navigation support, the models of student 
knowledge that we built could be used for recommending the next 
problem to solve. However, an arguably more interesting feature is 
to reuse the models for within-problem support. As we have shown 
in our validation, even in the absence of a formal conceptual domain 
structure, just relying on the code parser and concept selection and 
filtering algorithms, our models can be useful. 

Based on the model accuracy, data requirement, and validation, we 
were able to select a model that has a promise to be accurate both 
modeling student knowledge and suggesting students what concepts 
to address in their code. The choice, however, has a number of 
tradeoffs. Depending on model accuracy, computational complexity 
of model fitting (size of the data required), and validation 
characteristics (potential accuracy of recommendation) one might 

opt to select a different model. The trade-off between modeling 
accuracy and validation accuracy is particularly sharp, because these 
two metrics are negatively correlated. 

In our models, we only accounted for the presence of programming 
language constructs in the code, completely ignoring the number of 
times they were used. One particular roadblock that exists on the 
path toward incorporating problem-concept counts is that it would 
be not possible to use the PC algorithm anymore. The PC algorithm 
is intended for binary data only (passing of the test and presence of 
the concept). There are few empirically verified structural search 
algorithms that use block-of-conditional-independence-tests that 
handle hybrid data (binary and count data together). 

In addition, when looking at the code, we only looked at the list of 
concepts and not at the structure of the code. We were able to detect 
certain strategies that students employed while solving the 
problems. In our future work, we plan to exploit these findings to 
improve our model’s prediction and validation scores. 
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