
Investigating Automated Student Modeling in a Java
MOOC

Michael Yudelson
Carnegie Learning, Inc.

437 Grant St.
Pittsburgh, PA 15219, USA
myudelson@carnegiele

arning.com

Roya Hosseini
Intelligent Systems Program

University of Pittsburgh
210 South Bouquet Street

Pittsburgh, PA,
roh38@pitt.edu

Arto Vihavainen
Dep. of Computer Science

University of Helsinki
P.O. Box 68 FI-00014

avihavai@cs.helsinki.fi

Peter Brusilovsky
University of Pittsburgh,

135 North Bellefield Ave.,
Pittsburgh, PA 15260, USA

peterb@pitt.edu

ABSTRACT
With the advent of ubiquitous web, programming is no longer a sole
prerogative of computer science schools. Scripting languages are
taught to wider audiences and programming has become a flag post
of any technology related program. As more and more students are
exposed to coding, it is no longer a trade of the select few. As a
result, students who would not opt for a coding class a decade ago
are in a position of having to learn a rather difficult subject. The
problem of assisting students in learning programming has been
explored in several intelligent tutoring systems. The key component
of such systems is a student model that keeps track of student
progress. In turn, the foundation of a student model is a domain
model – a vocabulary of skills (or concepts) that structures the
representation of student knowledge. Building domain models for
programming is known as a complicated task. In this paper we
explore automated approaches for extracting domain models for
learning programming languages and modeling student knowledge
in the process of solving programming exercises. We evaluate the
validity of this approach using large volume of student code
submission data from a MOOC on introductory Java programming.

Keywords

Big Data, MOOC, Student Modeling, Automated Domain Model
Construction.
1. INTRODUCTION
Today, information and computer technology is all around us.
Programming is not an art accessible to the few and taught at select
computer science schools anymore. Scripting and programming
languages are taught to wider student audiences and programming
courses have become a flag post of any technology related program.
As more and more students are taking on programming, it becomes
a universal skill, a necessity for every student studying increasingly
computerized technology. As a result, the distribution of talent in
programming classes shifts from the mathematically gifted to the
overall population mean.

There have long existed a number of educational systems that have
served the purpose of teaching students an abundance of
programming languages and since then have greatly advanced the
field of online learning. LISPTUTOR – a system teaching students a

language of LISP – was the precursor of the modern intelligent
tutoring systems [1] and SQL-tutor – a constraint-based system that
instructed students who learned SQL [6], to name just a few.

A classical educational system always has a user model – an integral
component responsible for keeping track of student progress. The
core of a student model is a vocabulary of skills (concepts) that
structure the representation of student knowledge. Conceptualizing a
set of skills is a hard task in and of itself. However, programming is
an inherently structured domain. The basis of a programming
language is the grammar that imposes a structure on any code that
compiles.

There were several attempts to exploit the inherent structure of the
programming language with respect to student modeling tasks. For
example, authors of [7] used a parsed concept map of C and Java to
perform cross-adaptation of the content while [11] and [4] used the
concept structure of parameterized questions for C and Java to
provide within-domain adaptive navigation support.

Until now, to the best of our knowledge, there were no attempts to
utilize an auto-parsed structure of the code as a substitute for a
conceptualization of the knowledge model. The benefits of such
automation with respect to programming are many. First of all, it is
inherently transferrable to any programming or scripting language:
one just has to have a parser for that language. Second, given the
parsed concepts, student modeling can be done on the fly. Third,
with recent popularity of massive open online courses, there are
volumes of data potentially available to experiment.

The challenge of this approach is that, besides relative easiness of
extraction, when programs start to get more complex so grows the
volume of concepts parsed and the signal becomes noisier.
Additionally, identifying programming constructs essential for
passing a particular test is not trivial. And finally, high accuracy of
such models can ensure help is given to a student while selecting the
next problem, while a model’s capacity to aid students during
problem solving requires a different form of validation.

In this paper, we report on our investigation of automatically
generated user models for the assignment-grading system deployed
in a set of introductory programming classes. The data intensity of
the code submission stream makes the task of knowledge modeling
truly a “big data” problem. Results of our retrospective analysis
demonstrate that the models created automatically can successfully
support students during problem solving activity.

2. DATA
To explain our idea and a set of explored user modeling approaches,
it is important to start with a description of data that we had at our
disposal and how the data was processed for our studies. Our data

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by D-Scholarship@Pitt

https://core.ac.uk/display/20535915?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

came from three introductory programming courses organized by
the University of Helsinki; two local courses held during Fall 2012
and Fall 2013, and a MOOC held during Spring 2013. Although the
MOOC course lasted 12 weeks in total (see [9] for details of an
instance offered in 2012), we included only the first six weeks in the
analysis to be able to compare the results directly with the
introductory programming courses.

The courses emphasized students’ personal effort and constant
practice. New topics were always accompanied by a set of
programming exercises where the first tasks provided clear
guidelines that outlined both the required program structure and
required functionality, and latter ones were open-ended, giving
students more freedom on the application design. During the six
weeks, the students worked on over 100 exercises that were further
split into a total of some 170 tasks. All exercises were done using an
industry-strength IDE with a plugin that provided textual on-
demand feedback that had been encoded into the tasks, records
students’ progress, and allowed students to submit their solutions for
grading directly from within the IDE [10].

Table 1. Overall student population statistics.

Course N. students
(M/F)

Age: Avg./
Med./Max.

N. snapshots:
all/median

Fall 2012: Introduction
to Programming 185(121/64) 18/22/65 204460 / 1131

Fall 2013: Introduction
to Programming 207(147/60) 18/22/57 263574 / 1126

Spring 2013: MOOC
on Programming1 683(492/60) 13/23/75 842356 / 876

Due to this unique problem-solving approach and careful data
archiving, each of the three courses produced a unique picture of
student behavior. For each exercise and for each student, the system
stored a relatively large sequence of code snapshots that were taken
on save, compile and run -events, each representing a complete or
incomplete attempt to solve the programming problem. Moreover,
since each snapshot was tested on a set of tests designed for the
corresponding exercise, information on tests that passed and failed
was available. This data provides an excellent start for exploring
various approaches to student modeling.

Student population statistics are given in Table 1. Each in-class
version of the course had about one half of the MOOC’s attendance.
All three courses were mostly taken by male students (more so in
the case of the MOOC). Age distribution was roughly the same.
Around 40% of the students were CS major (in-class courses) and
around half of the students had previous programming experience
(MOOC). In terms of student activity (the number of snapshots)
student medians were quite close for the two in-class course, and for
the MOOC this number is lower due to the dropout rates.

3. APPROACH
We investigated an automated approach to creating concept models
and student modeling for the domain of introductory Java
programming. Our approach was based on two principal ideas: (1)
modeling knowledge behind every program submission using the

1 We only include data on the students that answered the survey

inherent structure of the programming language and (2) automatic
testing of program correctness using a set of tests. In brief, we
considered every program submitted or saved as a solution of a
programming exercise as an application of a range of concepts that
were present in the submitted code. Once this program passed one
or more tests, we considered it as a successful application of these
concepts in an absolute sense or relative to the earlier submission. In
the specific case explored in the paper, concept extraction from the
body of submitted program was done by our concept extraction tool
“Java Parser” [3] while the correctness of the submitted student
code was determined by the system infrastructure introduced above.
Thus, the main body of the paper is focused not on the tools, but on
using the large body of collected data to explore the plausibility of
the approach - the correctness of the student model itself and its
usefulness in assisting students while they work on the code.

3.1 Data Preprocessing
For our analysis we preprocessed the raw student submissions. First
the code was compiled and run against the suite of tests recording
which tests passed. Each snapshot was also analyzed using
JavaParser [3]. The extracted concepts were recorded both as an
exhaustive list of all concepts in the snapshot and as a difference
from the previous snapshot accounting for additions and removals
(initial snapshot copied in full). An additional data-thinning
procedure removed all snapshots that had an empty list of concept
changes to filter out insignificant changes to the code.

3.2 Hypotheses
First, it is possible to model student knowledge acquisition (models
can detect learning). Second, only a subset of code constructs is
important for solving a particular problem. Third, constructed
models are useful beyond modeling student knowledge acquisition
and can be used as a basis for creating a recommendation
component to help students with the code.

4. MODELS
We chose a set of models that are widely used in the field of student
modeling. We first set the modeling lower boundary with the Null
model (the majority class model). The next model of our choice was
the Rasch model (1PL IRT) [5]. Although the Rasch model does not
capture learning by definition, it is frequently used in psychometrics
and would set a baseline for us. The model is given in Eq. (1). Here,
Pr denotes probability of student i to correctly solve problem j.
Inverse.logit is the sigmoid function, θi is the student proficiency
parameter, and βj is the item complexity parameter. Since the result
of compiling and running a problem is a binary mask of passed and
failed tests, we treated the problem-test tuples as unique items. We
broke each student transaction from the data into n, where n is the
number of tests submission is checked against. Passed tests would
yield a result of 1, failed a result of 0. Student and concept data were
copied across the broken transactions accordingly. We fit Rasch
model using mixed effect regression, treating both student and item
complexity parameters as random factors.

)(log.),|1Pr(Pr iiitinverseijYij βθβθ +=== Eq. (1)

Prij = Pr(Yij =1|θ,β,δ,γ) = inverse. logit(θi +βi + (δkj +γ kj
k
∑ tikj))

Eq. (2)

To actually model student learning we would use a variant Additive
Factors Model (AFM) [2]. In addition to the parameters in Rasch
model, AFM (Eq. (2)) has skill complexity – δkj (intercept), and skill
learning rate – γkj (slope). Although standard AFM does not have
item complexity, we will have it in our AFM models to account for
item variability. For each student submission we will count the
number of prior attempts to use a particular coding construct – tikj.

In AFM it is customary to fit concept intercepts and slopes across all
items. We will treat concepts as within-item effects.

When the standard AFM model is used, for each item or problem
step a set of relevant concepts is known. Often, a table relating
concepts to items is called a Q-matrix. We do not have information
on what programming constructs are relevant for the successful
passing of the tests. We used three different rules to select concepts.
Rule A selects all concepts that were parsed from the student code.
Rule B uses the concepts that were different from the previous code
snapshot (added or removed alike). Rule C used concept differences
just like Rule B, but treating addition and removal as different
instances of one concept (appending a suffix to the concept
identifier in case of concept removal).

First, the AFM model is to use all parsed concepts or concepts
difference lists. It is, however, safe to assume that not all concepts
are relevant for solving a problem and different subsets of concepts
could be relevant for each particular test the problem is verified
against. To set aside the concepts that have a significant influence
on the successful passing of the problem’s test, we used a PC
algorithm for systematic conditional independence search
implemented in the Tetrad – a data-mining tool developed at
Carnegie Mellon University [8]. For each problem in our three
datasets we composed a data-mining problem for the PC algorithm
to find a bipartite graph where arcs go from concepts to tests
denoting causal links (but not between tests or concepts). We
admittedly violate i.i.d. assumptions and, although we are mining
for these graphs across multiple students, we are using multiple data
points from the same student. However, we are not going to draw
causal conclusions on the included arcs and are only using the
results of the algorithm to filter out concepts. For the tests of
independence we used a p-value of 0.05. Our experimentation with
different p-values did not result in tangible changes of the output.

One important phenomenon we noticed in the data is that students
have different submission speeds. One student might submit one
code snapshot per 10-20 minutes of work, while the other would
submit every change to the code with several submissions per
minute. As a result, the number of attempts per code construct per
unit of time would vastly differ across students and the estimations
of the concept learning rates would be extremely noisy. To
compensate for these differences, we applied natural logarithm
function to the student opportunity counts (tikj).

Four different versions of AFM models were constructed by turning
on and off of the two features: whether or not to filter concepts, and
whether or not to log counts of concept opportunities, together with
one Rasch and one null model, give us 14 models in total. In order
to go beyond model-fitting accuracy and to check our third
hypothesis and to make sure that our models can potentially serve as
a basis for a component to recommend changes to the code, we ran a
specialized validation procedure. In this procedure we distinguished
four changes between passing and failing of a particular problem’s
test in successive code snapshots. Namely, from fail to fail (NN –
not passing to not passing), from pass to pass (YY – passing to
passing), from pass to fail (YN), and from fail to pass (NY). In each
of the four cases we looked at which concepts students added and
which concepts they removed between the snapshots. For additions
and removals, we computed support scores – sums of concept slopes
in the model giving us model’s judgment in favor of all addition and
all removals. These two sums were either positive (P), negative (N),
or zero (0), giving us 9 different combinations. Thus each
successive code snapshot was assigned a 4-letter code. For example,
NYP0 would denote that a student went from failing to passing a
test and the model has a positive support score for concept addition

and a neutral 0-score for concepts removal. Based on these codes,
for each of our models we computed four conditional probabilities.

Probability A: the non-negative support of the changes to the
concepts in cases of two successful passes of the test.
Rationale: Since in two consecutive attempts student’s code passed
the test, model negative support of code changes is undesirable.
Probability B: negative code changes support in the case of pass
changes to fail. Rationale: Since students apparently made the code
worse, we want the model to vote against it.
Probability C: non-positive support for the code changes in the
case of two successive fails. Rationale: The code did not improve
and the model should not support any changes made.
Probability D: positive support for the changes made between a
failure and a success. Rationale: When a student is on the right path,
the model should be supportive of that.

We performed validation with respect to the three rules of the
concept selection (A – all concepts, B – changed concepts, and C –
changed accounting for removals and additions) as well as filtering
of the concepts (only considering slopes for concepts that were
selected by the PC algorithm).

5. RESULTS
Table 2 is a summary of the model fitting and validation results for
the 14 models we discussed. The dataset was balanced: with the
majority class model performing only a little better than chance. The
Rasch model that assumes no learning is a tangible improvement
with 71% accuracy. AFM models perform better with respect to
accuracy. Models considering all concepts in the snapshot (A) are
doing better, and models considering changes on concepts
distinguishing additions and removals (C) being second. Filtering
concept lists using PC algorithm improves model accuracies, while
taking logs of opportunity counts does a little bit of the opposite.
Out of the top three models with respect to accuracy, two are
picking all concepts available and two are using PC algorithm for
concept filtering.

An important consideration is the size of the input data. More data
complicates training the models as well as online-prediction of
potential modifications to the code. Models using concept selection,
rule A, are more data hungry. Applying the PC algorithm to only
leave influential concepts reduces the data requirement. Logging
opportunity counts increases the data requirement mostly due to the
text representation of our data. Model accuracy and data
requirements together paint a mixed picture.

Reviewing the validation columns of Table 2, We see in the average
validation probabilities columns, probabilities A and C described
model quality with respect to situations when a student neither
improves the code nor makes it worse (in terms of passing the tests).
In these cases, we would like our models to not discourage changes
when students’ code did not improve beyond an already passing
rating (probability A) and we would like models to not support
changes when students do not improve their code and the tests still
fail to pass (probability C). Arguably, A and C are secondary to
probabilities B and D, where we want them to positively reinforce
changes from pass to fail (probability D) and negatively reinforce
changes from fail to pass (probability B). In an attempt to make
model selection more rigorous we take an average of all
probabilities (A through D), and an average of the columns of the
primary interest (B and D).

Looking at validation results alone, models with logged opportunity
counts using concept selection rules A and B are in the lead, model
AFM B +PC+Log has a slight edge (third and first with respect to

the two averages of the conditional probabilities). This model also
has a top average rank overall. It is only 5% over the accuracy of the
Rasch model, but it is quite low on data requirements and performs
well in the validation.

Table 2. Summary of model fitting and validation statistics.
Models ranked among top three in each category are bold faced.

Model
A

cc
ur

ac
y

&
 ra

nk
*

Fi
le

 si
ze

,
M

b
&

ra

nk
 Avg. validation

prob. & rank

O
ve

ra
ll

ra
nk

A-D B, D

Null .56 - - - - - - - -

Rasch .71 - 49 - - - - - -

AFM A .81 4 1312 11 .61 5 .39 7 6.75

AFM B .73 11 446 8 .62 4 .39 8 7.75

AFM C .78 6 445 7 .59 9 .23 12 8.50

AFM A+PC .84 1 1528 12 .57 11 .34 10 8.50

AFM B+PC .77 7 526 9 .60 7 .44 4 6.75

AFM C+PC .83 2 530 10 .56 12 .30 11 8.75

AFM A+Ln .75 10 242 5 .62 2 .45 3 5.00

AFM B+Ln .71 12 123 1 .63 1 .43 5 4.75

AFM C+Ln .77 8 139 2 .60 6 .35 9 6.25

AFM A+PC+Ln .82 3 284 6 .59 8 .47 2 4.75

AFM B+PC+Ln .75 9 141 3 .62 3 .49 1 4.00

AFM C+PC+Ln .78 5 161 4 .58 10 .40 6 6.25

* Null and Rasch models are not ranked and given as a reference

It is particularly interesting whether accuracy, data requirements,
and validation conditional probabilities correlate. Naturally,
accuracy grows with the data necessary to fit the model and explains
35% of its variance. The average of four conditional probabilities is
negatively related to the accuracy and explains 71% of its variance.
However, despite the fact that the average of negative support for
going from pass to fail and positive support for going from fail to
pass, respectively correlates with model accuracy negatively, the
percent of variance explained is low.

6. DISCUSSION
In this work we investigated the value of using student models for
programming domain without a priori conceptualization of the
problem domain. We hypothesized that, thanks to the inherent
structure of the programming language, it could be possible to skip
tedious development of a concept vocabulary overall.

Serving as a basis for navigation support, the models of student
knowledge that we built could be used for recommending the next
problem to solve. However, an arguably more interesting feature is
to reuse the models for within-problem support. As we have shown
in our validation, even in the absence of a formal conceptual domain
structure, just relying on the code parser and concept selection and
filtering algorithms, our models can be useful.

Based on the model accuracy, data requirement, and validation, we
were able to select a model that has a promise to be accurate both
modeling student knowledge and suggesting students what concepts
to address in their code. The choice, however, has a number of
tradeoffs. Depending on model accuracy, computational complexity
of model fitting (size of the data required), and validation
characteristics (potential accuracy of recommendation) one might

opt to select a different model. The trade-off between modeling
accuracy and validation accuracy is particularly sharp, because these
two metrics are negatively correlated.

In our models, we only accounted for the presence of programming
language constructs in the code, completely ignoring the number of
times they were used. One particular roadblock that exists on the
path toward incorporating problem-concept counts is that it would
be not possible to use the PC algorithm anymore. The PC algorithm
is intended for binary data only (passing of the test and presence of
the concept). There are few empirically verified structural search
algorithms that use block-of-conditional-independence-tests that
handle hybrid data (binary and count data together).

In addition, when looking at the code, we only looked at the list of
concepts and not at the structure of the code. We were able to detect
certain strategies that students employed while solving the
problems. In our future work, we plan to exploit these findings to
improve our model’s prediction and validation scores.

7. REFERENCES
[1] Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier,

R. (1995). Cognitive Tutors: Lessons Learned. Journal of the
Learning Sciences, 4(2), 167-207.

[2] Cen, H., Koedinger, K.R., Junker, B. (2008) Comparing Two
IRT Models for Conjunctive Skills. In 9th International
Conference On Intelligent Tutoring Systems. (pp. 796–798).
Springer, Heidelberg

[3] Hosseini, R., & Brusilovsky, P. (2013). JavaParser: A Fine-
Grain Concept Indexing Tool for Java Problems. In The First
Workshop on AI-supported Education for Computer Science
(AIEDCS 2013) (pp. 60-63).

[4] Hsiao, I.-H., Sosnovsky, S., and Brusilovsky, P. (2010)
Guiding students to the right questions: adaptive navigation
support in an E-Learning system for Java programming.
Journal of Computer Assisted Learning, 26 (4), 270-283.

[5] van der Linden, W.J., Hambleton, R.K. (eds.): Handbook of
Modern Item Response Theory. (1997) Springer, New York

[6] Mitrovic, A. (2003). An Intelligent SQL Tutor on the Web.
International Journal of Artificial Intelligence in Education,
13(2-4), 173-197.

[7] Sosnovsky, S. A., Dolog, P., Henze, N., Brusilovsky, P., &
Nejdl, W. (2007). Translation of Overlay Models of Student
Knowledge for Relative Domains Based on Domain Ontology
Mapping. In 13th International Conference on Artificial
Intelligence in Education (pp. 289-296)

[8] Spirtes, P., Glymour, C., and Scheines, R. (2000) Causation,
Prediction, and Search, 2nd Ed. MIT Press, Cambridge MA.

[9] Vihavainen, A., Luukkainen, M., & Kurhila, J. (2012). Multi-
faceted support for MOOC in programming. In Proceedings of
the 13th annual conference on Information technology
education (pp. 171-176).

[10] Vihavainen, A., Vikberg, T., Luukkainen, M., & Pärtel, M.
(2013). Scaffolding students' learning using test my code. In
Proceedings of the 18th ACM conference on Innovation and
technology in computer science education (pp. 117-122)

[11] Yudelson, M. & Brusilovsky, P. (2005). NavEx: Providing
Navigation Support for Adaptive Browsing of Annotated Code
Examples. In 12th International Conference on Artificial
Intelligence in Education (pp. 710-717).

