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ABSTRACT
Parameterized exercises are an important tool for online as-
sessment and learning. The ability to generate multiple ver-
sions of the same exercise with different parameters helps
to support learning-by-doing and decreases cheating during
assessment. At the same time, our experience using param-
eterized exercises for Java programming reveals suboptimal
use of this technology as demonstrated by repeated success-
ful and failed attempts to solve the same problem. In this
paper we present the results of our work on modeling and
examining patterns of student behavior with parameterized
exercises using the Problem Solving Genome, a compact en-
capsulation of individual behavior patterns. We started with
micro-patterns (genes) that describe small chunks of repet-
itive behavior and constructed individual genomes as fre-
quency profiles that show the dominance of each gene in
individual behavior. The exploration of student genomes
revealed the individual genome is considerably stable, dis-
tinguishing students from their peers. Using the genome,
we were able to analyze student behavior on the group level
and identify genes associated with good and poor learning
performance.

Categories and Subject Descriptors
Information systems [Information Systems Applications]:
Data mining

Keywords
sequential pattern mining, parameterized exercises

1. INTRODUCTION
Parameterized exercises have recently emerged as an impor-
tant tool for online assessment and learning. A parameter-
ized exercise is essentially an exercise template that is in-
stantiated at runtime with randomly generated parameters.
As a result, a single template is able to produce a large num-

ber of similar, but distinct questions. While parameterized
questions are considerably harder to implement than tradi-
tional “static” questions, the benefits offered by this technol-
ogy make this additional investment worthwhile. During as-
sessment, a reasonably small number of question templates
can be used to produce online individualized assessments for
large classes minimizing cheating problems [12]. In a self-
assessment context, the same question can be used again
and again with different parameters, allowing every student
to achieve understanding and mastery. The aforementioned
properties of parameterized exercises made them very at-
tractive for the large-scale online learning context. At the
same time, parameterized exercises as a learning technology
have their own problems. Our experience with personalized
exercises for SQL [17] and Java [7] in the self-assessment
context demonstrated that the important ability to try the
same question again and again is not always beneficial, es-
pecially for students who are not good at managing their
learning. The analysis of a large number of student logs
revealed some considerable number of unproductive repeti-
tions. We observed many cases where students kept solving
the same exercise correctly again and again with different
parameters, well past the point when it could offer any ed-
ucational benefit. While it might increase self-confidence,
students’ time and effort might be spent better by advanc-
ing to more challenging questions. We also observed cases
where students persisted in failing to solve the same, too
difficult exercise, instead of focusing on filling the apparent
knowledge gap or switching to simpler exercises.

The work presented in this paper was motivated by our belief
that the educational value of parameterized exercises could
be increased by a personalized guidance mechanism that can
predict non-productive behavior and intercept it by recom-
mending a more efficient learning path. The main challenge
with predicting unproductive behavior is to examine the sta-
bility of behavior patterns in the problem solving process.
If the patterns, such as specific unproductive sequences, ap-
pear at random, there is a slim chance to predict and prevent
them. If, on the contrary, specific patterns are associated
with certain features of the student (such as knowledge and
individual traits), exercise complexity, or the learning pro-
cess stage, there is a good chance to learn the association
rules and use it for prediction. In this paper we performed
an extended study of problem solving patterns in the con-
text of parameterized exercises. We explored the connection
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between these patterns and the components of the learning
process mentioned above. Our study produced a rather un-
usual result. While it was more plausible to expect that the
patterns are related to the current level of student knowl-
edge, our analyses revealed that the patterns are related to
student problem solving tendency. More exactly, we discov-
ered that every student has a specific combination of micro-
patterns, a kind of problem solving genome. We observed
that this genome is relatively stable, distinguishing every
student from his or her peers; it changes very little with the
growth of the student knowledge over the course. We also
discovered that genomes are not randomly distributed, and
instead, students with similar genomes form cohorts that
perform relatively similarly in the problem solving process.
We believe that our discovery of the problem solving genome
is a very important step toward our goal of predicting and
preventing unproductive behavior. Indeed, the stability of
patterns on the personal level makes the task of pattern
prediction feasible while the presence of cohorts opens the
way to detect the student problem-solving genome early in
the learning process. In this paper we present our approach
of detecting student problem-solving genome and report our
exploration of the genome on the level of individual students
and cohorts.

The rest of the paper is structured as follows. The next sec-
tion briefly reviews several areas of related work. Section 3
describes the dataset used in the study. Section 4 presents
the method for building the Problem Solving Genome. In
Section 5 we explore the Genome’s stability and its relation
with performance groups and the complexity of the exer-
cises. Section 6 summarizes the contribution and discusses
future work.

2. RELATED WORK
2.1 Parameterized Questions and Exercises
Recent studies in educational technology have demonstrated
promising results by leveraging computer and Web abilities
to deliver parameterized exercises worldwide, which has be-
come one of the focusing topics in Web-enhanced educa-
tion. One of the most influential systems, CAPA [9], was
evaluated in a number of careful studies, providing clear
evidence that individualized exercises can significantly re-
duce cheating while improving student understanding and
exam performance. The CAPA technology has been later
integrated into the popular LON-CAPA platform [12] and
its functionality defined the assessment architecture of the
MOOC platform eDX 1. Due to the complexity of parame-
terized assessment, the majority of work on parameterized
questions and exercises was done in physics and other math-
related domains where a correct answer to a parameterized
question can be calculated by a formula. There are, how-
ever, examples of using this technology in other domains.
In particular, our team focused on parameterized exercises
for teaching programming. We developed and explored the
QuizPACK platform for C-programming [3] and the similar
QuizJET platform for Java programming [7]. Problem solv-
ing repetition behaviors have been studied by psychologists
in different ways, providing evidence that repetition behav-
iors have roots in cognitive, metacognitive and motivational
aspects and explaining why some students quit and others

1http://www.edx.org/

persist when facing challenging problems [14]. Schunk [16]
shows a positive correlation between persistency in repeating
and self-efficacy (believe on self-capabilities to solve a prob-
lem). The attribution theory [19] describes how students
that attribute performance outcomes (successes, failures) to
effort tend to work harder than students who attribute them
to ability. Grounded in the literature in educational psychol-
ogy, we conjecture that patterns on problem solving repeti-
tion may be explained by individual learners’ motivational
traits that are part of learners’ personality [15]. These the-
ories provide insights into analyzing to what extent these
behaviors are stable in students.

2.2 Sequential Pattern Mining in Education
Mining sequential patterns of students actions has recently
gained attention in educational data mining field. Using ac-
tivity data collected from groups of students working with
interactive tabletops, Martinez et al [13], mined and clus-
tered frequent patterns to compare distinct behaviors be-
tween low and high achievement groups. The differential se-
quence mining method, introduced by Kinnebrew and Biswas
[11] has been successfully used to differentiate behavioral
patterns among groups of students (such as low and high
performance students). The method uses SPAM [1] to find
common patterns in the sequences of the whole dataset, and
then applies statistical tests to reveal differences in the fre-
quencies of the discovered patterns among different groups.
The same authors have applied this technique in data col-
lected from the system Betty’s Brain to discovered patterns
that can distinguish self-regulated behaviors in successful
and non-successful students [2] and to analyze the evolution
of reading behaviors in high and low performance students
during productive and non-productive phases of work [10].
Herold, Zundel and Stahovich [4] have used the differen-
tial sequence mining on sequences of actions on handwrit-
ten tasks and proposed a model to predict performance on
the course based on pattern features. Our work extends this
prior work by utilizing and aggregating the mined sequence
patterns to construct student activity profiles. Such pro-
files enable us to evaluate the statistical differences at the
student, exercise, and group levels.

3. SYSTEM AND DATASET
We collected answers of students who worked with QuizJET
[7] parameterized Java exercises in the context of an intro-
ductory object-oriented programming class at the School of
Information Sciences in the University of Pittsburgh. The
students accessed the exercises through the Progressor+ in-
terface [6]. The system was provided for self-study and its
use was not mandatory. Each QuizJET exercise was gener-
ated from a template by substituting a parameter variable
with a randomly generated value. Exercises generated using
the same template were equal from a semantics point of view.
To answer the exercise the student had to mentally execute
a fragment of Java code to determine the value of a specific
variable or the content printed on a console. When the user
answers, the system evaluates the correctness, reports to the
student whether the answer was correct or wrong, shows the
correct response, and invites the student to“try again”. Next
time, the exercise is be generated with other values and the
correct answer will be different. In this way, the student can
try the same exercise many times, leaving a trace of suc-
cesses and failures. Figure 1 shows a simple parameterized



Figure 1: A parameterized problem in QuizJET. In
(a) the student answers wrongly and then hitts “Try
Again” button. In (b) the problem is reloaded with
different numbers.

Java problem answered incorrectly by the student (a) and
then repeated (b). Note the differences in the numbers in the
second attempt (b) which correspond to the same problem.
Progressor+ provided access to 103 different parameterized
exercises organized in 19 topics (Variables, Objects, Arrays,
etc.). Exercises are labeled in terms of complexity and there
are 41 easy exercises, 41 medium exercises and 19 hard ex-
ercises.

The dataset includes three semesters of student data (Spring
2012, Fall 2012 and Spring 2013) in which the use of the
system was optional. Overall, 101 students used the system
making 6489 incorrect and 14726 correct attempts. Easy
exercises were attempted 10620 times, medium complexity
exercises were attempted 7876, and hard exercises were at-
tempted 2719 times. Once a student started to work with
an exercise she might attempt it just once or try it several
times in a sequence. The dataset includes 4212 single at-
tempts (no repetition) and 4758 sequences with more than
one attempt. Among these there are 2717 with more than
two attempts, 1583 with more than three attempts, and 1016
sequences with more than four attempts.

4. BUILDING THE PROBLEM-SOLVING
GENOME

The key idea of our “genome” approach is to build a com-
pact characteristics of student problem-solving behavior on
the level of micro-patterns. To build a genome we started
by finding proper micro-patterns (genes) and then built a
genome of a student as a vector representing the frequen-
cies of different micro-pattern occurrences in the student
problem-solving logs. An overview of the genome-building
process is shown in Figure 2. To build the genes, we started
by labeling students’ attempts using time and correctness
(Figure 2(a), Section 4.1). We then apply sequential pat-
tern mining to extract sequential micro-patterns Figure 2
(b), Section 4.2). The most frequent micro-patterns were
selected as genes and used as a basis for the Problem Solving
Genome, which is a vector of gene frequencies (Figure 2(c),
Section 4.3). This section presents the genome-building pro-
cess in detail while the next sections report our exploration
of the Genome.

Figure 2: Steps for building the Problem Solving
Genome.
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Figure 3: Time distributions (logarithmic) for easy,
medium and hard exercises. The right curve is al-
ways the first attempt time distribution, showing
that first attempts usually take longer times.

4.1 Attempts labeling
We use both time and correctness of each attempt to label
it for further use in sequential pattern mining analysis. In
this way, each action will convey more information than us-
ing correctness only. As shown in Figure 3, distribution of
times for first attempts are different from other (non-first)
attempts. This is reasonable if we consider that the user
needs extra time the first time to read and understand the
exercise. Additionally, time distribution is different for dif-
ferent exercises, as in general, complex exercises need longer
times. Thus, for labeling the time factor, we used time in-
formation of historical records in our system to compute
the median times for each exercise for both first and other
attempts. Then, we labeled the attempt as short or long
depending on the time being shorter or greater than the
median of the distribution for the specific exercise. Combin-
ing correctness and time, we finally label the attempts using
the letters ‘s’ (lowercase s) for a short success, ‘S’ (uppercase
S) for a long Success, ‘f’ for a short failure, ‘F’ for a long
Failure.

The labeled attempts are organized in sequences by pairs
student-question within a session in the system. Each se-
quence su,e represent the sequential attempts of user u in
the exercise e within a session. If the user attempted the
same exercise in different sessions, there will be more than
one sequence su,e. Additionally, we mark starting and end-
ing points on sequences using ‘ ’ (underscore). For example,
a sequence fSs means start with a short failure, make a
long success and then finish with a short success.

4.2 Sequential pattern mining
To discover frequent patterns, we use the PexSPAM algo-
rithm [5], which extends the fast SPAM algorithm [1] with
gap and regular expression constraints. Given a sequence
database D = s1, s2, ..., sn, the support of a pattern α is
the proportion of sequences of D which contains α as a sub-
sequence at least once. If the support of α is bigger than
a threshold, then α is considered a frequent pattern. Sup-
port measure does not inform for multiple occurrences of
the pattern within a sequence. In this work, we set a small
minimum support in 1% because even when a pattern oc-



Table 1: Top 20 patterns (genes) ordered by sup-
port (the percentage of sequences that contain the
pattern). Observe the presence of many inefficient
patterns like ‘ss’ or ‘FF’ among top 20.

Pattern Support Pattern Support
1 ss_ 0.163 11 _FS 0.07
2 ss 0.107 12 FS 0.066
3 Ss 0.101 13 FS_ 0.060
4 SS_ 0.091 14 FF 0.059
5 _FS_ 0.086 15 SS 0.058
6 _FF 0.083 16 _SS 0.054
7 Ss_ 0.081 17 _ss_ 0.053
8 _fS_ 0.079 18 _SS_ 0.052
9 _fF 0.077 19 sss 0.050
10 sss_ 0.074 20 _fS 0.048

curs in overall few sequences, it can still make a difference
when looking at the aggregation of pattern occurrences by
student. Additionally, since we are interested in looking at
patterns of 2 or more sequential attempts, we set the gap
to 0 and considered only sequences with more than one at-
tempt. After running the mining algorithm, we discover 102
common patterns occurring at least in 1% of the sequences.
These common micro-patterns of student behavior play the
role of genes in our approach. The top 20 genes and the
corresponding support can be seen in Table 1.

4.3 The problem solving genome: character-
izing students with pattern vectors

Using the 102 gene patterns discovered by the sequential pat-
tern mining, we build individual frequency vectors that show
how frequently each gene appears in student problem solv-
ing behavior. Since this vector captures in a compact form
the specifics of student problem solving behavior, we call it
student Problem Solving Genome. Note that the frequency-
based approach allows building individual genome using any
subset of gene sequences, for example, all sequences in the
term, the first half of sequences of the student activity in
the term, a random subset of sequences, etc. Since a pattern
might occur more than once in a sequence, and more than
one pattern may occur in a sequence, the frequency vectors
are not summing to 1. Thus, we normalize the vectors for
further analysis.

5. EXPLORING THE GENOME
In this section we analyze the pattern vectors within and
between students, across problem complexity levels, and
across different student performance groups. We use the
same dataset for all further analysis: we select 68 students
having pretest/posttest (see section 5.3.1) and a minimum
amount of usage of the system of 20 sequences and two ses-
sions. Addtionally, we exclude one outlier student with a
very unusual number of repetitions in the first 6 sequences.
At the end our dataset consists of 67 students.

5.1 Problem Solving Genome stability
The first step of problem-solving genome exploration is as-
sessing its stability. To what extent the name “genome” that
we assigned to the micro-pattern frequency vector is justi-
fied? Is it just a random mix of pattern which could be
different for different time slots or, like a real genome, it is

a stable characteristic of a user that distinguishes him or
her from peers? A good approach to check genome stabil-
ity is to randomly split sequences of user activity patterns
into two equal sets and build the genome vector from each
of two halves. If the genome is stable, then two random
halves of the split genome should be significantly closer to
each other than to half-genomes of other users. In contrast,
if genome halves are no closer to each other than to half-
genome vectors of other users, we can’t consider genomes as
stable user characteristics. To assess the stability hypoth-
esis we built two half-genomes for each user by randomly
splitting her observed sequences in half and compiling gene
frequency vectors for each half. We then calculate pairwise
distances between all half-genomes.

To compute distances, we use Jensen-Shannon (JS) diver-
gence as it is a symmetric version of Kullback-Leibler di-
vergence and has been widely used for computing distance
between frequency distributions. We filter out all students
with less than 60 sequences, limiting differences due to ex-
treme difference on amount of activity. Among the 67 stu-
dents in our dataset, there are 32 students with at least 60
sequences. In this analysis we use a paired samples t-test
on the difference between the self and other distances. The
normality assumption is met. Results are shown in Table 2
first row (a). Students self-distances are significantly smaller
(M = .2370, SE = .0169) than distances to other students
(M = .4815, SE = .0141), t = −15.224, p < .001, Cohen’s
d = 2.693.

While similarity of random half-genomes is a very strong
argument in favor of genome stability, the random split has
one weak aspect: since each of the random halves repre-
sents student micro patterns over the whole duration of the
course, it is still possible that the student genome gradually
changes over the course duration from one pattern frequency
to another. To assess the temporal stability of the genome
we need to use temporal split, i.e., to compare half-genomes
built from the temporally first half (early) and second half
(late) of student sequences. Results in Table 2 second row
(b) confirm the temporal stability hypothesis: while the dis-
tance between temporary split half-genomes is larger than
between randomly split halves (M = .3211, SE = .0214) it
is still significantly smaller than between-student distances
(M = .4997, SE = .0164), t = −6815, p < .001, Cohen’s
d = 1.205. This result confirms that frequencies of micro-
pattern appearances act as a true problem solving genome
“genome”: it is considerably stable, characterizing each user
as individual over the course progression, while sufficiently
distinguishing this user from others.

5.2 Effect of complexity
While we discovered that the knowledge level and course
stage doesn’t affect the genome, it is still possible that be-
havior patterns are affected by exercise complexity. To un-
derstand how the complexity level of the exercises impacts
on the pattern frequencies, we analyze distances between
the genome of the exercises (i.e. pattern frequency vec-
tor for each exercise). Having the exercises’ genome and
the predefined classification in easy, medium and hard, we
select pairs of exercises within and between complexity lev-
els and compute distances using Jensen-Shannon divergence.
We filter out all questions with less than 20 sequences and



Table 2: Statistical tests comparing students with themselves and others.
self distances dist. to others

M SE M SE t sig. Cohen’s d
a) randomly split genome .2370 .0169 .4815 .0141 -15.224 < .001 2.693
b) early/late genome .3211 .0214 .4997 .0164 -6.815 < .001 1.205
c) randomly split genome in easy exercises .3736 .0214 .6065 .0128 -10.352 < .001 1.657

Table 3: Mean and standard error of distances
within and between easy and hard exercises.

Mean SE
within easy .3311 .0031
within hard .3478 .0085

between easy-hard .4145 .0050

perform comparisons between extremes groups, i.e. easy
and hard complexity levels to extreme the differences. Nor-
mality and homogeneity of the variance on pair distances
are not met on all levels, thus a non-parametric test is
applied. Results of the Krustal-Wallis test shows signifi-
cant differences between distances within and between lev-
els, χ2(2, N = 1596) = 160.359, p < 001. Mean and stan-
dard error of distances within easy, within hard, and be-
tween easy and hard groups are shown in Table 3. A Mann-
Whitney test is performed to test differences among the lev-
els. Distances within easy exercises (mean rank = 626.16)
are significantly smaller than distances between easy and
hard exercises (mean rank = 909.77), z = −12.564, p < .001.
Similarly, the distances within hard exercises (mean rank
= 277.20) are significantly smaller than distances between
easy and hard exercises (mean rank = 383.13), z = −4.733,
p < .001. These results show a clear dependency of the pat-
tern behaviors with the complexity level of the questions.
This is reasonable given that hard questions, which need
more time, are expected to discourage repetitions.

The impact of exercise complexity on the patterns suggest
that the genome is as much impacted by the unique exercise
difficulty profile than by individual differences of the stu-
dents. We re-examine the analysis on Section 5.1 now con-
sidering randomly split genome built only from activity on
easy exercises, to control for differences of students amount
of activity on different complexity exercises. We perform
this analysis with 39 students having at least 20 sequences
in easy questions. Results shown in last row (c) in Table 2
confirm the stability of patterns: students are more similar
to themselves (self distance M = .3736, SE = .0214) than
to others (distances M = .6065, SE = .0128), t = −10.352,
p < .001, Cohen’s d = 1.6569, even within exercises of the
same complexity.

5.3 Patterns of Success within student groups
Since one of the goals of this paper is using behavior anal-
ysis to identify and prevent inefficient patterns, it would be
valuable to use the genome to identify which patterns make
groups of students more or less successful in the learning
process. The easiest approach to do it is to split students
into performance-related groups and find unique genome as-
pects in this group. This simple approach, however, might
not work since for students with very different genomes, dif-
ferent behavior patterns might be related to success. In
this case, to find a connection between patterns and perfor-
mance, we should group students into groups with similar

Table 4: Number of students in each predefined per-
formance group (PPG).

Pretest Posttest Learning gain
(total=67) (total=65) (total=65)

low 24 22 22
medium 16 19 20

high 27 24 23

behavior and contrast most and least successful students
within each group. In this section we perform both kinds of
the analysis.

5.3.1 Patterns for Predefined Performance Groups
Predefined Performance Groups (PPG) are defined based
on pre and posttest scores that we collected. The pre and
posttest were highly similar among different semesters (small
variation on questions) and the scores were further normal-
ized as score / max score (min score is 0). Additionally,
we compute a normalized learning gain score as (normalized
post score) - (normalized pre score). For each of the pretest,
posttest, and learning gain measures, students are classi-
fied in three groups using the percentiles 33.3 and 66.7: low,
medium and high. For example, a student with pretest lower
or equal than the percentile 33.3 in the pretest score distri-
bution is classified as low pretest student. Summarizing,
we have 3 PPG (low, medium, high) for each performance
measure (pretest, posttest and learning gain). As explained
before, the dataset contains 67 students with pretest and
65 students with both pre and posttest. Table 4 shows the
number of students in each PPG.

Do students with similar performances have similar pat-
terns for solving parameterized exercises? Is this similarity,
between the students of the same predefined performance
group, more than the similarity we can find between the stu-
dents from different groups? For this analysis we contrast
the genome built using all the term activity (all problem
solving sequences) of the students classified in the perfor-
mance groups described before. We sample 50% of all possi-
ble pairs of students within and between PPGs and compute
the distances (Jensen-Shannon divergence) of all within and
between group pairs. Then, we compare the average of dis-
tances within and between groups to see if students inside
each group are more similar to each other than to students
in other groups. Normality and homogeneity of variance
is not met for all groups, thus we use Krustal-Wallis non-
parametric mean rank test and Mann-Whitney test for single
comparisons. We constrained the analysis to PPGs low and
high to see extreme differences.

Results are shown in Table 5. Mann-Whitney comparison
is reported only where significant differences among groups
were found (pretest). For pretest groups, distances within
the low group (mean rank = 222.70) are significantly smaller
than distances between low and high groups (mean rank =



Table 5: Statistical tests on differences on distances between pairs of students within low, within high, and
between low and high PPGs.

low high low-high Krustal-Wallis test Mann-Whitney test
M SE M SE M SE Mean Ranks χ2 sig. Mean ranks z sig.

(low,high,low-high)
Pretest .465 .014 .547 .017 .512 .010 294.68, 368.67, 341.51 11.926 .003 222.70, 258.21 -2.537 .011

low < low-high
Posttest .486 .016 .516 .018 .511 .011 256.41, 271.97, 273.69 1.061 .588 - - -
L. Gain .507 .019 .470 .018 .517 .013 242.32, 216.57, 251.35 5.276 .071 - - -
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Figure 4: Top 30 patterns and their frequencies in each cluster. Patterns are ordered by the difference on
frequencies between cluster two (non-confirmers) and one (confirmers).

258.21), z = −2.537, p = .011. This suggests that stu-
dent with no previous experience tend to behave differently
than students with stronger background. There is no signifi-
cant difference between high and low-high distances, though,
meaning that the high group behaved more heterogeneously
than low group. For posttest and learning gain groups there
are no significant differences on distances within and be-
tween groups. These results are intriguing, as we will ex-
pected to find clear differences among performance groups.
Since we could not find those differences, we could hypoth-
esize that specific behavior patterns can’t be easily charac-
terized as universally helpful or harmful for student perfor-
mance, instead, the impact of each micro-pattern on student
behavior might depend on the whole profile of micro-patters,
i.e., the genome. Thus, to find connections between genome
and performance, we need to start from the opposite side:
cluster the students based on the genome, characterize the
clusters in terms of the distinguishable patterns, and find
helpful and harmful patterns within each class. We describe
these analyses in the following sub sections.

5.3.2 Clustering students by their genome
We use the genome as a feature vector and cluster students
using the spectral clustering technique [18] as it gives a bet-
ter separation of the students. We choose two clusters (K=2)
as we observe that two clusters give the largest eigen-gap,
suggesting there are two intrinsic groups in the data. Figure
4 shows the top 30 frequent patterns in both of the clus-
ters. Each point represents the average frequency of seeing
a particular pattern in the cluster. Error bars are included
to indicate significance. We order the patterns in x-axis by
the differences between clusters two and one. As we can see
in this figure, some of the patterns, such as fS , FS , ss,
Sss, etc., occur with significant frequency difference in the
two clusters and some other patterns, such as fS, fs , Ff,
etc., do not show significant differences. If we look more

closely, the sequences that start with failure are mostly re-
lated to the students in cluster two and the sequences that
start with success are mostly related to the students in clus-
ter one. Also, we can see that the students in cluster one
tend to repeat their successful attempts more and more fre-
quently (e.g. the ssss pattern). In other words, even when
they get the right answer to the question, they will insist on
confirming knowing the question by repeating it again and
again. Unlike students in cluster one, the students in clus-
ter two are much less prone to this “confirmation” behavior.
Instead, they are more prone to stop working with an exer-
cise early, frequently right after figuring out the first right
answer to the question, even if they have struggled for the
correct answer in their previous attempts (e.g. fS , FS ,
and FS patterns). Thus, using the student genome, we can
identify two major types of student behaviors in solving pa-
rameterized exercises. Based on these observations above,
we call the first cluster of the students the confirmers and
the second cluster the non-confirmers.

5.3.3 Performance differences among clusters
Once two clusters of students that are similar in their over-
all behavior are identified, we can re-examine the connec-
tion between student success and behavior patterns on the
cluster level. We study pattern by pattern differences be-
tween different PPGs within each cluster and describe the
patterns that distinguish them. Both of the clusters have
students from all PPGs. As a result, we cannot say that the
student’s genome has a direct impact on the performance of
the student. Both confirmers and non-confirmers can have
high or low performance. To look at the clusters deeply and
to see if there are any differences in the patterns, within each
cluster, that can drive students’ performance, we repeat the
first analysis within each cluster looking at the learning gain.
For each of the clusters, we look at the patterns and the dif-
ference between their average frequencies for the students
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Figure 5: Top 30 patterns and their frequencies for low and high learning gain PPG by cluster.

with low and high learning gain. The result is shown in
Figure 5. The upper diagram shows the students in cluster
one (the confirmers) and the lower diagram shows the stu-
dents in cluster tow (the non-confirmers). The red line with
round markers show the pattern frequencies for low learning
gain students and the blue line with the triangle marker is
representative of high learning gain students.

If we look at the patterns in cluster one (the confirmers), we
can see that there are some patterns that show significant
difference between the low and high learning gain students.
Each of these patterns starts with a failure: FS and Ff
have long failures in the beginning of the patterns and fF,
fs , and ff, have short failures at the beginning of the pat-
terns. Among these patterns, only FS is practiced more by
the high learning gain students. This indicates that, among
the confirmer students, the ones that put a good amount
of effort to answer a question correctly after a long failure
and stop repeating the same question learn more. The low
learning gain group shows more frequent use of the Ff, fF,
fs , and ff patterns. The common element of all of these
patterns is short failure (f ). If we look at Figure 5 for con-
firmers, we can see that all of the patterns that include a
short failure, are practiced more by the low gain students.
This can indicate that the low gain confirmer students do not
spend enough time and thought on the questions to which
they do not know the answer.

The non-confirmers show more pattern differences between
the low and high learning gainers. We can see that the high
learning gain group follow the patterns of FF, FS, FS,
SS , SS, SS, and Ss more frequently. This means that the
high learning gain, non-confirmer students tend to continue
trying a non-parameterized exercise and spending time on it
after they failed in it or it took them a long time to get to the
correct answer for that exercise. In this sense, these students
are closer to the confirmer group of students (cluster 1) but
only at the times that they are not sure if they have learnt
the solution to an exercise. On the other hand, the low
learning gain group tend to develop the fs , fs , and ff
patterns in their sequences. The first two indicates that they
give up practicing the exercise after having a short success
that comes after a short failure. Also, they tend to repeat
short failures on the same exercise more often.

Comparing beneficial and harmful patterns for the two clus-
ters, we can make an interesting observation that the in-
creased use of several beneficial patterns for each cluster
make students more similar to the opposite cluster. For
example, while confirmers have a generally low tendency
to stop after first hard success FS , successful confirmers
demonstrate this pattern much more frequently. On the
other hand, while non-confirmers generally tend to stop af-
ter first hard success, successful non-confirmers have higher
tendency to continue after hard success as shown by signif-
icantly increased frequencies of such patterns as SS , SS ,
and Ss. In other words, while the two clusters are consid-
erably different by their behavior overall, the “centrist” stu-
dents that are closer to the opposite cluster tend to be more
successful, while the extreme behavior that distinguishes the
cluster is frequently related to less successful performance.

6. CONCLUSIONS AND FUTURE WORK
In this paper we explored patterns of student repetitive work
with parameterized exercises for Java programming domain.
The goal of this work was to understand the connections be-
tween micro- and macro-level behavior patterns and factors
that might be responsible for this behavior such as exercise
difficulty, student personality, level of knowledge, or posi-
tion in the course. In turn, we hoped that this understand-
ing could help us predict how a specific student would work
with an exercise and prevent inefficient behavior such as
repetitive successful attempts when the exercise become too
easy to contribute to student knowledge growth. To explore
the impact of students’ personal features on their work with
exercises, we built the student problem solving genome, a
compact representation that encapsulates the specifics of in-
dividual behavior patterns. To build the genome, we started
with micro-patterns (genes) that describe small chunks of
repetitive behavior based on correctness and duration of
each attempt. We then constructed a genome as a frequency
profile that shows the dominance of each gene in the student
behavior.

Using the genome approach we analyzed the stability of be-
havior patterns for students and groups and explored their
connection with student success in the course. The most in-
teresting finding was a considerable stability of the genome
on individual level. As our analysis showed, the genome



uniquely identifies a user among other users over the whole
duration of the course despite a considerable growth of stu-
dent knowledge over the course duration. While the prob-
lem complexity does affect the behavior patterns as well, we
demonstrated that the genome is defined by some inherent
characteristics of the user rather than a difficulty profile of
the problems she solves.

To find a connection between the problem-solving genome
and student performance, we examined genomes for vari-
ous groups of students. Since a direct attempt to associate
genome with performance-related groups (a typical way to
group students in educational contexts) was not successful,
we started from the opposite side and formed student groups
on the basis of their genome similarity. As it appears, all
students could be most reliably split into just two cohorts
that differ considerably by their behavior. After that split,
we were able to contrast successful and less successful learn-
ers by their behavior and identify “beneficial” and “harmful”
genes for each cohort. In particular, it was interesting to ob-
serve that the behavior of successful learners in one cohort
was somewhat closer to the behavior of the opposite cohort.

Note that the reported finding are limited to a specific con-
text - non-mandatory work with Java programming exer-
cises. It is not clear whether problem solving behavior pat-
terns in other domains or the same domain with mandatory
exercises will exhibit the same properties. We also believe,
however, that the“genome”approach provides a new way for
exploration of student problem solving behavior and plan to
explore to the stability of the “genome” and the presence of
behavior cohorts in other domains and contexts. In addition,
we would like to proceed to our ultimate goal of recognition
and prediction of inefficient behavior. The discovery of a sta-
ble genome provides a good ground for developing a recog-
nition engine and the presence of behavior cohorts indicates
that some good guidance (encouraging “beneficial” patterns
and discouraging “harmful” ones) could be provided even in
the early stage of student work when it might be harder to
build a reliable genomic profile.
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