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Bayesian networks (BNs) are highly practical and successful tools for modeling probabilistic

knowledge. They can be constructed by an expert, learned from data, or by a combination

of the two. A popular approach to learning the structure of a BN is the constraint-based

search (CBS) approach, with the PC algorithm being a prominent example.

In recent years, we have been experiencing a data deluge. We have access to more data,

big and small, than ever before. The exponential nature of BN algorithms, however, hinders

large-scale analysis. Developments in parallel and distributed computing have made the

computational power required for large-scale data processing widely available, yielding op-

portunities for developing parallel and distributed algorithms for BN learning and inference.

In this dissertation, (1) I propose two MapReduce versions of the PC algorithm, aimed

at solving an increasingly common case: data is not necessarily massive in the number

of records, but more and more so in the number of variables. (2) When the number of

data records is small, the PC algorithm experiences problems in independence testing. Em-

pirically, I explore a contradiction in the literature on how to resolve the case of having

insufficient data when testing the independence of two variables: declare independence or

dependence. (3) When BNs learned from data become complex in terms of graph density,

they may require more parameters than we can feasibly store. I propose and evaluate five

approaches to pruning a BN structure to guarantee that it will be tractable for storage and

inference. I follow this up by proposing three approaches to improving the classification

accuracy of a BN by modifying its structure.
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1.0 INTRODUCTION

Bayesian networks (BNs) [Pearl, 1988] are highly practical and successful tools for modeling

uncertain domains. BNs and similar graphical models have enabled probabilistic models for

many different types of tasks, in many different domains, and of many different magnitudes.

The assumptions of BNs allow for efficient representation of probabilistic knowledge and

efficient inference algorithms [Lauritzen and Spiegelhalter, 1988] for most cases, even though

theoretically, both exact [Cooper, 1990] and approximate [Dagum and Luby, 1993] inference

are NP-hard.

There are three main approaches to constructing Bayesian networks. The first approach

focuses on constructing a model by consulting domain experts. This involves encoding

and establishing relations among variables and estimating probabilities, which is usually

time consuming. In the second approach, we construct a Bayesian network by learning

the structure [Cooper and Herskovits, 1992, Spirtes et al., 1993] and the model parameters

[Lauritzen, 1995] from a dataset. With the increased availability of data and computational

power, the second approach, when available, is preferred. The third approach is a hybrid of

the first two approaches. Here, two different routes can be taken to construct a model: 1) An

expert constructs the graphical structure, and an algorithm is used to learn the parameters,

and 2) The expert provides background knowledge to an algorithm, which then constructs

a BN that satisfies the constraints set by the expert.

In recent years, we have been experiencing a data deluge. Datasets can be so large,

they may not fit on one computer, and if they do, the exponential nature of BN algorithms

might preclude practical and timely data analysis. One response to this problem has been to

investigate and exploit parallelism. Clusters of computers are now commonly used to store

large amounts of data and to process these data using parallel or distributed computing
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paradigms. Popular approaches are based around the communication protocol standard MPI

[Snir et al., 1995, Gropp et al., 1999], and the MapReduce framework [Dean and Ghemawat,

2004, White, 2012], popularized by publications of Google and the open source Hadoop

framework, developed in part at Yahoo!

For both parallelization frameworks, work has been done on structure learning algo-

rithms for Bayesian networks. Most of the work focused on creating parallel versions of the

Bayesian search approach [Cooper and Herskovits, 1992]. There are examples of exact algo-

rithms [Nikolova et al., 2009, Tamada et al., 2011], dividing up the search space [Xiang and

Chu, 1999, Lam and Segre, 2002], local optimization [Liu et al., 2005], and particle swarm

optimization [Sahin and Devasia, 2007]. All these examples make use of the MPI standard

and the majority of the approaches are score-based, but a few are constraint-based [Spirtes

et al., 1993, Tsamardinos et al., 2006, Nikolova and Aluru, 2011]. There are two MapReduce

implementations of structure learning algorithms [Chen et al., 2011, Fang et al., 2013]. Both

focus their parallelization efforts mostly on distributed computation of sufficient statistics

necessary for the Bayesian score [Fang et al., 2013] or mutual information [Chen et al., 2011]

calculation.

The MapReduce framework allows for computation on an enormous scale, providing

the means for distributed computation and storage while shielding most technical details

from the end-user, making it potentially a good platform for learning BN structures from

large datasets. The two example algorithms from the literature allow for adequate support

for analysis of data with many records, but both approaches require a large number of

MapReduce jobs, dependent on the number of variables in the dataset. They have O (n4)

[Chen et al., 2011] and O (n2) [Fang et al., 2013] worst-case requirements, and I found that

the level of performance of the algorithms is no longer guaranteed when faced with datasets

that are not necessarily “long” (records), but are “wide” (variables). I have investigated

approaches based on the PC algorithm and have explicitly avoided dependence on the number

of variables for the number of MapReduce jobs that the algorithms require, this to improve

the ability of the algorithms to scale up to datasets with a larger number of variables.
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1.1 CONTRIBUTIONS

In this dissertation, I propose two MapReduce versions of the PC algorithm, I address a

contradiction in the literature on how to resolve the case of having insufficient data when

testing the independence of two variables, I propose and evaluate five approaches to pruning

a BN structure to guarantee that it will be tractable for storage and inference and I follow

this up by proposing three approaches to improving the classification accuracy of a BN by

modifying its structure.

While each of these contributions, discussed over the course of three chapters, addresses

different problems, there is a common theme that connects them. In each case we will find

that algorithm design decisions, be it for Bayesian network structure learning algorithms

or for Bayesian network structure modification algorithms, have a significant impact on

the end result. For instance, between the MapReduce algorithms I have evaluated there

are significant differences in their ability to scale their structure learning performance to

datasets with larger number of variables. Similarly, the default decision to be executed when

there are not enough data samples to satisfy a recommended ratio of samples to contingency

table cells, eventually impacts the tractability and quality of Bayesian inference run on

a structure. A suboptimal choice here, may lead to networks that are too dense. This

may cause potential overfitting problems when learning classifiers due to the increase in

parameters. Alternatively, memory usage might increase beyond a single computer’s ability

to load the model in memory completely. Finally, when investigating potential solutions to

this “network density” problem, I found statistically significant differences between different

approaches aimed at controlling the number of parents of a network. The approaches I

proposed to rank the parents of a node were presented the exact same networks, but some of

them were unable to outperform a randomized approach on either of the tasks that I defined

for the experiments, while other resulted in sparser networks without negatively impacting

the performance. Although each of the contributions has in common that design decisions

for the algorithms used for either learning or modifying Bayesian network structures can

positively influence the tractability and quality of Bayesian network inference or Bayesian

network structure learning, I have defined four separate hypotheses, each tailored to the
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specific contribution. In the following three subsections, each representing a chapter in the

dissertation (Chapters 5, 6, and 7 respectively), I elaborate on the work done and formulate

the hypotheses that were tested.

1.1.1 MapReduce

I propose two MapReduce versions of the PC algorithm [Spirtes et al., 1993], aimed at solving

an increasingly common case: data is not necessarily massive in the number of records, but

more and more so in the number of variables. I evaluate the performance of these algorithms

on a number of datasets, the largest having 4,933 variables, and compare their performance

with two examples of MapReduce structure learning algorithms for Bayesian networks [Chen

et al., 2011, Fang et al., 2013], and a single-processor version of the PC algorithm. I set out

to test the following hypothesis:

• H1: It is computationally feasible to learn Bayesian network structures from datasets
that have very large numbers of variables using the MapReduce framework.

1.1.2 Insufficient Data

When the number of data records is small, the PC algorithm experiences problems in in-

dependence testing. When there are insufficient data available for the independence tests,

which are performed in the first phase of the algorithm, statistical errors may significantly

influence the final BN structure. Here, data is considered insufficient when there are not

enough data samples to satisfy a predetermined ratio of samples to contingency table cells.

In their book, Spirtes et al. [1993] suggest a ratio of 10 to 1 of samples to cells, ensuring

more or less a minimum level of reliability for the independence tests. The advice is, that

when the ratio is not satisfied, the test should not be performed and the variables connected

by the edge should be considered dependent. Tsamardinos et al. [2006] state in their paper

that they follow the advice by Spirtes et al. [2000, identical to 1993 version], but where

Spirtes et al. recommend keeping an edge if there are to few records, Tsamardinos et al.

recommend removing the edge. I am not sure whether this was a conscious decision or a

misunderstanding, nevertheless it is interesting to explore this contradiction.
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The classical χ2 test of independence, used by the PC algorithm, defines as its null

hypothesis that the variables are independent. Thus, variable dependence is something that

requires support from the data. The recommendation of Spites et al. seems counterintuitive,

since when we have sufficient data, before keeping an edge we have to disprove the null

hypothesis. But, actually their advice is quite conservative. Networks that contain more

arcs can represent more distributions, since they are less constrained by assumptions of

independence. But, observing that many Bayesian networks in the real world, tend to be

sparse, the conservative approach of Spirtes et al. might not necessarily be the best strategy.

I have formulated the following hypothesis that I test in this dissertation:

• H2: Faced with an insufficient data sample to total contingency table cell number ratio,
when testing the independence of two variables connected by an edge, removing this edge
results in better Bayesian network structures.

1.1.3 Network Tractability

When Bayesian networks learned from data become complex in terms of graph density, they

may require more parameters than we can feasibly store on disk or in memory, rendering

them computationally intractable and, possibly from a practical point of view, useless. To

remedy this problem, I propose and evaluate five approaches to pruning a BN structure

to guarantee that it will be tractable for storage and inference, and I follow this up by

proposing three approaches to improving the classification accuracy of a BN by modifying

its structure. This work can be summarized in the following two hypotheses, which are

tested in my dissertation:

• H3: The tractability of inference of a Bayesian network can be improved by making
structure modifications, without compromising its classification performance.

• H4: Well-chosen structure modifications can improve the classification accuracy of a
Bayesian network.
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1.2 NOTATION

In the subsequent chapters I will use the following notation:

Variables and nodes are denoted by capital letters : X

Outcomes of variables are in lowercase : x

The cardinality of a variable X is denoted by : Card (X)

Sets of variables and nodes are in bold : X

Power set of set S : PS (S)

The size of a set S is denoted by : |S|

Parents of a Node X : Pa (X)

Adjacent nodes of a node X : Adj (X)

Test of independence between variables X and Y given set Z : I (X, Y |Z)

Graph : G

Vertex-set of Graph G : V (G)

Edge-set of Graph G : E (G)

Throughout this dissertation I use the terms nodes and variables to represent variables

of a system modeled by a Bayesian network or variables of a dataset interchangeably.

1.3 ORGANIZATION OF THE DISSERTATION

The remainder of this dissertation is structured as follows. In Chapter 2, I cover the necessary

background information. I describe previous work in Chapter 3 on the use of distance mea-

sures for quality assessment of structure learning algorithms, where I highlight the Hamming

distance metric, which I use in the empirical evaluations of later chapters. In Chapter 4, I

discuss related work on parallelizing structure learning algorithms. In Chapter 5, I propose

two MapReduce versions of the PC algorithm, review two MapReduce algorithms from the

literature, and evaluate these four algorithms. I conclude this chapter with a discussion on

the feasibility of applying the MapReduce framework to BN structure learning algorithms.
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In Chapter 6, I presents an inconsistency in the literature on how to act when faced with

insufficient data when performing independence tests, and I evaluate empirically the perfor-

mance of the proposed solutions of both views. In Chapter 7 I propose and evaluate five

approaches to make a Bayesian network more tractable, and additionally, using the same

methodology, I propose and evaluate three approaches that aim to improve the classification

accuracy of a Bayesian network by making modifications to its network structure. I summa-

rize my work in Chapter 8. Here, I discuss the outcomes of the experiments I have performed

and if the data supports the hypotheses that I proposed in section 1.1 and I conclude with

a discussion of possible future work.
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2.0 BACKGROUND

In this chapter I cover the relevant background on Bayesian networks and distributed com-

puting frameworks.

2.1 BAYESIAN NETWORKS

Bayesian networks [Pearl, 1988] (BNs) are efficient representations of joint probability dis-

tributions based on their factorization into products of conditional probability distributions.

By an explicit representation of conditional independences among variables, they can signif-

icantly decrease the number of necessary parameters and make probabilistic modeling and

inference in large problem domains feasible.

Any joint probability distribution can be factorized into a product of conditional prob-

ability distributions. This factorization can be represented by an acyclic directed graph

(DAG). If a variable Xi is represented by a node Xi in the graph, the conditioning variables

of Xi are represented as parents of the node Xi.

Typically, there are multiple DAG representations of a joint probability distribution. A

trivial example of this is the case that represents a domain with no (conditional) indepen-

dences whatsoever, and that can be described by the following factorization:

P (X1X2X3 . . . , Xn−1Xn) = P (X1)P (X2 |X1 )P (X3 |X2X1 ) · · ·P (Xn |Xn−1,...X3X2X1 ) .

(2.1)
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This factorization can be represented by a completely connected directed graph. There

are n! possible orderings of n variables and, thus there are n! possible DAGs that can

represent this distribution.

If two variables Xi and Xj are (conditionally) independent of each other, neither of the

two will appear in the other’s conditioning set and, thus, neither can be a parent of the

other in the DAG. There is thus no arc between the nodes Xj and Xi. If a DAG represents

a factorization of a joint probability distribution, then this joint probability distribution can

be recovered by applying the following equation

P (X1, X2, . . . , Xn) =
n∏
i=1

P (Xi|Pa(Xi)) , (2.2)

where Pa(Xi) denotes the parents of Xi in the graph.

Different DAGs are able to accurately represent the same joint probability distribution.

As an example, the n! DAGs, with appropriate parameters calculated, are all equally capable

of representing the original joint distribution, even though they have different structures. We

can say that they are structurally equivalent, which is captured in the following [Chickering,

1995] definition:

Two DAG structures are equivalent if the set of distributions that can be represented
by one of the DAGs is identical to the set of distributions that can be represented by the
other1

A DAG structure encodes a set of conditional independences. For another DAG to be

considered equivalent, its structure must encode the same independences. Figure 2.1 shows

three simple examples of DAGs that are all capable of representing the same distribution.

The existence of multiple structures that are equally capable of representing a joint

probability distribution complicates the process of learning a structure from data. It is not

possible, in general, to discover the orientation of all edges of a DAG, since the orientation

of some edges may be immaterial to the set of independences that the graph represents. The

inability to distinguish between graphs is known as statistical indistinguishability. [Spirtes

1I took this definition from Chickering [1995], although it was originally proposed by Verma and Pearl
[1991] but differently phrased.

9



(a) (b) (c) (d)

Figure 2.1: Three DAGs that encode independence of A and C conditional on B (a through

c). (d) shows a “pattern” representing these three graphs.

et al., 1993] Some substructures of graphs are recognizable. Figure 2.2 shows a DAG struc-

ture, known as a v-structure, which is uniquely identifiable and is a sole member of its

equivalence class.

Figure 2.2: A v-structure

A v-structure is a triple of nodes, where two nodes, which are not directly connected,

have edges directed into the third node. Finding v-structures is the key of the constraint-

based search approach to structure learning [Spirtes et al., 1993]. v-Structures are also the

key to defining equivalence classes over DAG structures.

Two DAGs are equivalent if and only if they have the same skeletons (both graphs
have the same set of edges, disregarding exact edge orientation) and the same v-structures.
[Verma and Pearl, 1991]
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An equivalence class E(G) can be represented by a special graph structure called a partial

directed acyclic graphs (PDAGs) or a pattern. [Verma and Pearl, 1991] The edges that

belong to a v-structure are directed edges, and other edges, whose orientation typically

cannot be determined, are represented by undirected edges. A pattern representing the

DAGs in Figures 2.1(a) through 2.1(c) is shown in Figure 2.1(d).

Consider the Asia network [Lauritzen and Spiegelhalter, 1988]. Figure 2.3(a) shows the

network, and Figure 2.3(b) shows the pattern that represents the equivalence class that the

network belongs to. The top three edges are undirected in the pattern. The existence of

undirected edges in the pattern means that the equivalence class has more than one member,

exactly six in this case. Although there are eight possible combinations, two of them would

cause a new v-structure to be created, which would bring the resulting network outside of

its equivalence class. Figure 2.3(c) shows another member of the equivalence class Asia

belongs to. Please note that some of the arcs are reversed compared to the original network

in Figure 2.3(a).

(a) (b) (c)

Figure 2.3: The Asia network (a), its corresponding pattern (b) representing its equivalence

class, and another instance (c) of Asia’s equivalence class.

11



2.2 INFERENCE IN BAYESIAN NETWORKS

A Bayesian network efficiently represents a joint probability distribution. Its main use is

to allow for inference to be performed on the variables that make up the joint distribution.

Inference allows for interesting questions to be answer. In the medical domain, we might be

interested to know which disease, given a set of observed symptoms, is the most likely cause

of the symptoms. Conversely we can infer which symptom is the most informative when

diagnosing a disease. Additionally, we can define a cost model on the tests one can perform

on a patient. This allows us to find the most cost effective way to diagnose a disease or

distinguish between multiple diseases.

In the 1970s, pioneering work was done on probabilistic inference, but this work was

hindered by the computational complexity of working with full joint probability distributions.

Table size and calculation time are both exponential in the number of variables, which

prohibited the use of probabilistic models beyond simple toy problems. It was not until

the 1980s with the appearance of Bayesian networks that larger models became feasible.

Although the space for the model and time required for inference are still exponential in the

worst case, algorithms have been developed that make inference feasible on large networks.

We can divide the approaches to Bayesian network inference into two groups: 1) exact

inference and 2) approximate inference. The exact algorithms calculate probabilistic queries

without error. The second group of algorithms usually trade accuracy for algorithm sim-

plicity. There are cases where inexact algorithms give better time performance than exact

methods without sacrificing too much accuracy, on others, exact methods will outperform

the inexact counterparts.

2.2.1 Exact Inference

In general, the type of queries we are interested are in the form of P (A |B), were both A

and B can be sets of variables. We call the conditioning set B evidence, variables for which

we have observed their current states. The set A consists of the query variables, i.e., the

variables that we are interested in. If we just have a joint probability distribution consisting
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of P (A,B,C), where A are the query variables, B are the evidence variables, and C are

neither evidence nor query variables, we can perform inference in the following way:

P (A |B) =

∑
C P (A,B,C)∑

A,C P (A,B,C)
. (2.3)

This approach does not scale, as we need exponential space for the probability distri-

bution and need exponential time for the calculation. The graph structure of a Bayesian

network aids algorithms that cleverly reuse computation results to allow for fast and efficient

inference most of the time.

2.2.1.1 Variable Elimination One approach that is an improvement over the naive

brute force calculation of probabilities is called variable elimination. Using the chain rule

and the Bayesian network we can break up a joint probability distribution into a product of

conditional probability distributions. Breaking up de the joint distribution into the product

of conditionals does not solve our complexity problem just yet, but it allows us to push in

summations which will save us a considerable amount of computation. Consider again the

Asia network from Figure 2.3(a). The joint distribution of the network is factored in the

following way.

P (A, S, T, L,B,O,X,D) =

P (A)P (S)P (T |A)P (L |S )P (B |S )P (O |T, L)P (X |O )P (D |B,O ) .

If we want to calculate P (L |X = true) (Probability of lung cancer given a positive X-ray

result) we will get the following equation:

P (L |x) =

α
∑

a P (a)
∑

t P (t |a)
∑

s P (S)P (L |s)
∑

b P (b |s)
∑

o P (o |t, L)P (x |o)
∑

d P (d |b, o) .

Where α is the normalization factor P (x). The last term
∑

d P (d |b, o) can be eliminated

immediately, since it simply sums to 1, which leaves us with

P (L |x) = α
∑

a P (a)︸ ︷︷ ︸
A

∑
t P (t |a)︸ ︷︷ ︸

T

∑
s P (S)︸ ︷︷ ︸

S

P (L |s)︸ ︷︷ ︸
L

∑
b P (b |s)︸ ︷︷ ︸

B

∑
o P (o |t, L)︸ ︷︷ ︸

O

P (x |o)︸ ︷︷ ︸
X

.
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The conditional probabilities are usually represented as potentials. Potentials are non-

negative functions, they thus more general than probability distribution functions, where

besides the requirement of nonnegative entries, the probabilities are required to sum to one.

This simplifies the operations on the factors to do the necessary calculations. Effectively, the

factors are simply tables with entries for all possible combinations of the variables they con-

tain. For variable elimination, three operations are defined for the factors: 1) Summation, 2)

Product, 3) Observation of Evidence. When we apply summation, we sum out one or more

variables from the factor. One can visualize this for a two-dimensional factor by summing

all rows of a matrix, leaving just one row that contains the sums of all (original) columns. A

product is defined over two factors. The result is a new factor which variable set is a union

of the variable sets of the factors the product was calculated over. To calculate the entries

of the new factor the entries of the two input factors are matched on their variable values:

FOTLX (o1, t2, l3, x2) = FOX (o1, x2) ∗ FOTL (o1, t2, l3) . (2.4)

Here the O values needs to be equal for factors FOTL and FOX to calculate the entries for the

new factor FOTLX . A scalar product, with α is calculated by multiplying α on all elements

of the factor. When we observe evidence for a variable (Here, X), we set to ‘0’ all entries

of (at least) one factor containing the variables that are not consistent with the evidence.

Minimally, this can be implemented as a product with a factor with one variable which

has a ‘1’ for the evidence state and a ‘0’ for the others, which makes the third operation

unnecessary. With these operations we can now calculate the inference P (L |x) by applying

multiplication and summation repeatedly. The normalization constant α can be acquired

(inverted) by summing out the variable L from factor FLx (L, x), the end result of summing

and multiplying the factors.

The efficiency of the algorithm depends on the order of variables being summed out.

In a bad ordering, we end up with larger factors that contain more variables. Since the

factors must contain an element for all possible combinations of its variables, this makes the

variable elimination algorithm exponential in the largest factor. Finding an optimal ordering

is a NP-complete problem, hence usually heuristics are used.
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2.2.1.2 Junction Tree Algorithm By using factors, variable elimination is preventing

unnecessary computations, making probabilistic inference usually more efficient than the

brute force approach. A key problem with variable elimination and the brute force approach

is that for every inference you effectively have to start over from scratch. A common Bayesian

network inference task is to calculate the posterior distribution for all non-evidence nodes.

This would require to perform variable elimination n times if there are n non-evidence

variables. The junction tree algorithm [Lauritzen and Spiegelhalter, 1988] builds a special

data structure which allows for easy calculation of all posteriors for all non-evidence variables.

The junction tree data structure is constructed over a few steps, please refer to [Huang

and Darwiche, 1996] for a very clear and in-depth explanation of each step.

1. First a copy of the BN is made and all directed edges in this copy are made undirected.

Using the original graph, the undirected copy is moralized. For each child node all parents

are “married” by adding undirected edges between all pairs of parents of the child.

2. The moral graph is then triangulated. This is accomplished by adding an edges between

pairs of nodes that are part of a loop that contains four or more nodes. The process

continues until the are no more loops of length four or more.

3. The triangulated graph is then used to create clique nodes. These cliques contain multiple

nodes. The cliques are created by removing nodes from the triangulated graph and noting

the nodes which were connected to the removed node. Cliques that are subsets of other

cliques are removed.

4. The created clique nodes are formed into the final junction tree structure by ensuring

that neighboring cliques always have a subset of nodes in common and that for any

subset of variables there exists only one path in the junction tree.

There usually is more than one way to translate a Bayesian network into a junction tree.

One factor is the order of removing the variables from the triangulated graph, known as the

elimination order. Different elimination orders create different sets of cliques which can can

have different numbers of variables. The potential table that comes with a clique increases

in size exponentially with the number of variables.

15



Finding the optimal elimination order, however, is a NP-complete problem [Cooper,

1990]. Usually heuristics are used to find elimination orders that are adequate.

After constructing the junction tree, it is initialized by multiplying the conditional dis-

tributions of the Bayesian network on the cliques, which when created are initialized with

identity potential tables (all ones). Some of the distributions may fit into multiple cliques,

if the variables in the conditional distribution match variables in multiple cliques, but the

distributions should only by multiplied once, but it is immaterial on which clique this is

done. Evidence is set in the same way as variable elimination. It is sufficient to set evidence

for a variable on only one clique.

Inference in junction trees works by passing messages among the nodes. These messages

propagate the evidence that was introduced in the clique potentials of the tree structure.

After the message passing scheme has been completed all the cliques are updated with the

evidence and, the reason why junction trees are so convenient for BN inference, each clique

potential contains the joint distribution of the variables that are contained within the clique.

At this stage, computing the posterior distribution of any variable reduces to finding a clique

that contains this variable and marginalizing out all other variables in the clique. Clique

potentials are orders of magnitude smaller than the full joint distribution, thus calculations

are much more efficient. The message passing scheme works as follows:

1. Pick any clique in the junction tree

2. Recursively collect the messages from all other cliques and incorporate the messages in

this clique

3. Calculate a message from the clique and distribute it recursively to all other cliques

After this two-phase scheme finishes, all cliques will contain the joint distributions of their

variables.

2.2.2 Approximate Inference

Even with its enormous space-time improvements, there are still cases where using exact

inference methods such as the junction tree algorithm on certain models, would still require

an undesirable amount of space. Approximate algorithms have been developed as a trade
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off between having the exact answer and the amount of space or time necessary to compute

the answer. Next, I discuss two approaches to approximate inference.

2.2.2.1 Loopy Belief Propagation LBP [Murphy et al., 1999], is based on a precursor

[Kim and Pearl, 1983] to the Junction tree algorithm [Lauritzen and Spiegelhalter, 1988].

Instead of having a secondary structure to perform the message passing procedure on, the

plain Bayesian network structure is used. Between nodes, messages are calculated and are

passed around. This algorithm is exact when the BN is a tree. If the BN does not satisfy this

requirement the algorithm will not be able to calculate the exact solution. LBP has a slightly

modified message passing scheme, compared to the junction tree algorithm. Normally a node

needs to first collect all messages from its neighbors before passing its own message. When

there are (undirected) loops in the graph, for instance, due to nodes with multiple parents

that share a common ancestor, some nodes may never be able to pass messages since they

will be waiting for other messages from nodes in the loop, which in turn are also waiting for

messages from nodes in the loop, causing a deadlock.

LBPs solution is for nodes to collect all available messages and then to send their own

message. Since the messages now can be incomplete, the process is repeated for all the nodes

over many iterations until the distributions in the network converge to a stable state. The

algorithm does not guarantee convergence, but tends to work quite well in general [Murphy

et al., 1999].

2.2.2.2 Stochastic Sampling is a different approach to approximate inference. We use

the Bayesian network to generate data samples. These samples are then used to estimate

the query probability using the usual maximum likelihood estimation approach. Assume we

generate some samples for the Asia network. We could end up with the following samples:

The simplest way to generate samples like these is with a method known as Probabilistic

Logic Sampling [Henrion, 1988]. We sort the nodes topologically (parents appear before all

of their children). We are then guaranteed to start with a node that is parentless. Such a

node has a prior distribution instead of a conditional distribution (if a node has parents).

Using a random number generator we can sample a value for this node. This value is then set

17



Table 2.1: Data Sample from the Asia Network

VisitToAsia Tuberculosis Smoking LungCancer TbOrCa XRay Bronchitis Dyspnea
NoVisit Absent NonSmoker Absent Nothing Normal Present Present

Visit Absent NonSmoker Absent Nothing Normal Absent Present
NoVisit Absent NonSmoker Absent Nothing Normal Present Present
NoVisit Absent Smoker Present CancerORTuberculosis Abnormal Absent Present
NoVisit Absent Smoker Absent Nothing Normal Present Present
NoVisit Absent Smoker Present CancerORTuberculosis Abnormal Present Present
NoVisit Absent NonSmoker Absent Nothing Normal Absent Absent
NoVisit Absent NonSmoker Absent Nothing Normal Absent Absent
NoVisit Absent NonSmoker Absent Nothing Normal Present Present
NoVisit Absent Smoker Present CancerORTuberculosis Abnormal Present Present

for this node and we move on to the next node. Nodes that have parent are conditioned on

the values of their parents and then sampled in the same way as the parentless nodes. The

process continues until we have sampled values for all nodes in the network. This process is

continued until we have the number of network samples we need.

If we want to estimate P (Dyspnea = Present) we count the number of times the node

Dyspnea has the value present in the sample and divide this number by the total number of

samples. Our estimate would then be P̂ (Dyspnea = Present) = 0.8, which still is quite far

from the actual probability of 0.436. With more samples available to us our estimate would

improve.

Up to this point the procedure is very simple and is quite space efficient, with the only

requirement being that sufficient samples were generated to allow for accurate estimates.

When we introduce evidence to our queries, we have to change the procedure to still be

able to acquire accurate estimates. If we set evidence, we must require that all samples

of the Bayesian network that we generate are consistent with this evidence. The simplest

approach to comply with this requirement is called Rejection Sampling. Here the procedure

is as before, but all samples that are inconsistent with the evidence are discarded. This is a

simple and a valid solution, but its efficiency now depends on the probability of the evidence.

Since all samples must be consistent with the evidence, the proportion of valid samples vs

the total number of generated samples is equal to the probability of evidence. For example,

if we have a probability of evidence P (e) = 0.0001, for every valid sample we will roughly

discard 10000 samples. With even more improbable evidence it might take a long time before
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we have gathered a sufficient number of samples to properly estimate the probability of the

queries we are interested in. More sophisticated sampling schemes exist that improve on the

basic procedure.

We can improve efficiency by not discarding samples but by weighting them appropriately.

The approach, known as likelihood weighting [Fung and Chang, 1990, Shachter and Peot,

1990, Shwe and Cooper, 1991], weights each sample by the likelihood of the evidence. The

process is similar to probabilistic logic sampling, the main difference is that we no longer

count the occurrences of node states but sum the weights for corresponding samples, i.e.,

instead adding a ‘1’ to the count, we add a fraction w.

w (E = e) =
n∏
i=1

P (Ei = ei |Pa (Ei)) . (2.5)

Likelihood weighting improves sampling performance, but is still susceptible to problems

with unlikely evidence.

The previous sampling methods generate each sample from the same starting point.

Other methods exist that describe the sample space as a state space that the algorithm

traverses. These are known as Markov Chain Monte Carlo (MCMC) algorithms. Two

example MCMC algorithms are 1) Gibbs sampling [Pearl, 1987], and 2) Metropolis-Hastings

sampling [Metropolis et al., 1953]. Both methods are used when it is difficult to sample

directly from the probability distribution we are interested in. Gibbs sampling is a special

case of Metropolis-Hastings, and is frequently used for inference in Bayesian networks. Both

sample from a helper distribution that needs to be proportional to the distribution of interest.

The general procedure of MCMC algorithms is:

The main idea of these algorithms is that we continue generating samples from the

Markov chain (which is formed by randomly traversing through the sample space), until the

sampler has reach its stationary distribution. If the helper distribution was properly chosen,

this stationary distribution will be the distribution that we are interested in.

To generate samples for a Bayesian network using Gibbs sampling, which is much simpler

than the full Metropolis-Hastings algorithm, see Algorithm 2. Eventually the Gibbs sampler

will reach its stationary distribution, and at that point we can extract samples to use for

inference calculations.
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Algorithm 1 MCMC

1: Pick a starting point x

2: while the required number of samples has not yet been generated do

3: Use the helper distribution to generate the next point x’

4: Calculate the likelihood L of x and x’

5: if L (x’) > L (x) then

6: accept x’

7: else

8: accept x’ with probability p proportional to the likelihood ratio

9: end if

10: end while

Algorithm 2 Gibbs Sampling

1: Find a starting sample for the Bayesian network (any of the earlier discussed sampling

methods would be a possible candidate).

2: while the required number of samples has not yet been generated do

3: Pick one of the non-evidence variables.

4: Using its conditional distribution and the variable instantiations of its parents (if it

has any), randomly generate a new state for this variable.

5: end while
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MCMC algorithms are convenient solutions for solving difficult problems such as high

dimensional integrals and probabilistic inference, as long as appropriate helper distributions

are available (especially for Metropolis-Hastings). The algorithms do have a few drawbacks

associated with them: 1) The samples are not i.i.d. (independent identically distributed)

and to regain a level of independence among the samples the majority of the samples has to

be discarded. A common approach is to keep 1 out n samples, where n might depend on the

particularities of the problem. 2) Our starting position might be far away from the stationary

distribution where the algorithm will end up eventually. This issue is usually handled by first

discarding all samples after starting the algorithm until the sample distribution has moved

closer to the stationary distribution (this is known as the burn-in period). Typically a fixed

number of samples is discarded, after which samples will be kept for the query estimation.

Another class of approximate inference algorithms is based on the principle of importance

sampling. In general importance sampling is used for estimating high dimensional integrals.

V =

∫
Ω

f (X) dX , (2.6)

Where f (X) is a function over domain Ω in <n. The idea of importance sampling is to

find an importance function I (X), a probability distribution that is easy to sample from.

Applying the function to Equation 2.6 gives us:

V =

∫
Ω

f (X)

I (X)
I (X) . (2.7)

Although algebraically identical to the original equation this now can be considered as an ex-

pected value calculation. Assuming that V exists and that the importance function I (X) > 0

for any X in Ω, we can start generating samples from I (X) and construct an estimator V̂ :

V̂ =
1

N

N∑
i=1

f (Xi)

I (Xi)
. (2.8)

Under certain assumptions, when N becomes large, V̂ will converge to V . These assumptions

are [Geweke, 1989, Yuan and Druzdzel, 2006]:

• f (X) is proportional to a proper probability density function defined on Ω
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• {Xi}∞i=1 is a sequence of i.i.d. random samples, the common distribution having a prob-

ability density function I (X)

• The support of I (X) includes Ω

• V exist and is finite

The main challenge of importance sampling is finding a good importance function, although

the optimal importance function has been proved [Rubinstein, 1981] to be:

I (X) =
f (X)

V
. (2.9)

This ends up being the posterior distribution of what we are interested in, making it not a

feasible choice. It is however, useful as a guide to finding a good importance function. The

closer a candidate function approximates the optimal function, the better our importance

sampling procedure will perform.

There is a sizable body of work on applying the principle of importance sampling to

Bayesian network inference [Shachter and Peot, 1989, Fung and Del Favero, 1994, Hernandez

et al., 1998, Ortiz and Kaelbling, 2000, Cheng and Druzdzel, 2000, Yuan and Druzdzel, 2006],

Yuan and Druzdzel [2006] divide the approaches into 3 groups. The first group proposes to

use a prior distribution of a Bayesian network, which is not very effective once improbable

evidence needs to be considered when performing inference. Both probabilistic logic sampling

and likelihood weighting can be considered to be part of this group.

The second group proposes to learn and improve the importance function as the sampling

process continues. Starting out with an initial function, it is periodically revised based on the

samples generated thus far. One example of such an approach is the AIS-BN algorithm by

Cheng and Druzdzel [2000]. The importance function is initialized with a prior distribution.

The algorithm regularly updates the importance function using two heuristics: 1) it initializes

the probability distributions of the parents of evidence nodes to uniform distributions, 2)

very small probabilities present in conditional probability distributions that are part of the

importance function are slightly increased to a preset value ε. Samples are then drawn

and used to estimate the new importance function. Iteratively the importance function will

improve and approach the optimal function, thereby better samples will be generated to

approach the correct answer of the query to be answered.
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The third group calculates an importance function using both a prior distribution and the

evidence set provided for the inference. One example algorithm is the EPIS-BN algorithm

by Yuan and Druzdzel [2006]. The algorithm applies loopy belief propagation to calculate

an approximation of the optimal importance function. Next, as in the AIS-BN algorithm,

all probabilities in the importance function with a value smaller than ε are replaced by ε.

At this point the importance function is ready to be used for generating samples for the

estimation of the inference query.

2.3 LEARNING BAYESIAN NETWORKS FROM DATA

Although Bayesian networks can be constructed by eliciting information from domain ex-

perts, the availability of data sets created the need for directly harnessing these data to

create Bayesian networks in an automated fashion. Statistical procedures and algorithms

exist that can learn both the structure and the parameters.

2.3.1 Parameter Estimation

If we assume we already have the Bayesian network structure, we can learn the model

parameters if we have a data set available. The appropriate algorithm to use depends on

the data set. If the data set has missing values we must treat the data in a different manner

than if it would be complete.

2.3.1.1 Complete Data When we have complete data available, we can apply basic

maximum likelihood estimation to determine the parameters for each of the variables. Max-

imum likelihood estimation is a common approach to estimate model parameters. One starts

with a model with parameters θ and a dataset D and defines a likelihood function:

L (θ |D) =
n∏
i=1

P (di |θ ) . (2.10)

The data and the parametric model are held constant while we vary the model parameters.

This will influence the value of the likelihood function and our final goal is to maximize the
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likelihood function output by choosing the optimal values for θ. For computational reasons

we usually use the log of the likelihood function for the optimization process:

log (L (θ |D)) =
n∑
i=1

log (P (di |θ )) . (2.11)

Taking the log of the likelihood function allows us to turn the product into a sum, which

is useful when computing the result of the likelihood function on a computer where the

precision for computation is limited to a certain number of digits.

For most parametric distribution we can derive the optimal maximum likelihood esti-

mator (MLE) setting the derivative of the (log)likelihood function to 0 and to solve for

θ. Bayesian networks are usually modeled using (conditional) multinomial distributions.

For the multinomial distribution the MLE for each of the variable states is equal to the

proportion of the state counts in the dataset, which is very convenient:

P̂ (X1 = x) =
N (X1 = x)

N
, (2.12)

where N is the total number of samples in D. For conditional multinomials we apply Bayes

rule:

P̂ (X1 = x1 |X2 = x2 ) =
N (X1 = x1, X2 = x2)

N (X2 = x2)
. (2.13)

Using the counts of a complete dataset we can apply maximum likelihood estimation to

estimate all parameters of a Bayesian network when we have the BN structure already

available to us. To acquire all parameters we need to estimate prior distributions P (X)

for variables X without parents and conditional distributions P (X |Pa (X)) for variables

X with parents Pa (X). When we do not have a complete dataset we must apply different

approaches to properly deal with the missing values in the dataset.
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2.3.1.2 Incomplete Data Having missing values in the dataset makes maximum like-

lihood estimation no longer a viable option. If some samples have missing values, i.e., some

variables do not have a value, we could remove these samples from the dataset to make it

complete again. This, however, might influence the probability estimates of the other vari-

ables, and if we want to study the effect of a latent variable, i.e., having no data available for

a variable at all, we must use a parameter learning approach that has the ability to model

a variable for which we do not have any data.

Data might be missing for different reasons, there is the latent variable case, where we

do not have any data, data may be missing randomly, or there may be systematic reasons

for a dataset to have missing values. We can classify missing data in the following way:

1. Missing Completely at Random (MCAR)

In this case values are missing due to circumstances unrelated to any of the variables

in the dataset, which we can formalize by stating that we have completely observed

variables X, and variables with missing values Y, the probability of a value i of variable

Yj being missing (yij) can be modeled as P (yij |X,Y) = P (yij). This indicates that

the missingness of value yij is independent of the variable sets X and Y. An example

of a MCAR case are latent variables, since we do not have any data in the first place,

the missingness of the data does not depend on specific values of the observed data

that we do have access to. Another example might be certain types of sensor failures,

accidentally destroying a lab sample, or people dropping out of research study due to

reasons unrelated to what is being studied such as leaving the trial due to moving across

the country or dying in a plane crash.

2. Missing at Random (MAR)

When a dataset has variables that are MAR, the missingness of the values of these

variables depends only on the other, completely observed variables in the dataset. For-

mally we can describe the relation between the missingness of values and the completely

observed variables as P (yij |X,Y) = P (yij |X). The missing values are distributed con-

ditioned on the values of the observed variables. Typical examples of MAR situations

are 1) Distinct subgroups in a population declining to answer certain survey questions

more often than other groups, 2) Depending on the results of some medical tests, such as
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the HIV test, when the test turns out to be positive, a secondary test is usually adminis-

tered that is not based on the same chemicals/principle as the first test. This is done to

confirm the outcome of the first test and to decrease the likelihood of the possibility that

the first test result was a false positive. Assuming most tests come out negative, only

one test result will be available for most people in a dataset, and having the outcome of

the second test result missing only depends on the outcome of the first test.

3. Missing Not at Random (MNAR)

If the missingness of values depends on the variable with the missing value itself, re-

gardless if it depends on the completely observed variables, the values are missing not at

random. Formally, the probability of missingness is then defined by P (yij |X,Y). An

example of MNAR is asking people for their salary on a survey and finding that people

that are richer (or perhaps poorer) than most are not filling out this information.

Having variables in a dataset that have missing values that are MNAR is problematic. For

proper modeling of the data, the mechanism responsible for the missing values needs to be

modeled explicitly. The MAR and MCAR conditions are easier to cope with. A simple

solution for MCAR missingness is the remove the samples with missing values, and then

perform the usual estimation procedures. This is not possible for MAR missingness, here

statistics can be estimated first for each conditioning group and then a weighted average can

be computed. For Bayesian networks a common algorithm used when datasets have missing

values is the Expectation Maximization algorithm, it assumes missing values are MAR and is a

very popular algorithm for this purpose. I discuss this algorithm in the following subsection.

2.3.1.3 EM Algorithm The EM algorithm [Dempster et al., 1977, Lauritzen, 1995] is a

general purpose algorithm for parameter estimation when the available dataset has missing

values. The algorithm consists of two steps: 1) the expectation step and 2) the maximization

step. Essentially, in the first step the algorithm fills in the gaps in the dataset using the

current guess for the model parameters. In the second step, having filled in the gaps in the

dataset a maximum likelihood estimation is performed to estimate new model parameters.

The algorithm now again switches to step 1 and uses the new parameters to reestimate the

missing values in the dataset after which the algorithm executes step 2 again. The algorithm
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continues to iterate between step 1 and step 2 until the model likelihood converges, i.e., no

longer increases. The EM algorithm is used for many different types of probabilistic models

and exists in many forms. When used for Bayesian networks the algorithm works very nicely

in conjunction with the junction tree algorithm to acquire the necessary counts used in the

parameter estimation process.

During the expectation step of the algorithm we calculate expected counts for the dataset.

When we have a complete dataset we can simply add 1 to the total count for each configura-

tion of values, but in a incomplete dataset, when we come across a missing value we do not

add a 1. We add a proportion that is equal to the probability of the missing value having

the value of interest, conditioned on values of the other variables in the current sample. For

Bayesian networks we need either prior distributions or conditional distributions. Calling all

other variables in the sample the evidence e and the variable of interest, then the probability

of X having value j is P (xj |e). Calculating the counts for a parentless node then becomes:

N (X = j) =
n∑
i=1

(I (Xi = j) + I (Xi =?)P (Xi = j |e)) , (2.14)

where I is an indicator function that is value 1 when its condition is met and 0 otherwise.

Calculating the new probabilities for the prior distribution is accomplished by dividing the

counts for the individual states j of the variable X by the total number of samples N in the

dataset, i.e.,

P (X = j) =
N (X = j)

N
. (2.15)

For conditional distributions P (X |Pa (X)) we require two types of counts: 1) counts for the

joint distribution of X and its parents, N (X,Pa (X)), and 2) counts for the joint distribution

of X’s parents N (Pa (X)). To estimate the conditional probabilities we make use of Bayes’

rule:

P (X |Pa (X)) =
N (X,Pa (X))

N (Pa (X))
. (2.16)

It suffices to calculated only all possibilities of N (X,Pa (X)), by summing them all together

we will get N (Pa (X)). We will need counts for every combination of values of the node and

its parents. When encountering missing values in the dataset, as with the prior distribution

case we replace the ‘hard’ count of 1 for the combination by the probability of the variables
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having the value combination given the observed values of the other variables in the sample.

Calculating the probabilities of the required joint distribution is greatly simplified by the

property of junction trees that a node must always be cliqued together with all of its parents

in at least one clique node in the junction tree. After performing one pass of the junction tree

algorithm, all evidence will be propagated over the junction tree and the clique nodes will

contain the joint distribution of the nodes in the clique. The joint distribution of interest

can then be acquired by summing out all unrelated nodes. The probabilities of the joint

distribution can then be added to the appropriate counts.

The convergence of the algorithm is usually determined by defining a minimum likelihood

increase. After every iteration the current likelihood of the model is compared with the

likelihood of the previous state. If the difference between the likelihood is smaller than the

predefined value, the algorithm terminates.

2.3.2 Structure Learning

We have described how we can learn the parameters of a Bayesian network when we already

have the structure available to us. If we have a dataset available to us, we may also construct

the network structure using the data. There are two main approaches to Bayesian network

structure learning: 1) constraint-based search, and 2) methods using the search-and-score

methodology. I discuss the two approaches in the following subsections.

2.3.2.1 Constraint Based Search Constraint based learning algorithms typically have

two phases: 1) a (conditional) independence test phase and 2) an edge orientation phase. The

prime example of constraint-based algorithms is the PC algorithm [Spirtes et al., 1993]. The

PC algorithm starts out with a completely connected, undirected graph. It then proceeds

to test pairwise (conditional) independence among all pairs of variables, i.e., for each edge

in the graph. For every pair of variables where the test concludes independence, the edge

is removed and the conditioning set for which the independence holds is recorded. Edges

are typically tested for independence more than once. The independence procedure is run

with an iteratively increasing size of the conditioning variable set. Conditional independence
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among two variables is tested for every possible conditioning set. These sets are constructed

from the set of adjacent variables of the two variables under consideration.

The typical test of independence for discrete variables is used for determining indepen-

dence. Several variations of calculating the chi-square statistic and the degrees of freedom

are utilized. The basic principle is that we assume as null hypothesis that the two variables

are independent given conditioning set S, where S can be empty. The most typical statistics

used for the test are χ2 and G2 [Spirtes et al., 1993], which have minor differences. The χ2

statistic is calculated by creating a contingency table for a variable, comparing the actually

observed counts for each variable state with the hypothesized counts if the two variables

would be independent. The hypothesized counts are calculated using the marginal counts

for each of the variables. The χ2 statistics can then be calculated by summing the squared

differences between actual and hypothesized counts for each combination of variable states.

χ2 =

Nij∑
i=1,j=1

(cij − ĉij)2

ĉij
. (2.17)

A χ2 distribution can then be used to determine if we can reject the null hypothesis. The

number of degrees of freedom, a required parameter for the χ2 distribution is determined by

the number of 0s we encounter in the contingency table. Different strategies are used for the

calculation of the degrees of freedom. One simple approach [Spirtes et al., 1993] counts the

number 0s in the table, another more complicated approach [Fienberg and Holland, 1970,

Fienberg, 2007] counts the number of 0s in a row or column making sure not to count any

0 more than once.

Having discovered the skeleton of the Bayesian network, the next phase of the PC algo-

rithm orients the edges. First, it searches for v-structures. V-structures are formed between

triplets of nodes where we have edges between nodes A and B, and nodes C and B. A

v-structure is created by orienting the edges so that we have an arc from A to B and an arc

from C to B, if there exists a conditioning set S for which A is (conditionally) independent

of B and C is not present in S, hereby forming a v-shape.
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Once all v-structures have been discovered in the skeleton, the PC algorithm iteratively

checks certain node/edge/arc patterns using two rules. If one of the rules matches, it is

executed and the network structure is updated2:

• If there is an arc from A to B, there is an edge between B and C, there is no edge

between A and C, replace the edge between B and C with an arc if this does not create

a new v-structure.

• If there is a directed path from A to B, meaning that there is a sequence of arcs starting

at A and ending at B, and an edge between A and B, then replace the edge by an arc.

Finally, when it is no longer possible to apply any of the rules, the algorithm returns the

current network structure. The algorithm might not return a Bayesian network, but a PDAG

(partially directed acyclic graph), also known as a pattern. Although the PC algorithm itself

does not specify any more steps to orient the remaining edges so the resulting network is a

proper Bayesian network, usually the remaining edges will be oriented properly so that the

end result will be a BN. Random algorithms are used to orient the remaining algorithms,

but other algorithms exist that aim to orient the remaining edges such that the resulting BN

is consistent with the pattern created by the PC Algorithm [Dor and Tarsi, 1992].

2.3.2.2 Search and Score The basic principle of search and score algorithms is that we

define a state space, a set of operations used for transitioning between states, and a scoring

function for ranking states. In the context of Bayesian networks, the search space consists

of all possible directed acyclic graph (DAG) structures that can be constructed with the set

of available nodes. Every state represents a proper Bayesian network structure. We define

3 state transition operators: 1) Add an arc between two nodes, 2) Remove an arc between

two nodes, and 3) Invert an arc between two nodes.

The final element is the score function. Commonly, score functions are used that are

based on a Bayesian principle. We define a distribution over all possible network structures

and to score a structure we calculate the likelihood of a structure given the available data.

P (S |D) =
P (D |S )P (S)

P (D)
. (2.18)

2The rules described here and applied in the PC algorithm implementations used in this dissertation are
based on the description in [Spirtes et al., 2000]
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The two main components of interest of the structure likelihood are the structure prior

P (S) and the likelihood of the data given the specific structure P (D |S ). When comparing

different structures we can disregard the prior distribution of the data P (D), since it acts as

a normalizing factor and it does not depend on any specific structure S. A common choice

for the structure prior is to not apply any extra weight to any of the structures, effectively

defining a uniform distribution. The likelihood of the data is commonly referred to as the

marginal likelihood. It cannot be computed directly, as to calculate the data likelihood we

need a completely specified Bayesian network with a structure and a set of parameters. Since

we should not pick a specific set of parameters the solution is to integrate over all possible

parameter distributions, marginalizing the parameters out of the likelihood distribution.

This is not a computationally feasible approach and the usual approach is to make certain

assumptions to simplify the computation of the marginal likelihood [Cooper and Herskovits,

1992, Heckerman, 1995]:

• The data D is discrete.

• The data D is faithful to a Bayesian Network, i.e. there are no independences in the

data that cannot be represented by a BN.

• The samples in D are i.i.d.

• D is complete, no missing values are allowed.

• A uniform prior distribution is assumed for the parameters of every BN in the search

space.

• For all possible parent combinations for a variable Xi, the conditional probability distri-

bution parameters for each of the parent combinations are independent.

• Parameter densities for the conditional probability distributions of any pair of nodes in

the BN are independent.

With these assumptions, the calculation of P (D |S ) can be reduced to a counting problem.

Cooper and Herskovits defined the following K2 metric:

P (D |S ) =
n∏
i=1

qi∏
j=1

(ri − 1)!

(Nij + ri − 1)!

ri∏
k=1

(Nijk)! , (2.19)
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where qi corresponds to the total number of parents state combinations of node i and ri

equals the number of states of node i. Nijk counts the number of times node i has value

k and its parents have been assigned the value j (which breaks down in a specific state

assignment for each parent node). Are more general version was defined by Heckerman et al.

[1995], where a Dirichlet prior distribution is used for the BN parameters, known as the BD

score,

P (D |S ) =
n∏
i=1

qi∏
j=1

Γ
(
N ′ij
)

Γ
(
Nij +N ′ij

) ri∏
k=1

Γ
(
Nijk +N ′ijk

)
Γ
(
N ′ijk

) . (2.20)

The BD score function typically is not used in practice. The number of hyper parameters

N ′ijk that need to be defined can become quite large if the number of variables and/or the

number of variables states increases. A commonly used score function, a special case of the

BD score, sidesteps this issue by assuming a uniform structure prior [Buntine, 1991]. The

BDeu score requires only one parameter, N ′, which represents a measure of confidence in

the initial/current network structure.

P (D |S ) =
n∏
i=1

qi∏
j=1

Γ
(
N ′

qi

)
Γ
(
Nij + N ′

qi

) ri∏
k=1

Γ
(
Nijk + N ′

riqi

)
Γ
(
N ′

riqi

) . (2.21)

After choosing an appropriate score function we have all elements to search for the best

possible Bayesian network structure in the search space. However, it is not feasible to search

through the complete search space to find the optimal network structure, as the size of the

search space increases super-exponentially with the number of nodes. A common approach

is to randomly generate a starting structure and search from this point. We can use a greedy

hill-climbing algorithm to search for the best scoring network structure in the neighborhood

of the starting point. Every time we move to the next state in the search space we pick the

state that improves the score the most. This process is repeated until we reach the state that

has the highest structure score or until we reach a state that is a local maximum. Typically

the score function has many local maxima. The effect of this is that the greedy hill-climbing

algorithm can get stuck. To find a better structure, several different strategies exist to break

the deadlock, among them are:
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• Random Restarts: when the algorithm gets stuck, randomly start from another point

in the state space. This is repeated n times and the best structure after n searches is

returned.

• Tabu Search: the last n states the algorithm has visited are kept and the algorithm

is prohibited from revisiting these states again. If the algorithm gets stuck, a limited

number of steps that reduce the structure score are allowed. If the algorithm does not

find a state that improves on the last score within the step limit, the algorithm terminates

and returns the best structure.

2.4 DISTRIBUTED COMPUTING FRAMEWORKS

With the availability of large multiprocessor supercomputers, work on parallelization of tra-

ditional sequential algorithms became much more widespread. Adding to that the availability

of computational clusters consisting of relative inexpensive machines, the ability to process

large amounts of data, unavailable before due to the limits single computers, has become

available to a large audience. This has spurred the efforts to standardize approaches to

algorithm parallelization and interprocessor/intercomputer communication. I discuss two

popular paradigms for parallel computation: the Message Passing Interface standard, and

the MapReduce framework.

2.4.1 Message Passing Interface

The Message Passing Interface (MPI) standard [Snir et al., 1995] is commonly used for imple-

menting parallel algorithms on a diverse array of parallel computation platforms. Examples

of these platforms are large, singular machines with many processors and shared memory, or

a large array of separate machines collected in a cluster. The MPI standard defines a pro-

tocol for passing messages among processing units, which could be processors or complete

computers. Many library implementations have been developed that follow the standard.

MPI is available for all the popular platforms and in many popular programming languages.
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Processing unit can communicate directly through a point-to-point mechanism, but users of

the library can define arbitrary logical topologies over the processing units.

The low level technicalities of interprocess communication are abstracted away by the

library but the user still retains a large amount of control over how to utilize available

resources. Using the library, different computational paradigms can be implemented, a

popular one being the master/worker paradigm, where a single controller is responsible for

the algorithm workflow, assigning work to the other processing units.

2.4.2 MapReduce

MapReduce is a parallel computation framework developed at Google [Dean and Ghemawat,

2004]. It differs from most parallel computation approaches by very specifically defining

two types of computational functions. These functions are called mappers and reducers.

Mappers take an input, perform some sort of calculation and then output one or more

key-value pairs. The outputted pairs are collected, sorted, and then assigned to reducers.

Reducers are aggregate functions. They are assigned collections key-value pairs, where the

keys all have the same value. The reducer iterates over all values it has been assigned and

typically calculates some sort of aggregate result, which then is emitted as a new key-value

pair, where the original key from the inputs is used as the key in the new pair.

One of the main benefits of the MapReduce framework is that it abstracts away just about

all details from the parallelization process. The main responsibility of any MapReduce user

is to define the mapper and reducer functions. All other parallelization details such as load

balancing, fault tolerance, distributed data storage are taken care of in the background. One

popular example of an open source implementation of a MapReduce framework is Hadoop

[White, 2012], which was developed mostly at Yahoo!

The MapReduce framework excels at processing data at an enormous scale. It has been

used for tasks such search engine indexing and log file processing. Companies such as Google,

Yahoo! and Facebook have many petabytes of data that needs to be processed. Facebook

currently maintains the largest Hadoop cluster that contains over 100 petabytes of data.
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3.0 COMPARING STRUCTURE REPRESENTATIONS AND DISTANCE

MEASURES

In this chapter, I report the results of a series of experiments that I have performed with the

goal of empirical comparison of various measures of structural distance.

3.1 INTRODUCTION

An important outgrowth of the work on Bayesian networks is the field of causal discovery,

focusing on retrieving from data the causal structure of the system that has generated

it. While originating somewhere at the intersection of computer science, statistics, and

philosophy [Cooper and Herskovits, 1992, Spirtes et al., 1993, Pearl and Verma, 1991], this

area has had a profound impact on science in general. Many philosophers of science consider

that true understanding, one of the main foci of science, means causal understanding [Salmon,

1984]. Without understanding the causal structure of a system, a human decision maker or

an artificially intelligent agent will not be able to predict the effect of those of their actions

that impact the system. For example, all individual and policy decisions concerning smoking

tobacco hinge on the common causal knowledge that inhaling tobacco smoke has a negative

impact on health.

Causal discovery is closely related to the field of learning graphical models. While both

fields use similar algorithms, there is a subtle difference in that the structure and, in par-

ticular the directions of edges, is of utmost importance in causal discovery and may be less

essential for other applications. For example, in a machine learning application like clas-

sification, it is immaterial what the exact DAG structure looks like, as long as the DAG
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performs well as a classifier. The exact topology of the DAG will merely have an impact on

the number of necessary parameters and the quality of predictions. However, when the goal

is to establish the causal relations among the variables in the data, it is the structure that

counts.

One approach to evaluating the performance of a structure learning algorithm is to start

with an existing causal graph GG, generate a dataset from the joint probability distribution

that it represents, and subsequently use the algorithm to retrieve the original structure. The

main advantage of this approach is that the resulting graph GL generated by the structure

learning algorithm can be compared with the structure of the original graph GG, the gold

standard that generated the dataset. A critical element of this approach is a measure of

structural distance between GG and GL: the smaller this distance, the better the algorithm

was in retrieving the original structure.

There are several measures of structural distance that can be found in the literature.

None of these has been widely accepted as the primary measure. This is somewhat surprising,

as there are sound theoretical grounds for preferring one group of the measures over another.

Because there typically exist several DAGs that can represent the same joint probability

distribution (often lumped into so-called equivalence classes), they cannot be distinguished

from one another based purely on the data. Hence, comparing DAGs directly, with disregard

for the theoretical impossibility to differentiate between them, does not seem to be a sound

approach. Still, some researchers focus on comparing DAGs, others on comparing equivalence

classes of DAGs.

To my knowledge1, no systematic comparison of different measures and representations

has ever been performed and little is known how the different measures behave with relation

to one another in practice. A researcher testing a structure learning algorithm is thus left

with the uninformed choice of measure and structure representation.

In this chapter, I report the results of a series of experiments that I have performed with

the goal of empirical comparison of various measures of structural distance. A surprising

finding, originating from my experiments, in stride with theoretical expectation, is that there

seem to be no significant differences between comparing DAGs and comparing their equiva-

1Parts of Chapter 3 have been previously published in [de Jongh and Druzdzel, 2009]
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lence classes. I have found no apparent systematic effects, outside of individual differences in

the graphs and data, that would favor one measure over another. The different measures are

correlated with one another but there are no sufficiently strong grounds for picking one and

disregarding others. A recommendation that originates from my work is that researchers use

several measures when reporting the accuracy of their algorithms.

3.2 STRUCTURAL DISTANCE MEASURES

There are two fundamental approaches to comparing a learned DAG structure GL to a gold

standard structure GG: (1) comparing structures GG and GL directly, and (2) comparing

equivalence classes E(GG) and E(GL).

The former is more widespread than the latter, even though there are sound theoretical

reasons for preferring equivalence classes comparisons over DAG comparisons. I review these

two approaches in Sections 3.2.1 and 3.2.2 respectively.

3.2.1 DAG Measures

There are many examples of measures of structural distance that rely on comparing DAGs.

Cooper and Herskovits [1992], for instance, compare the performance of their K2 algorithm

for different sample sizes and look at added edges and missing edges, i.e., edges in the dis-

covered graph that either were not present in the original or should have been present in

the discovered graph but were missing respectively. A similar approach is taken by Monti

and Cooper [1997]. Heckerman et al. [1995] mention a structural difference metric (sym-

metric difference of parents of a node in gold standard and learned structure). Colace et al.

[2004] describe multiple metrics and introduce two normalized versions of DAG metrics.

Cruz-Ramı́rez et al. [2006] evaluate the performance of the Bayesian Information Criterion

(BIC) and the Minimum Description Length (MDL) principle as model selection metrics.

In one part of their evaluation, they compare learned DAG structures against gold standard

networks.
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3.2.2 Pattern Measures

In an example involving their PC algorithm, Spirtes et al. [1993] mention metrics similar to

extra and missing edges: they call them edge commissions and omissions, but they base their

metrics on patterns, not on DAGs. Abellán et al. [2006] and Cano et al. [2008] use similar

metrics for DAGs in their evaluation of variations on the PC algorithm, They calculate their

metrics before the edge orientation phase of the PC algorithm. To evaluate their hybrid

algorithm, Tsamardinos et al. [2006] compared the output of their algorithm against a gold

standard network. They specifically compare equivalence class structures and not DAGs.

They define a metric called the Structural Hamming Distance (SHD), which is similar to

the metric proposed by Acid and de Campos [2003]. They compute the SHD between two

directed graphs after first converting them into patterns by using the approach of Chickering

[1995]. Perrier et al. [2008] propose a small modification to the SHD metric, assigning a

smaller penalty to incorrect orientation of edges.

3.2.3 Differences

If we compare the first two DAG structures in Figures 2.1(a) and 2.1(b) directly to each

other, focusing on differences in edge direction, we will find a distance of 2. This is because

of the two edges in Figure 2.1(b) that are reversed with respect to their equivalents in Figure

2.1(a). If we compare the pattern structures derived from both DAGs, we will obtain a

distance of 0: Because both DAGs belong to the same equivalence class, they will have the

same pattern structure.

Similarly, if we compare the DAG structures in Figures 2.3(a) and 2.3(c) directly to each

other, focusing on differences in edge direction, we will find a distance of 2. This is because

of the two edges in Figure 2.3(c) that are reversed. If we compare the pattern structures

derived from both DAGs, we will obtain a distance of 0: Since both DAGs belong to the

same equivalence class, they will have the same pattern structure.

These simple examples show that discrepancies are possible between DAG and pattern

scores. If Figure 2.1(a) is the result of a structure learning algorithm, and another algorithm

produces the DAG of 2.1(b), can we say that this second algorithm performs better? Because
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of statistical indistinguishability (Section 2.1), the difference may be incidental rather than

stemming from the data. When the patterns are compared, both graphs yield the distance

0 from the pattern and have to be considered equivalent.

3.3 EMPIRICAL EVALUATION

In this section, I report the results of a series of experiments that focus on empirical com-

parison of various measures of structural distance.

3.3.1 Experiment 3.1:

Basic Quantitative Evaluation of the Distance Measures

In my first experiment, reported in [de Jongh and Druzdzel, 2009], I compared various

distance measures for DAGs. While my study is independent of the choice of a structure

discovery algorithm, I used a Bayesian search algorithm, Greedy Thick Thinning [Hecker-

man, 1995] (GTT). GTT returns DAGs, although a DAG can be converted into the pattern

representing its equivalence class [Chickering, 1995]. This is important for my evaluation,

since I want to compare measures used for both DAGs and patterns.

3.3.1.1 Methodology I chose four different existing BNs of varying sizes to use as gold

standard DAGs: Asia [Lauritzen and Spiegelhalter, 1988], Alarm [Beinlich et al., 1989],

Hailfinder [Abramson et al., 1996], and HEPAR [Onisko, 2003]. For every DAG, I generated

datasets of three different sizes: 1,000, 5,000, and 10,000 records. I generated 100 datasets

of each sample size to be able to acquire useful statistics for the different measures under

study. For every combination of DAG and sample size, I compared the result of the learning

algorithm with the gold standard twice, focusing on: (1) the DAG structures, and (2) their

equivalence classes. I examined the following metrics and measures:

1. Missing Edges: counts edges that are present in the original structure but are missing

in the learned structure.
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2. Extra Edges: counts edges that are found in the learned structure but are not present

in the original structure.

3. Correct Edges: counts edges, regardless of their orientation, that are present both in

the original structure and the learned structure.

4. Correct Type Edges: counts edges, taking into account their orientation, that are

present both in the original structure and the learned structure.

5. Correct Edge Direction: counts directed edges in the learned structure that are

oriented correctly.

6. Incorrect Edge Direction: counts directed edges in the learned structure that are

oriented incorrectly.

7. Topology: Measure is a normalized, weighted combination of measures 1,2, and 3 [Co-

lace et al., 2004].

8. Global: Measure is similar to the topology metric, combining measures 1,2,4, and 5

[Colace et al., 2004].

9. Hamming Distance: Describes the number of changes that have to be made to a DAG

for it to turn into the one that it is being compared with. It is the sum of measures 1,

2, and 6. I have found multiple mentions of the metric in the literature: [Acid and de

Campos, 2003, Tsamardinos et al., 2006, Perrier et al., 2008].

I calculated the mean, variance, standard deviation, minimum value, and maximum

value. I plotted several series of averages to look for trends. Examples of examined series

are: comparing metric values for DAG or pattern while varying dataset size, comparing the

DAG and pattern metric for one network while varying dataset size, and comparing the DAG

and pattern metric for one dataset size while varying the network.

3.3.1.2 Results I do not show the results for all the metrics that I examined but will

instead summarize the results and illustrate my most important findings. I found that the

distances reported by the metrics on either DAG structures or patterns are similar. This

can be seen in Figure 3.1, which shows for each of the DAGs the Hamming distance metric

as a function of the size of the dataset.
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Figure 3.1: Similarity of values of the Hamming distance metric

Second, I found that there are situations where it does matter whether the distance is

measured between DAG or pattern structures. I show examples of this in Figure 3.2, which

contains plots of normalized values of two measures, correct edge directions and incorrect

edge directions (Figure 3.2). The values of the two measures are normalized by the total

number of edges in the original DAG (incorrect edge direction), and the total number of
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directed edges in the original DAG (correct edge direction). Depending on the DAG that I

used to generate the training data, the structures that the learning algorithm retrieved had

quite different average values for the counts of correct and incorrect edge directions for the

DAG and the pattern cases. This is apparent especially in the Hailfinder network. On the

average, both show that the learning algorithm retrieved about 70% of the directed edges.

But there is a large discrepancy between the counts of the incorrect edge directions.

I have an explanation for these differences. The correct edge direction measure examines

only directed edges and the incorrect edge direction measure examines directed and undi-

rected edges. The correct interpretation of the graphs is that in both structures 70% of all

the directed edges are retrieved. But for the DAG, this means 70% of all edges and for the

pattern this means 70% of the directed edges. These edges are either parts of, or originate

from v-structures. Since the same structure is compared under two circumstances, we can

say that the directed edges included in the pattern are a subset of the directed edges that

are present in the DAG. Since a DAG will usually, and certainly for the Hailfinder network,

have more directed edges than the corresponding pattern representation, some of these will

be statistically indistinguishable. Some edges in the DAG may have been correctly identified

by coincidence. This is most visible in the incorrect edge direction, where the lower pattern

score could be explained by the fact that patterns have three different possible edges and

DAGs only have two. If two randomly generated graphs with exactly the same skeleton

are compared, DAGs would have a 50% chance for each individual edge to be correct. For

patterns, this would only be 33%, since there are three possibilities: directed edge from a to

b, directed edge from b to a, or an undirected edge. More errors are simply to be expected.

This is counterintuitive from the theoretical point of view. An equivalence class can

contain many DAGs, and, because in patterns edges can be undirected, there should be

fewer errors due to statistical indistinguishability. But even when all correct edges in a

pattern are counted, directed and undirected, there is still a huge gap between DAGs and

patterns. I found for the Hailfinder network that, on average, about 52% of all edges in the

original DAG are retrieved correctly versus 72% in the DAGs. The data suggests that the

learned DAG structure appears closer to the original DAGs than the respective equivalence

classes that they belong to.
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Figure 3.2: Normalized values of measures for DAGs learned with 10,000 samples

I observed that sometimes, when more data were available for learning, the distance to

the original DAG would increase. This is clearly visible in the Alarm network in Figure 3.1,

where the Hamming distance increased when more data were available for learning. Further

investigation showed that factors contributing to the increase of the Hamming distance were

extra edges and incorrect edge directions.
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Finally, I want to comment on the Hamming distance metric. It is a proper metric,

and it is a useful indicator of structural distance. But it is unwise to rely solely on this

metric, or any single metric, in general. As an example, consider Figure 3.3. Here, the

Hamming metric shows a clear trend. As more data are available, the learned DAG seems

to better resemble the original DAG. However, when I examine the individual components

of the Hamming distance metric, I see that when more data becomes available, the skeleton

of the structure improves, but the number of incorrectly oriented edges increases. Since the

increase of incorrect edges is smaller than the combined decrease of missing and extra edges,

this information is lost when considering only the Hamming distance. Specifically, when

evaluating algorithms for causal discovery, such information might be vital and relying only

on the Hamming distance as a measure of distance may be misleading.

3.3.2 Experiment 3.2:

Impact of v-Structures on the Distance Measures

From the theoretical perspective, a major factor in edge orientation is presence of v-structures

(see Section 2.1). My second experiment focused on disambiguating the role that presence of

v-structures has in the difference between distance measures based on DAGs and patterns.

To be able to control the number of v-structures in an DAG, I randomly generated DAGs

that would have a lower and an upper bound on the percentage of their v-structures.

3.3.2.1 Methodology I created a DAG generator [Ide and Cozman, 2002, Melancon

et al., 2000] that makes use of Markov Chain Monte Carlo sampling to randomly walk

through the state space of all possible DAG structures and finds a candidate structure. In

addition to constraining the number of v-structures the DAG has, I enforced the number of

edges to be O(n), where n is the number of nodes in the DAG. Real DAGs are typically

sparse and their number of edges typically stays linear in their number of nodes.

For the experiment I created the following setup:

• Network sizes: {10, 20, 40, 80} nodes.

• Two approaches to determine v-structure percentage
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Figure 3.3: Hamming metric and its components on the Hepar network

– The ratio of compelled edges [Chickering, 1995] to total edges.

– The ratio of nodes with 2 or more parents to the total nodes.

• Percentage of v-structures: {0-25%, 25-50%, 50-75%, 75-100%}.

• For each network size a baseline network was generated without any restriction on v-

structures
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• Sample sizes: {1,000, 5,000, 10,000} samples.

• Learning Algorithms used:

– Greedy Thick Thinning [Heckerman, 1995] (GTT)

– Bayesian Search [Cooper and Herskovits, 1992] (BS)

– PC [Spirtes et al., 1993]

In total I generated nine DAGs for each network size, and from each generated DAG I

generated 100 datasets for each dataset size. I presented these datasets to both algorithms

and compared the learned structures to the original DAGs using the Hamming Distance

metric.

I used two different approaches to generate random DAGs with a certain percentage of

v-structures. While both have their advantages and disadvantages, neither of them exactly

represents the percentage of v-structures in a DAG. This is not a trivial thing to define.

When a DAG has no v-structures, it is easy and correct to say that the percentage of v-

structures in the DAG is zero. It is more difficult to define 100%. It is possible to construct

a DAG in which every triple of nodes forms a v-structure, but things get more difficult when

we add nodes with more than two parents. The main difficulty is to determine the percentage

if it is neither 0 or 100%. We can easily count the number of v-structures in a DAG, but to

get a percentage, we have to have a maximum value of some sort to normalize the number.

This may be related to the number of edges, the number of nodes, or the topology of the

DAG.

I chose to work with the two approaches mentioned above because they are easy to

calculate and are reasonable approximations of the percentage of v-structures. The compelled

edges approach counts the number of edges in the equivalence class of a DAG and then

divides this by the total number of edges in the DAG. When an DAG has more v-structures,

more edges will be “compelled” in its equivalence class structure. It may overestimate the

percentage somewhat due to some edges being considered “compelled” but not being part

of a v-structure. The “2+ parents” approach simply checks if a node has 2 or more parents

and will count this node if this is indeed the case. The total number of nodes with 2 or

more parents is then divided by the total number of nodes to get an estimate. This measure

46



has a tendency to underestimate the percentage of v-structures. The number of v-structures

involving a node and n parents can be described as n(n−1)
2

, and will increase quadratically.

3.3.2.2 Results I expected that recovering the DAG structure from a dataset generated

by a DAG that has many v-structures would be easier. Instead, I found that with an increase

of the percentage of v-structures in the DAGs, the Hamming distances of both measures

increased, which means that the DAG structures learned from data resembled the original

structures less.

Figure 3.4 shows the effect of the two different approaches of determining the percentage

of v-structures in a DAG. The graphs show the average Hamming distance (over 100 DAGs

learned) and the standard deviation for patterns the network structures learned by the three

algorithms from of the 20 node random networks data, as a function of the percentage of

v-structures in the DAG. I show results of DAGs generated using the “compelled edges”

method and “2+ parents” approach.

When we examine Figure 3.4, we see that both show similar results and trends, but the

networks generated by using the “2+ parents” approach were more difficult to recover from

data, contrary to my theoretical expectations.

The main results of the experiment are shown in Figures 3.5 and 3.6. Figure 3.5 shows

the results for the 10 and 20 node DAGs, Figure 3.6 shows the results of the 40 and 80 node

DAGs.

Sample size has an influence on the results, but this is not always significant. Learning

DAGs using more samples usually gives better results, but the influence of sample size on

the average Hamming distance is not very large in general. To test the impact of datasets

with a larger number of samples I reran the experiment with datasets of 100,000 records. I

did not find significant differences with the results of the original experiment.

Besides comparing the effect of increasing the percentage of v-structures, I have also

looked at what happens to the average Hamming distance when we increase the number of

nodes without any restriction on v-structures. For each DAG size, I had generated a DAG

that was not limited to a specific percentage of v-structures. Then, like in case of the other

DAGs I generated 100 datasets and ran the learning and scoring procedure.
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Figure 3.4: Influence of different methods for determining v-structure percentage

I show the results in Figure 3.7. The plot of the results of these baseline DAGs show

that the average Hamming distance increases when the size of the DAGs increase. Both

algorithms show the same trend, roughly linear increase, except for the 1,000 sample size

results which seems to increase faster.
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Figure 3.5: Results of Experiment 3.2: 10 and 20 nodes

3.3.3 Experiment 3.3:

Impact of the Size of Equivalence Classes on the Hamming Distance

One surprising results of Experiment 3.1 was that the Hamming distances between DAGs

were smaller than the distances between their equivalence classes. One possible reason for
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Figure 3.6: Results of Experiment 3.2: 40 and 80 nodes

this could be the size of the equivalence classes: The larger the class, the smaller the distance

between instances of a graph. My next experiment focused on the sizes of the equivalence

classes in Experiments 3.1 and 3.2. Using Chickering’s algorithm [Chickering, 2002], I have

determined the equivalence class structures of each of the DAGs of Experiment3.1 and 3.2.

I performed the same procedure for two additional networks, Win95pts and CPCSS179.
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Figure 3.7: The general trend shown by the baseline DAGs

Finally, I used a brute force algorithm that generated all possible DAGs from a pattern and

counted these. The edges that are part of a v-structure and a few select edges that originate

from v-structure are the only edges that will be directed. All other edges in the structure

are undirected. A pattern that has more v-structures should represent fewer DAGs and,

hence, the equivalence class that it represents should be smaller. This should have a direct
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impact on the Hamming distance. Besides counting the DAGs that resulted from orienting

all undirected arcs in the pattern, I have also compared the DAGs with the structure of the

DAGs used for obtaining the pattern.

3.3.3.1 Methodology I have determined the size of the equivalence classes for the fol-

lowing networks:

• Networks from Experiment 3.1:

– Asia

– Alarm

– Hailfinder

– Hepar

• The random DAGs from Experiment 3.2

• Two more networks from the literature:

– Win95pts

– CPCSS179

There are certain requirements each class member candidate has to meet. (1) The newly

oriented edges may not create a cycle in the graph, and (2) no new v-structures may be

created. Every structure candidate that meets all requirements is compared against the

structure of the original DAG and the measurements of the distance measures are stored in

a file for further processing.

3.3.3.2 Results Table 3.1 shows the results of this experiment. CE stands for Compelled

Edges [Chickering, 1995], which are directed edges in patterns. VS stands for v-structures,

CM (for Max CM and CM columns) stands for Class Members. Max CM contains the

theoretical upper limit of the number of equivalence class members and CM contains the

actual number of members found after running the brute-force procedure. CHA and CHS

are the average and standard deviation of Hamming distances that were measured between

the structure of the original DAG and the generated members of the equivalence class.

Figure 3.8 shows a log-log plot of the actual size of the equivalence class of each of

the DAGs plotted against its theoretical maximum. The number of class members for each
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Table 3.1: Results of Experiment 3.3

Network Nodes Edges CE VS Max CM CM CHA CHS

Asia 8 8 5 2 8 6 1.17 0.75
Alarm 37 46 42 24 16 16 2 1.03

Hailfinder 56 66 49 34 131,072 18 1.83 0.51
Hepar 70 123 114 100 512 96 2.83 1.07

Win95pts 76 112 100 129 4,096 640 4.7 1.52
CPCS179 179 239 230 122 512 18 2.28 0.96

rn10 10 12 8 4 16 9 2 1.22
rn10a 10 9 2 1 128 14 2.36 1.39
rn10b 10 9 4 3 32 10 2.1 1.20
rn10c 10 9 6 2 8 6 1.5 1.05
rn10d 10 20 15 9 32 10 2.1 1.20
rn10e 10 9 3 1 64 16 1.75 0.86
rn10f 10 9 7 3 4 4 1 0.82
rn10g 10 9 7 5 4 4 1 0.82
rn10h 10 9 9 4 1 1 0 -

rn20 20 25 17 11 256 48 3.17 1.42
rn20a 20 19 4 2 32,768 72 4.89 2.07
rn20b 20 19 9 5 1,024 96 4.5 1.77
rn20c 20 19 14 8 32 24 2.5 1.22
rn20d 20 33 32 19 2 2 0.5 0.71
rn20e 20 19 10 12 512 288 4.17 1.47
rn20f 20 20 15 8 32 24 2.17 1.01
rn20g 20 37 34 23 8 8 1.5 0.93
rn20h 20 48 43 33 32 16 2.5 1.37

rn40 40 51 41 23 1,024 96 4.08 1.53
rn40a 40 39 9 8 1,073,741,824 2,016 6.88 2.23
rn40b 40 39 19 14 1,048,576 11,340 7.50 2.14
rn40c 40 39 22 10 131,072 800 6.35 2.23
rn40d 40 68 54 41 16,384 432 5.11 1.68
rn40e 40 39 23 9 65,536 1,000 5.9 1.97
rn40f 40 45 35 21 1,024 96 3.92 1.56
rn40g 40 66 56 45 1,024 64 4.75 2.18
rn40h 40 120 116 106 16 5 1 0.71

rn80 80 102 92 52 1,024 768 5 1.63
rn80a 80 79 19 9 1.15292E+18 174,960 15.84 4.6
rn80b 80 79 39 30 1.09951E+12 53,747,712 16.33 3.40
rn80c 80 79 48 29 2,147,483,648 7,464,960 13.93 2.96
rn80d 80 114 101 65 8,192 864 5.5 1.74
rn80e 80 79 47 24 4,294,967,296 967,680 13.39 3.13
rn80f 80 84 59 32 33,554,432 103,680 9.27 2.29
rn80g 80 135 119 77 65,536 464 4.34 1.36
rn80h 80 207 201 195 64 12 2.17 1.11

equivalence class of the tested DAGs was much smaller than expected. The first surprise came

when calculating the theoretical maximum number of class members for each DAG. Even

though some DAGs had many nodes and edges, the maximum number of class members did

not reflect my expectations that large DAGs would generally have larger equivalence classes.

The second surprise was that the sizes of the equivalence classes were often small compared

to the theoretical maximum, especially when the theoretical sizes were large. For example,

an 80-node DAGs with a theoretical maximum of over a quintillion members, had only about
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Table 3.2: Correlation matrix of results Experiment 3.3

N E CE VS Max CM CM CHA CHS
N 1.0000
E 0.8947 1.0000

CE 0.8067 0.9744 1.0000
VS 0.6510 0.9011 0.9341 1.0000

Max CM 0.1713 0.0633 -0.0823 -0.0903 1.0000
CM 0.1980 0.0731 -0.0194 -0.0139 -0.0256 1.0000

CHA 0.4517 0.1747 -0.0360 -0.0734 0.4544 0.5317 1.0000
CHS 0.3481 0.0915 -0.1178 -0.1429 0.5859 0.3957 0.9525 1.0000

175,000 real class members. A mere fragment of the whole.

Figure 3.9 shows the actual size of the equivalence class of each of the DAGs plotted

against the percentage of v-structures in the DAG. The percentage of v-structures in a

graph seems to have almost no influence on the actual number of class members. I expected

that having more v-structures would have a limiting effect on the number of class members.

I have examined the data and have calculated a correlation matrix for the different

columns of Table 3.1. The results are shown in Table 3.2.

The most interesting and strongly correlated, variable pairs seem to be: (N, E), (N,CE),

(E,CE), (E,VS), and (CE,VS). It is not surprising that the number of nodes (N) has strong

influence on the number of edges (E) and the number of compelled edges (CE). In any valid

DAG, there cannot be unconnected nodes. Therefore, there should always be a minimum

number of edges E = N − 1. A similar explanation can be given for the strong correlation

between N and CE. When the number of nodes increases, with the increase of the number

of edges, more edges can become compelled edges. This is further reinforced by the strong

correlation between E and CE.

The number of v-structures (VS) seems to be strongly correlated with both the number of

edges (E) and the number of compelled edges (CE). The same line of reasoning as before can

be applied here. To be able to have more v-structures, more edges must be present. Edges

that are part of v-structures are by definition compelled edges, so any increase in v-structures

automatically means an increase of compelled edges. The strong correlation between CE and

VS supports my choice for using the ratio of compelled edges to all edges as an estimation
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Figure 3.8: Actual size of the equivalence class as a function of the theoretical maximum

class size

of the percentage of v-structures for random DAG generation. It is a reasonable assessment

of structure complexity.

Finally, there seems to be a absence of any strong correlations between the real number

of class members (CM) of an equivalence class and any of the other variables. One notable

exception is shown in Figure 3.8, where I compare the log of the theoretical maximum class

size with the log of the actual class size. Here I have observed a trend that appears to be

linear. The number of DAGs to which I calculated the equivalence class size is not very

large, and a larger, more diverse set may shed some light on the matter, but I think that I

am simply not looking at the correct features.
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Figure 3.9: Actual size of the equivalence class of each of the DAGs plotted against the

percentage of v-structures in the DAG

3.4 DISCUSSION

On theoretical grounds, pattern measures should be preferred over DAG measures. However,

my experiments show that the measurements performed either on DAGs or patterns are

similar, although cases exist in which distance measures applied to DAGs or patterns differ

significantly.

This may be due to a specific interpretation of some of the measures, but a possible

explanation is that, in patterns more errors are made due to the fact that more different

edges are possible. From the theoretical point of view, this is counterintuitive, since a pattern

represents a DAG equivalence class that can contain many DAG structures, which should

nullify many small errors that should negatively impact measures performed on DAGs. A

possible conclusion is that DAG measures are underestimating the true distance between the

learned and the original DAGs.

I observed, surprisingly, that for several cases having more data available for the learning

algorithm resulted in DAG structures that were more distant from the original DAG. This
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affected both DAG and pattern structures. I assume that the cause is that specific structure

learning algorithm I used for the experiments.

One could expect that a large proportion of v-structures in a DAG should have a positive

effect on the performance of the structure learning algorithm. However I found the opposite:

The average Hamming distance increased with the percentage of v-structures in the DAG.

One possible explanation of this observation is that when an algorithm makes one mistake,

either wrongfully cutting an edge or later wrongfully orienting one, it may have a large

influence on the whole structure, causing many other edges to be directed in the wrong way

[Dash and Druzdzel, 1999]. When there are many v-structures to detect, one mistake may

cause errors in other v-structures. Finally, I calculated the sizes of equivalence classes of all

the DAGs used in my experiments and two more large networks from the literature. These

sizes were surprisingly small, which I find consistent with the above hypothesis.

When there are few, the problem may not have a large effect on the end result. The

Greedy Thick Thinning and Bayesian search algorithms do not seem to have this problem,

being based on the search and score principle, and deal with edge orientation in a way that

does not rely on applying edge orientation rules like PC does.

My main finding is that there are no significant differences between comparing DAGs

and comparing equivalence classes of DAGs. v-structures have a significant but unexpected

influence on the end result: their abundance in a DAG does not seem beneficial for learning

algorithms.

One robust conclusion of my experiments is that relying on only one measure of distance

is risky, as the measures do not always yield the same ordering of graphs. In addition, aggre-

gate measures, like the Hamming distance hide potentially interesting differences between

discovery algorithms and may not give a complete picture. I recommend, wherever possible,

to report several measures of distance, both between DAG and patterns, and where appli-

cable other types of quality measures if the problem domain allows this (i.e. classification).
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4.0 PARALLELIZING BAYESIAN NETWORK STRUCTURE LEARNING

ALGORITHMS

In this chapter I review related work on parallelizing algorithms applied to Bayesian network

and discuss opportunities for parallelization.

4.1 INTRODUCTION

With the advancement of technology, the availability of parallel or distributed computation

capacity has increased significantly. Through services such as Amazon Cloud, parallel com-

putation has become available to just about everyone. It has become much more feasible to

address problems of a much larger magnitude than before.

Initially, parallel computation was mostly based around the MPI (message passing inter-

face) programming model [Snir et al., 1995, Gropp et al., 1999], but with the development

of the MapReduce model, attention has shifted more to the latter due to the ability of the

MapReduce programming model to abstract away most of the technical details of managing

the underlying computational hardware.

Before proposing my own set of parallelized algorithms for Bayesian network structure

learning, I review previous work that used either the MPI or the MapReduce model as basis

for the parallelization of BN structure learning algorithms. Next, I summarize and discuss

possible strategies for parallelization for the main classes of structure learning algorithms.

These will serve as a starting point for the work proposed in Chapter 5.
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4.2 BACKGROUND

4.2.1 Message Passing Interface

The Message Passing Interface (MPI) [Snir et al., 1995, Gropp et al., 1999] is a standardized

approach to parallel computation. It allows users to define topologies for computer clusters

and dictate how messages are passed among the computers. Library implementations of the

MPI protocol are freely available and abstract away some of the intricacies of the communi-

cation process for computer clusters. A good amount of work discusses parallel algorithms

for Bayesian network structure learning using the MPI paradigm. Most of the papers are

parallelizing variants of the search-and-score approach, some of them learn a Bayesian net-

work as a part of algorithms used for the Evolutionary computation (EC) paradigm. I found

only one paper that discusses a parallel constraint-based approach.

Three papers discuss a straightforward parallelization of search-and-score; Xiang and

Chu [1999] present an search-and-score approach with multi-link lookahead to learn decom-

posable Markov networks (DMNs), but show how this approach applies to Bayesian network

structure learning. Lam and Segre [2002] discuss a distributed search for Bayesian network

structures using the minimal description length (MDL) as score function. The search space is

divided over the computers in the cluster and a asynchronous mechanism known as nagging

is used to prune the search space when possible. Liu et al. [2005] describe a structure learning

algorithm for an extension to Bayesian networks known as module networks. Module net-

works assume that variables can be partitioned in sets that variables within these sets have

similar (conditional) dependencies and show similar probabilistic behavior. This effectively

allows sharing of parents and parameters. Using a decomposable Bayesian score function,

the evaluation of neighboring network structures is distributed over multiple processors.

Both Nikolova et al. [2009] and Tamada et al. [2011] present parallel algorithms for

exact Bayesian search, where a dynamic programming algorithm is used to find the global

optimal network structure. While Nikolova et al. [2009] start from the beginning, build the

parallelized DP algorithm from the ground up, and map their calculations to a hypercube,

Tamada et al. [2011] present a more direct parallelization of the original DP algorithm. Due
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to the enormous size of the structure search space, both approaches can still only handle a

limited number of variables (about 20-30). Both, however, do improve upon the efficiency

of the search process.

Yu et al. [2007] present a parallelized version of the Structural EM algorithm [Friedman

and Koller, 2000]. This makes this the only approach capable of learning a complete BN

model with missing data. The focus of parallelization is on the EM algorithm that is being

used to calculate the expected statistics using the initial network structure to fill up the

gaps of the missing data. With a now complete dataset, the score calculation is again

decomposable and the usual search strategies can be applied to find new candidate network

structures.

Sahin and Devasia [2007] discuss a Bayesian search algorithm built around particle swarm

optimization that makes use of the K2 metric. Each particle represents a Bayesian network

structure and is encoded with a string of 0’s and 1’s, where a 1 encodes an arc between two

nodes. The strings effectively serve as coordinates in a space through which the particles are

moving. Every update to the particles moves them to another location in the search space

making use of random changes to the particle coordinates. The fitness calculation for each

of the particles (using the K2 metric) is done on a separate processor, after the calculations

are completed they are sent back to a master processor which advances all the particles to

their next point in the search space.

All the work discussed up to this point has an end goal to produce a Bayesian network

structure and all use a score-and-search algorithm. I have come across work in the evolu-

tionary computation field where Bayesian networks are being used as a tool for representing

a population distribution used for sampling a new population for the next iteration of the

EC algorithm. Očenášek and Schwarz [2000] describes a parallel Bayesian optimization al-

gorithm for the field of estimation of distribution algorithms (EDA). These algorithms are

similar to genetic algorithms (GA), but instead of having operators such as mutation and

crossover a distribution over the solution population is derived and this distribution is used

as sampling tool to generate the next population of possible solutions. To represent the pop-

ulation distribution the authors apply a Bayesian search algorithm to learn a BN structure

that represents the distribution. For each iteration the authors generate a node order and
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distribute the search for optimal local family structures over a number of computers. Mune-

tomo et al. [2005] present a similar approach but do not assume a node ordering and thus

have had to add mechanisms to prevent the occurrence of cycles when merging the optimal

node families into the final Bayesian network structures. The authors accomplish this by

making use of a communication protocol that broadcasts rollback requests to computers in

the cluster when cycles are detected. The approach described by Mendiburu et al. [2006] is

quite similar to the work by Munetomo et al. [2005], but the Bayesian information criterium

is used as a score and the local scoring tasks are not just distributed over multiple computers

but over multiple threads in each computer as well.

The final work to be discussed is a parallel implementation of the most computationally

critical elements of MMHC (Max-Min Hill-Climbing), a constraint-based / search-and-score

hybrid algorithm by Tsamardinos et al. [2006]. The algorithm, presented by Nikolova and

Aluru [2011] parallelizes the main bottlenecks of the MMHC algorithm: 1) the discovery of

candidate parent and children (CPC) sets for each of the variables, and 2) the calculation of

the Markov boundaries for each of the variables. The CPCs for each variable is calculated

on separate processors (when available), storing intermediate calculations for reuse in the

second phase, where the CPCs are adjusted so they represent the proper Markov boundaries

of each variable. The end result of the algorithm is the undirected skeleton of the BN, which

would then typically be oriented using a heuristic search.

4.2.2 MapReduce

There seems to be only a limited amount of literature available on parallel Bayesian network

structure learning algorithms that use the MapReduce programming model. I found only

two papers that discuss a MapReduce version of a BN structure learning algorithm. Chen

et al. [2011] propose a parallelized version of the Three-Phase Dependency Analysis (TPDA)

algorithm by Cheng et al. [1997]. Fang et al. [2013] propose a MapReduce version of a

Bayesian search algorithm that uses the K2 metric for scoring candidate structures.

Chen et al. [2011] describe a BN learning algorithm used for sentiment analysis of un-

structured text. The authors have developed a MapReduce version of the TPDA algorithm.
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They have focused their efforts on parallelizing the (conditional) mutual information calcu-

lations that are central to the algorithm:

MI (A,B) =
∑
a,b

P (a, b) log
P (a, b)

P (a)P (b)
(4.1)

MI (A,B |C ) =
∑
a,b,c

P (a, b |c) log
P (a, b |c)

P (a |c)P (b |c)
. (4.2)

Their approach consist of a central controller which employs MapReduce jobs to acquire the

necessary mutual information scores to be able to run TPDA. TPDA has three phases: 1)

drafting, 2) thickening, and 3) thinning. Each of these phases requires MapReduce jobs to

provide the mutual information scores necessary for adding, or removing arcs/edges from the

graph. Essentially, the mutual information calculation boils down to counting (co-) occur-

rences of variables in the dataset. As is typical for MapReduce implementations, the records

of the dataset are distributed over the Mappers and each Mapper processes one data record

at a time.

From each record, the Mappers construct multiple key-value pairs. Each key represents

a set of variable assignments, and the value is simply the value ‘1’. One example of such a

constructed pair is ((A = a1, B = b2) , 1). All the constructed pairs are collected and then

sorted and grouped by their keys. The groups are then assigned to separate Reducers which

sum the ‘1’s for each key to acquire the counts for each of the variable assignment sets.

After a MapReduce job finishes, the central controller can collect all the counts and

perform the mutual information calculations. In their empirical evaluation, the authors show

that the dataset needs to be sufficiently large before the MapReduce approach outperforms a

non-parallelized version of the TPDA algorithm. This is due to the extra overhead required

by the MapReduce framework.

The MapReduce Bayesian search algorithm proposed by Fang et al. [2013] assumes that

for each node an optimal family of parents can be found in parallel and that the final,

optimal network can be created by merging the local optimal structures. This assumption

depends on a node ordering to be provided to the algorithm at the start. The authors do

not discuss how such a node ordering is obtained and assume it is given. Their MapReduce

parallelization of the sufficient statistics necessary for the K2 calculation seems to be based
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on the work by Chen et al. [2011]. The experimental setup as described by the authors

appears to be quite limited. The authors have only considered data from the Asia network,

which has only 8 nodes. This dataset was possibly not complex enough to demonstrate any

issues which may occur when the number of variables in a dataset increases.

4.3 PARALLELIZATION OPPORTUNITIES: SEARCH BASED

ALGORITHMS

Considering the related work that I reviewed in the previous section, the main focal points for

parallelization of search and score algorithms are: 1) the calculation of the score function, and

2) efficiently navigating the structure space Additionally, both of the points are influenced

by the dimensions of the dataset. Next, I am summarizing and discussing possible strategies

for algorithm parallelization, looking at the influence of the size of the dataset and at the

main components of search and score algorithms.

4.3.1 Dataset Size

The size of the dataset has a large influence on how we approach the problem of creating a

parallel algorithm. If the dataset completely fits in the local memory of the Mappers, we can

employ a much larger array of parallelization strategies to cope with the size of the structure

space. If the dataset is too large, we may have to explicitly parallelize the calculation of the

sufficient statistics and the structure score calculation itself.

Given that the datasets fits in the memory of the Mappers, one trivial approach to

Bayesian search parallelization is to run separate instance of the algorithm in each of the

Mappers, providing a different random starting point for each of the Mappers. After com-

pleting the search, each Mapper outputs its best structure and the corresponding structure

score. The Reducer then finds and returns the structure with the maximum score.

If the dataset does not fit in the Mapper memory, these types of approaches are not

feasible. To be able to calculate the structure score, an approach similar to Chen et al.
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[2011] will be necessary to first calculate counts from the datasets using MapReduce jobs.

This way a central controller could construct the Bayesian network in the same manner as

a typical sequential algorithm, but then offload the expensive calculation on the dataset to

the MapReduce cluster.

A different approach to solving the problem of large data is to select representative

samples of the original dataset, which could potentially fit into Mapper memory again.

Another potential approach is to partition the columns of the dataset and apply structure

learning algorithms to the partitions in the Mappers and merge the substructures in the

Reducers.

4.3.2 Score Calculation

Calculating the score of a candidate structure is the most computational-intensive part of any

search-and-score algorithm. As was discussed in Section 4.3.1, the size of the datasets that

are to serve as input, will guide the design process of the parallel versions of the algorithms.

The decomposition property of most popular score functions is a useful starting point

for parallelization, with the added assumption of a fixed node ordering, we can perform the

search for the optimal network structure completely in parallel, given that each Mapper has

access to the complete dataset, and merge the substructures into the final Bayesian network.

If the dataset is too large, approaches like the one described by Chen et al. [2011] are

a natural choice. It is theoretically possible to calculate all the necessary counts in one

MapReduce job, but it is quite likely that we cannot store all the intermediate key-value

pairs (KVP). Assuming, as was the case for [Chen et al., 2011], we are calculating (condi-

tional) mutual information, then we can calculate the (conditional) mutual information in

the following number of ways:

#MI =

(
C

2

)
· 2C−2 , (4.3)

where C is the number of columns in the dataset. This assumes that there is no limit on

the size of the conditioning set. Luckily we do not require as many KVPs for the required

counts, as many of the counts can be reused for the different mutual information queries,
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Figure 4.1: Number of KVPs emitted by Mappers for each record

but the total number will still be unacceptably large when the number of columns in our

dataset increases:

#KV P = 2C − 1 . (4.4)

For the Bayesian score functions the number of necessary KVPs stays the same. In the

extreme case we would consider a node with all other nodes as potential parents. Typically,

we restrict the number of parents and this will restrict the number of KVPs. Assuming we

are examining for every node the potential parent set, setting the maximum allowed number

of parents to P , we find the total number of KVPs to be outputted for each record in the

dataset:

KV P =
C∑
i=1

min(C−i,P )∑
p=0

=

(
C − i
p

)
. (4.5)

Figure 4.1 shows a plot of the function for a few values of P and dataset sizes up to 1,000

columns. The figure shows that limiting the number of parents is a necessity to keep this

approach feasible for anything but toy examples. The unlimited case, examining every
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possible parent set for each of the nodes, would require an exponential number of KVPs to

be generated for each of the data records. Limiting the number of parents allows for many

orders of magnitude less KVPs to be generated, but even then the number of KVPs quickly

increases with the number of columns in the dataset. To keep the KVPs from increasing

too rapidly, the maximum number of parents needs to be restricted to roughly 3-6 parents

per node. The horizontal line in the plot shows where each Mapper would be generating

one billion KVPs for each record. It’s likely that this will put a considerable amount of load

on the MapReduce cluster, but the end result could still be manageable. The number of

columns in the dataset will have stay quite small if we want to apply this approach, 50-375

columns might be acceptable at most. The magnitude of the result, all the collected counts,

of the MapReduce job will require, for any further score calculation, that a MapReduce

implementation is explored for the next part of the score calculation. This issue has not yet

been addressed in the literature and thus allows for a possible avenue of research. Other

ideas to be considered on the basis of these findings are, as already discussed in Section 4.3.1,

examining separate column partitions or subsamples of the data.

An alternative solution to is to “serialize” the problem. Instead of attempting massive

MapReduce jobs that calculates all counts for all nodes at the same time, a MapReduce job

could consist of just one specific calculation. This could mean calculating the counts for one

(conditional) mutual information measure [Chen et al., 2011], or one Bayesian score for a

node with a specific set of parents [Fang et al., 2013]. The downside of this approach is that

MapReduce jobs tend to have a significant amount of overhead, typically taking at least 30

seconds to finish. If the algorithm requires many MapReduce jobs, the total execution time

of the algorithm may potentially become too large for practical applications.

4.3.3 Structure Search

Assuming that we have dealt with the issue of score calculation, we can examine possible

parallelization strategies for the structure search. For convenience we will assume that the

data fits in memory or that we have easy access to the necessary counts and we can compute

the structure scores locally in each Mapper. The main examples from the literature are 1)
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assuming a node ordering and find all the optimal node family structures separately, and 2)

systematically divide up the structure search space over the processors. Let us consider an

alternative.

An iterative algorithm can be constructed by having a central controller work on the

final network structure and creating MapReduce jobs where the input for the Mappers are

sequences of modifications that are to be applied to the current network structure. Each

Mapper can apply the provided modification sequence and re-score the structure after every

change. The Mappers can then return the structure with the highest score that it encountered

while modifying the originally supplied structure. Reducers can be used to pick the best

structure overall the result of the MapReduce job is used by the central controller to update

the current structure, after which a new MapReduce job can be created to repeat the process.

To be effective the generated sequences should be long enough so that there are enough of

them to consider so the overhead of the MapReduce jobs will not dominate the computation

time. The algorithm may also apply random starting points to be able to explore a larger

area of the search space.

Building on this principle, an algorithm can be defined that performs many searches,

each from a randomly generated starting point. Each Mapper could contain an instance of

a Bayesian search algorithm, performing a search from the provided starting point, making

use of possibly different search heuristics such as tabu search or more random restarts.

Reducers would be used to find the maximum scoring structures and possibly could be used

to find similarity between high scoring networks, which then could be provided as structural

constraints if multiple MapReduce jobs are run instead of just one search iteration.

4.4 PARALLELIZATION OPPORTUNITIES: CONSTRAINT-BASED

ALGORITHMS

In the literature I found just one paper [Nikolova and Aluru, 2011] that discussed parallelizing

an algorithm related to the constraint-based search approach. Here I will consider possible

approaches to parallelizing the PC algorithm [Spirtes et al., 1993]. The two main phases of
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the PC algorithm are 1) determining the skeleton of the Bayesian network, and 2) orienting

the edges of the skeleton. Let us first look more closely at the independence tests.

4.4.1 Independence Tests

Since the first step involves determining the (conditional) independence between pairs of

nodes, potentially involving a conditioning set, again the size of the dataset will play large

role in how we parallelize the algorithm. If the dataset does not fit in memory we will

again have to employ the same strategy as discussed before, but due to the ordering of the

(conditional) independence tests, we can this time adapt an iterative approach where we start

out with a MapReduce job that calculates the pairwise independence among variables and

the removes edges between variables deemed independent before continuing with MapReduce

jobs that calculate conditional independence among the variables. Every iteration we would

prune the edges that are independent and then we increase the size of the conditioning,

where the number of tests will be reduced due to the decrease in unsuccessfully tested

edges. Combined with limiting the maximum number of variables in the conditioning set,

the number of KVPs emitted for each data record should be greatly reduced, making the

procedure more feasible for larger datasets and a potentially interesting preprocessing step

for parallel Bayesian search algorithms.

If the dataset does fit in Mapper memory, we can perform each independence test com-

pletely within a Mapper and apply a different parallelization strategy. The independence

tests, can be divided over the Mappers. Potentially tests for the same node pair, but with

different conditioning sets can be distributed over Mappers as well, but this would require

more complicated logic in the Reducers.

4.4.2 Edge Orientation

The edge orientation phase of the PC algorithm is inherently iterative, and this complicates

its parallelization when using the MapReduce framework. The framework is less suited

for iterative algorithms. Orienting the edges is done in two steps. First we search for v-

structures, and after this has been completed we proceed to orient the remaining edges by
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matching them with a set of rules. The nature of the v-structure discovery step allows

for parallelization. We examine all triplets of nodes looking for ones that satisfy all of the

following conditions for each triplet (A,B,C):

• There must be an edge between A and B

• There must be an edge between B and C

• There must not be an edge between A and C

• B must not be present in the separator set (calculated during independence tests ) of A

and C

We can examine all possible triples in parallel, but it would probably suffice to examine every

node in parallel instead and have each mapper consider every pair of adjacent nodes. Com-

pared to the calculation of the independence tests, the amount of calculation necessary here

most likely does not justify applying the MapReduce framework. The ratio of overhead to

actual computation will stay unfavorable unless the number of nodes increases significantly.

The final step of the PC algorithm is to orient the remaining edges. The PC algorithm

iteratively applies the following two rules to the graph.

1. Orient A→ B − C as A→ B → C

2. Orient A− C as A→ C if there is a path A→ . . .→ C

Depending on preference any remaining undirected edges are either oriented randomly, but

so that the result is a consistent DAG, or are left unoriented and the algorithm returns a

pattern. In the SMILE implementation, the two rules are investigated sequentially. First

Rule 1 is applied to any valid match then Rule 2 is applied to any match. The algorithm

will keep applying the two rules until neither is able to make any new changes to the graph.

Similar to the v-structure search, we can potentially parallelize the rule matching to

examine candidates in parallel, but this will most likely not increase algorithm performance

due to MapReduce overhead as well. A more interesting idea to parallelization is to allow

for multiple rule application strategies. In SMILE, the rules are applied in a strict order. It

might be worthwhile to examine the consequences of applying the rules in a different order

or when the rules are interleaved, switching between rules after every step. Applying these

different rule matching strategies will result in a number of candidate structures. As part of

69



the reduce job, we can then investigate the similarities and differences and perhaps are able

to return a more robust structure. This structure might be less dependent on the artifact of

the specific rule ordering as implemented in libraries such as SMILE.

4.5 OTHER PARALLELIZATION LITERATURE ON BAYESIAN

NETWORKS

This dissertation has a focus on learning Bayesian network structures. Hence, up to this

point, this chapter has only reviewed parallel Bayesian network structure learning approaches

from the literature and parallelization opportunities for the existing structure learning doc-

trines. To round out this chapter, I will discuss parallelized approaches to Bayesian network

inference and parameter learning. Section 4.5.1 will discuss inference approaches and Section

4.5.2 will discuss parallelized approaches to parameter learning for Bayesian networks.

4.5.1 Inference

Pennock [1998] described a parallel inference algorithm called McPHISHFOOD, which was

designed for the theoretical CREW PRAM, concurrent-read, exclusive-write parallel random-

access machine model. The algorithm constructs a directed version of a junction tree and

applies often-used techniques for algorithm parallelization such as pointer jumping, paral-

lel tree contraction, and the Euler tour technique, to perform the junction tree inference

calculations in logarithmic time.

Namasivayam and Prasanna [2006] have implemented a topology independent parallel

version of the junction tree algorithm. The algorithm has been parallelized on two levels:

1) a top level, where pointer jumping was applied for moving between clique nodes, and 2)

a node level parallelization used to exploit independences in the node calculations. Their

approach is limited to only one evidence variable, which should appear in the root of the

junction tree. The algorithm was implemented using the MPI library.
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Xia and Prasanna [2008] present an algorithm for exact inference that decomposes a junc-

tion tree into a set chains. In contrast to the [Namasivayam and Prasanna, 2006] algorithm,

this algorithm is able to process evidence in multiple variables, regardless of their location

in the decomposed junction tree. To incorporate evidence, the cliques are updated partially

first in their chains, and are then merged to construct the fully updated cliques for the

complete tree. Evidence is propagated between the chains and the nodes using the pointer

jumping technique. MPI was used to implemented and run the algorithm on a cluster.

Ma et al. [2012] describe an approach to parallel inference of Bayesian networks using

the MapReduce framework. Their algorithm was not on a Hadoop cluster with separate

computers, but on a multi-core computer with an additional software layer that facilitates

the Hadoop framework on a single computer with many CPU cores. Just as the other

papers discussed in this section, the authors have proposed a parallel version of the junction

tree algorithm. Specifically they propose two strategies for evidence propagation. The

first approach is a depth first search approach, where MapReduce jobs consist of clique

calculations in Mappers and Evidence adsorption in Reducers. MapReduce calculation are

in the strategy limited to one node and it’s children. The other strategy proposed by the

authors intends to exploit a larger level of parallelism by performing calculations for whole

tree layers, i.e., by collecting evidence from all leaf nodes and propagating it to their parents,

all in one MapReduce job. The authors found that the level-based strategy was the better

performing one of the two they proposed.

4.5.2 Parameter Learning

The most common algorithm used for learning the parameters of a Bayesian network is

the EM algorithm [Dempster et al., 1977, Lauritzen, 1995]. Although the EM algorithm

is specifically meant for learning parameters when the data are incomplete, it is commonly

used in the complete data case as well, where it reduces to maximum likelihood estimation.

Yu et al. [2007] actually describe a parallel structure learning algorithm, but it is based on

the structural EM algorithm by Friedman and Koller [2000]. To learn the model parameters,

they apply their parallel version of the EM algorithm, PL-SEM. The authors apply data-
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parallelization to calculate the sufficient statistics. The dataset is distributed equally over

the computers for this step. The parameters for the BN are estimated in the M-step of the

algorithm, the CPTs of the network are distributed over the computers to perform this step

in parallel. The authors have used the MPI library to implement their algorithm.

Mensink et al. [2007] present a distributed version of the EM algorithm for the problem

of multi-camera tracking of persons. They authors apply mixture of Gaussian to represent

the persons under investigation. Their graphical model used for tracking is a special case of a

Bayesian network with continuous variables. Their algorithm, Multi-Observations Newscast

EM (MON-EM), performs local EM computations at each camera and the information at

each camera is communicated with the others. Specifically, the E-step is identical to the

regular EM algorithm, but the M-step involves what the authors call gossip-based cycles

where cameras randomly contact another camera and exchange information. After a number

of cycles the local mixture of Gaussians model at each camera converges on the correct, global

parameters.

Basak et al. [2012] present a MapReduce version of the EM algorithm. One MapReduce

job represents one iteration of the EM algorithm. The authors provide optimized versions

for the complete and incomplete data case. The complete case reduces to the basic “generate

counts and add them up” approach. The Mapper creates counts for variable assignments in

the counts and the Reducer adds these up. A central controller then processes the counts and

updates the parameters of the Bayesian network. The incomplete case involves performing

inference on each of the samples in the Mapper to estimate the sufficient statistics of the

missing data. We now deal with “soft” counts, which are distributions over all possible states

the variable can be assigned. These distributions are aggregated in the Reducer and the new

parameters for each CPT entry are determined here and outputted to a central file to update

the BN. The process continues until the parameters converge.
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5.0 UTILIZING MAPREDUCE TO REALIZE LARGE SCALE USE OF

THE PC ALGORITHM

In this chapter, I propose two MapReduce algorithms based on the PC algorithm. I evaluate

these algorithms together with two algorithms from the literature and a single-processor

implementation of the PC algorithm.

5.1 INTRODUCTION

In Chapter 4, I discussed related work on parallelizing Bayesian network structure learning

algorithms based on either the MPI or the MapReduce framework. I also summarized and

discussed possible approaches to parallelizing structure learning algorithms using MapRe-

duce. In this chapter, I describe two MapReduce variants of the PC algorithm and provide

a more detailed explanation on two MapReduce algorithms for learning Bayesian network

structures from the literature. I report the result of an empirical evaluation of the perfor-

mance of the four algorithms and SMILE’s PC algorithm on a set of gold standard network

recovery tasks and a set of datasets for a classification task. I conclude this chapter with

a discussion of the performance of each of the algorithms and a general discussion of the

feasibility of learning Bayesian network structures with the MapReduce framework.

I found, after running evaluations, that it is challenging for Hadoop-based algorithms to

compete with a well-optimized single-processor algorithm such as the PC algorithm, available

in the SMILE library. The reference algorithms from the literature [Chen et al., 2011, Fang

et al., 2013] claim a focus on datasets with many records, but the true difficulty of learning

Bayesian network models lies in the number of variables that datasets have. The algorithms
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I propose are based on the PC algorithm. A MapReduce version of the PC algorithm has the

potential to eliminate a large amount of the computational complexity early in the process,

if the data are suitable. Any MapReduce job has a significant amount of overhead and

each one takes at least seconds to complete. Algorithms that require many of them will be

significantly slower than those that require less or none at all (e.g. SMILE).

I found, that only when the number of variables in a dataset becomes truly large, start-

ing around 800 variables, my second MapReduce algorithm starts to outperform the single

processor SMILE code, when the sheer number of Mapper jobs executed in parallel starts to

make a difference.

5.2 REFERENCE ALGORITHMS

To provide a frame of reference for the evaluation of my two MapReduce-based PC algorithm

implementations, I implemented the algorithms described by Chen et al. [2011] and Fang

et al. [2013]. Both are MapReduce-based algorithms for learning Bayesian network struc-

tures, albeit based on different non-MR algorithms. The algorithm by Chen et al. [2011] is

based on the Three-Phase Dependency Analysis (TPDA) algorithm by Cheng et al. [1997]

and the work by Fang et al. [2013] was based on the classic Bayesian search algorithm by

Cooper and Herskovits [1992]. When implementing the algorithms, I followed the respective

papers as closely as possible. To implement the work by Fang et al. [2013], I made a few

choices to fill in the gaps of the description in their paper. In the following two sections, I

will reproduce the algorithms, as they were implemented by me, and summarize how they

work.

Finally, in Section 5.2.3 I describe a few details of the implementation of SMILE’s PC

algorithm, which was used as a third reference algorithm to compare the performance of

the MapReduce-based algorithms to a highly optimized Bayesian network structure learning

algorithm running on a single computer.
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5.2.1 Chen’s Algorithm

The algorithm proposed by Chen et al. [2011] follows closely the original structure of the

TPDA algorithm it was based on. It consists of a main controller process that executes

all the steps of the algorithm. It creates MapReduce jobs to acquire the counts that are

necessary for the calculation of the (conditional) mutual information measure used for its

edge removal decision making process. The TPDA algorithm consists of four phases:

1. Drafting

2. Thickening

3. Thinning

4. Edge Orientation

In the first phase, the algorithm calculates all the pairwise mutual information measure

between all nodes. A preset threshold is used to decide which edges to keep. The first phase

results in an initial skeleton. The second phase attempts to add edges using conditional

mutual information (CMI) measures between nodes and conditioning variables. The third

phase then tries to prune the network again using CMI. The final phase is identical to the

edge orientation phase of the PC Algorithm [Spirtes et al., 1993].

The MapReduce part of the algorithm is used purely for calculating counts. The algo-

rithm employs two different types of jobs. The first calculates counts needed for pairwise

mutual information calculations for all possible node pairs. The second, calculates counts

necessary for a specific conditional mutual information measure for nodes X and Y given

conditioning set S. They differ in their Mapper code, but both use the same Reducer code,

which simply adds up all counts for a key. Algorithms 3 and 4 describe the two Mapper im-

plementations and Algorithm 5 describes the Reducer code, which is identical to the Reducer

code used for adding up the counts in my first MapReduce PC algorithm.

The main controller code calls the Hadoop jobs as subroutines. I present the details in

Algorithm 6. The algorithm has been implemented as a standalone class, it can be provided

to Hadoop boilerplate code and run on any Hadoop cluster.
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Algorithm 3 Mutual Information Counts: Mapper

1: Split input record in separate column values

2: for each column X in the record do

3: Construct vX = val(X) assignment

4: Output this assignment with count set to 1

5: for each column Y in the record do

6: Construct output assignment vX = val(X) + vY = val(Y )

7: Output this assignment with count set to 1

8: end for

9: end for

Algorithm 4 Conditional Mutual Information Counts: Mapper

1: Split input record in separate column values

2: For pair (X, Y ) and conditioning set S:

3: Construct vX = val(Y ) assignment A

4: Construct vY = val(Y ) assignment B

5: Construct vS1 = val(S1) + vS2 = val(S2) + . . . vSn = val(Sn)+ assignment C

6: Output (A+ C, 1)

7: Output (B + C, 1)

8: Output (A+B + C, 1)

9: Output (C, 1)

Algorithm 5 (Conditional) Mutual Information Counts: Reducer

1: total = 0

2: for every input (key, count) do

3: Add count to total

4: end for

5: Return (key, total)
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Algorithm 6 Main controller

1: [Drafting Phase]

2: Calculate all pairwise MI between nodes (MapReduce MI),

keep only edges with MI > threshold in list L

3: for each edge (X, Y ) in L do

4: if there are no paths from X to Y then

5: Add the edge (X, Y ) to the graph

6: Remove (X, Y ) from L

7: end if

8: end for

9: [Thickening Phase]

10: for each edge (X, Y ) in L do

11: if the edge (X, Y ) is needed (MapReduce, CMI) then

12: Add the edge (X, Y ) to the graph

13: end if

14: end for

15: [Thinning Phase]

16: for each edge (X, Y ) in the graph do

17: if there are paths from X to Y then

18: if the edge (X, Y ) is not needed (MapReduce, CMI) then

19: Remove the edge (X, Y ) from the graph

20: end if

21: end if

22: end for

23: Orient Edges using the rules used by the PC algorithm

5.2.2 Fang’s Algorithm

Comparing the paper by Fang et al. [2013] to the paper by Chen et al. [2011], the former

was harder to implement than the latter. The MapReduce code was easy to understand, but
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certain design decisions were left out in the description of the algorithm. For instance, the

authors mention only indirectly, that the counts calculated in one MapReduce job need to

be available to all Mappers in a subsequent MapReduce job. Making the counts available to

all Mappers requires them to be distributed to all computers in the cluster that are running

Mapper jobs, which could potentially have a significant impact in overall performance of the

algorithm. Furthermore, the authors described the main Bayesian search algorithm in less

detail and seem to have forgotten to discuss a crucial point: Bayesian search (as described

by Cooper and Herskovits [1992]) requires a predefined node ordering. The authors did not

discuss how to choose an ordering, either when proposing their algorithm or when discussing

their empirical evaluation. The assumption of a predefined node order is crucial for their

algorithm, however, for it allows them to optimize the parent sets for each node indepen-

dently. For the purpose of using the algorithm as a reference algorithm in the evaluation of

my PC algorithm implementations, I chose to provide it with a correct node ordering when

performing a gold standard recovery task.

The algorithm makes use of three different types of MapReduce jobs. The first two are

for calculating counts, where one (Algorithm 7) is specialized for the case where we need

counts for a node with an empty parent set, and the second (Algorithm 8) is used when

the parent set is non-empty. Both use the same Reducer code (Algorithm 9). The last

MapReduce job (Algorithms 10 & 11) is used for selecting the best new parent candidate to

add to the parent set of a node. The main controller for the algorithm is listed in Algorithm

12.

Algorithm 7 Counts for Parent-Less Node: Mapper

1: For node I:

2: Construct assignment vI = val(I) A

3: Output (A, 1)

Like Chen’s algorithm, this algorithm has been implemented as a standalone class, that

can be provided to Hadoop boilerplate code and run on any Hadoop cluster. A detailed

description of the practical performance of both algorithms is given in Sections 5.6.3 and
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Algorithm 8 Counts for node with Parents: Mapper

1: For node I:

2: Construct assignment vI = val(I) A

3: Construct vS1 = val(s1) + vS2 = val(S2) + . . . vSn = val(Sn)+ assignment B

4: for all parent candidates Y do

5: Construct assignment vY = val(Y ) C

6: Output (C +B + A, 1)

7: end for

Algorithm 9 Counts: Reducer

1: total = 0

2: for every input (key, count) do

3: add count to total

4: end for

5: Return (key, total)

Algorithm 10 Find Best New Parent: Mapper

1: Get node I

2: Get current parent set S

3: Get counts necessary for score calculation

4: Read input parent candidate Y

5: Calculate score for node I given parent set S ∪ Y

6: Output (Y, score)

5.6.4 respectively. The main difference between my algorithm implementations and these

two algorithms is that these implement smaller parts of the algorithm as MapReduce jobs.

Consequently a complete run of either algorithm requires many MapReduce jobs to be run

to complete all the work. This design choice effects the scalability in terms of the number

of variables in the dataset.
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Algorithm 11 Find Best New Parent: Reducer

1: max = 0

2: best candidate = 0

3: for every input (candidate, score) do

4: if score > max then

5: max = score

6: best candidate = candidate

7: end if

8: end for

9: Return (best candidate,max)

Algorithm 12 Main controller

1: for each node i do

2: Calculate Score for i with an empty parent set S (MapReduce Job)

3: OkToProceed = true;

4: while OkToProceed = true and |S| < max set size do

5: Find best new parent to add to S (2x MapReduce Jobs)

6: if new score > current max score then

7: Current max score = new score;

8: Add new parent to S;

9: Add arc (new parent, i) to the graph

10: else

11: OkToProceed = false

12: end if

13: end while

14: end for

5.2.3 SMILE’s PC Algorithm

SMILE’s implementation of the PC algorithm was based on the description in the book by

Spirtes et al. [1993]. Additionally, several optimizations have been added to the algorithm.
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SMILE caches counts obtained from the dataset in a ADTree data structure [Moore and Lee,

1998]. The use of the ADTree data structure speeds up the algorithm significantly, but it

requires a large amount of memory. I have added the ability to constrain the memory usage

of the ADTree, to ensure optimal performance. If the memory usage is not constrained, it is

possible the program will either crash due to running out of memory, or algorithm process

may be slowed down to a crawl if the operating system starts swapping out memory to

disk. Once the OS starts storing parts of the ADTree to disk, its speed benefit disappears,

as the process running the algorithm will spend a considerable amount of time waiting for

disk operations to finish. Constraining the memory usage so the ADTree will fit in memory

ensures that the algorithm will perform much better, even though, from time to time the

ADTree is completely deleted and rebuilt.

To improve the efficiency of the independence testing procedure further, I have im-

plemented a Mutual Information heuristic that reorders the nodes so that edges that are

considered the weakest are tested first. The G2 statistic, used for the significance testing of

edges, is proportional to the mutual information measure MI (A,B |Z). To be exact:

MI (A,B |Z) =
G2

2N log (2)
. (5.1)

Thus, it is trivial to acquire the mutual information for an edge (given conditioning variables

if necessary) after we have calculated the G2 statistic. The mutual information measure is

used as a measure of link strength and node strength (by adding up the strength of the links

of a node). We sort the nodes so that we evaluate the weakest links first. Potentially this

can speed up the process due to weaker links being pruned quicker and not being a part of

a later conditional independence test. I have implemented the MI edge pruning ability and

the “test the weakest first” strategy (as described in [Bacciu et al., 2013]).

Another optimization implemented for SMILE reduces the size of the conditioning sets

used in the independence tests. Based on descriptions in [Spirtes et al., 1993] and [Cheng

et al., 1997], I have implemented a procedure that reduces the conditioning set for a test

of independence for nodes X and Y to only those nodes that are on paths from X to Y ,

eliminating effectively nodes that are on “dead ends.” This heuristic has the ability to

considerably reduce the number of computations needed for conditional independence tests.
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I have observed, that in some cases nodes stand out with a very large number of edges,

but that these nodes are the center in what resembles a star topology. The majority of its

adjacent nodes are only connected to this center node, and with only a few connections to

the rest of the network. Eliminating these dead end connections can significantly reduce the

number of independence tests that need to be performed. This is due to the number of tests

depending on all the possible combinations of adjacent variables as potential conditioning

sets.

The final improvement added to the PC algorithm, is a rule that ensures that indepen-

dence tests are only performed when there is sufficient data available for the contingency

tables used for the tests. Spirtes et al. [1993] recommend that on average there are 10 samples

per cell, and if this ratio is not met, the test should not be performed and the edge should be

kept. Tsamardinos et al. [2006] share this belief, but recommend a ratio of 5 and, although

explicitly referring to Spirtes et al. in their work, they recommend the opposite action, i.e.,

that the edge is removed if there are not sufficient data. This difference of opinion and the

potential impact of the two conflicting advices is the topic of Chapter 6. With respect to

the three algorithms based on PC that we will consider in this chapter, the PCB algorithm

(Section 5.4) and SMILE both follow the recommendation of Tsamardinos et al. [2006]. PCA

(Section 5.3), which was implemented before this issue was examined more closely, does not

implement this rule.

In the next two sections, I propose two MapReduce algorithms based on the PC algo-

rithm. In section 5.5 I will compare the performance of all four MapReduce based algorithms

and SMILE’s PC algorithm implementation running on a single computer.

5.3 ALGORITHM: DISTRIBUTED COUNTING (PCA)

My first attempt to a MapReduce version of the PC algorithm was based on the distributed

counting principle used both by Chen et al. [2011] and Fang et al. [2013]. In the empirical

evaluation section, this algorithm will be referred to as PCA. To acquire the required counts,

one MapReduce phase is used to generate the counts from the raw data records. Additionally,
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I utilize two additional MapReduce phases that prepare the raw counts for the calculation

of the G2 statistic, the calculation of the G2 statistic, the p-value, and the selection of edges

that are to be removed from the graph. The three phases can be summarized as:

1. Calculate counts

2. Calculate p-values

3. Gather (edge, conditioning set, p-value) triplets with maximum p-value

In the first phase, the necessary counts for the (conditional) independence tests are

calculated by applying the same principle as was used by Chen et al. [2011] and Fang

et al. [2013]. The Mappers (Algorithm 13) read the data record by record and map the

variable assignments to KVPs (Key-Value Pairs). These KVPs are collected and summed

by Combiners and Reducers (both apply Algorithm 14) and the counts for all necessary

calculations are written to disk at the end of the job.

The next phase (Algorithm 15), takes the counts as inputs and splits the variable as-

signments into ordered sets of variables, which represents the key and a pair structure that

consists of the ordered set of variable outcomes and the count. In the Reduce phase (Algo-

rithm 16), the Reducers collect all counts that belong to the same set of variables. We now

have all the information necessary to perform an independence test. Next, we construct the

contingency table (only non-zero entries are necessary), calculate the G2 statistic and the

degrees of freedom for the test, and finally calculate the p-value of the test. If a test result

is not significant, i.e., the p-value is larger than the preset alpha value, we output the edge

and the corresponding p-value.

The final phase (Algorithms 17 & 18) finds the set of edges with the corresponding

maximum p-values. This set of edges will be removed from the current graph.

The three-phase Hadoop process is controlled by a central process (Algorithm 19) that

runs on the client computer and not on the cluster. I implemented the central controller as

a module for the PC algorithm implementation of SMILEWIDE, a Hadoop inspired version

of SMILE. Instead of running the independence tests locally, this way a Hadoop cluster can

be used without exposing the details of the implementation to the user of the PC algorithm.
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Algorithm 13 PCA: Calculate Counts, Mapper

Require: Current graph G

Data record d

Current conditioning set size i

1: for each column X of d do

2: for each column Y of d do

3: if X 6= Y and G has an edge between X and Y then

4: Construct output assignment O:

“varX=valX+varY=valY ”

5: if i > 0 then

6: for j = 0; j < |PS (V (G) \ {X, Y })| ; j + + do

7: {We are enumerating over all members of the powerset}

Cj ∈ PS (V (G) \ {X, Y })

8: if Z ∈ Cj ⇐⇒ Z ∈ Adj (X) ∨ Z ∈ Adj (Y ) then

9: Construct conditioning assignment Oj :

“var1=val1+var2=val2+· · ·+vari=vali”

10: Set assignment count to 1

11: Output assignment (O +Oj, 1) to Reducer

12: end if

13: end for

14: else if X < Y then

15: Set assignment count to 1

16: Output assignment (O, 1) to Reducer

17: end if

18: end if

19: end for

20: end for
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Algorithm 14 PCA: Calculate Counts, Reducer

Require: all (key, count) pairs with key-value key (Algorithm 13)

1: total = 0

2: for every input (key, count) do

3: total = total + count

4: end for

5: Write (key, total) to intermediate file

Algorithm 15 PCA: Calculate p-values, Mapper

Require: (key, count) input record from result of previous Reducer (Algorithm 14)

1: Split (key, count) pair into key (variable assignment) and count

2: Reformat key:

3: “var1=val1+var2=val2+var3=val3” → “var1,var2,var3”

4: keynew = “var1,var2,var3”

5: Construct value from (key, count):

6: (“var1=val1+var2=val2+var3=val3”,count) → “val1,val2,val3=count”

7: value = “val1,val2,val3=count”

8: Output (keynew, value) to Reducer
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Algorithm 16 PCA: Calculate p-values, Reducer

Require: All (key, value) pairs from Mappers (Algorithm 15)

1: Construct contingency table CT ,

having a dimension for each variable in key,

and for each dimension i have |Card(vari)| cells

2: for every (key, value) input do

3: Decode key (“var1,var2,var3”) and value (“val1,val2,val3=count”)

into coordinates for CT and store the count:

4: CT [val1, val2, . . . , valn] = count

5: end for

6: From CT , calculate G2 statistic [Spirtes et al., 2000]:

7: G2 = 2
∑

i xijk

(
ln (xijk) + ln

(∑
i

∑
j xijk

)
− ln (

∑
i xijk)− ln

(∑
j xijk

))
,

where xijk is a cell in CT , i is a row, j is a column, and k represents a particular instance

of the conditioning variables

8: From CT , calculate degrees of freedom dof [Fienberg, 2007]:

9: for every conditioning set assignment Ci ∈ C do

10: emptyrc [Ci] = (row, col), where row and col represent the number of empty rows and

columns in the contigency table indexed by conditioning assignment Ci

11: end for

12: dof = (Card (X)− 1) ∗ (Card (Y )− 1) ∗ ((
∏

iCard (Ci))− |emptyrc|)

13: for every conditioning set assignment Ci ∈ emptyrc do

14: dofcor = (Card (X)− 1− emptyrc [Ci] .row) ∗ (Card (Y )− 1− emptyrc [Ci] .col)

15: if dofcor ≤ 0 then

16: dof = dof + dofcor

17: end if

18: end for

19: Calculate p-value using χ2 distribution [Spirtes et al., 2000]: p = Fχ2 (G2, dof)

20: if p > α then

21: Write (key, p) to intermediate file

22: end if
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Algorithm 17 PCA: Gather edge triplets, Mapper

Require: (key, pvalue) pair from results of previous Reducer (Algorithm 16)

1: Adjust key so p-values for test (X, Y ) and (Y,X) are sent to the same reducer:

2: if key → (X, Y,C1, C2, . . . , Ci) ∧ Y < X then

3: key = (Y,X,C1, C2, . . . , Ci)

4: end if

5: Output (key, pvalue) to Reducer

Algorithm 18 PCA: Gather edge triplets, Reducer

Require: All (key, pvalue) pairs from Mappers (Algorithm 17)

1: max = 0

2: maxkey = ∅

3: for All (key, pvalue) do

4: if pvalue > max then

5: max = pvalue

6: maxkey = key

7: end if

8: end for

9: Decode from maxkey the conditioning set C:

(X, Y,C1, C2, . . . , Ci)→ (C1, C2, . . . , Ci)

10: C = (C1, C2, . . . , Ci)

11: Write ((X, Y ),C) to output file
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Algorithm 19 Main controller for PCA

Require: Completely connected, undirected graph G

1: for i = 0 ; i < max conditioning set limit ; i+ + do

2: Run phase 1 (Algorithms 13 and 14) of the Hadoop Process

3: Run phase 2 (Algorithms 15 and 16) of the Hadoop Process

4: Run phase 3 (Algorithms 17 and 18) of the Hadoop Process

5: Download output file created by Algorithm 18

6: for each ((X, Y ),C) in the file do

7: remove edges (X, Y ) and (Y,X) from G

8: Store C for later processing in the edge orientation step of the PC algorithm [Spirtes

et al., 2000]

9: end for

10: end for

11: output G to the edge orientation phase of the PC algorithm

After completing all the independence tests, the main controller returns the updated

graph and the collection of separator sets to the main PC algorithm code, which will handle

the edge orientation process.

In Section 5.6.1, I will give a more detailed report on the performance of the algorithm,

but to summarize, I found that this approach could not guarantee successful termination

every time. The successful execution of the algorithm depended heavily on the input data.

If not enough edges were removed in the first rounds of independence tests, the number of

counts, required for the independence tests, would increase exponentially and the total load

on the Hadoop cluster would become too much, causing the cluster to run out of disk space

and the algorithm to crash. It was necessary for me to investigate alternative approaches to

parallelization of the PC algorithm.
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5.4 ALGORITHM: DISTRIBUTED INDEPENDENCE TESTING (PCB)

Due to the problems with the PCA MapReduce implementation of the PC algorithm (Mapper

message overload), I worked on implementing a second approach, where each Mapper would

perform a number of (conditional) independence tests, while having the complete dataset in

its memory. In the empirical evaluation, this algorithm will be referred to as PCB. My first

implementation of this approach had the Mappers perform independence tests on a random

subset of all edges that needed testing. I derived an equation for the probability distribution

of missing an edge to determine how many random independence tests the Mappers have to

perform in total to keep the error probability (not testing edges) below a preset threshold:

P (error) =

(
1− K

E

)M
, (5.2)

where K stands for the number of edges to be tested by each Mapper instance, E the total

number of edges present in the graph, and M is the total number of Mapper instances to

be run. In this implementation, M and P (error) are preset, E is derived from the current

state of the graph under investigation and we calculate K using the equation filled in with

the other parameters. This means that over time, when we progress to the next iteration

and increase the size of the conditioning set, K will become smaller due to the decrease in

E through the removal of the edges deemed independent in the previous iteration. It is not

uncommon that within a few iterations each Mapper instance will only test one edge for

independence.

This, however, does not mean that only one test of independence is performed. Once the

conditioning set size is larger than 0, we will perform a test of independence for every eligible

combination of conditioning variables. Variables are eligible to be included when they are

directly connected to one of the adjacent nodes of the edge under consideration. We do two

sets of tests for an edge X − Y , one where the conditioning variables must be connected to

X, and one where they must be connected to Y . All combinations are tested and PC stores

the conditioning set which has the largest p-value (i.e., for that conditioning set it was the

hardest to reject independence between X and Y ).
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After initial testing, I found that the extra amount of work the Mappers had to do to

guarantee that the percentage of edges missed in an evaluation would stay low enough, added

significant overhead to the process. As a consequence, I abandoned the random approach for

a simpler partitioning approach, where the edges were partitioned over a preset number of

Mapper jobs. Over successive iterations, removing edges from the graph after each iteration,

the number of edges to be processed by each Mapper jobs is adjusted downwards. This

ensures that all Mapper jobs will continue to process the same number of edges.

The Mappers (Algorithm 20) output all the edges to be removed, together with the

appropriate conditioning sets. All this information is collected by the Reducers (Algorithm

21) and is combined. The end result is collected by the main process (Algorithm 22) that

is driving the algorithm. It parses the data and then updates the graph, increases the

conditioning set size and starts the next MapReduce job.

Algorithm 20 PCB: Distributed independence tests Mapper

Require: Current graph structure G,

Record of file I with edge testing starting position s,

Number of edges tot test K

Current conditioning set size i

1: for e = s; e < s+K : e+ + do

2: if edge e = (X, Y ) is independent given a conditioning set C then

3: add ((X, Y ),C) to output list L

4: end if

5: end for

6: Output L to the Reducers

The general implementation of the PCB algorithm follows the approach of the PCA

algorithm. Both are designed to be modules that can be dropped into our PC algorithm

implementation. The PCB algorithm proved to be a much more reliable algorithm than

the distributed counting variant described in Section 5.3. The algorithm will finish properly

given the dataset fits in memory, with sufficient free memory available for the algorithm to
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Algorithm 21 PCB: Distributed independence tests Reducer

Require: All (edge, conditioning set) lists {L1,L2, . . . ,Ln} from

the Mappers (Algorithm 20)

1: L = ∅

2: Merge the lists:

3: for i = 1; i < n; i+ + do

4: for j = 0; j < |Li| ; j + + do

5: Lij → ((x, y),C)

6: if ((X, Y ),C) /∈ L then

7: L = L ∪ ((X, Y ),C)

8: end if

9: end for

10: end for

11: Write L to an output file

maintain its data structures. In Section 5.6.2, I will discuss in more depth the advantages

and disadvantages of this algorithm.

5.4.1 Correctness of PCB

In this section, I prove that PCB is correct and complete in the large sample limit1, i.e.,

Theorem 5.4.1. In the large sample limit, PCB is correct

Proof. The correctness of PCB follows from 1) by assuming the large sample limit, we also

assume that testing independence is now equivalent to consulting a d-separation oracle,

which does not make mistakes, and 2) the correctness of the edge orientation phase of the

PC algorithm, [Spirtes et al., 1993], which PCB implements to the letter, which as a whole

has been proven correct and complete up to equivalent classes.

1I would like to thank Dr. Denver Dash for providing me with enormous support for this proof
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Algorithm 22 Main controller for PCB

Require: Completely connected, undirected graph G,

max conditioning set limit imax,

maximum number of Mapper jobs per MapReduce job mmax

1: for i = 0 ; i < imax; i+ + do

2: Count number of edges in G: n = |E (G)|

3: Calculate how many edges should assigned to each Mapper job:

K = d n
mmax

e

4: Readjust number of Mapper jobs:

m = d n
K
e

5: Upload G to the cluster

6: construct input file I for Mappers that contains an edge starting position si for each

of the m Mapper jobs:

7: for z = 0; z < m; z = z +K do

8: Write z to file I

9: end for

10: Start the MapReduce job with parameters i, n,m,K (Algorithms 20 and 21)

11: Download the output list (L) from the cluster (Algorithm 21)

12: Decode the list and update the graph:

13: for each ((X, Y ),C) in the file do

14: remove edges (X, Y ) and (Y,X) from G

15: Store C for later processing in the edge orientation step of

the PC algorithm [Spirtes et al., 2000]

16: end for

17: end for

18: Output G to the edge orientation phase of the PC algorithm
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Theorem 5.4.2. In the large sample limit, PCB is complete up to equivalence classes

Proof. By induction, I prove that PCB finds and removes every edge (X, Y ) for which X

and Y are independent given some conditioning set C.

Base Case: Assume PCB is in phase i = 0 and has a completely connected graph G.

PCB will test all pairs of variables X and Y for marginal independence (conditioning

set size i = 0), and regardless of how the edges are distributed over partitions, it will

correctly find all marginal independence statements I (X, Y ). The result of each marginal

independence tests does not influence any of the other tests, and thus they can be determined

in any order and distributed over any configuration of partitions without consequences.

Induction Step: Assume PCB is in phase i and currently has a graph G, which has had

all edges (X, Y ) for which we have found I (X, Y |C), for |C| < i, removed. Then, for phase

i+ 1, in any partition, testing any arbitrary edge (X, Y ) and for which there exists a set C

such that I (X, Y |C) and |C| = i+ 1, then this edge (X, Y ) will be removed by PCB.

From the assumption of the induction step we know that X and Y need at least i + 1

variables to d-separate them. There must exist a set C of i + 1 variables such that c ∈ C

and c ∈ Adj (X) [proof by Spirtes et al., 1993, is valid for Y as well].

Since at phase i + 1 , in the worst case, PCB will check all
(|Adj(X)|

i+1

)
combinations of

Adj (X), and it will eventually query the oracle for I (X, Y |C), resulting in the removal of

the edge from G, assuming PCB did not already find another conditioning set of size i + 1

capable of d-separating X and Y .

5.5 EMPIRICAL EVALUATION

As stated in the introduction, my aim for developing MapReduce versions of the PC Algo-

rithm was to exploit the constraint-based approach to learn network structures from data

with many variables. My target was to be able to handle datasets with a total number of vari-

ables up to 5,000-10,000, having not necessarily many records. The two reference algorithms

[Chen et al., 2011, Fang et al., 2013] focus more on the number of records than the number

of variables. This has influenced their algorithm design where their Mapper and Reducer
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functions focus almost completely on counting and are not very complex. Consequently the

MapReduce jobs are called frequently in commonly used subroutines of the algorithms. For

each mutual information calculation [Chen et al., 2011] or each Bayesian score calculation

[Fang et al., 2013] a MapReduce job will have to be executed on the cluster. Since each

MapReduce job means, from a computational point of view, a significant time overhead,

running many of them may prohibit these algorithms from scaling to datasets with many

variables.

The MapReduce jobs used by my algorithms, PCA and PCB, are based around the iter-

ations of independence tests of the PC algorithm, where each iteration applies independence

tests with a larger conditioning set size than the previous one. When we limit the condi-

tioning set size, typically to eight conditioning variables, my algorithms roughly require a

constant number of MapReduce jobs to complete the work. The consequence of this decision

is that the Mapper and Reducer functions are more complex and require more from the

hardware used for communicating data and performing the calculations.

My empirical evaluation consists of two parts, a gold standard recovery task and a

classification task. Both pit the four algorithms against each other and a single computer

implementation of the PC algorithm from the SMILE library as a reference. Both tasks

involve a number of datasets that are either generated from well-known Bayesian networks

from the literature, or are well-known datasets available in the UCI data repository.

5.5.1 Computing Environment

The Hadoop algorithms, written in Java and using a few native C++ compiled parts from

SMILE, were run on a cluster with 20 high memory computers. Each computer, or node, has

16 2GHz CPU cores, 382 GB RAM and 8 300GB Hard Drives. The Mapper and Reducer

code were executed in a Java virtual machine (VM) with a maximum of 4GB of memory

allocated to them. The controller code was not run on the cluster, but within a virtual

machine, running Debian Linux. The virtual machine has 8GB of memory and has 2 CPU

cores assigned to it. The VM ran on a laptop with a 2.2GHz quad core processor with

32GB RAM and a 512GB SSD. SMILE was run on a computer running Ubuntu Linux with

94



a 2.4GHz dual core processor, 8GB of RAM and 2 1.5 TB hard drives in a RAID mirror

configuration. The PC algorithm was constrained to use up to 4GB of memory. The SMILE

program was written in C++ and compiled to run natively on the Linux platform for optimal

performance.

5.5.2 Experiment 5.1:

Gold Standard Recovery

5.5.2.1 Methodology The first part of the empirical evaluation focuses on the ability of

the algorithms to recover a gold standard structure from data. For this task I have selected

eight different networks to serve as gold standards. They are listed in Table 5.1, ordered by

size.

Table 5.1: Gold Standard Evaluation Networks used for Experiment 5.1

Network Nodes Edges Reference

Alarm 37 46 Beinlich et al. [1989]

Hailfinder 56 66 Abramson et al. [1996]

Hepar 70 123 Onisko [2003]

CPCS179 179 239 Pradhan et al. [1994]

Andes 209 388 Conati et al. [1997]

Alarm10 370 570 Tsamardinos et al. [2006]

Hailfinder10 560 1017 Tsamardinos et al. [2006]

Gene 801 972 Tsamardinos et al. [2006]

Initial tests showed most algorithms would take an unacceptable amount of time when

datasets had more than 1,000 variables, thus datasets where chosen with fewer variables to

allow for sufficient datapoints in the analysis.

95



The four different Hadoop algorithms and the SMILE baseline are evaluated on the

following criteria:

1. Running Time (ms)

2. Hamming Distance

3. Number of MapReduce jobs executed by the algorithm

4. How close to finishing was the algorithm when it was terminated.

The final criterion is necessary due to external circumstances. To run any of the MR

algorithms, there must be an open connection with the Hadoop cluster. This cluster is

located in a remote location and I did not have complete control over the accessibility to the

cluster and its maintenance schedule. Running the algorithms, which could potentially take

multiple days to weeks to finish, in this environment could result into algorithm termination

due to connection loss, (un)scheduled maintenance, and other unexpected events. I ran the

algorithms during the day, while at work and during the night, while at home, allowing

them a total of around 9-12 hours of running time. The progress of all the algorithms is

quantifiable, for instance, by looking at how many phases they have completed [Chen et al.,

2011], or how many parent sets have been finalized [Fang et al., 2013].

5.5.2.2 Results The results for the evaluation are listed in Table 5.2. For each algorithm

I list their gold standard recovery performance for the different networks. With the exception

of two network results from the PCA algorithm, running time results are reported for all

algorithm / network combinations. A significant portion of the networks could not be finished

by the Chen and Fang algorithms. This is reported by a ‘-’ in the Hamming Distance column

and by a number less than 100 in the Completion column. Running times for these cases

are approximate and are based on the timestamps from the Hadoop log printout, which do

not allow for millisecond precision and were typically rounded to the nearest minute. Figure

5.1 shows the algorithm performance in respect to the Hamming Distance. In general, all

algorithms perform similarly. Fang’s algorithm performs better than the other algorithms

on the network structures it was able to finish, but it benefited from having a correct node

ordering provided to it. Chen’s algorithm performed markedly worse on the Alarm network,
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Table 5.2: Gold Standard Evaluation Results of Experiment 5.1

Chen Running Time (ms) Hamming Distance MR Jobs Completion (%)
Alarm 7,946,158 91 255 100

Hailfinder 28,800,000 - 132 61.5
Hepar 1,175,410 151 30 100

CPCS179 40,800,000 - 670 66.2
Andes 12,028,230 522 390 100

Alarm10 39,600,000 - 833 60.3
Hailfinder10 37,080,000 - 888 48.9

Gene 32,400,000 - 520 35.6
Fang Running Time Hamming Distance MR Jobs Completion (%)

Alarm 5,836,158 3 203 100
Hailfinder 8,677,891 39 308 100

Hepar 12,161,432 45 412 100
CPCS179 33,480,000 - 968 80.4

Andes 43,800,000 - 1251 87.5
Alarm10 43,800,000 - 1208 41.4

Hailfinder10 33,480,000 - 868 25.9
Gene 43,080,000 - 1087 22.2
PCA Running Time Hamming Distance MR Jobs Completion (%)

Alarm 898,916 22 24 100
Hailfinder 921,367 60 24 100

Hepar 985,596 116 24 100
CPCS179 2,544,909 264 24 100

Andes 740,000 - 4 15
Alarm10 1,598,000 - 4 20

Hailfinder10 - - - -
Gene - - - -
PCB Running Time Hamming Distance MR Jobs Completion (%)

Alarm 241,874 27 8 100
Hailfinder 355,508 61 8 100

Hepar 264,795 152 8 100
CPCS179 432,923 297 9 100

Andes 328,082 503 8 100
Alarm10 437,592 953 8 100

Hailfinder10 502,944 1256 8 100
Gene 572,099 1992 5 100

SMILE Running Time Hamming Distance MR Jobs Completion (%)
Alarm 786 19 - 100

Hailfinder 1,786 69 - 100
Hepar 1,816 153 - 100

CPCS179 36,883 298 - 100
Andes 15,371 518 - 100

Alarm10 50,454 966 - 100
Hailfinder10 167,827 1309 - 100

Gene 1,572,861 1998 - 100

but this seems to be an anomaly since it performs similar to the other, PC algorithm based,

algorithms on the other network recovery tasks it was able to finish. The three algorithms

based on the PC algorithm, PCA, PCB and SMILE’s PC algorithm implementation all

performed similar, showing that PCA and PCB are at least valid alternatives to SMILE’s

PC algorithm.
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Figure 5.1: Hamming Distances for Gold Standard Recovery Task

Comparing the MapReduce algorithms, the number of MapReduce jobs that each of the

algorithms required for the work is markedly different. As was discussed in Section 5.5,

mainly the difference is due to different design decisions made. Figure 5.2 shows the number

of MapReduce jobs used by the algorithms. The PCA and PCB algorithms ran a near

constant number of MapReduce jobs, dependent on how many different conditioning set sizes

were tested. The number of MapReduce jobs varied more for Chen’s and Fang’s algorithm.

Typically, more were needed when the network to be recovered had more variables, but

exceptions did occur. Most notably, the Chen algorithm required only 30 MR jobs when it

recovered the Hepar network, much less than for any of the others. For the Alarm network

it even required 255 jobs. The number of jobs seems to be quite data dependent.

The structure of the Fang algorithm clearly shows that an increase in the number of

variables in the dataset will increase the number of MapReduce jobs that will have to be

run. For each variable we run at least two MapReduce jobs. One to obtain the parentless

baseline score, and one job to determine a potential parent for the node in the network. If

adding a parent increases the score, the process continues and the algorithm will try to add
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more parents. There might be some variance in the total number depending on the data. For

the three networks the Fang algorithm was able to successfully recover a network structure,

I found that the number increases with the number of variables involved.

For the other, failed attempts there is some variance in the number of MapReduce jobs.

This is partially due to a variation in total running time, but might also be due to the

different datasets.

Figure 5.2: Number of MapReduce Jobs Used When Recovering Gold Standard Networks

Having established that all algorithms have similar performance for the gold standard

recovery task, we can examine the running time of the algorithms. Figure 5.3 shows the

algorithm running time for each of the network recovery tasks.

This figure paints a disheartening picture: for most of the networks to be recovered in

the experiment, SMILE’s PC algorithm implementation is, vastly superior to any of the

Hadoop-based algorithms. Each MapReduce job that is run on the cluster takes at the very

least an amount of time in the order of seconds. In this amount of time, SMILE is able to

finish most of the tasks, being at least as accurate, but much faster. Granted, both Chen’s

and Fang’s algorithm are aimed more at datasets that are large in the number of records,
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Figure 5.3: Algorithm Running Time During Gold Standard Recovery Task

but taking into account all the optimizations that are present in SMILE’s PC algorithm,

I believe as long as there is sufficient memory available to the algorithm, it will continue

to beat the other algorithms until the datasets become sufficiently large. Furthermore, as

Figure 5.2 showed, if a dataset under investigation has a larger number of variables, Chen

and Fang’s algorithms may end up taking an enormous amount of time due to the sheer

number of MapReduce jobs they need to run. Section 5.5.3 shows one example dataset that

contains thousands of variables, in this case even SMILE and the PCB algorithm take an

enormous amount of time to finish. This is mainly due to the sheer number of edges that

require testing.

Figure 5.3 shows at least one positive point. When the number of variables starts to

increase, the total running time required by SMILE does increase as well, and at some point

even surpasses the running required by the PCB algorithm. Section 5.5.3 shows even more

examples where the PCB algorithm finished the classification model learning task quicker

than SMILE. Initially, SMILE benefits from performing all the calculations in memory with-

out the need for network communication and the added complexity required for dividing up
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the work. SMILE was written in C++ and is compiled natively for the Linux machine used

for running the experiments. These are all benefits SMILE has over the Java based imple-

mentation of the PC algorithm used within the Hadoop framework. Java code is executed

within a virtual machine, which has many benefits as well, the ability of executing Java

code on many platforms being one of them. A downside is that code is executed markedly

slower. Anecdotal evidence, which I acquired by running the Java version of the PC algo-

rithm that is present within the SMILEWIDE library, suggests that the difference is an order

of magnitude, probably around 7-10 times slower than SMILE’s C++ implementation.

Consequently, evidence suggests that before the MapReduce based PCB algorithm man-

ages to surpass SMILE’s single processor performance, we will require datasets that have

at least hundreds of variables, and need to have access to a cluster that allows for a large

number of Mapper tasks to be run in parallel.

5.5.3 Experiment 5.2:

Classification

The second part of the empirical evaluation is a classification task. Using datasets from the

UCI Machine Learning Repository and the Causality Workbench,2 we learn classification

models using the algorithms and compare their performance on classifying samples for a test

set.

After running the gold standard recovery task, I found that some of the algorithms would

either take a very long time to finish (Chen, Fang), or would not finish at all (PCA). This

influenced my choice of datasets for the classification task. In total I chose four different

datasets, two where quite small, having only 22 and 37 variables respectively, and two that

were larger. The larger two had 257 and 4,933 variables. These were chosen to investigate

the performance of the PCB algorithm and the SMILE implementation of the PC algorithm.

Both of these were able to finish much quicker than the other algorithms and most likely

would be the only two that would be capable of handling datasets of such size in a reasonable

amount of time.

2The Causality Workbench can be found at http://www.causality.inf.ethz.ch/repository.php
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5.5.3.1 Methodology For the classification task four datasets were chosen, three from

the UCI Machine Learning Repository and one from the Causality Workbench. Table 5.3

shows the datasets chosen. The four algorithms were used to learn Bayesian network struc-

tures (Fang), or equivalence classes (the 3 others). Using a conversion algorithm implemented

in SMILE, which includes the use of the algorithm by Dor and Tarsi [1992], I converted the

equivalence classes into proper DAGs. After acquiring the BN structures I, running the EM

algorithm on a single pc, learned parameters for the networks using the training data. I used

the test data to classify samples. To summarize, the experiment procedure consisted of the

following steps:

1. Divide up the data in a training set (90%) and a test set (10%).

2. Learn model structure using the training data.

3. If the structure is not a DAG, convert to DAG.

4. Learn parameters for the structure using the training data.

5. Evaluate the model performance by using the test data.

6. Record performance metrics:

• Running Time

• Classification Accuracy

• Number of Map Reduce Jobs

• Completion Percentage

Table 5.3: Classification Datasets used for Experiment 5.2

Datasets Variables Records Classes Reference

Mushroom 22 8,124 3 Bache and Lichman [2013]

Chess 37 3,196 2 Bache and Lichman [2013]

Semeion 257 1,593 10 Bache and Lichman [2013]

Sido 4,933 12,678 2 Causality Workbench Team [2008]

102



5.5.3.2 Results As was expected, the algorithms by Chen and Fang only completed

the two smaller datasets in a reasonable amount of time. The PCA algorithm managed to

complete the first two datasets as well, but could not finish the Semeion dataset. Due to

its sheer number of variables, I did not attempt to run any of these algorithm on the Sido

dataset.

The PCB algorithm and the SMILE implementation both were able to finish the first 3

datasets within a reasonable amount of time, but the Sido dataset ended up taking too long.

The PCB algorithm was terminated after 24 hrs, and the SMILE implementation ended up

running for another 14 hours. Both were still only testing conditional independence with

just one conditioning variable. The PCB algorithm had managed to finish 29% of the edges,

while the SMILE algorithm, only finished about 3% of the edges, even though it ran for

an additional 14 hours. It may have taken weeks to completely finish learning the models,

especially since the number of independence tests potentially increases exponentially with

the size of the conditioning set. The completion percentage listed for the PCB and SMILE

algorithm is deceptive, since it does not account for the increasing number of tests to be

performed per edge, and only accounts for how many edges were completed per stage and

how many stages were completed.

Figure 5.4 show the classification results of the algorithms. The red line in the graphs

shows a baseline classification accuracy, that is obtained by simply determining the base

rates of the class variable from the test data and selecting the most likely class instance as

the default answer for this “classifier” when classifying the test samples. Figure 5.5 shows the

running time of the algorithms. No figure has been included for the number of MapReduce

jobs used by the algorithms for the classification task, as they follow the same pattern as in

Experiment 5.1. The numbers are available in the table.

One notable observation we can make from the results of Experiment 5.2 is that, in

contrast to the gold standard recovery task, the PCB algorithm does not seem to perform

as well as the other algorithms. In all cases where the algorithms were able to finish the

task, SMILE is consistently either the best or second best algorithm. There was only one

case where Chen’s algorithm was able to finish the task completely. It did manage to learn

a structure for the Mushroom problem, but the network pattern structure could not be
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Table 5.4: Classification Task Results of Experiment 5.2

Chen Running Time (ms) Accuracy (%) MR Jobs Completion (%)
Mushroom 22,930,689 - 222 100

Chess 3,689,175 13.7 122 100
Semeion 28,800,000 - 807 37.7

Sido - - - -
Fang Running Time (ms) Accuracy (%) MR Jobs Completion (%)

Mushroom 7,214,637 35.7 260 100
Chess 12,533,442 53.7 425 100

Semeion 36,000,000 - 982 56.4
Sido - - - -
PCA Running Time (ms) Accuracy (%) MR Jobs Completion (%)

Mushroom 1,124,029 37.8 24 100
Chess 1,172,064 30.3 24 100

Semeion 3,600,000 - 7 35
Sido - - - -
PCB Running Time (ms) Accuracy (%) MR Jobs Completion (%)

Mushroom 213,175 37.8 9 100
Chess 266,824 25.8 9 100

Semeion 1,991,374 2.5 7 100
Sido 86,400,000 - 2 0.143

SMILE Running Time (ms) Accuracy (%) MR Jobs Completion (%)
Mushroom 11,102 41.0 - 100

Chess 15,564 40.7 - 100
Semeion 8,431,207 31.5 - 100

Sido 139,216,695 - - 0.115

Figure 5.4: Classification Accuracy Results of Experiment 5.2
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Figure 5.5: Algorithm Running Time During Classification Task

translated into a Bayesian network without memory problems due to very large parent sets

for some of the nodes. PCA has mixed results, performing poorly on the Mushroom data

and quite well on the Chess data.

All algorithms performed poorly on the Mushroom data. Partially we can blame the

methodology. Effectively, we performed a 1-fold cross validation, where we divided the data

in one training set and one test set. An unlucky choice of test samples may have caused the

models to perform worse than they may have done if other samples would have ended up in

the test set. Given that running a more extensive k-fold cross validation would be very time

consuming, I performed the procedure only for the three PC algorithm implementations and

left out the large Sido dataset. The results are shown in Figures 5.6 and 5.7.

Averaging the performance over five folds smoothed out the results. The PCA algorithm

was not run on the Semeion dataset as it was not able to finish in the first part of Experiment

5.2. PCB and SMILE were run on all three networks, but patterns learned from Semeion

(PCB) and Mushroom (SMILE) could not be converted to Bayesian networks due to large

parent sets and, as a result, were left out of the evaluation. The algorithm performance on
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Figure 5.6: Classification Accuracy, 5-Fold Cross Validation

the Chess data now seems to be pretty equal. For the other two datasets the performance

has decreased compared to the single-fold result, ending up probably closer to the real

performance of the algorithms.

Figure 5.7: Running Time, 5-Fold Cross Validation

A possible explanation for the accuracy differences between PCA, PCB, and SMILE,

which all implement the PC algorithm, is that there are minor differences in the implemen-

tations that could have a big impact on the end result. SMILE performs all the independence

tests sequentially. The benefit of the sequential approach is that any new information ob-

tained from the independence tests is available to all tests that are performed afterwards.

Any removed edge will exclude variables from conditioning sets in future tests, which has a

potential impact on future contingency tables used by the PC algorithm for independence

tests. If a variable with many states is no longer present in conditioning sets, especially in
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the later stages, this will result in significantly smaller contingency tables. Comparing PCB

and SMILE more closely, we can hypothesize why PCB performs worse than SMILE. Since

PCB partitions the edges to allow multiple independence tests are performed in parallel, the

partitions perform these independence tests with not the most up to date information of

the network structure. It is very likely that the PCB algorithm is performing independence

tests using conditioning sets that contain variables that would not have been included if the

information on all edges that were deemed independent was available to all Mappers at all

time. This may cause the contingency tables to become sufficiently large that the required

samples-per-cells ratio recommended by Tsamardinos et al. [2006] can no longer be satisfied,

resulting in the edge to be removed. To test this explanation, I reran the PCB algorithm on

the 1-Fold Mushroom and Chess data. I varied the maximum number of Mapper jobs the

PCB algorithm would create for each MapReduce phase. This setting influences how the

edges that need testing are partitioned. Edges are divided equally over the Mapper jobs.

If the Mapper setting is bigger than the total number of remaining edges, the number of

Mapper jobs is pruned in such a way that all Mapper jobs contain the same number of edges.

In the extreme case all Mappers will contain only one edge. The Mapper jobs are divided

up by the Hadoop cluster over the computation nodes. The cluster I had access to was able

to process about 230 Mapper jobs in parallel. Figures 5.8 and 5.9 show the results of this

test. I set the maximum number of Mapper jobs to 5, 10, 50, 100, 500, and 1000. Figure 5.8

shows the impact of changing the maximum number of Mapper jobs the algorithm is allowed

to create. The red line represents the classification accuracy of SMILE’s PC algorithm on

Figure 5.8: Classification Accuracy, Varying the Maximum Number of Mapper Jobs
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the respective dataset. Figure 5.9 shows the results of the PCB algorithm with the different

Maximum Mapper settings.

Figure 5.9: Running Time, Varying the Maximum Number of Mapper Jobs

The differences are not very apparent in the Mushroom dataset, but this might be because

it is the smaller of the two. In the chess dataset, increasing the maximum number of

Mapper jobs available to the algorithm seems to have a negative impact on the classification

accuracy of the model. With only 5 or 10 Mapper jobs to divided the edges over, the PCB

algorithm outperforms SMILE, beyond that it underperformed with a very dramatic drop in

performance when the maximum was set to 50. Comparing the best and the worst network

(Figures 5.10 and 5.11), we see that there is a significant difference between the Markov

blankets of the class variables (class variable and Markov blanket members are positioned

top left). Only three variables occur in both Markov blankets, and the number of direct

adjacent variables differs significantly between the two networks. In the better performing

network (Fig. 5.10), the class variable is connected to 7 variables, in the other, only to 4.

The only difference between the two algorithms runs is the maximum number of Mappers

and consequently, how the edges were partitioned.

Figure 5.9 shows, that if too many Mapper jobs are created, the overhead of the Hadoop

system starts to slow down the process. With more Mappers jobs, there is more communi-

cation necessary on the cluster. Every Mapper job is executed by a Mapper instance, which

needs to read the data, initialize, execute the Mapper function, and write the data. This

data then needs to be send to Reducer instances, etc. We have to conclude that a careful
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Figure 5.10: Chess network, Maximum Number of Mappers: 5

consideration of the edge partitioning is necessary. Utilizing too many mappers, although

facilitating a larger scale of parallelization, might lead to suboptimal performance.

5.6 DISCUSSION

The idea of applying a MapReduce cluster to learning Bayesian network structures is an at-

tractive one. The complexity of BN structure learning algorithms ensures that when the data

becomes less trivial, i.e., by having more records or/and more variables, the time required to

learn models will quickly increase beyond reasonable limits. Moving the computations to a

cluster should allow us to push the boundaries of what models we can learn in a reasonable

amount of time. The MapReduce formalism, and the Hadoop implementation of MapRe-
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Figure 5.11: Chess network, Maximum Number of Mappers: 50

duce, are appealing candidates for the parallelization of algorithms. From a technical point

of view, they offer a scalable solution that, once the algorithm has been implemented, allows

for deployment on clusters ranging in size between a handful of computers and “industrial

strength” clusters with thousands of computers. All this with few to no code modifications

or configuration changes. However, this does not mean that the algorithm parallelization

process will be obvious or easy. The MapReduce formalism defines very clearly and strictly

what actions the computers in the cluster can perform. The algorithm that is to be paral-

lelized needs to be analyzed to find parts that either naturally define Mapper and Reducer

functions, or that can somehow be shoehorned into the MapReduce template.

In this chapter, I have discussed four algorithms for learning Bayesian network structures

that apply the MapReduce formalism and were implemented using the Hadoop framework.

Two of these were examples from the literature [Chen et al., 2011, Fang et al., 2013], the

other two were proposed by me. The two-part empirical evaluation, performed on the four

algorithms and a single-processor reference, showed that, under the experimental conditions,
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none of the MapReduce-based algorithms yielded significant improvements in performance

over SMILE’s PC algorithm running on a single computer. Only specific cases may show

benefits for the parallel approaches.

The two MapReduce algorithms from the literature [Chen et al., 2011, Fang et al., 2013]

state a focus on the number of records. Their use of MapReduce jobs on the cluster depends

on the number of variables in a dataset. Consequently, if the number of variables in a dataset

increases, these two algorithm execute many MapReduce jobs on the cluster. Each of these

jobs can easily take 30 seconds and upwards due to a significant amount of overhead involved

with preparing the cluster to run the jobs [Cherniak et al., 2013]. Even for datasets with

only 100-300 variables, both the algorithms by Chen et al. [2011] and Fang et al. [2013],

routinely required more than 8-12 hours (which was the algorithm cutoff time), and their

total required running time would be much longer. Neither of these algorithms seems to

scale as well as was stated in the publications. One of the two [Fang et al., 2013] performed

an empirical evaluation that was limited to one artificial dataset. Its data was generated

using a Bayesian network with only 8 nodes. This evaluation was insufficient to provide a

balanced view of the capabilities of the algorithm.

The two algorithms that were proposed by myself (PCA and PCB) had mixed success.

Both would outperform the two algorithms from the literature, but would still have to yield to

SMILE. Especially regarding running time, for most of the datasets, SMILE’s PC algorithm

was orders of magnitude faster than PCA and PCB. Only once the number of variables

started to surpass a few hundred, did PCB close the gap.

Ultimately, the approach that I implemented as the PCA algorithm was not success-

ful. Although in principle the algorithm performs correctly, in practice it cannot guarantee

successful termination for every dataset. If the algorithm is able to remove many edges in

the first stages (the sooner the better), then the algorithm has a good chance of finishing

successfully. If this is not the case, then with almost 100% certainty the algorithm will crash.

In the remainder of this section, I will evaluate each of the four MapReduce algorithms,

detailing issues and bottlenecks that occurred during development and evaluation. Finally,

I will conclude this section and chapter by discussing the feasibility of applying MapReduce

to the Bayesian network structure learning problem.
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5.6.1 PCA

The initial tests that I ran with the PCA algorithm were promising. Network structures

with a limited number of variables were learned successfully without much effort. As an

example, the algorithm had no problems with learning the network structure from a 70

variable dataset with 14,000 records, which was generated using the HeparII network. Taking

about 17 minutes, the algorithm was still much slower than native SMILE, which at that

time would finish in about 2 minutes. Later, after improving the performance of the PCB

algorithm, and having introduced these improvements into SMILE, its running time dropped

to about 22 seconds.

To find out if the algorithm would scale to larger datasets as well, the next dataset under

consideration was one generated using the CPCS179 network, which has 179 nodes and the

generated data file in question had 100,000 records. When the algorithm was run on this

dataset, its limitation had become obvious. It failed to finish, filling up the disk space of the

cluster to the point where no more data could be written.

Successful termination of the PCA algorithm depends solely on its ability to eliminate

edges from the graph as early in the process as possible. With many variables and a very large

number of conditioning sets to consider, the number of counts that needed to be generated

to perform all the necessary (conditional) independence tests became so numerous, that the

output of the Mapping phase crashed the Hadoop cluster. Not enough edges were eliminated

from the graph early enough to curb the number of counts that would be necessary for the

conditional independence tests with larger conditioning sets.

There is a hard limit, i.e., the total amount of disk space available on the cluster, or

the number of KVPs that can outputted by the Mappers and stored on the computation

nodes. This implies there is a limit to even pair-wise conditional probability testing. If the

number of nodes (variables) becomes too large, eventually the number of outputted KVPs

will pass the hard limit. This is a potential limit of Chen’s algorithm [2011] as well. In its

first step, it calculates the pair-wise mutual information between all variables. All counts

for this calculation are calculated in the same way as the PCA algorithm.

112



Without a guarantee to successfully finish learning a BN structure from a dataset, the

PCA algorithm has little to no practical use. It is not able to handle datasets with many

variables, and it was severely outclassed by SMILE’s PC algorithm implementation for any

dataset it was able to handle without crashing the cluster.

5.6.2 PCB

After it was clear that the PCA algorithm would not be able to scale to large datasets (in

terms of the number of variables), I worked on an alternative that eventually became the

PCB algorithm. This algorithm was successful in avoiding to crash the Hadoop cluster by

overloading it with intermediate data, but it has its own issues.

To speed up the independence tests of discrete variables, PCB (and SMILE) makes

use of ADTrees [Moore and Lee, 1998] to cache the necessary counts. An important issue

with ADTrees is that when the conditioning set size increases, the ADTree memory usage

increases exponentially, and rapidly the tree size would hit the memory limits of the Java

virtual machines the Mappers are running in. This caused Mappers to run out of memory

and to terminate, causing the MapReduce job to fail.

I have investigated suggestions in Moore’s paper [1998] to improve the efficiency of the

ADTree data structure and implemented a few of the suggestions to see if this would improve

the performance of the PCB algorithm. I found that the suggestions did not help much in

improving algorithm performance.

The dilemma I faced, was that the ADTree data structure is invaluable for the efficient

calculation of the necessary statistics for the independence tests. If we would revert to an

approach without ADTrees, i.e., iterating over the dataset to acquire counts, the process

would become extremely slow, even before reaching larger conditioning set sizes.

Eventually, I found a practical workaround for the memory problems. I raised the mem-

ory limit for the Java virtual machine to 4GB and added a constraint to the ADTree data

structure code that would erase the complete tree once the total memory usage of the VM

hit 75%. The larger VM memory limit greatly improved the performance of the PCB algo-

rithm, and the VM memory constraint of 75% ensured that erasing the ADTree would not
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cause timeout problems for Java’s garbage collector. These did occur previously when the

VM memory was allowed to fill up completely.

With its memory problem under control, the PCB algorithm turned out to be the fastest

of the MapReduce algorithms. It was the one capable of processing the largest datasets in

terms of variables. It still requires that the whole dataset fits in memory, but this is not

necessary a very debilitating constraint. Formidable datasets, worth exploring in parallel,

may take just a Gigabyte of memory space, which easily fits in memory nowadays.

The empirical evaluation showed that PCB performed equally to SMILE in the gold

standard recovery task, but underperformed on the classification task. Classification tasks

are a special case. Typical BN algorithms used to learn classifiers, such as Naive Bayes

and Tree-Augmented Naive Bayes, apply extra constraints to the BN classifier structure.

Specifically, a typical constraint that is used, enforces an edge from the class variable to all

other feature variables, assuming no feature selection is performed. For this evaluation, none

of the algorithms did employ such a constraint and thus did not have an advantage over the

others. A deeper investigation of the accuracy discrepancy between the PCB algorithm and

SMILE’s PC algorithm implementation provided a plausible explanation.

Evidence suggests that the partitioning process used by the PCB algorithm had a neg-

ative impact on classification accuracy in the classification task. The partitioning process,

that systematically divides up edges over Mapper jobs, is mainly influenced by a parameter

that controls the maximum number of Mapper jobs. More Mapper jobs means that the edges

will be divided more sparsely over the jobs. The potential negative impact of edges that are

spread too “thin” is that each Mapper instance that is executing a Mapper job has less up-

to-date information available to it. We can illustrate this by the two extremes: 1) Allowing

only one Mapper, or 2) allowing as many Mappers as there are edges, forcing the situation

where each Mapper job only contains one edge. In the first case, the problem reduces to the

traditional single-processor PC algorithm, where all information of removed edges is always

available. In the other extreme, the Mapper instances processing the Mapper jobs will be

completely ignorant of the process made by the other Mappers. Only after all conditional

independence tests have been performed for a conditioning set size, the information from

the individual Mappers is collected and processed in the Reducers and the main controller.
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The consequence of this information ignorance, is that conditional independence tests might

be performed with conditioning sets containing variables that might be still adjacent to the

testing variable in this Mapper, but they may have already been declared independent in

another. This results in contingency tables, used for the independence tests, to become

larger than necessary. If there is insufficient data to satisfy a minimum number of samples

per contingency table requirement (discussed in detail in Chapter 6), edges may be removed

incorrectly. This most likely is the main cause of deviations of the result the PCB algorithm

from the result of the original PC algorithm.

A small scale experiment with the PCB algorithm, varying the maximum number of

Mapper jobs the algorithm was allowed to generate, showed that the classification accuracy

varied significantly and, typically, decreased when the maximum number of Mapper jobs was

increased.

Overall, the PCB algorithm is the best performing algorithm of the four MapReduce

algorithms under consideration. Once the number of variables in the dataset grows beyond

500, the algorithm has the potential to be useful as a large-scale alternative to single-processor

algorithms such as SMILE’s PC algorithm. It will allow for structural analysis of datasets

of that magnitude.

5.6.3 Chen’s Algorithm

I implemented the algorithm by Chen et al. [2011] to use it as a frame of reference for the

two algorithms I proposed. The paper contained enough detail to implement the algorithm

without problems. One potential bottleneck of the algorithm is that the first MapReduce

job produces the counts needed to calculate the mutual information between all pairs of

variables. When the dataset has a sufficiently large number of variables, this job may crash

due to Mapper message overload similar to the PCA algorithm. All the other MapReduce

jobs the algorithm starts are in no danger of causing any sort of data overload on the cluster.

Each subsequent MapReduce job collects counts for one conditional mutual information

calculation for an edge between X and Y , and a conditioning set that contains the minimum

cutset of X and Y .
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In the original TPDA article [Cheng et al., 1997], the authors state that the algorithm

only requires O (N4) independence tests. Since Chen’s algorithm only parallelizes the cal-

culation of the counts for mutual independence tests, we can deduce that in the worst case

the algorithm will require O (N4) MapReduce jobs for all the calculations. Typically, due

to overhead, a MapReduce job minimally takes at least 30 seconds and upwards, and if we

run the algorithm on the scale of interest, thousands of variables, the number of MapRe-

duce jobs that the algorithm requires may make this algorithm to become unfeasible on this

scale. Effectively this algorithm is still of a serial nature, but applies parallelism for data

processing.

During the evaluation, another potential bottleneck of the algorithm surfaced. The

minimum cutset calculation for the conditioning sets removes the need for systematically

evaluating all possible conditioning sets, which significantly improves the performance of the

algorithm. I observed that, especially when the number of variables increases, the size of

the cutset can become quite large. I have encountered cases where the cutset contained over

20 variables. The consequence of larger cutsets and conditioning sets is that the conditional

mutual information calculation becomes more time consuming. As I mentioned in Section

5.2.3, the (conditional) mutual information measure is proportional to the G2 statistic by

a factor of 2N log (2). So, in terms of a G2 statistic calculation, we can show how the

larger conditioning set impacts the calculation time. Specifically, a larger conditioning set

will require a larger contingency table to be used for the calculations. We need marginal

counts for each column, each row, and each “square.” And these are necessary for all of

the instantiations of the conditioning variables. The total number of cells increases with the

size of the conditioning set and with it, the total calculation time will increase as well. How

much will in part depend on the specific implementation of the MI calculation procedure.

Especially with larger conditioning sets, a lot of the cells in the contingency table will end

up being zero. In my implementation, only nonzero counts are collected and processed by

the algorithm. This sparse representation saves a lot of space, but requires more effort when

calculating the marginals, compared to a simple, but more memory-intensive table.
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To summarize my experience with the MapReduce version of TPDA by Chen et al. [2011]:

although the algorithm seems capable of handling datasets with many records, design choices

seem to prohibit it from scaling up to datasets with many variables. This limits its use to

datasets where the number of variables stays modest and the number of records is large

enough to make it a viable alternative to single-processor algorithm implementations.

5.6.4 Fang’s Algorithm

The algorithm by Fang et al. [2013], was the second reference algorithm I implemented for the

empirical evaluation of my proposed MapReduce algorithms. The paper was not completely

clear on how the authors implemented their algorithm, and as a result I had to make a few

assumptions, but I believe my final implementation should be faithful to the authors’ intent.

The algorithm implements the classical Bayesian search algorithm with K2 scoring in

a main controller on a client computer and it outsources count calculation, Bayesian score

calculation, and best candidate structure selection to the MapReduce cluster.

As with the original Bayesian search algorithm, Fang’s algorithm assumes a node order-

ing. This allows the algorithm to optimize the parent set of each node independently. The

authors do not discuss in their paper how one should acquire a good node ordering, which

is a severe barrier to applying this algorithm to large scale datasets with many variables.

For the empirical evaluation I provided node ordering in the following ways: 1) for the

gold standard recovery task I provided the algorithm with a correct node ordering derived

from the gold standard network 2) for the classification task I provided a fixed node ordering

and this ordering was used for all experiments.

Similar to the algorithm by Chen et al. [2011], Fang’s Bayesian search algorithm requires

many MapReduce jobs to complete the search for the optimal BN structure. The algorithm

needs to run at least 3N MapReduce jobs on the cluster, with a worst case complexity of

O (N2) MapReduce jobs.

The maximum number of parents of a node has been limited to 8, which helps to curb

the total running time of the algorithm. It will also, barring cases with nodes with many

variable states, help to ensure that the number of parameters necessary for the Bayesian
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network stays reasonable. Additionally, it will keep the score calculation tractable, avoiding

the bottleneck that is present in Chen’s algorithm.

Overall, in the empirical evaluation I found that the algorithm typically required a large

amount of time to complete the tasks, but, helped by the provided node orderings, it per-

formed adequately. However, taking into account the reliance on many small MapReduce

jobs, and the absence of a mechanism to determine a valid node ordering from the provided

data, I believe the usefulness of this algorithm, similarly to Chen’s algorithm, is limited to

datasets with smaller numbers of variables and a large number of records. Outside of this

domain it is outclassed by single-processor algorithms such as those present in SMILE, or

the PCB algorithm.

5.6.5 The Feasibility of MapReduce Algorithms for Learning the Structure of

Bayesian Networks

Having discussed the four algorithms separately, I will conclude this chapter with a general

discussion on the feasibility of applying the MapReduce framework to solving the Bayesian

network structure learning problem.

With the ever increasing amount of data available in the world, we have arrived in an

era where we have so much data available to us that it seems we continuously have to find

new places to put it, let alone have sufficient resources to make sense of it all. Most machine

learning techniques, including the Bayesian network formalism, rely on algorithms that are

exponential in time or space. Naturally, with the increased availability of parallel compu-

tation platforms, parallelized versions of machine learning algorithm (including Bayesian

network algorithms) started to appear. Where in the early days the objective of these

parallel platforms was more focused on dividing up complex computational work, with the

introduction of the MapReduce formalism, the focus shifted more to improving the ability

of processing massive amounts of data.

The ability of MapReduce platforms such as Hadoop to scale up data processing tasks

to an enormous magnitude, caught the eye of many researchers, including those in the area

of Bayesian networks. We can find examples of Bayesian network inference [Ma et al., 2012]
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and parameter learning [Basak et al., 2012]. Mapreduce algorithms for BN structure learning

were proposed by Chen et al. [2011] and Fang et al. [2013].

My work focused on structure learning and my aim for this work was to propose algo-

rithms that would be able to handle datasets with thousands of variables. The current state

of the art, work by Chen et al. [2011] and Fang et al. [2013], was more focused on datasets

with large numbers of records than large numbers of variables, and I believed that their

algorithm would not scale well in this area. Having proposed two MapReduce algorithm

based on the PC algorithms, I performed an empirical evaluation that compared the perfor-

mance of the four MapReduce algorithms on two separate tasks. Additionally, I compared

the performance of the MapReduce algorithms with the performance of an algorithm run on

a single-processor computer (SMILE’s PC algorithm).

I found that, in most cases covered in my empirical evaluation, all four MapReduce

algorithm were severely outclassed by the single-processor algorithm in terms of running

time, Hamming distance, and classification accuracy. SMILE’s PC algorithm implemen-

tation would perform as well or better, in a fraction of the time required by the other

algorithms. Only when the number of variables started to increase beyond 500 variables, did

the PCB algorithm catch up to, or surpass the performance of the regular, single-processor

PC algorithm.

From the results of the empirical evaluation, I have to conclude that it seems that

there are only specific uses for MapReduce-based algorithms for Bayesian network structure

learning. In most cases running a algorithm on a single computer will not only suffice,

but will actually be the optimal choice. For the datasets and tasks that were part of my

evaluation I found that running an algorithm on a single-processor platform will give you

similar or better results in a much shorter time, without the need for a cluster of computers.

The main bottleneck of the continued success of algorithms such as SMILE’s PC algorithm

will be the amount of internal memory available to it. Using advanced data structures such

as ADTrees allows the algorithm to trade time for space, and with sufficient space, we will

be able to process datasets of increasing size on single computers.

The best case for a MapReduce algorithm seems to be the PCB algorithm, where we

distribute the conditional independence testing over many processors. PCB was designed
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for the case of datasets with many variables and typically a more restricted number of

records. The independence tests are the premier bottleneck of the PC algorithm, and, when

the number of dataset variables increases, the sheer number of tests provides compelling

evidence for a parallel approach. As the second part of the empirical evaluation showed,

the simple partitioning scheme currently used by PCB does not provide the algorithm with

optimal results. A potential solution might involve creating overlapping partitions. This

means doing more work than necessary. But, if the duplicate edges are chosen wisely, this

may result in more optimal series of independence tests, allowing the algorithm to produce

a better, final Bayesian network structure.
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6.0 EVALUATION OF RULES FOR COPING WITH INSUFFICIENT

DATA

This chapter describes two experiments that investigate a discrepancy in the literature on

how to handle the case of insufficient data when performing independence tests for the PC

algorithm.

6.1 INTRODUCTION

If we examine the PC algorithm [Spirtes et al., 1993] more closely, we find that the most

computationally intensive part of the algorithm is the first phase. In this phase we perform

(conditional) independence tests to determine the skeleton of the Bayesian network. For

an edge (X, Y ) under consideration, with or without conditioning set S, we construct a

contingency table. Using this table, we calculate a test statistic, typically the G2 statistic,

and, using a χ2 distribution, we determine a p-value which we compare against our preset

significance level α, finally removing the edge if the p-value is larger than α.

The quality of a Bayesian network produced by the PC algorithm depends mostly on

the first phase, as it will deliver the skeleton of the network, which remains unchanged

afterwards. For each edge deemed independent, we collect the conditioning set S, which also

influences the result of the edge orientation phase.

In turn, the quality of the first phase of the PC algorithm depends on the quality of the

performed independence tests. If there are insufficient data available for the tests, we may

end up making flawed statistical decisions.
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In their book, Spirtes et al. [1993] discuss a minimum ratio of 10 to 1 of samples to

contingency table cells. This ensures a minimum level of reliability for the statistical tests.

The advice is, that when the ratio is not satisfied, the test should not be performed and the

variables of the edge should be considered dependent.

When there are insufficient data available, we find that the contingency tables will have

many zeros, i.e. we cannot find co-occurrences of the variable/state assignments. This will

reduce the value of the G2 statistic and the number of degrees of freedom used for the χ2 test.

A smaller value for G2 can make it seem that the two variables of the edge are independent

of each other. Consequently, independence tests for which we have insufficient data available

can result in erroneous statistical decisions of independence.

I have come across a statement by Tsamardinos et al. [2006], where they state that they

follow the advice by Spirtes et al. [2000], but where Spirtes et al. recommend keeping an

edge if there are insufficient statistics, Tsamardinos et al. recommend removing the edge.

To be exact, Spirtes et al. [2000] state:

In testing the conditional independence of two variables given a set of other variables, if the
sample size is less than ten times the number of cells to be fitted we assume the variables
are conditionally dependent.

Curiously, Tsamardinos et al. [2006] state:

Following the practice used in [Spirtes et al., 2000] in our experiments we do not perform
an independence test (i.e., we assume independence) unless there are at least five training
instances on average per parameter (count) to be estimated.

I have conducted an empirical evaluation of the impact of choosing either rule, to resolve

the Spirtes/Tsamardinos “controversy”, and report my findings in this chapter. I found that,

typically, it is beneficial to follow the interpretation of Tsamardinos et al. [2006]. Removing

edges makes networks sparser, which seems to be approximating “natural” Bayesian networks

better than when the keep rule is applied.

122



6.2 EMPIRICAL EVALUATION

I have examined the impact of the difference in opinion stated by Tsamardinos et al. [2006]

and Spirtes et al. [2000] more closely. I have run experiments comparing the running time

and accuracy performance of the PC algorithm, implemented in SMILE, where the two

implementations under investigation differed only by how they would handle the insufficient

data case. I will refer to the advice by Spirtes et al. [2000] as the keep rule, and the advice

by Tsamardinos et al. [2006] as the remove rule.

After running a few initial tests, I found that relatively small datasets showed huge

discrepancies between the running time of the algorithm implementing the two rules. I

devised a blacklist rule that eliminated the running time difference. I prove the correctness

of this rule. Section 6.2.1 presents a detailed explanation of the rule and its proof.

After implementing the blacklist rule, I continued my investigation of the effect of the

keep and remove rules, comparing the impact of the rules on the PC algorithm. A detailed

description of Experiment 6.1, its methodology, and its results can be found in Section 6.2.2.

Finally, I investigated the effect of the keep and remove rules on classification accuracy of

Bayesian networks that were learned using the PC algorithm. Section 6.2.3 describes the

details of Experiment 6.2.

6.2.1 The Blacklist Rule

In the initial testing phase, I found huge discrepancies between the algorithm running time

of the keep rule and the remove rule, when applying them to datasets with a relatively

small number of samples. These discrepancies were so large that the required running time

prohibited me from running all the tests that I intended to do.

These initial tests involved generating a 10,000 record dataset using a gold standard

network, and, applying Equation 6.1 to limit the size S of the dataset in such a way that

at a pre-specified conditioning set size C there would be insufficient samples for performing

any independence test

S = 5 · 2C+2 . (6.1)

123



This would guarantee the activation of either the keep or remove rule for all cases at that

point on. No tests would be able to run and the rest of this phase of the PC algorithm would

be completely determined by the applied rule.

My expectations were, when limiting datasets to guarantee rule activation at indepen-

dence test level 0, i.e., making the datasets so small there would not be enough data to run

even a marginal independence test, the keep rule would cause the algorithm to run for a

considerable amount of time, while the remove rule would ensure the algorithm would finish

swiftly. In either case, no independence test would be performed and any modification of the

graph would be due completely to the execution of the keep or remove rule. Respectively, the

resulting pattern would be a completely connected, undirected graph, or an empty graph,

having all its edges removed.

I found that, indeed, the running time increased when applying the keep rule, but it

was much more than I expected. After examining my findings more closely, I found, that

when limiting the dataset to the point rule execution is guaranteed at conditioning level 0

(marginal independence tests), the algorithm attempts to try every possible independence

test (trying every possible conditioning set) for every edge. Although no test could be run,

an exponential number of operations was being performed, causing the long running time of

the algorithm.

I have implemented a rule and a heuristic that considerably shortened the running time

in this situation:

1. Blacklist: If for any edge none of the conditional tests can be performed due to an insuf-

ficient sample to cell ratio, this edge is blacklisted and no longer checked in subsequent

iterations of the algorithm.

2. Upper Bound: The ratio formula can be used to calculate an upper bound on the

conditioning set size. This bound is dependent on the minimum variable cardinality and

the number of records of the dataset:

n ≤
⌊

log
(
S
5

)
log (miniCard (i))

⌋
− 2 , (6.2)

where S is the sample size and Card (i) is the cardinality of node i. This bound can

be used to terminate the PC algorithm once we can guarantee, using the equation, that
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we cannot perform any independence tests without invoking the rule. In the literature

I found one case where this heuristic was applied [Stojnic et al., 2012], and expect that

others have done so as well.

The upper bound heuristic was not applied in the experiments in this chapter, since once

we reach the upper bound, the algorithm terminates, leaving edges behind that otherwise

would be subjected to the one of the rules. Although it should not matter when applying

the keep rule, combining this heuristic with the remove rule would most likely give results

different from applying only the remove rule. I consider it beyond the scope of this chapter

to quantify the additional effect of the upper bound heuristic on the quality of patterns

produced by the PC algorithm.

I prove that the blacklist rule is correct, i.e., I show that shutting out edges from future

independence tests has no negative side effects, since no test of independence would be able

to be performed on them anyway:

Let I (X, Y |Z) be an independence test of an edge between variables X and Y . This test is

conditioned on variable set Z, where |Z| = n, and Z contains only adjacent variables of X,

Z ⊆ Adj (X) and Y /∈ Z. Every independence test I (X, Y |Z), requires a contingency table

T with N elements. N is the product of the variable cardinalities:

N = Card (X) · Card (Y )
n∏
i=1

Card (Zi) (6.3)

The ratio Rn is defined as:

Rn =
|D|
N

=
|D|

Card (X) · Card (Y )
∏n

i=1Card (Zi)
= r , (6.4)

where D is the dataset, and r is the predefined minimum ratio to successfully perform an

independence test.

Theorem 6.2.1. If for an edge between X and Y every independence test I (X, Y |Z) fails

to satisfy ratio r: Rn < r, for every possible conditioning set Z of size n, it will also fail to

satisfy ratio r for any test with any conditioning set Z of size n+ 1: Rn+1 < r.
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Proof. If |Z| = n+ 1, then:

Rn+1 =
|D|

Card (X) · Card (Y )
∏n+1

i=1 Card (Zi)

=
|D|

Card (X) · Card (Y ) · Card (Zn+1)
∏n

i=1Card (Zi)

=
R(n)

Card (Zn+1)

If Rn < r, then clearly Rn+1 = Rn

Card(Zn+1)
< r since Card (Zn+1) ≥ 1

6.2.2 Experiment 6.1:

Comparing the Performance of the Keep Rule versus the Remove Rule

Having justified the use of the blacklist rule for the keep rule, I continued the experiment

where I compared the performance of the keep rule with the remove rule. My expecta-

tion was that due to the sparse nature of most networks, the remove rule would allow for

better performance than the keep rule, and the results of the experiment confirmed these

expectations.

6.2.2.1 Methodology Similar to Experiment 5.1, I performed a gold standard task

with nine different networks, listed in Table 6.1. Experiment 6.1 consisted of performing the

following steps 100 times and collecting all results:

1. Randomly generate a 10,000 record sample from the gold standard network.

2. For each of the conditioning size limits C in [0, 9]:

a. Reduce the sample size of the data to S, where S is calculated by inputting C in

Equation 6.1.

b. Learn a model from the data using the PC algorithm using the keep rule or the

remove rule.

c. Calculate the Hamming distance from the learned models to the gold standard.

d. Calculate the Hamming distance between the learned models.

e. Calculate the Skeletal distance from the learned models to the gold standard.

f. Calculate the Skeletal distance between the learned models.
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Table 6.1: Gold Standard Evaluation Networks used for Experiment 6.1

Network Nodes Edges Reference

Asia 8 8 Lauritzen and Spiegelhalter [1988]

Nursery2 9 10 Ratnapinda and Druzdzel [2013]

Adult2 15 18 Ratnapinda and Druzdzel [2013]

Bank2 17 28 Ratnapinda and Druzdzel [2013]

Chess2 37 100 Ratnapinda and Druzdzel [2013]

Alarm 37 46 Beinlich et al. [1989]

Hailfinder 56 66 Abramson et al. [1996]

Hepar 70 123 Onisko [2003]

CPCS179 179 239 Pradhan et al. [1994]

g. Count the number of edge orientation mistakes between the learned models and the

gold standard.

h. Count the number of edge orientation mistakes between the learned models.

i. Store the number of times the rule were applied in both cases.

j. Store the running time of the algorithm in both cases.

6.2.2.2 Results The results from Experiment 6.1 confirmed my expectations that, due to

Bayesian networks typically being sparse, the remove rule outperformed the keep rule, albeit

mostly with a marginal difference. Figure 6.1 shows the gold standard recovery performance

of the two rules. Additionally, the Hamming distance between the two constructed patterns

is shown in the graph as well.

The difference between the two rules is most apparent when there is very little data

available. In the worst case, the keep rule results in a completely connected graph, and the

remove rule results in an empty graph without edges. The remove rule capitalizes on the

2These networks were created using data from the UCI Machine Learning Repository
[Bache and Lichman, 2013]
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Figure 6.1: Gold Standard Recovery Results of Experiment 6.1

natural sparsity of Bayesian networks. Thus, its worst case scenario is much closer to the

gold standard network than the worst case scenario of the keep rule.

Once more data is available, the algorithm will be able to perform more independence

tests successfully and the difference between the two results quickly disappears. The remove

rule outperforms or performs equally to the keep rule variant. The Hamming distance is

consistently lower or equal. Figure 6.2 shows that in most cases the skeletons of the results

tend to converge when we are able to perform independence tests with conditioning set sizes

of 2 or more, the remaining discrepancy between result patterns of the rules is due to edge

orientation differences.

Figure 6.3 illustrates the edge orientation mistakes that were made by both algorithm

variants and shows how many edges differed between the patterns. Overall the remove rule

makes fewer mistakes, but it is important to note that the measure only counts cases where

in both patterns (result and gold standard, or both results) an edge exists, which is why in

the first few conditioning limits, the number is quite low, starting with 0 in the first step.

In that case, the remove rule results in an empty pattern, meaning there are no incorrect
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Figure 6.2: Skeletal Differences Between Patterns and Gold Standard

edges. However, when there is more data available, the algorithm still tends to make less

orientation mistakes when the remove rule is applied.

The analysis of the algorithm running time showed that there was no difference between

applying either of the two rules. The results are illustrated in Figure 6.4. In contrast, I

did observe a difference in the number of times a rule was applied in each case. Figure 6.5,

having a logarithmic y-axis, shows that when the keep rule is used, a much larger number

of independence tests requires application of the keep rule due to insufficient data.

This difference in number of rule applications is easily explained. Applying the remove

rule achieves two things: 1) the removal of the edge means it can never be tested again,

2) The two nodes that were previously connected by this edge can no longer appear as

conditioning variables in each of their remaining conditioning independence tests.

Removing edges thus decreases the number of edges that need to be tested in subsequent

iterations of the algorithm, limits the number of possible future conditioning sets, and reduces

the possibility of not having sufficient data to run an independence test.
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Figure 6.3: Incorrect Edges Between Patterns and Gold Standard

Figure 6.4: Average Running Times for Experiment 6.1

130



Figure 6.5: Average Number of Rule Applications for Experiment 6.1

To summarize, the remove rule exploits the natural sparsity of Bayesian networks, and

performs better or equal to the keep rule when recovering the structure of a gold standard

network, especially when fewer data is available. However, removing edges does not necessar-

ily improve the running time of the algorithm more than applying the keep rule. The blacklist

rule, used in conjunction with the keep rule, eliminated all running time discrepancies.

In Experiment 6.2, we will consider the performance of the keep and remove rule when,

instead of a gold standard network recovery task, we consider the typical machine learning

task of classification.

6.2.3 Experiment 6.2:

Rule Performance when Executing a Classification Task

When comparing the performance of the two rules on a gold standard recovery task, I found

the remove rule had an edge over the keep rule, especially when there was less data available.

But, the gold standard recovery task limits our evaluation to just the structure of the BN,

omitting the other main component, the (conditional) probability distribution tables needed
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for each node to fully define a Bayesian network. To provide a more complete picture, I have

performed an experiment to test the impact of the rules on the classification accuracy of a

model learned with the PC algorithm.

6.2.3.1 Methodology For the classification task I chose twelve example datasets from

the UCI machine learning repository [Bache and Lichman, 2013], the datasets are listed in

Table 6.2. Experiment 6.2, consisted of performing the following steps:

Table 6.2: Classification Datasets used for Experiment 6.2

Datasets Variables Records Classes

Hayes-Roth 4 132 3

Car 6 1,728 4

Nursery 9 12,960 5

Tic-Tac-Toe 10 958 2

Zoo 17 101 7

Bank 17 45,211 2

Breast-Cancer 22 80 2

SPECT 23 80 2

Soybean 36 266 15

Chess 37 3,196 2

Connect-4 43 67,557 3

Semeion 257 1,593 10

1. Randomize the order of the records in the dataset.

2. Run a 10-fold cross validation with the following steps:

a. Divide the dataset into a training and a test set.

b. Based on the same principle as in Experiment 6.1, reduce the training dataset to con-

trol for the activation frequency of the keep and remove rule, setting the conditioning
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limit parameter C to [1, 3].

c. Learn patterns from the training data using the PC algorithm with the keep and the

remove rule.

d. Transform patterns into DAGs using the conversion method implemented in SMILE.

e. Learn parameters of the networks using the training dataset and the EM algorithm.

f. Determine the classification accuracy of each network by predicting the class variable

using samples from the the test dataset, and verify the predictions with the actual

class values.

g. Store the number of times the rules were applied in both cases.

h. Store the running time of the algorithm in both cases.

i. Store the time required to run inference on the Bayesian network in both cases.

j. Store the total clique size of the junction tree used for inference.

The dataset sizes are limited to guarantee that a large number of independence tests will

be unable to be performed due the insufficient data. This in turn guarantees the two rules

will be applied frequently. Rule application drops to near zero when there are sufficient data

available in most cases, which is why for Experiment 6.2 data was limited to allow at most

two conditioning variables.

6.2.3.2 Results One third of the datasets used in Experiment 6.2 failed to produce

a tractable Bayesian network. Although the PC algorithm produced a pattern applying

either rule, and the patterns were successfully converted into DAGs, a common problem was

that nodes would have very large parent sets. This, in combination with nodes having a

considerable number of variable states, resulted in the conditional probability tables (CPTs)

becoming too large, causing the experiment to stall in the conversion process. This only

occurred when the PC algorithm applied the keep rule when learning the pattern, and

typically when the data was constrained the most by the limitation process that regulates

rule activation for the two experiments. Nine of the twelve datasets finished their run without

problems. For these datasets the results are shown in Figures 6.6-6.9.
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Figure 6.6: Average Classification Accuracy Results for Experiment 6.2

Table 6.3: Wilcoxon Signed Rank Test Results for Classification Accuracies of Experiment

6.2

Remove Baseline

Keep 0.8563 0.03345

Remove 0.03694

Following the procedure described by Demšar [2006], I performed Wilcoxon signed rank

tests [Wilcoxon, 1945] after ranking the performance of the algorithms to determine if either

of the rules significantly outperformed the other. Additionally, I tested if the rules outper-

formed the baseline accuracy model, which simply learns the class label proportion from

the training data and applies the label with the maximum probability to all samples. For

the Wilcoxon test I considered 27 paired data points (9 datasets, 3 constrained versions).

These points were the ranks of the algorithms after comparing their classification accuracy,

averaged over the 10 folds. I found that, with respect to accuracy, there were no significant
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differences between the performance of the algorithms applying either of the rules. The per-

formance of the algorithm did differ statistically significant from the baseline performance,

but the evidence is weak.

Figure 6.7: Average Running Times for Experiment 6.2

Figure 6.7 shows the running time needed by the algorithms to learn the models. For the

datasets tested (specifically, their three restricted versions), neither of the rules drastically

influenced the running time, which is supported by the result of the Wilcoxon test I performed

on the algorithm running times. No significant difference was found between the algorithms

(V = 139, p = 0.2386). The inference time, shown in Figure 6.8, defined as the average

time it takes for the network to perform inference on a sample (with SMILE’s inference

implementation), does show a significant difference. The one-sided Wilcoxon test indicated

the remove rule outperformed the keep rule (V = 349.5, p = 5.247e-06). But, from a practical

point of view, the performance differences are only noticeable when the models were learned

with very little data.

The networks that were learned with the very limited datasets were much denser, and

as a result the nodes would typically end up with larger CPTs. When performing inference,
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Figure 6.8: Average Inference Times for Experiment 6.2

SMILE converts the networks into junction trees. As was discussed in Section 2.2.1.2, cliques

are created from the moralized and triangulated Bayesian network. Nodes are always put in

the same clique as their parents. Denser networks, where nodes have more parents thus result

in larger cliques. The total clique size, i.e, the sum of all elements of all the clique potentials,

gives an indication of how much time inference will take. Figure 6.9 shows the total clique

sizes for the networks. Larger clique nodes, that have to be created for the junction tree,

take more space and require more time for construction and inference calculations. With

classification accuracy performance not differing much between the two rules, in general, it

seems wise to apply the remove rule for handling cases with insufficient data. Networks will

be sparser, require less parameters, perform inference faster, and provide similar classification

accuracy.
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Figure 6.9: Average Total Size of All Cliques in the Network for Experiment 6.2

6.3 DISCUSSION

The difference in the advice given by Spirtes et al. [2000] and Tsamardinos et al. [2006]

sparked the question: “does picking either of the rules impact the performance of the al-

gorithm?” I investigated this question by running two types of experiments, 1) Recovering

gold standard networks and 2) learning classification models and assess their accuracy.

To control for the effect of different dataset sizes on the number of times the rules would

need to be applied, I made use of a simple formula to determine the proper dataset size to

induce the insufficient data problem reliably at predefined conditioning set sizes.

One immediate consequence of controlling the size of the datasets used in Experiments

6.1 and 6.2, was that I found that with very little data, the keep rule, as described by Spirtes

et al. [2000] would cause the algorithm to run for an unacceptable amount of time, even

when the number of variables in the dataset was still small.

As a result of this observation, I developed a rule that would blacklist edges after all

possible independence tests in a round of tests failed to satisfy the preset ratio requirements
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due to insufficient data. This completely solved the running time issue. I proved that the

rule has no negative impact on algorithm performance.

One of the main takeaways from the results of Experiment 6.1 is, that with sufficient data

the difference between the algorithm results due to the two rule options, disappear almost

completely. The difference in Hamming distance decreases fast. In the cases where we limit

the data to a very small amount, the remove rule has a better score than the keep rule. This

is due to Bayesian networks commonly being very sparse. When applying the keep rule we

end up with much denser networks and these will typically differ more from the original gold

standard network.

If we assume that Bayesian networks should be sparse, which has certain benefits, then

choosing to let the PC algorithm apply the remove rule, should be the optimal course of

action. When we are confronted with datasets with less data, where we would most likely

need to apply the rule many times, we should end up with more practical and potentially

better networks this way. And, if there is sufficient data available we can be reassured that

choosing the remove rule, with the benefits of sparsity that it provides, will let the PC

algorithm produce a Bayesian network structure that would have been very similar to one

produced by using the keep rule.

Additionally, the rules do not effect the running time of the PC algorithm differently.

Controlling for the number of variables, the running times when applying either rule for

solving insufficient data cases, seems to be determined completely by the size of the dataset.

In Experiment 6.2, I applied the PC algorithm and the two rules to the problem of

learning a model from training data, and test the algorithm performance using a test dataset.

In addition to running the PC algorithm to learn a pattern, which represents an equivalence

class of Bayesian network structures, I ran a conversion algorithm present in SMILE (based

on the algorithm by Dor and Tarsi [1992]) to convert the pattern into a DAG. After this

step, parameters for the CPTs of the nodes are learned, and at that point we can perform

the classification task on the test data.

I found that a common problem is that the PC algorithm and the DAG conversion

algorithm together produce DAGs where nodes have too many parents. This results in the

CPTs for the nodes to become unacceptably large, causing the experiment code to stall,
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taking up all of the computer’s memory, and forcing the operating system to swap data from

the memory to disk. At this point, the process running the algorithm was canceled. From the

twelve datasets selected for Experiment 6.2, nine ran without problems, the other three had

this problem. Commonly, running the PC algorithm on the datasets would result in networks

with large parent sets, with examples where nodes would have all other nodes as parents, a

problem exacerbated further by variables having many states. What we can observe from

this problem, is that, especially when datasets have few samples, the PC algorithm frequently

returns patterns which may not end up being feasible Bayesian networks. In Chapter 7, I

discuss several approaches to modifying the result of the PC algorithm to produce Bayesian

networks that will be more tractable in model size and when performing inference on the

networks.

The results from Experiment 6.2 indicated that neither of the rules outperforms the

other with regards to running time and classification accuracy. Chapter 7 discusses structure

modification approaches that aim to enhance classification performance.

Significant differences were found between the rules when comparing the algorithm per-

formance on inference running time, and total clique size (when converting the network into

a junction tree). Applying the remove rule guarantees sparser networks, which in turn will

be beneficial when running inference on the networks. The clique nodes in the junction tree

require less parameters, which should translate into the inference algorithm requiring less

time to classify samples.

Summarizing, my results indicate that the remove rule should be preferred over the keep

rule. With enough data, the effects of the rules are minimal. But, with smaller datasets,

the rules effect the algorithm result more significantly. The remove rule will result in sparser

networks than when the keep rule is applied. Bayesian networks are typically sparse, and

applying the remove rule would result in more “natural” networks. The added benefit

of sparse networks is that they are usually more tractable. Sparser networks require less

parameters, making inference more efficient by requiring less memory and less time. The

rules did not significantly influence the classification accuracy of the PC algorithm. No

significant differences were found between the rules and between either rule and the baseline

model. The observed problems with patterns learned from the PC algorithm not being
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converted to tractable Bayesian networks, allows for opportunities to investigate optimal

modifications to the algorithm and the general procedure to guarantee tractable networks.

This is the topic of the next chapter.
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7.0 IMPROVING TRACTABILITY OF BAYESIAN NETWORKS

DERIVED FROM PATTERNS

This chapter proposes several approaches to modifying patterns outputted by the PC algo-

rithm or DAGs converted from patterns, improving their tractability and performance as

classifiers.

7.1 INTRODUCTION

In the previous two chapters, we have come across situations in their respective empirical

evaluations, where we were not able to perform classification experiments on some datasets

due to Bayesian networks being intractable after converting them from the patterns obtained

from the PC algorithm. What these intractable networks all had in common, was that they

all had nodes with large parent sets. Nodes with such sets require large CPTs, as these

grow exponentially with the number of parents. With 30 or more parents, nodes require

billions of CPT entries, resulting in large memory usage for model storage and inference.

Such networks typically do not fit in the working memory of a common computer, causing

the problems observed in my experiments.

The memory problems occurred mostly in networks learned using the keep rule. Due to

the nature of the keep rule, not removing edges when confronted with insufficient data for

an independence test, networks will be more dense. Especially when few data records were

available, many parent sets of these networks were large, sometimes containing all variables.

Figures 7.1 and 7.2 show for several datasets the types and quantity of edges the nodes in the

patterns contain, and the effect on the proportions of these edges after converting the patterns
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into DAGs. Patterns constructed by the PC algorithm contain three different types of edges,

1) directed, 2) undirected, and 3) bi-directed edges. In a pattern, a node can be involved

into four different relationships. A node can be a parent, a child, be adjacent to another

node, or be linked to a node by a bi-directed edge, which signifies a hidden common cause

influencing both nodes connected by the bi-directed edge, an artifact of the PC algorithm.

DAGs only have directed edges, nodes can only be parents or children. When we convert a

Figure 7.1: Maximum Occurrence of Edge Type in a Pattern or a DAG, Keep Rule

pattern into a DAG, we must decide on what to do with the undirected and bi-directed edges.

Converting the undirected edges is relatively simple. A pattern represents an equivalence

class of Bayesian networks, and, when satisfying certain constraints, the undirected edges

can be replaced by directed edges that are oriented in either way. Dor and Tarsi [1992]

proposed one example of an algorithm that can convert a pattern into a valid DAG. The

SMILE library applies this algorithm to convert patterns into DAGs. Additionally SMILE

converts bi-directed edges into directed edges based on a partial node ordering, derived from

the result produced by the [Dor and Tarsi, 1992] algorithm, when it is presented the pattern

without bi-directed edges.
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Figure 7.2: Maximum Occurrence of Edge Type in a Pattern or a DAG, Remove Rule

Figures 7.1 and 7.2 show the per node maxima of each edge type when applying the

keep and remove rules. The difference between the two, when taking the eventual impact

of the network structure on the size of the CPTs, is enormous. The maxima are shown to

make the point that it takes only one extreme case to make the whole network intractable

for inference purposes such as a classification task.

From the figures, we see that bi-directed edges tend to occur more frequently than undi-

rected edges and make a potentially larger contribution to the parent set. In Section 7.3,

I propose to remove all bi-directed edges from the pattern and investigate empirically the

effect of this suggestion on the gold standard recovery task and classification tasks. The

results of this evaluation show that removing bi-directed edges does not seem to have a sig-

nificant (negative) effect on the performance of these two tasks (although any change that

promotes network sparsity tends to improve the gold standard recovery task result), but it

does not provide a definite solution for network intractability.

It is still possible for a node in a pattern to have a large parent set, which will result

in an intractable Bayesian network. To guarantee network tractability, we must make more
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significant modifications to the pattern to curb the CPT sizes of the Bayesian network. We

can accomplish this by limiting the number of parents that a node is allowed to have. This

action, similarly to removing bi-directed edges, permanently alters the pattern or DAG struc-

ture. Limiting the number of parents is accomplished by selecting a subset of nodes from

the complete parent set. If we limit the number of parents to k and if a node has a parent

set of size n, then there are
(
n
k

)
possible subsets we can choose. Faced with this choice, we

would like to make an optimal decision. In Section 7.4, I describe four different heuristics to

picking an optimal restricted parent set. I report the results from an empirical evaluation,

where I compare the performance of the four heuristics on a gold standard recovery and a

classification task, and report the impact of three different parent set sizes on task perfor-

mance. I found that applying these approaches improved the tractability of the network,

decreased the Hamming distance in the gold standard recovery task, and, in general, does

not negatively affect the classification accuracy of networks in the classification task.

Finally, in Section 7.5, I discuss three approaches that aim to improve the classification

accuracy of a network. These methods apply knowledge from typical BN classification ap-

proaches to modify the raw BN structure outputted by the PC algorithm. I evaluate the

performance of these methods against the original network, the baseline accuracy, and the

performance of a naive Bayes classifier as an additional baseline. The results from the evalu-

ation suggest that it is possible to improve the classification accuracy of a model by making

structural changes, but the extent of the changes that are necessary to obtain this increase

in accuracy diminishes the usefulness of the general idea of this approach.
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7.2 RELATED WORK

In this section, I discuss relevant literature on limiting parent sets and the Bayesian networks

used for classification.

7.2.1 Limiting the Number of Parents of a node

Quite commonly, the Bayesian network learning literature, when discussing structure learn-

ing, points out the tractability problem caused by nodes with large parent sets [Silander and

Myllymaki, 2012, Friedman and Koller, 2000, De Campos et al., 2009, Neil et al., 1999, for

instance]. But, typically, it seems that after the problem has been identified, the method

of parent limitation is left as an exercise to the reader. Two examples of approaches to

constraining the parent set are presented below.

In their exact Bayesian network learning algorithm, Silander and Myllymaki [2012] apply

a Bayesian method to determine the best parent set. Their method recursively grows the

best set of parents by calculating the Bayesian score for the current parents set S and the

current candidate. Then, after scores are calculated for each candidate, the best one is added

to S.

De Campos et al. [2009] propose an exact Bayesian network structure learning algorithm

that allows for the definition of parameter and structural constraints. The parameter con-

straints are based on the work by Wellman [1990]. Structural constraints allow the user to

forbid the existence of edges, and to limit the indegree of a node, i.e., the size of its parent set.

Exact structure learning algorithms, in the worst case, search the complete space of Bayesian

network structures. Typically, optimization techniques such as branch-and-bound are used

to eliminate suboptimal network structures from the search. In the algorithm proposed by

De Campos et al. [2009], the branch-and-bound technique is used and the constraints, to

be specified by the user, are enforced during the sufficient statistic calculation phase. The

algorithm pre-calculates a large portion of the necessary sufficient statistics. The statistics

are checked against the constraints and only those that satisfy all constraints are stored in

the cache used for calculating structure scores. This eliminates networks from the search
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that, for instance, would have violated the indegree constraints. If no statistics for oversized

parent sets are stored in the cache, they cannot be considered in the search as valid BN

structures.

7.2.2 Bayesian Networks Classifiers

Bayesian networks have been used extensively for the classification problem. The best known

example is the naive Bayes classifier, which can be represented by a Bayesian network as

a class node and a set of feature nodes, where the class node is the parent of all feature

nodes. The naive Bayes classifier makes very strong independence assumptions, but typically

performs quite well. Work has been done on BN classifiers with more complex structures

or more complex inference [Friedman and Goldszmidt, 1996, Friedman et al., 1997, Dash

and Cooper, 2002]. Two enhancements of the naive Bayes classifier are the Tree-Augmented

Naive Bayes classifier (TAN) [Friedman et al., 1997] and the Augmented Bayesian Network

classifier (ABN) [Friedman et al., 1997].

The difference between discriminative and generative learning has been discussed ex-

tensively [Friedman et al., 1997, Roos et al., 2005]. Generative learning is the “standard”

approach to learning where typically a joint likelihood is optimized for parameter and/or

structure learning. Discriminative learning is more specialized to classification, here we

optimize a conditional likelihood instead.

Constrained Bayesian network learning algorithms such as the one proposed by De Cam-

pos et al. [2009] can be applied to learn NB, TAN, or ABN classifiers by specifying the

appropriate structural constraints.

The work in this chapter describes approaches that modify a Bayesian network structure

or pattern in the final phase, i.e., after a network has been learned from data, we modify

the structure to enhance its performance. Lam [1998] discusses a similar problem where an

existing Bayesian network is refined with new data, using a Minimum Description Length

(MDL) approach. The approaches in this chapter are not full-fledged algorithms, but heuris-

tics that modify the network structure with or without the use of the dataset that was used

for learning the structure.
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7.3 REMOVING BI-DIRECTED EDGES

The first heuristic, aims to improve the tractability of Bayesian networks constructed by

the PC algorithm by removing all bi-directed edges from the pattern before converting the

pattern to a DAG. Bi-directed edges are an artifact of the PC algorithm and can be inter-

preted as the case where the algorithm cannot determine the direction of the arcs between

the two nodes. It differs from the undirected edge, also present in patterns, by suggesting

the possibility that the algorithm could not decide the direction of the arc due to it not being

a direct dependence, but an indirect dependence through a hidden common cause [Spirtes

et al., 1993].

I have experimented with removing the bi-directed edges from patterns in a gold standard

recovery task and a classification task. I found that removing the bi-directed edges positively

affected the gold standard recovery task (mainly due to the increased sparseness of the

modified network), and that the classification task did not show changes in classification

accuracy, but the increased sparseness of the graph contributed to a decrease in the required

inference time and the total clique size of the junction tree used for inference.

7.3.1 Experiment 7.1: Gold Standard Recovery

The methodology used for the gold standard recovery task is identical to Experiment 6.1, de-

scribed in Section 6.2.2. Figure 7.3 shows the main results of Experiment 7.1: the Hamming

distances for the different dataset limitations, comparing the performance of the PC algo-

rithm, applying the keep rule, with and without the extra step that removes all bi-directed

edges from the pattern.

I found that the Hamming distances of the patterns with or without bi-directed edges

differ significantly. The Pattern without bi-directed edges is consistently closer to the gold

standard pattern (converted from the original network) than the original pattern (one-tailed

Wilcoxon signed rank test, V = 3081, p = 8.575e-15). This result is easy to explain. The keep

rule has the tendency to produce denser networks by making conservative decisions when

faced with insufficient data. The PC algorithm then might not be able to determine clear
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Figure 7.3: Gold Standard Recovery Results for Experiment 7.1

orientation for these extra edges, potentially turning them into bi-directed edges. Removing

these edges then reduces “waste” and we may end up with a better pattern.

Another, explanation is that by removing edges we make the pattern more sparse, elim-

inating opportunities for edge orientation mistakes and spurious edges. As long as we elim-

inate more edge orientation errors and extra edge errors than erroneously remove actual

edges, we end up with a better result in the end. In cases with little data, we might still

be willing to make these assumptions to get a better guess for a causal structure, and a

potentially more tractable network.

7.3.2 Experiment 7.2: Classification Accuracy

The second part of the evaluation of the “remove bi-directed edges” heuristic, was a classi-

fication task. The methodology used for this task is identical to Experiment 6.2, described

in Section 6.2.3. Figure 7.4 shows the result of running a 10-fold cross-validation on the

nine datasets. Similar to the results of Experiment 6.2, discussed in Section 6.2.3, I found

that there are no significant differences between the classification accuracy for the classifiers
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Figure 7.4: Average Classification Accuracy Results for Experiment 7.2

learned using the PC algorithm with or without removing bi-directed edges from the result

pattern before translating it into a DAG. Statistically, there is no difference between the

classification performance of the original and the modified structure (V = 82, p = 0.4009).

For both the inference time, and the total clique size for the junction tree used for inference,

we do find differences between the two. Since these results and their cause are effectively the

same as the results in Section 6.2.3, they are not illustrated here, but the inference time (V

= 368, p-value = 8.989e-06) and the total clique size (V = 171, p = 0.0001069) were signifi-

cantly lower when the bi-directed edges were removed from the pattern before converting it

to a DAG and running the classification task.

Summarizing the results, it seems once again, that promoting sparseness, here by re-

moving bi-directed edges, has few or no negative side effects (assuming that sparseness in

networks is natural), and that we might be better off applying the heuristic liberally. How-

ever, removing bi-directed edges does not guarantee that we will obtain a tractable Bayesian

network. If we revisit Figure 7.1, we see that besides bi-directed edges, nodes can still have

large numbers of parents through “regular” directed arcs. Removing all the bi-directed edges
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will not influence the set of already directed edges, and if a node has too many, the whole

network will still be intractable. To solve this problem we will need to modify the pattern

or DAG more rigorously, by limiting the number of parents a node is allowed to have. This

is the subject of the next section.

7.4 LIMITING THE NUMBER OF PARENTS OF A NODE

To be able to provide a stronger guarantee for Bayesian network tractability, we need to

constrain the CPTs of the BN. Given that the size of CPTs is exponential in the number of

parents, the obvious fix for this problem is to limit the number of parents of a network. Faced

with the problem that we have a parent set Pa (X) for a variable X, which exceeds the limit,

we would like to select a subset S, which contains the “optimal” parents and satisfies the size

constraint. This additional step should promote network tractability while not negatively

impacting the performance of the task, be it accurately representing the structure of a model

or classifying samples.

I have tested four different measures that limit parent sets, among them an approach

based on a Bayesian score similar to the parent limitation approach discussed by Silander

and Myllymaki [2012]. In the remainder of this section, I will describe each of the approaches

and will discuss the results of the two evaluation tasks.

All the approaches discussed in this chapter determine in one way or another the strength

of the parent set. When we remove edges from the pattern, or DAG, we are in fact disre-

garding, in the case of the PC algorithm, statistical evidence for the existence of this edge

(if we ignore the possibility of statistical mistakes). The compromise then should be that we

remove the weakest edges. This way we prune the parent set, and keep the most relevant

parent nodes.
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7.4.1 P-Values

The first approach, applies the PC algorithm’s independence testing procedure to estimate

the strength of an edge. For each edge, connecting a node in the parent set to the child

node, we perform a marginal independence test. We record the p-values of the tests and

apply these as a measure of strength when pruning parents from the set. Smaller p-values

are interpreted to indicate a stronger connection, i.e., the null hypothesis of independence

would have been rejected more strongly. After testing all the edges of the parents, we rank

them and prune the parent set to the top n parents. Here these are the parents with the

smallest p-values. Unlike the PC algorithm, we do not apply the keep or the remove rule,

since we are interested in the p-value. It does mean that when little data is available we will

have less reliable information to work with, but we have to realize that the network structure

itself was created with this same limited information as well, and the current situation leaves

us most likely with an intractable Bayesian network unless we fix it by pruning edges.

7.4.2 Mutual Information

The second approach, is based on applying Mutual Information (MI) between nodes as a

measure for strength. The MI approach is closely related to the previous p-value approach

through the way they are calculated. For the p-value measure we calculate the G2 statistic

and determine the appropriate degrees of freedom for the χ2 distribution, before plugging

these values into the χ2 distribution to obtain the p-value. As was mentioned before in Sec-

tion 5.2.3, the mutual information measure is proportional to the G2 statistic. I have reused

the G2 code to calculate the mutual information between a parent and a node of interest.

Cheng et al. [1997], has applied mutual information as an alternative to independence tests

in their TPDA algorithm. A larger MI value indicates a stronger connection between the

nodes. The parent pruning procedure is, again, as follows: 1) We measure the MI between

the node and all of its parents, 2) we rank the scores (this time larger is better), and 3)

we prune the parent set to the top n scoring parents. This will guarantee a more tractable

network through the reduced size of the child’s CPT.
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A difference between the p-value and the MI approaches is that the χ2 calculation is more

complicated, requiring not just the G2 statistic but a degree of freedom calculation as well.

The MI calculation is simpler, requiring the G2 statistic, and the size of the dataset. When

we have little data, this could work in our advantage, as we are not taking an unreliable

measure and transforming it into one that might be even less reliable.

7.4.3 Bayesian Score

The final two approaches are both Bayesian of nature. Both calculate a Bayesian score,

the BDeu score [Buntine, 1991], of the node given its parents, but differ in how they con-

struct the optimal parent set. The first of the two, denoted in the empirical evaluation as

Bayes1, follows closely the p-value and mutual information approaches by considering the

parents of the node independently when scoring them. Bayesian scores are calculated for

each parent, parents are ranked, and the top n parents remain after pruning the rest. The

second approach, Bayes2, grows the optimal parent set similar to the Bayesian Search algo-

rithm [Cooper and Herskovits, 1992] and the thickening phase of the Greedy-Thick-Thinning

algorithm [Heckerman, 1995]. Starting with an empty parent set, we score all parents inde-

pendently and add the best scoring parent to the final parent set. We repeat this procedure

until we reach the preset parent limit size, but now the scores are based on the candidates

for the final set plus the already confirmed parent nodes. Thus we run n rounds of Bayesian

scoring to grow the best parent set.

7.4.4 Results

To test the performance of the different parent limitation approaches, I performed experi-

ments with a gold standard recovery task and a classification accuracy task. The method-

ologies used for the two tasks are identical to the ones described in previous sections, with

the single addition that I ran the experiment with three different parent limitation settings,

n = {2, 4, 8}. Additionally to the four approaches, I added a random parent selection ap-

proach as a baseline. This approach randomly selects n parents and prunes the rest from

the sets.
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7.4.4.1 Experiment 7.3: Gold Standard Recovery Figure 7.5 shows the results of

Experiment 7.3. The facets show for every dataset (the rows) and every parent limitation

setting (the columns) the performance of the PC algorithm with either the keep or the remove

rule and the five parent limitation approaches. I ran the parent limitation approaches on the

keep rule result. The first column only contains the results of running the PC algorithm with

the keep or remove rule without parent limitations. Especially for the larger networks, the

Hamming distances for the keep rule in small dataset are so large, they effectively squelch

all the details of the Hamming distance fluctuations of the other approaches. For clarity, the

results from the remove rule are replicated in all columns.

If we inspect the results from the different approaches visually, we notice that the Bayes1

approach seems to produce patterns that consistently are more distant from the gold standard

than the other approaches, especially when little data is available. The other approaches

seem to be performing similarly to each other.

Unsurprisingly, in general, if the parent sets are constrained to a smaller number of

parents, the Hamming distance tends to be lower, and if we increase the parent limit, the

results from the five approaches will eventually converge on the original results from the

pattern created using just the keep rule. Compared to the pattern created by the remove

rule, the results are mixed. Depending on the specific dataset either the remove rule or the

five parent limiting approaches would produce patterns with lower Hamming distances.

I performed a set of pairwise Wilcoxon signed rank tests, to find out if there were signif-

icant differences among the different parent limitation approaches and the keep,remove rule

pair. The results are shown in Tables 7.1 and 7.2, where the former reports on two-tailed

tests and the latter on one tailed tests.

Generally, there seems to be strong evidence that the different methods tend to produce

statistically significant results. Table 7.1, shows the p-values of the two-tailed test. With

the exception of three tests, all are significant (level of significance used : 0.05). It seems

that the triplet of Pval, Bayes2, and Random cannot be distinguished from each other. To

have an indication of which method would tend to produce patterns with lower Hamming

distances than others, I performed one-tailed tests, where the alternative hypothesis would

indicate that method x would create patterns with lower Hamming distances to the gold
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Figure 7.5: Gold Standard Recovery Results for Experiment 7.3

standard than method y. Table 7.2 shows the results.

From the results of the tests in the table we can conclude that applying just the remove

rule instead of the keep rule followed by a parent limitation approach still tends to result

in patterns which have lower Hamming distances with regard to the gold standard. Com-

paring the five parent limitation approaches, the approach based on the mutual information
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Table 7.1: Gold Standard Recovery Two-Tailed Wilcoxon Signed Rank Test Results for

Experiment 7.3 (Holm Corrected)

Remove Pval MI Bayes1 Bayes2 Random
Keep < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16
Remove 3.58e-05 1.603e-04 4.372e-06 3.582e-05 1.856e-05
Pval 6.089e-10 < 2.2e-16 0.2201 0.1007
MI < 2.2e-16 2.265e-08 4.192e-06
Bayes1 5.796e-15 9.826e-06
Bayes2 0.1315

Table 7.2: Gold Standard Recovery One-Tailed Wilcoxon Signed Rank Test Results for

Experiment 7.3 (Holm Corrected)

↓ x < y → Keep Remove Pval MI Bayes1 Bayes2 Random
Keep - 1 1 1 1 1 1
Remove < 2.2e-16 - 4.477e-05 0.0002 4.129e-06 4.598e-05 2.121e-05
Pval < 2.2e-16 1 - 1 < 2.2e-16 1 0.2014
MI < 2.2e-16 1 3.552e-10 - < 2.2e-16 1.96e-08 3.773e-06
Bayes1 < 2.2e-16 1 1 1 - 1 1
Bayes2 < 2.2e-16 1 1 1 3.344e-15 - 0.3616
Random < 2.2e-16 1 1 1 7.984e-06 1 -

measures seems to be outperforming the others. The Bayes1 approach seems to perform the

worst. For the other three, Pval, Bayes2, and the Random approaches, the evidence suggests

that none of these three seems to be really outperforming the other, and it is important to

note this includes the randomized parent selection approach only used as a baseline. It seems

then that the MI approach is the preferred approach for the gold standard recovery task.

7.4.4.2 Experiment 7.4: Classification Accuracy Experiment 7.4 consisted of a

classification task. The setup is identical to the classification task performed in previous

sections (Experiments 5.2, 6.2, and 7.2), having only the parent restrictions added as an extra

evaluation factor. Figure 7.6 shows the results of the experiment. It is difficult to visually

make a distinction among the performances of the approaches. This was to be expected,

since in the previous chapter we found no significant difference between the classification

accuracies of networks created with the PC algorithm using the keep or remove rule. I
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Figure 7.6: Average Classification Accuracy Results for Experiment 7.4

performed a closer examination using pairwise Wilcoxon tests. Table 7.3 shows the results

of the two-tailed tests.

I found, after correcting the p-values using the Holm correction [Holm, 1979], that the

classification accuracies, acquired by running the algorithm on three trimmed versions of

the datasets and for three different parent limitation settings, that all approaches and rules

156



Table 7.3: Classification Accuracy Two-Tailed Wilcoxon Signed Rank Test Results for Ex-

periment 7.4 (Holm Corrected)

Remove Pval MI Bayes1 Bayes2 Random Baseline
Keep 0.7659 0.6275 0.5532 0.0866 0.7659 1 0.0011995
Remove 0.4411 0.3090 0.2793 0.4411 0.7659 0.0046876
Pval 0.7659 1 1 0.4411 0.0002064
MI 1 1 0.2830 0.0002064
Bayes1 1 0.2830 0.0002064
Bayes2 0.2914 0.0002064
Random 0.0005651

perform statistically different from the baseline. However, no significant differences were

found between any of the approaches and rules. Table 7.4 shows that all approaches and

rules perform better than the random baseline. After correcting for multiple tests, there is

no statistical evidence for any approach or rule performing better than any other.

Table 7.4: Classification Accuracy One-Tailed Wilcoxon Signed Rank Test Results for Ex-

periment 7.4 (Holm Corrected)

↓ x > y → Keep Remove Pval MI Bayes1 Bayes2 Random Baseline
Keep - 0.6960 1 1 1 1 1 0.0005997
Remove 1 - 1 1 1 1 1 0.0023438
Pval 0.6275 0.3729 - 1 1 1 0.2647 0.0001032
MI 0.5302 0.2511 0.8042 - 1 1 0.1564 0.0001032
Bayes1 0.0577 0.1885 1 1 - 1 0.1564 0.0001032
Bayes2 0.8047 0.4047 1 1 1 - 0.1628 0.0001032
Random 1 0.9166 1 1 1 1 - 0.0002825
Baseline 1 1 1 1 1 1 1 -

Although we could not find an improved classification performance after applying the

approaches, the question is if these new network structures are more tractable than the

original one. Figure 7.7 plots the classification accuracies and the total clique sizes. The

values are normalized by the appropriate classification accuracy and total clique sizes of

obtained from the keep heuristic. The upper-left quadrant, colored green, shows where

the approaches are outperforming the keep heuristic, having better accuracy (> 100%) and
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smaller total clique size (< 100%). With some exceptions, the methods either outperform or

perform with little loss of accuracy while reducing the clique size significantly. This is backed

Figure 7.7: Total Clique Size vs Classification Accuracy

up statistically with the Wilcoxon test results for the total clique sizes. Table 7.5 shows the

results for the two-tailed and one-tailed tests. All approaches differ from the results of the

keep rule and have statistically significant smaller total clique sizes.

The results have shown that structure modifications can be useful to make the network

more tractable, and sometimes improve its classification accuracy, but is there any way we
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Table 7.5: Total Clique Size Wilcoxon Signed Rank Test Results for Experiment 7.4 (Holm

corrected)

Test Remove Pval MI Bayes1 Bayes2 Random
Two-Tailed 2.606e-10 2.464e-9 2.464e-9 5.66e-09 2.158e-9 1.850e-9
One-Tailed: Keep > x 1.304e-10 1.232e-9 1.232e-9 2.83e-09 1.0789e-10 9.249e-10
One-Tailed: Keep < x 1 1 1 1 1 1

can do better? The next section investigates approaches that are meant to improve the

classification performance of a Bayesian network.

7.5 STRUCTURE ADJUSTMENTS TO IMPROVE CLASSIFICATION

ACCURACY

The last section showed that pruning the parent sets of nodes in a network can, in addi-

tion to making a Bayesian network more tractable, sometimes has a positive impact on the

classification accuracy of the network. In this section, I explore three different heuristic ap-

proaches that aim to improve the classification accuracy of a Bayesian network. Similarly to

the parent limiting approaches, and the bi-directed edges removal heuristic from the previous

sections, the classification heuristics modify an existing structure. The three approaches do

not use data to make the modifications, but make use of some general knowledge commonly

used in algorithms for learning BN classifiers.

7.5.1 Markov Neighborhoods

The first approach applies a generalized version of the Markov blanket to prune edges from

the network structure. The Markov blanket of a node consists of its parents, children and par-

ents of its children. If all variables are observed, the node is conditionally independent of all

other nodes. This is relevant when applying a regular Bayesian network to the classification

problem. When classifying samples without missing data, the nodes in the Markov blanket
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completely shield the class variable from the influences of all the other feature variables,

making them irrelevant. If complete data is guaranteed, then we can prune the Bayesian

network to just its Markov blanket without any negative consequences, but without this

guarantee, the blanket may end up having a “hole” and useful information could flow into

the class variable from other variables outside of the blanket.

One advantage of pruning the network this way is that we perform feature selection, we

can completely remove nodes, and we will require fewer parameters for the BN.

For this approach I am applying a more general version of the Markov blanket, a Markov

neighborhood, parameterized by an order n, to expand the original in size to include more

variables that potentially can plug the holes in the original Markov blanket when data goes

missing. My definition of a Markov neighborhood of order n for class variable C, MN (C, n),

can be described recursively:

Definition 7.5.1 (Markov Neighborhood).

MN (C, 1) = MB (C) , (7.1)

MN (C, n) =
⋃

i=∈MN(C,n−1)

MN(i, 1) , (7.2)

where MB (X) is the Markov blanket of variable X. One can imagine that we “grow” the

Markov neighborhood around the class variable C, starting with its Markov blanket and

adding the Markov blankets of the blanket variables of C to the neighborhood. Eventually,

if n grows large enough the Markov neighborhood will encompass the whole network. This

means the Markov neighborhood approach will most likely be more useful for pruning larger

networks than smaller ones. For smaller networks it will be more likely for the Markov

neighborhood to contain the complete network.

7.5.2 Elevate Class Nodes

The Markov neighborhood approach only prunes the network. No changes are made to the

edges that fall within the neighborhood. The main BN classifier algorithms such as naive

Bayes, TAN, and ABN, make certain assumptions that simplify the structure and reduce

the number of parameters. The naive Bayes classifier assumes that all feature variables
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are conditionally independent of each other given the class variable. This is encoded in its

distinctive topology.

The elevate class nodes heuristic, if we imagine the process visually, pulls the class

variable, with its parents and children, up above all the variables and orients all its arcs

away from the class node. This makes it parentless, similar to the popular BN classifiers,

without influencing the rest of the network topology.

7.5.3 Augmented Bayesian Network

Finally, with the third approach, we modify the network structure more severely. We trans-

form the original network into an Augmented Bayesian Network (ABN) classifier [Friedman

et al., 1997]. We add arcs from the class node to all other feature variables, replacing any

existing edges between the class node and feature variables.

7.5.4 Experiment 7.5: Performance of Classifier Enhancers

The methodology of Experiment 7.5, which evaluates the classifier enhancement functions,

is similar to the previous classification task experiments (here referred to Experiment 7.5a),

but it has an additional component, where I evaluate the classifier performance with missing

values in the test data (referred to as 7.5b). I vary the percentage of missing variables

in a sample and the percentage of samples with missing variables. Figure 7.8 shows the

classification accuracies of the four approaches, the plain result of a network created with

the PC algorithm using the remove rule, the result of a naive Bayes classifier used as a

baseline, and the “very naive” baseline accuracy model that classifies solely based on the

class proportions of the training data. A visual inspection of the results seems to indicate

that the ABN approach and the NB classifier are the better performers in Experiment 7.5a.

Similarly to the previous section, I tested the pairwise performance of the approaches using

Wilcoxon tests, but in this case the results of these tests are not very reliable. Each test only

had nine data points available to it, one per dataset. Tables 7.6 and 7.7 show no significant

differences.

161



Figure 7.8: Average Classification Accuracy with Complete Data for Experiment 7.5

Table 7.6: Classification Accuracy Two-Tailed Wilcoxon Signed Rank Test Results using

Complete Data for Experiment 7.5 (Holm Corrected)

ABN Elevate MBlanket1 MBlanket2 NB Baseline
Remove 0.9844 1 1 x 0.9844 1
ABN 1 0.9844 0.9844 1 0.7422
Elevate 1 1 1 0.9844
MBlanket1 1 0.9844 1
MBlanket2 0.9844 1
NB 0.5469

The second part of the evaluation, involving sixteen configurations of missing data, do

provide us with sufficient data points to draw stronger statistical conclusions from the re-

sults. Figure 7.9 shows the results from this part of the evaluation. The main reason for
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Table 7.7: Classification Accuracy One-Tailed Wilcoxon Signed Rank Test Results using

Complete Data for Experiment 7.5 (Holm Corrected)

↓ x > y → Remove ABN Elevate MBlanket1 MBlanket2 NB Baseline
Remove - 1 1 1 1 1 0.7813
ABN 0.5742 - 1 0.6309 0.5195 1 0.3906
Elevate 1 1 - 1 1 1 0.5195
MBlanket1 1 1 1 - 1 1 0.7813
MBlanket2 1 1 1 1 - 1 0.7813
NB 0.5742 1 1 0.5742 0.5742 - 0.2871
Baseline 1 1 1 1 1 1 -

evaluating the approaches with missing data is to examine the effect of the two versions

of the Markov neighborhood approach. The evaluation includes a first and a second order

version, named MBlanket1, and MBlanket2 respectively. The figure shows the performance

of the approaches for the different datasets (columns), and how this (average classification

accuracy) performance is affected by missing data. The x-axis of the facets shows the effect

of more missing values per sample, and the rows of the figure show the effect of having more

samples with missing values. Both quantify the number of missing values by a percentage

(% of variables with missing values, vs % of missing samples).

In general, performance drops when more missing values are present in the sample.

There are two cases where the classification accuracy actually improves with more missing

data (Tic-Tac-Toe, Breast-Cancer), but here the different approaches are actually performing

worse than the baseline accuracy model (shown in the figure as a thick straight red line),

and, once all feature variables of a samples only consist of missing values, the models are

reduced (or in these cases enhanced) to the level of the baseline classifier.

For most of the datasets, the performance of the different approach is very similar. In a

few cases the ABN and NB approaches tend to stand out significantly from the rest. Since

Experiment 7.5b has more data points than Experiment 7.5a, the results of the Wilcoxon

tests to compare the performance of pairs of approaches were more reliable. Tables 7.8

and 7.9 show the results of the two-tailed and one-tailed tests respectively. The two tailed

tests indicate that there is at least a statistically significant difference between most of the

approaches. No significant difference was found between the performance of the original BN,
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Figure 7.9: Average Classification Accuracy with Missing Data for Experiment 7.5

found using the PC algorithm with the remove rule, and the BN create by applying the

Elevate or the MBlanket2 approach after the DAG conversion. Given that some of the test

networks are smaller, it is possible that the second order Markov neighborhood encompasses

the complete network, explaining the lack of difference between the performance of the two.

Regarding the results of the Elevate approach, we can speculate that the structure changes
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Table 7.8: Classification Accuracy Two-Tailed Wilcoxon Signed Rank Test Results using

Incomplete Data for Experiment 7.5 (Holm Corrected)

ABN Elevate MBlanket1 MBlanket2 NB
Remove 1.7258e-13 0.3768 0.0173 0.5989 1.004e-13
ABN 1.213e-06 1.004e-13 1.726e-13 0.5989
Elevate 0.0894 0.377 4.336e-09
MBlanket1 0.0134 6.490e-14
MBlanket2 1.004e-13

it performed on the original network were perhaps not so significant that it resulted in a

markedly different performance. Additionally, the ABN and NB approaches do not seem to

differ significantly from each other, but both do differ from the rest, as was observed visually

from Figure 7.9.

Table 7.9: Classification Accuracy One-Tailed Wilcoxon Signed Rank Test Results using

Incomplete Data for Experiment 7.5 (Holm Corrected)

↓ x > y → Remove ABN Elevate MBlanket1 MBlanket2 NB
Remove - 1 1 0.0127 1 1
ABN 9.414e-14 - 9.854e-07 5.559e-14 1.098e-13 1
Elevate 0.4304 1 - 0.0984 0.4710 1
MBlanket1 1 1 1 - 1 1
MBlanket2 1 1 1 0.009559 - 1
NB 5.021e-14 1 2.650e-09 3.245e-14 5.021e-14 -

The one-tailed test gives us a clear picture on which approaches, when looking at the

big picture, perform the best. For both the ABN and NB approach there is statistically

significant evidence that they outperform the others. There is quite strong statistical evi-

dence that the MBlanket2 approach outperforms the MBlanket1 approach. This fits nicely

with the theory; the network, pruned up to the second order Markov neighborhood of the

class variable, surpassed the version that was pruned to only include the Markov blanket of

the class variable at classifying samples, although neither method outperformed the original

network. What was accomplished, is both resulted in networks with similar performance but

with improved tractability.
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7.6 DISCUSSION

In the empirical evaluations of the previous chapters, occasionally some of the networks

structures became intractable after converting the patterns into complete Bayesian networks.

Modifying the pattern or DAG structure before constructing the necessary conditional prob-

ability tables, is a potential remedy for this intractability problem. In this chapter, I have

approached the intractability problem from two angles, and additionally, investigated if,

with a similar methodology, making structural modifications can improve the classification

accuracy of a model.

The first method is a heuristic that removes all bi-directed edges from the pattern before

converting it to a Bayesian network. The results showed, for the datasets used in the evalu-

ation, that removing bi-directed edges does not seem to have a significant (negative) effect

on the performance of the gold standard recovery or sample classification task (although any

change that promotes network sparsity tends to improve the gold standard recovery task

result). However, it does not provide a definite solution for network intractability. If the

pattern contains nodes that have a large parent set (through directed edges in the pattern),

the network may still turn out to be intractable after conversion to the complete BN.

The second method, which sets a limit on the size of the parent set of a node, was

extensively tested in the two-part empirical evaluation. This evaluation, consisting of the

now familiar gold standard recovery task and classification task, pitted four different ways of

determining the optimal parent set against each other, with a fifth approach that randomly

assigned a set of parents to a node as a baseline. Limiting the parent sets improved the

tractability of the network, decreased the Hamming distance in the gold standard recovery

task, and, in general, did not affect the classification accuracy of networks in the classification

task. From the four methods under investigation, the one based on the mutual information

measure showed the best performance in the gold standard recovery task, and, without a

clear winner in the classification task, seems to be the best quality measure choice when

having to discard parents from the set.

Finally, following the promising results of the parent limitation approaches, I investigated

the possibility of applying a similar method, making structural modifications to a network,
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to improve the classification accuracy of networks. I investigated three different approaches,

one of these was tested with two different parameter settings, and added a Naive Bayes

classifier to the evaluation as an additional baseline to the default baseline used in this and

previous evaluations. The results from the evaluation suggest that it is possible to improve

the classification accuracy of a model by making structural changes, but the extend of the

changes that were necessary to obtain this increase in accuracy, currently diminishes the

usefulness of this approach.

The only approach that was statistically significant and consistently successful was the

Augmented Bayesian network approach. This approach makes drastic changes to the original

DAG. Arcs are added from the class node to all other nodes (reversing arcs that were pointing

into the class node if they were present). Additionally, I found that the performance of the

ABN adapted network structure did not differ in a statistically significant way from the naive

Bayes classifier, meaning that we could safely dispose the remaining edges from the original

Bayesian network structure without sacrificing performance.

We have to conclude that the proposed approaches are quite ineffective if a simple naive

Bayes classifier can obtain the same results as the process involving 1) Learning a model

using the PC algorithm, 2) transforming the pattern into a DAG, and 3) modifying the

structure to improve the accuracy.

One positive result that I can report from this evaluation, is that the Markov neighbor-

hood approach performed as expected. When classifying samples that contain missing data,

the second order version of the MN structure modifier creates BN structures with higher

classification accuracy than the structures created by the first order MN structure modifier.

To summarize, it is feasible, and frequently even beneficial, to modify the structure of

a network to improve its tractability. My evaluation has shown that restricting the number

of parents typically reduces the total clique size of the junction tree that is built from

the Bayesian network when performing inference. In a considerable number of cases, the

classification accuracy of the models either maintains or even increases the performance

of the original network. Modifying network structures specifically to improve classification

accuracy was successful, but, comes with a caveat. The only approaches that were showing

an actual increase of performance over the original had made drastic changes to the original
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structure to the point that the conditional (in)dependencies of the original model were no

longer required to obtain the performance of the modified models. As potential future work

I suggest replacing the approaches of Section 7.5, which are completely based on topology-

driven modifications, with data driven approaches such as the ones discussed in Section

7.4.
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8.0 CONCLUSIONS AND FUTURE RESEARCH

This chapter summarizes the work I have done for my contributions, if and how the results of

my work support the hypotheses I proposed in the introduction and, finally, proposes future

work.

8.1 CONCLUSIONS

In this dissertation, I have focused on several aspects of the constraint-based learning ap-

proach for learning Bayesian network structures. Initially, the focus of my work was one of

large-scale learning, where I have investigated the potential of the MapReduce paradigm for

learning BN structures. I have contributed two algorithms, and have compared these with

two approaches from the literature and a single-computer baseline. As the second focus of

my dissertation, I investigated what seems to be a misunderstanding in the literature on

how to respond when there are insufficient data to test the independence of two variables.

The literature suggests to either discard any edges which we cannot test, or conversely, to

keep the edge, assuming the variables are dependent. I have investigated the impact of the

two rules on the performance of two tasks. For the third and final focus of my dissertation,

I addressed the problem of network tractability. An additional difficulty of applying the PC

algorithm is that the end result typically is not a DAG, but a pattern. The pattern needs

to be converted to a DAG before we can learn parameters and make use of the completed

BN. Especially when less data is available, we frequently end up with very dense patterns

and, eventually, DAG structures. I proposed and investigated five approaches to pruning a

structure up to the point a tractable BN could be constructed. I followed up this work with
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an experiment that tested the ability of a set of three approaches to improve the classifica-

tion accuracy of a Bayesian network. In the introduction, I argued that my contributions

all have a common theme. I postulated that design decisions for algorithms that learn or

modify Bayesian network structures can positively influence the tractability and quality of

Bayesian network inference and Bayesian network structure learning. Within this common

theme, I put forward a hypothesis for each of the contributions. In the remainder of this

section I will discuss the results of my work, the experiments I have performed, and if the

data that I obtained from these experiments supports their respective hypothesis.

• H1: It is computationally feasible to learn Bayesian network structures from datasets

that have very large numbers of variables using the MapReduce framework.

The results of the algorithm evaluation I performed support hypothesis H1. However, it is

important to place the results into the proper context. The experiments utilized datasets

with a relatively small number of records and mostly a small number of variables, with only

a few datasets having hundreds and one dataset having thousands of variables.

The two algorithms from the literature [Chen et al., 2011, Fang et al., 2013], seem to have

rather limited merit, looking at the results of the evaluation. Both require a large number

of MapReduce jobs to complete the structure learning process, and this number depends

polynomially on the number of variables, making it highly unlikely for the algorithms to

scale to datasets with thousands of variables. However, the goal of both these algorithms

was to allow for structure learning from datasets with many records, and it is reasonable

to expect that in any case where these algorithms were able to successfully learn a network

structure, they would still be able to do so if we increase the number of records of the datasets

to sizes where cluster storage is required.

I proposed two MapReduce algorithms (PCA, PCB), both based on the PC algorithm,

that avoided the issues of the literature algorithms with datasets with many variables, but

which had their own problems. The PCA algorithm, similar to the two algorithms from the

literature, parallelizes the calculations of sufficient statistics for the independence tests. In

one Mapper phase, it calculates all statistics for all tests for a specified conditioning set size.

This eventually always causes the MapReduce cluster to crash unless very specific conditions
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are met. The PCB algorithm assumes that we can fit a copy of the complete dataset in the

memory of every Mapper. Every Mapper then computes a chunk of all the independence

tests, the Reduce phase is used to combine all the results. Assuming we can assign a sufficient

amount of memory to each of the Mappers used by the algorithm, PCB performs the best of

all four MapReduce algorithms, but for the majority of the datasets used for the evaluation,

the single-computer PC algorithm dominated all of the MapReduce algorithms. Only when

a dataset contained hundreds of variables or more, did the PCB algorithm complete the task

faster than the single-processor baseline.

The results of the empirical evaluation show that, the networks created by the PCB

algorithm are similar to the ones created by the PC algorithm (correctness), and datasets

with a sufficient number of variables, are processed faster by the PCB algorithm than the PC

algorithm (efficiency). On the classification task, the PCB algorithm did not perform as well

as the PC algorithm, I suspect the partitioning strategy is to blame and, as a potential future

direction of this work, a deeper investigation of the problem may be warranted. Assuming

the data fits in memory, and that a sufficient amount of working memory is available to run

the distributed independence tests in the Mappers, I believe that PCB can be scaled to learn

models from datasets of at least tens of thousands of variables.

Within the boundaries of the evaluation, the single-computer baseline algorithm per-

formed very well. If we are able to fit the data in memory, running the PC algorithm on

a single computer might well be the best choice until the number variables in the datasets

increase up to the point that the sheer number of independence tests that need to be per-

formed becomes so large, that the overhead incurred by the PCB algorithm no longer is a

significant portion of the total execution time. The experimental results indicate that this

tipping point may be around 800 variables, but it will most likely depend on the specifics of

the dataset such as the cardinalities of the variables. Similarly, if we scale the dataset in the

number of records, at some point the algorithm by Chen et al. [2011] and Fang et al. [2013]

will become preferable over a single-computer approach, unless we attempt to learn models

using a dataset sampling scheme instead of the full dataset.

• H2: Faced with an insufficient data sample to total contingency table cell number ratio,

when testing the independence of two variables connected by an edge, removing this edge
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results in better Bayesian network structures.

The evaluation results support hypothesis H2. I compared the performance of both rules,

keep [Spirtes et al., 1993], and remove [Tsamardinos et al., 2006], on a gold standard recovery

(nine networks) and a classification task (nine datasets). The resulting networks differ the

most from each other when little data are available when learning them. With sufficient

data, the structural differences between the networks drop significantly and both end up

performing similarly on the recovery task. For the classification task, over the nine datasets

used for the evaluation, I found no statistically significant difference in the classification

accuracy performance of the networks created using either rule. Additionally, I found no

significant differences between the algorithm running time when learning the networks from

data. I found a significant difference for the total clique sizes for the junction trees used for

the inference and the time required to perform inference. In my experiments, I observed that

it seems that networks created using the keep rule perform similarly to networks created using

the remove rule. The exception occurred when we were recovering the gold standard structure

from datasets of limited size. In this case the sparsity promoted by the remove rule resulted

in networks that resembled the gold standard more closely than networks created using the

keep rule. Thus, my experimental results indicate that, when we have sufficient data, we

can be indifferent. However, the natural sparsity typically observed in Bayesian networks

makes me believe that applying the remove rule will aid the PC algorithm in constructing

structures that are sparser, and require less resources when performing inference.

• H3: The tractability of inference of a Bayesian network can be improved by making

structure modifications, without compromising its classification performance.

The results of the evaluation support hypothesis H3. Removing bi-directed edges has merits,

but cannot guarantee a tractable network. The results of the evaluation showed that by

limiting the number of parents of the nodes we improved the tractability of inference for

the resulting Bayesian networks. Since pruning edges promotes sparsity, we typically saw

improvement in the gold standard recovery task. For the datasets used in the classification

task, I found that statistically, there was no difference in the performance of the original

and the pruned networks in terms of classification accuracy. I found that, for the datasets
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that I considered in my experiments, pruned networks required less memory and performed

inference, using SMILE’s clustering algorithm implementation, quicker than the original

network. Among the four parent limitation approaches, the approach based on the mutual

information measure delivered the overall best performance when comparing the methods

using the Wilcoxon signed rank test over the set of datasets used for the experiments.

• H4: Well-chosen structure modifications can improve the classification accuracy of a

Bayesian network.

The results of the experiment support hypothesis H4. However, it must noted that the

single strong positive result was obtained after the original network structure was modified

drastically. Additionally, the performance of this standout approach (ABN) was similar to

the performance of the naive Bayes classifier baseline, which seems to indicate that the edges

from the original network had little to no effect on the classification accuracy of the modified

network. My expectations for this work were that the other approaches would at least provide

a marginal benefit, but the results of the evaluation did not support these expectations.

There might be opportunities for improvement, and as potential future work data-driven

methods should be investigated to replace the current, purely topological methods.

8.2 FUTURE RESEARCH

There are several opportunities for continuing the work that was done in this dissertation.

Among them, a more extensive evaluation of the MapReduce algorithms with datasets that

have more samples. This would be helpful to determine the domain where the algorithms of

Chen et al. [2011] and Fang et al. [2013] are most useful compared to the other algorithms.

Additionally this provides an opportunity to evaluate sampling schemes, which would be

utilized to acquire representative samples of the datasets when they would be too large to be

processed by PCB (not enough memory to fit in a Mapper), or by the “plain” PC algorithm

(not enough memory to fit the data on one computer). This sampling procedure could be

run multiple times to obtain multiple structures, which are then merged into the final result.
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As was already mentioned in Chapter 5, a potential avenue of future research, involves

investigating the inferior performance of the PCB algorithm on the classification task when

partitioning the independence tests over many Mappers instances. A potential solution,

which was proposed in the chapter, was to no longer make the partitions completely dis-

tinct, but to allow for partitions with a certain amount of overlap. This would result in the

algorithm performing more work than necessary, but each of the partitions would now con-

tains more information about the direct neighborhood of the edges we are testing. This extra

information can impact the conditioning sets that the Mappers would use for the indepen-

dence tests. Now, more Mappers might be aware that certain variables are independent of

each other, and correctly eliminate these variables from each other’s conditioning sets in fu-

ture tests. This then reduces the size of the contingency table required for the independence

tests, which might prevent the remove rule (as was described in Chapter 6) from triggering

and unnecessarily removing edges, which possibly is causing the drop in performance that

was observed in the evaluation.

Chapter 7 provides another opportunity for future work. Section 7.5 described ap-

proaches to improve the accuracy BN classifiers. With the exception of the ABN approach,

all were unable to improve the classification accuracy of a network. Furthermore, for the

datasets used in the experiment, the ABN approach made drastic changes to the original

network structure and did not perform better than a naive Bayes classifier, making the arcs of

the original network structure unnecessary. The methods proposed in section 7.5 only make

changes based on topological principles. As future work, new methods should be proposed

and evaluated that are based on a different principle such as the data-driven approaches that

were used to limit the number of parents of nodes in section 7.4. As an example, a feature

selection procedure could be adapted to, for every node, evaluate if adding extra children

improves the classification accuracy. The initial starting point would be the class variable,

after which the algorithm could work its way down through the DAG structure.
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