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ABSTRACT 

Structural proteins of the extracellular matrix (ECM) and associated proteins build up a 

complex network that is abundant in the human body. In addition to serving key biomechanical 

roles, ECM proteins play an important role in storage, presentation and contextualization of 

growth factors, including transforming growth factor-β (TGFβ). This work focused on 

investigating the biomechanical consequences of and molecular disease mechanisms leading to 

cutis laxa (CL), a rare inherited disorder characterized by loose skin and frequently associated 

with systemic involvement, including aortic aneurysms, pulmonary artery disease, and 

emphysema. 

A DermaLab suction cup device was used to evaluate the mechanical properties of the 

skin in CL patients. The results showed significant reduction of elastic and viscoelastic moduli 

(VE). VE appeared to be a reliable measurement of biomechanical aging of the skin and also 

offered a predictive value in distinguishing cases from controls. 

To study molecular disease mechanisms in CL, control and LTBP4-mutant human dermal 

fibroblasts were used to investigate TGFβ activity and signaling. In LTBP4-mutant cells, despite 
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elevated extracellular TGFß activity, downstream signaling molecules of the TGFß pathway 

were markedly suppressed. TGFß receptors (TGFBR1 and TGFBR2) were reduced at the 

protein, but not at the RNA level. Treatment with exogenous TGFβ1 led to a further decrease in 

downstream signaling and receptor abundance. Upon treatment with TGFBR1 kinase inhibitor, 

endocytosis inhibitors or a lysosomal inhibitor, the levels of TGFBR1 and TGFBR2 were 

normalized. Antisense mophorlino oligonucleotide-mediated knockdown of LTBP4 reduced 

TGFβ receptor abundance and signaling in normal cells and supplementation of recombinant 

LTBP4 enhanced these measures in mutant cells. I conclude that, in the absence of LTBP4, 

TGFBR1 and TGFBR2 are internalized and degraded by lysosomes in a ligand-dependent and 

receptor kinase activity-dependent manner. Thus, LTBP4 is a key molecule required for the 

stabilization of the TGFβ receptor complex.  

Increased TGFβ levels have been found in patients with cardiomyopathy, diabetic 

nephropathy, cancer, and lung fibrosis, in all cases correlating with disease severity. The 

discovery of a new mechanism for TGFβ receptor regulation will be helpful in developing novel 

therapeutic reagents for systemic diseases of major public health impact. 
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1. AIMS 

 

Cutis laxa (CL) is a group of connective tissue disorders characterized by loose, inelastic and 

redundant skin with manifestations involving multiple additional organs, including nervous, 

musculoskeletal, cardiovascular, pulmonary, gastrointestinal, and urinary systems. Despite 

extensive locus heterogeneity, altered structure and function of elastic fibers is a major shared 

mechanistic connection between different types of CL. The diagnosis for cutis laxa is made 

based on physical examination of the skin, aided by consideration of other systemic involvement, 

and pathological and molecular genetic data, if available. However, objective methods to 

measure skin laxity have not been applied to the diagnosis of CL yet. I hypothesized that a 

simple suction cup device for the measurement of skin elasticity can provide and objective, 

quantitative approach to improve the diagnosis of CL.  

 The second part of my dissertation work focused on a specific type of CL, autosomal 

recessive CL type 1C, caused by mutations in the gene for the latent transforming growth factor-

beta binding protein 4 (LTBP4). Based on published data on knockout mouse models1,2 and 

previous studies in our laboratory3, I hypothesized that LTBP4 is a multifunctional protein, 

involved in the assembly of elastic fibers and in the regulation of transforming growth 

factor-beta (TGFβ) signaling.  
1 



1.1. AIM 1: EVALUATE THE UTILITY OF BIOMECHANICAL 

MEASUREMENTS OF THE SKIN FOR THE DIAGNOSIS OF CL 

A DermaLab suction cup device was used to measure mechanical properties of the skin in CL 

patients and control individuals. The elastic modulus and viscoelastic modulus parameters and 

control variables were used to identify measures that could distinguish between patients and 

controls with the highest specificity and sensitivity.  

1.2. AIM 2: THE IMPACT OF LTBP4 MUTATIONS ON ECM ASSEMBLY, 

TGFΒ SIGNALING AND TGFΒ RECEPTORS 

Human dermal fibroblasts from LTBP4-mutant patients and control individuals were cultured to 

study elastic fiber deposition into ECM, extracellular TGFβ activity and intracellular TGFβ 

signaling. In addition, TGFβ receptor complexes on the cell surface were studied in order to 

understand, if LTBP4 deficiency affected the turnover of TGFβ receptors. To confirm our 

findings in mutant cells, LTBP4 was depleted in human dermal fibroblasts by using antisense 

mophorlino oligonucleotide (MO) treatment. To rescue the consequences of LTBP4 deficiency, 

LTBP4-mutant dermal fibroblasts were treated with recombinant LTBP4 protein.  

2 



2. INTRODUCTION 

2.1. PUBLIC HEALTH SIGNIFICANCE 

Patients with CL present multiple manifestations clinically involving different body systems. 

Abnormal extra cellular matrix assembly contributes to abnormal skin laxity with altered dermal 

mechanical properties. In LTPB4-related to cutis laxa, cardiovascular, pulmonary and 

gastrointestinal abnormalities can be involved. Additionally, LTBP4 acts as a chaperone for 

secreted TGFβ, composed of a latent form and extracellular matrix serves as a reservoir of TGFβ 

and other grow factors. Marfan syndrome is a good example, a genetic disease caused by 

mutations in FBN1, a gene encoding fibrillin-1, a major structural protein in ECM. The 

implication of extracellular matrix-related regulation of TGFβ signaling has been demonstrated 

in Marfan syndrome4. An accumulating body of evidence points to the central contribution of 

abnormal TGFβ signaling to a broad range of cardiovascular and pulmonary diseases, fibrosis, 

diabetic nephropathy and rheumatoid arthritis5-7. In fibrotic disorders overproliferation of 

fibroblasts was identified as a key factor8. Skin fibroblasts from LTBP4-mutant cutis laxa 

patients provide a useful cellular model system to investigate the molecular regulatory 

mechanisms of TGFβ signaling. Discovery of novel molecular mechanisms TGFβ regulation will 

be instrumental for the development of future therapeutic reagents broadly applicable to diseases 

of major public health concern.  

3 



2.2. DERMAL STRUCTURE AND MECHANICAL PROPERTIES 

Epidermis, dermis and subcutaneous tissue are three major components in human skin (Figure 

2.1). This complex organ provides protection against external stimulation and mechanical forces 

and enables reversible deformation9,10. Epidermal layers are covered partially by keratinized cells 

and dermis layers are composed of abundant collagens with elastic fibers as well as lymphatic 

elements. The mechanical properties of the skin include both elastic and viscous elements which 

are related to its complex structure11. Abundant collagen and elastic fibers in the dermis layers 

form a supportive structure and provides elasticity. Proteoglycans provide a ground substance 

that resists deformation via sliding of the fibrous protein network and lead to the viscous 

properties of skin. Elasticity and viscosity of skin can vary from different part of the human 

body, external environment, age and diseases. Thus, biomechanical tests of human skin can 

detect skin diseases and help quantify the effectiveness of dermatological interventions or 

treatments10.  
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Figure 2.1 The structure of the human skin 
Three layers of skin, including epidermis, dermis and the subcutaneous. Collegen fibers and elastic 
fibers are abudnant in the dermis, and provide elasticity to the skin.  
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Human skin is a highly specialized mechanical structure, which enables reversible 

deformities after being extremity stretched and still maintains its original phenotypic 

properties10,12. The nature of skin to be stretched extremely are attributed to a molecular network, 

including chemicals related to extracellular, cytoplasmic and nuclear membranes13. Expansion of 

skin can initiate a series of reactions including molecular signaling to increase cellular mitosis 

and synthesis of collagen fibers. Those signaling events can be mediated by ion channels, 

intergrins, growth factor receptors mitogen-activated protein kinase (MAPK), nitric oxide (NO) 

and phosphoinositide-3-kinase (PI3K)14-16. However, extreme stretching over human skin may 

result in its mechanical property loss, leading to damage of the skin and consequently 

irreversible deformation17.  

The elasticity of skin results from interaction among several dermal elements. The elastic 

properties can be applied to the mechanical laws by using the modulus of longitudinal elasticity, 

the Young’s modulus (abbreviated to E). Based on the Hooke’s Law, strain is defined as Young’s 

modulus/stress17, so the Young’s modulus is the relation between stress and strain over the skin. 

There is linear relation between stress and strain applied to the skin in the elastic range. The 

description of the Young’s modulus has been applied extensively in literature to evaluate the 

mechanical properties of skin. 

The most acceptable methods to investigate the mechanical properties of skin are mainly 

based on suction18, torsion19 and traction20. The Young’s modulus (E) has been used commonly 

in studies to describe the longitudinal elasticity, which can characterize the resistance of skin to 
6 



elastic elongation upon to stretching10. However, in the literature, there have been large 

discrepancies in the estimates of the Young’s modulus (E) resulting from different tests by 

various methodologies. Despite the variation, studies show that skin tension and the elastic 

modulus are correlated with age10,21.  

2.3. EXTRACELLULAR MATRIX  

The extracellular matrix (ECM) provides a supportive scaffold between cells and makes an 

available biological environment for cell proliferation, migration and differentiation. 

Additionally, ECM plays an essential role in reservoirs or activation of cytokines and interacts 

with proper adhesion molecules dynamically between cell surface and extracellular spaces. The 

major components in extracellular space are fibronectin, microfibrils, elastic fibers and 

collagens, which provides the resilience and elasticity in the tissues. Besides those major 

structural proteins, the ECM is a highly specialized area for the reservoir of soluble factors 

involved in inter-cellular communication22. Additionally, the significance of extracellular space 

in cell adhesion and conducting downstream intracellular signaling through adhesion receptors 

such as integrins has been extensively studied23-25 and mechanical properties of the matrix, such 

as stiffness, deformability, have also been received much attention related to cell behavior26,27.   

 Collagenous protein and non-collagenous proteins, such as elastin and fibronectin are 

composed of ECM. There are 5-10% sugar contents in most of them with glycosylated28. 
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Moreover, a remarkable content of proteoglycans, such as perlecan has been found as an 

important component in the ECM29,30. The impacts of growth factors, catecholamine and 

numerous cytokines on the synthesis of those proteins are predominant. On the other hand, 

matrix metalloproteinases (MMPs) degrade the ECM by cleaving proteins into a range of 

fragments, some of which also have signaling activities28. 

Some of ECM proteins interact with growth factors and with sequential signaling. 

Fibroblast growth factors (FGFs) and vascular endothelial growth factors (VEGFs) are the most 

representative examples. A component of several proteoglycans (PGs), heparin sulfate, can bind 

to FGFs and VEFGs. Moreover, proteoglycans have been thought as a reservoir of many growth 

factors and also key determinants of developmentally important growth factor gradients31 and 

prevent their premature degradation32 as well as may be helpful to establish a stable ECM 

network33. There is a ligand-specific receptor manner for some growth factors to conduct 

downstream signaling and bind to heparin sulfate in the receptor complex. FGF binding to its 

receptor (FGFR) relies on the simultaneous binding of a heparan sulfate chain34. Additionally, 

transforming growth factor β (TGFβ) ligands initiate the interaction with membrane PGs that 

help concentrate the ligands at the proximity of their receptors on the cell membrane35.   

There are several mechanisms by which ECM molecules signal to cells and conduct 

downstream signaling. First, in ECM, transmembranous proteins, such as integrins and discoidin 

domain tyrosine kinase receptors interact with specific motifs within matrix molecules in a 

ligand-dependent manner23,33. Second, accumulating evidence suggests cross-talk and synergistic 
8 



influences between signaling by intergrins and by growth factors receptors36. However, it is not 

easy to clarify the involvements membrane-proximal interactions or connections between in the 

downstream signaling molecules in those proteins cross-talk. Laminins, tenascins and fibrillins 

and many other ECM proteins contain multiple epidermal growth factor (EGF)-like domains, 

which may interact with EGFR as solid-phase ligands to modulate downstream signals37-39. 

Similarly, other intrinsic domains in ECM proteins may serve as active ligands for canonical 

growth factor receptors and trigger the signals33. Thus, the ECM has been recognized as a storage 

of bound or intrinsic growth factors and important to the intercellular interaction via those 

soluble molecules in a ligand-specific manner.  

The ECM is also important for the storage and regulated release of the TGFβ family of 

growth factors. It is one of best-studied examples of the multi-faceted interactions between the 

ECM and growth factors. There are three isoforms of TGFβ and a furin protease cleaves pro-

TGFβ to form the mature TGFβ and its propeptide. The structure of latency-associated peptide 

(LAP) include the mature TGFβ and its associated propeptide. LAP and TGFβ are non-

covalently bound to form a complex, known as the small latent complex (SLC). In this form, 

TGFβs are inactive40,41. Disulphide bonds connect TGFβ and LAP to form a dimeric SLC, which 

is bound by further disulfide bonds to the latent TGFβ binding proteins (LTBPs), called a large 

latent complexes (LLCs) (Figure 2.2). LTBPs can act as a chaperone, ensuring the proper folding 

of LAP and TGFβ. LTBPs can bind to ECM proteins, such as fibronectin and fibrillins to 

incorporate TGFβ into extracellular matrix in the latent form. LTBP-related incorporation in to 
9 



the ECM is required for TGFβ activation and ECM degradation release TGFβs. Mutations of 

ECM proteins have been reported to be related to markedly increased TGFβ activity. Marfan 

syndrome (MFS), caused by mutant fibrillin-1 is a well-studied example. In mouse models of 

MFS, aortic aneurysms could be ameliorated by treatment with TGFβ antagonists42,43. Many 

other inherited diseases have been suggested to be the consequence of abnormal TGFβ signaling 

secondary to the ECM defects (Table 2.1).  
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Table 2.1 Human disorders and animal models associated with TGFβ signaling 

Gene Human Syndrome Animal Models TGFβ 
signaling 

Extracellular regulation of TGFβ signaling 

FBN1 
(fibirillin-1) 

MFS Ruptured aortic aneurysm, altered pulmonary 
development, lethal at brith 44,45 

↑

FBN2 
(fibrillin-2) 

Contractural 
arachnodactyly 

Bilateral syndactyly, involving both and hard tissues 46 ↑

FN 
(fibronectin) 

Ehlers–Danlos 
syndrome, type X 

Defective vascular system development, defective neural 
tubes 47 

↑

LTBP1L No available publish Impairments of cardiac valves and vessels formation, 
persistent trucus arteriosus, interrupted aortic arch and 

outflow 48   

±

LTBP4 ARCL1C/URDS Emphysemia, colon prolapse 1,3 ± 
TGFB1 Camurati–Engelmann 

disease 
KO: Embryonic lethal with vascular defects, infiltration 
of immune system cells 49,50 
Gain function: NA 

± 

TGFβ receptors 
TGFBR1 
(ALK5) 

LDS Lethal at birth, impaired vascular formation 50 ↑

TGFBR2 LDS Angiogenesis defects, lethal at birth 49,51 ↑

TGFBR3 
(betaglycan) 

Unknown Abnormal cardiac septal formation, defect ventricular 
walls 52,53 

± 

LDS, Loeys–Dietz syndrome; MFS, Marfan syndrome; TGFβ, transforming growth factor‑β; TGFBR, TGFβ receptor. 
NA: not available 
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The structural and functional complexity of the ECM is crucial to maintain proper functions 

in the microenvironment of cells. Accumulating evidence supports the role of ECM proteins and 

cytokines in tumor metastasis54,55, stem cell niches56, fibrosis, and immunity. Thus, investigations 

of molecules in the ECM related to regulate cell signaling are warranted and relevant to a range 

of disease states.  
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Figure 2.2 Formation of TGFβ, SLC and LLC.  
In the rough endoplasmic reticulum (ER), two TGFβ pro-peptide monomers form the dimeric pro-TGFβ, which is 
correctly folded in the presence of LTBPs, with disufide bonds formed between the SLC and the second 8-
cysteine domain in LTBP to form LLC. In the golgi, a furin cleaves proTGFβ into dimeric TGFβ and LAP. SLC: 
small latent complex; LLC: large latent complex.  
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2.4. ELASTIC FIBERS  

In the ECM of the skin, lungs, large arteries, ligaments and auricular cartilage, elastic fibers are 

insoluble components. Elastic fibers provide the mechanical properties required to enable skin 

expansion repeatedly through life. In different tissues, there are different arrangement of an 

integrated network of mature elastic fibers to tolerate various intensity of tissue stretching. This 

tissue-specific structural arrangement reflects different requirements of elasticity57. In the skin, 

the elasticity is conferred by an integrated network of elastic fibers, which is anchored to the 

dermal-epidermal junction by fine branches running perpendicular to the surface of the skin in 

the papillary dermis and robust, thick fibers running parallel to the surface in the deep dermis. In 

pulmonary tissue, elastic fibers build up fine networks necessary to respiratory expansion and 

contraction58.  

2.4.1. Elastin 

Elastin is the major component protein of elastic fibers. Elastogenic cells, including fibroblasts, 

smooth muscle cells and auricular chondrocytes, produce a secreted and soluble precursor, 

tropoelastin, encoded by a gene on chromosome 7q11.2. Tropoelastin is an asymmetric molecule, 

which contains a multi-domain structure, including lysine-alanine and lysine-proline cross-

linking domains. In N-terminal parts of tropoelastin, it has spring-link properties. On the other 
14 



hand, C-terminal regions have been suggested being crucial to cell adhesion via binding αvβ3 

integrin59 and cell surface proteoglycans60.  

2.4.2. Fibrillin 

Fibrillin-rich microfibrils are abundant in connective tissues and enable the interaction with 

cross-linked elastin in an elastic fibril network or elastin-free macroaggreates58,61,62. In most 

mammals, three fibrillin genes have been found, each encoding a 350kDa multi-domain 

glycoprotein63. Fibrillin is composed of multiple domains, including 43 calcium-biding 

epidermal growth factor-like (EGF) domains, 5 EFG-like domain, seven 8-cysteine-containing 

(TB) motifs and 2 hybrid regions in similarities to TB and EGF-like domains. Fibrillin-1, 

encoded by a gene on chromosome 15q21.1 is the most distributed fibrillin and it is required for 

microfibril homoeostatsis.  

2.4.3. Auxiliary molecules associated with microfibrils and elastic fibers 

Besides elastin and fibrillins, there are some auxiliary molecules interacting with microfibrils 

and elastic fibers related to heritable diseases with abnormal elastic fiber assembly and molecular 

function. Those molecules associated with microfibirls include latent TGFβ binding proteins 

(LTBPs), a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) family 

members and microfibril-associated glycoprotein (MAGPs). Moreover, fibulin3, fibulin4, 

fibulin5 and lysyl oxidase (LOX) family members are also elastic fiber-associated molecules 57.  
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2.4.4. Assembly of elastic fibers  

2.4.4.1. Microfibril formation, fibronectin and heparan sulphate 

In the processing in the formation of ECM, fibronectin serves as a platform for the deposition of 

microfibrils64,65. However, in some circumstances, it may not be required in many lower 

organisms and in fibronectin-null culture66,67. Those evidences indicate that fibronectin is an 

enhancer rather than obligatory requirement of microfibril assembly.  

 Fibrillin monomers interact with each other in a head-to-tail alignment, which forms a 

“beads-on-a-string” appearance of microfibrils68-70. The self-association results in longitudinal 

polymerization but also through lateral biding, which leads to micrifibril formation. Assembled 

microfibrils consist of fibrillin monomers and the untensioned periodicity of individual 

microfibrils in tissue electron microscopic preparations is 50-60nm65,71. The precise arrangement 

and interaction of fibrillin molecules within microfibrils remains unclear and requires further 

study.  

Nonetheless, expect a self-assembly process of microfibril formation, it has been suggested 

cellular involvements are required. Kinsey et al. reported that fibronectin arg-gly-asp (RGD)-

dependent α5β1 integrins were necessary for microfibril assembly in fibroblasts64. In addition, 

Fibrillin-1 can interact with cells via integrins α5β1, αvβ3 and αvβ6 in epithelial cells72,73. It 

remains unclear the precise role in the direct interaction between fibrillin-1 and cells for 

microfibril assembly and the plausibility of certain tissue-specific functions of microfibrils.  
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In addition, heparan sulfate (HS) glycosaminoglycans are important in microfibril assembly. 

HS is an element of syndecan and glypican receptors as well as of proteoglycan, perlecan, in the 

basement membrane57. Heparin ablates microfibril assembly in cell cultures74,75. At least six 

high-affinity binding regions of Fibrillin-1 can interact with heparin74-77. Although it remains 

unknown how HS precisely facilitates microfibril assembly, results to date suggest that it is 

essential. Moreover, MAGP-1 and tropoelastin can bind fibrillin-1, similar to HS and the 

competition among those molecules has been found76. Thus, HS may regulate elastic fibers 

deposition onto microfibrils.. 

 

2.4.4.2. Microfibril-associated molecules 

Many microfibril-associated molecules have been identified, including LTBPs, ADAMTS family 

members and MAGPs. LTBPs are important to proper localization and deposition in the ECM 

via interactions with fibronectin and fibrillins as well as several extracellular proteins.  

LTBPs and fibrillins are highly homologous proteins but fibrillins, in comparison with LTBPs, 

are in the larger size, closed to 350kDa, with double the number of EFG-like and 8-cys domains 

(Figure 2.3). LTBP1 deposition in the ECM depends on fibronectin rather than on fibrillin-1 or 

fibrillin-2. Nevertheless, LTBP1 does colocalize with microfibrils both in culture and in tissue 

samples78. Fibrillin-1 is required for the incorporation of LTBP3 and LTBP4 into the ECM 

properly. In addition, fibronectin is also necessary for proper LTBP4 deposition in the ECM and 
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LTBP4 may serve as an adhesion molecule79. Taken together, fibronectin and microfibrils 

necessary for the extracellular deposition of LTBPs in a family member specific manner.  

The ADAMTS family are related to microfibril biology in genetic and structural functions80. 

ADAMTS-10 mutations cause autosomal recessive Weill-Marchesani syndrome (WMS)81, a 

disease that can also be caused by mutant fibrillin-182. ADAMTSL-5 interacts with fibrillin-1, 

facilitating co-localization with microfibrils83. In addition, ADMATSL-4 and ADMATSL-6 

promote fibrillin-1 assembly in the ECM84,85. MAGP-1 binds to the N-terminal rewgion of 

fibrillin-1, inhibiting the interaction between fibrillin-1 monomers and interfering with the 

fibrilin-1 self-associated assembly. Additionally, MAGP-1 can interact with fibronectin86 and 

elastin and potentially be related to elastin deposition on microfibrils87,88 It has been suggested 

that MAGP-2 has covalent, periodic interaction with microfibrils in certain tissues89-91. 

Moreover, MAGP-1 is able to bind to TGFβ and BMP-7 92and activate TGFβ signaling in 

culture93. However, observations of the molecular and phenotypic characteristics of Magp1-/- 

mice do not support a role for Magp1 in microfibril or elastic fiber assembly92.  
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Figure 2.3 The structures of LTBP/Fibrillin-1 family members 
LAP: latency-associated protein ; SLC: small latent complex; LLC: large latent complex.  
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2.4.5. Elastic fiber formation  

Coacervation, the self-aggregation of tropoelastin monomers is thought to be the first primary 

stage of elastic fiber assembly94. The soluble (~15nm) monomers self-aggregate to form 

progressively larger spherical globules95,96, steps which may be assisted by glycosaminoglycans, 

such as HS, on the cell surface97. The tropoelastin coacervates attach to integrins and 

glycosaminoglycans60 until deposition onto microfibrils95,98. Microfibrils act as a scaffold that 

leads properly incorporation in the extracellular matrix and elastic fibers formation95,99,100. Once 

deposited onto the microfibril platform, the globules are stabilized by forming lysine-derived 

interlinks catalyzed by interaction with the lysyl oxidase enzymes (LOX) or LOX-like protein 1 

(LOXL1). The localization of lysyl oxidases to microfibrils is facilitated by fibulin-4 or fibulin-

5. The so-called “macroassembly” form the insoluble elastin core94,101,102 (Figure 2.4).  

 Fibulin-3, -4 , and -5, are significant regulators of elastic fiber assembly103,104. Fibulin-4 can 

bind to fibrillin-1 in vitro105 and other evidence shows colocolization between fibulin-4 and 

microfibrils106. Fibulin-4 depletion in mice abolishes elastogenesis but not microfibril 

formation106, which supports a crucial role of fibulin-4 in elastic fiber assembly, in part by 

recruiting LOX to elastic fibers107. Moreover, fibulin-5 can recruit LOXL198,108. Both LOX and 

LOXL1 oxidatively deaminate specific tropoelastin lysine residues to allysines109. The intra and 

intermolecular cross-links allow elastic fibers to distribute into three-dimensional networks. The 

cross-linked fibers are protease-resistant110 and stable under mechanical stretching111.  
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Figure 2.4 A working model of microfibrils and elastic fiber assembly. 
FN: fibronectin; FBN1: fibrillin-1; BMP: bone morphogenetic protein ;GF: growth factor; Fbln4: fubulin-4; 
Fbln5: fubulin-5; LOX: lysyl oxidase 
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2.5. THE LTBP FAMILY AND TGFβ SIGNALING  

The transforming growth factor β (TGFβ) pathway is essential for controlling cellular growth, 

differentiation and proliferation112. TGFβ is a ubiquitously expressed cytokine playing an 

important role in the synthesis of extracellular matrix (ECM) molecules, contributing to fibrotic 

disorders and regulating the immune system113. TGFβ has various and profound effects on 

multiple developmental phases as well as retaining biological functions required in an adult life. 

Latent transforming growth factor beta binding proteins (LTBPs) represent a group of matrix 

proteins that direct important and complicated functions in the formation of the ECM. LTBPs are 

recognized to regulate and facilitate TGFβ singling through several mechanisms.  

2.5.1. Latent transforming growth factor beta binding proteins (LTBPs) 

The LTBPs are secreted glycoproteins and homologous to fibrillins with several conserved 

domains. Calcium-binding epidermal growth factor-like domains with 6-cysteines, and TB 

domains containing 8-cysteines are primary repeats structurally among LTBP proteins114. LTBP1, 

LTBP3 and LTBP4 bind latent TGFβ, whereas LTBP2 does not115,116 (Table 2.2).  

Triggering with different promoters, alternative splicing various, and proteolytic processing 

generate multiple LTBP isoforms from each gene. Differential promoter and exon use contribute 

to long and short form of LTBP1 and LTBP4. Compared to other LTBPs, LTBP4 displays a 

weaker binding capacity and only binds TGFβ1 LAP116,117, which indicating that LTBP4 might 
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have distinct regulation from other LTBPs. The major structural domains of LTBPs are shown in 

Figure 2.3 .  

 

Table 2.2 Interactions between LTBPs and TGFβ-LAP isoforms 

 TGFβ1-LAP TGFβ2-LAP TGFβ3-LAP 

LTBP1 + + + 
LTBP2 − − − 
LTBP3 + + + 
LTBP4 + − − 
Fibrillin1 − − − 

LAP: latency-associated protein 

In the absence of LTBPs, misfolded SLCs secreted abnormally slow because the reactive 

cysteine (Cys33) within LAP forms inappropriate disulphide bonds with free cysteines in other 

proteins40. LTBPs act as chaperones for SLC and modulate extracellular TGFβ levels118. Secreted 

LLCs, composed of SLCs and LTBPs, incorporate into the ECM with interacting via LTBPs and 

multiple extracellular molecules, primarily fibronectin and fibrillins. Latent TGFβ is sequestered 

within the extracellular space until required and it is released from its pro-peptide in the route  

of latent TGFβ activation22. Several mechanisms of TGFβ activation have been demonstrated, 

including cleavage of LTBPs and LAP by proteases, physical force applied by integrins, and 

liberation of active TGFβ from latent complexes by thrombospondin-1, F-spondin, neuropilin-1, 
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reactive oxygen species (ROS) and alternative pH in microenvironment. Integration of LTBPs 

into the ECM is a critical step to regulate the reservoir and activation of latent TGFβ. Moreover, 

LTBPs interact with many ECM proteins, including fibronectin and fibrillins, essential for proper 

microfibrillar localization and function119. N-terminal domains of LTBPs bind heparan sulfate 

proteoglycans and fibronectin to facilitate incorporation into the ECM79. The TB domains (8-

Cys) binding sites near the C-terminus of LTBP-1 and LTBP-4 assist in ECM binding118,119.  

Both knockout mouse models and inherited human disorders caused by mutations in LTBP 

genes have been useful to uncover the functions of LTBPs in vivo. The mouse and human 

phenotypes caused by LTBP gene mutations is summarized in Table 2.3. Several of these 

phenotypes have been associated with dysregulation of TGFβ signaling except in Ltbp2 knockout 

mice120. However, in TGFβ1 null mice121-123, premature death, gastrointestinal and colorectal 

abnormalities, multi-organ inflammation have been reported. In TGFβ2 null mice, 

cardiovascular, pulmonary and spinal cord defects have been found124, and cleft plate was noted 

in TGFβ3 null mice125. The observation that each LTBP null phenotype displays only a subset of 

abnormal phenotypes found in TGFβ (TGFβ1, TGFβ2 or, TGFβ3) null mice supports the notion 

that LTBPs are responsible for tissue-specific localization and activation of TGFβ. In addition, as 

some phenotypes observed upon the loss of individual LTBPs are not observed in TGFβ (TGFβ1, 

TGFβ2 or, TGFβ3) knockout mice, provides evidence for some LTBPs having additional, TGFβ-

independent functions  
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The complex scaffold of the ECM is assembled with collagens, fibronectin, elastin and 

other many other associated molecules and proteoglycans. Elastic fibers are primarily composed 

of elastin in approximate 90% and fibrillin-rich microfibrils contribute the rest of parts, 

providing tissues, such as blood vessels, with elasticity. In addition to influencing the mechanical 

properties of tissues, many elastic fiber proteins serve as ligands for specific cell membrane 

receptors, mainly integrins. LTBPs are crucial to maintain the ECM structures in proper 

functions. The levels of latent complexes of TGFβ1 increase in parallel with the enhanced 

production of soluble LTBPs integrated into the ECM. In addition, cultured human lung 

fibroblasts deposit LTBP4 starting at day 7 of culture, accompanied by initial co-localization 

with fibronectin118. After a prolonged period of culture, the localization of LTBP4 initiates to 

become distinct from that of fibronectin and sequentially, LTBP4 is incorporated into 

microfibrillar networks on top of fibronectin templates. In Ltbp4S-/- mice, defective elastogenesis 

likely exists because elastin cannot interact properly with microfibril bundles to form elastic 

fibers2. LTBP4 has been suggested to have a dual role in lung development by regulating TGFβ 

activity and elastic fiber formation2. However, the activities of LTBP4 are as poorly understood 

in other tissues as the relative contribution of these functions to the manifestations of disease in 

patients with LTBP4 mutations. 
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Table 2.3 Human and mouse phenotypes related to LTBP genes mutations 

Mutant Gene 
Mouse/Human 

Knockout mouse phenotype Human phenotype 

Ltbp1L/LTBP1 Lethal at birth, defective 
cardiovascular developments, 
malformation of valves48 

No related phenotype126 

Ltbp2/LTBP2 Embryonic lethal120 Congenital glaucoma, impaired lens 
development127 

Ltbp3/LTBP3 Skeletal abnormality, osteoarthrisis, 
decreased body size, pulmonary 
alveolar septal defects128,129 

Oligodontia, short stature, 
scoliosis130 

Ltbp4s/LTBP4 Rectal prolapse, pulmonary 
emphysema, impaired elastic 
fibers1,2 

Pulmonary emphysema, 
gastrointestinal and urinary tract 
abnormalities, cutis laxa3,126 
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2.5.2. TGFβ signaling and the TGFβ receptor system 

TGFβ family members bind type 1 and 2 cell-surface receptors (TGFBR1 and TGFBR2, 

respectively). TGFBR1 and TGFBR2 receptors carry intracellular serine-threonine kinase 

domains and form heteromeric complexes upon the binding of dimerized ligands to their 

extracellular domains. Soluble ligands first bind to the constitutively active TGFBR2, followed 

by the interaction and phosphorylation of the GS (glycine/serine)-rich domain within TGFBR1 to 

produce an activated ligand-receptor complex. The cell-surface TGFBR2 receptors are 

constitutively active dimers, capable of autophosphorylation131.  

TGFβ binding stabilizes and upholds the interaction of the TGFBR2/TGFBR1 receptor 

heterotetramer and TGFBR1 phosphorylates the downstream effector SMADs. Both TGFBR1 

and TGFBR2 are phosphorylated at tyrosine and serine/threonine residues, enabling complex 

regulatory interactions with a variety of signal transduction pathways132. The molecules 

primarily involved in the canonical TGFβ pathway are listed in Table 2.4.  
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Table 2.4 The canonical TGFβ signal transduction pathway 

Molecule category Molecules 

Ligands TGFβ1, TGFβ2, TGFβ3 

Type I receptors (TGFBR1) TGFBR1 (ALK5), ALK1(ACVRL1 or SKR3) 

Type II receptors (TGFBR2) TGFBR2 

Type III receptors (TGFBR3) TGFBR3 (betaglycan), endoglin 

R-SMADs SMAD2, SMAD3 

Co-SMAD SMAD4 

I-SMADs SMAD7 

Abbreviation: ALK: activin receptor-like kinase; R-SMAD: receptor-specific SMADs; Co-SMAD: common 
mediator SMAD; I-SMAD: inhibitory-SMAD 

 

2.5.2.1. Canonical, SMAD-dependent, pathway 

The SMAD family of proteins is essential for intracellular TGFβ signaling. SMADs are 

subdivided into three groups based on their function: R-SMADs (receptor-associated SMADs), 

Co-SMADs (co-operating SMADs) and I-SMADs (inhibitory SMADs)133,134. After 

phosphorylation of TGFBR1, the activated receptor complex transduces intracellular signaling 

by phosphorylating R-SMADs. In humans, five different R-SMADs have been reported and are 

substrates for activated TGFβ receptors. SMAD2 and SMAD3 are substrates for receptors 

activated by TGFβs, activins and nodal, whereas SMAD1, SMAD5 and SMAD8 mediate 

pathways activated by bone morphogenetic proteins (BMPs), growth differentiation factors 
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(GDFs) and Müllerian inhibitory factors (MIFs).132 Upon ligand activation of the receptor 

complex, the phosphorylated R-SMADs and Co-SMAD (SMAD4) form a complex, which 

shuttles into nucleus, where it interacts with other transcription factors to activate or suppress 

target genes35. Activated genes include I-SMADs, SMAD6 and SMAD7 and the expression of 

these inhibitory SMADs provide a negative-feedback regulation of TGFβ signaling135,7 (Figure 

2.5). 
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Figure 2.5 A schematic representation of the SMAD-dependent TGFβ signaling 
pathway. 
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2.5.2.2. Non-canonical, SMAD-independent, pathway 

TGFβ ligands enable mitogen-activated protein (MAP) kinase activation, including extracellular 

signal-regulated kinase (ERK), p38 and JNK kinases136,137. Activation of the ERK kinase has 

been suggested to be important in facilitating SMADs signaling cascade and diverse TGFβ-

mediated responses131. TGFβ triggers the MAP kinase activation, including phosphorylation of 

p38 MAP kinase and other kinases, such as MKK3, MKK6 and TAK1138. The activation of 

TAK1 upon TGFβ stimulation requires the interaction of ubiquitin ligase TNF receptor-

associated factor 6 (TRAF6) with the TGFβ receptor complex139. Activated TGFβ-activated 

kinase1 (TAK1) in turn leads to activation of p38 MAP kinase and JNK kinase, indicating that 

TRAF6 is a crucial factor in the TGFβ induced activation of the MAP kinase pathways. In 

addition, those non-canonical signals can crosstalk with the canonical, SMAD-dependent, 

signaling and mutually restrain each other. Certainly, both pathways can interact with or be 

affected by other pathways, including WNT, RAS, Notch and interferon pathways140 (Figure 

2.6). 
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Figure 2.6 Schematic overview of non-canonical pathways and crosstalk with 
other pathways. 
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2.5.2.3. Endocytosis of the TGFβ receptors  

The endocytosis of TGFβ receptors is dependent on receptor internalization and recycling routs. 

Clathrin-mediated endocytosis and caveolin-mediated endocytosis contribute to internalization of 

TGFβ receptor complexes141,142. Different endocytotic routes may affect the post-translational 

modification of the receptor complex and regulate downstream signaling.  

 

Clathrin-mediated endocytosis of TGFβ receptors 

 

In clathrin-mediated endocytic routs, TGFβ receptor complexes internalize through clathrin-

coasted pits, subjected to TGFB2 cytoplasmic motifs143. Mitchel et al. reported, after 

internalization, Rab11-dependent recycling routes through which TGFβ receptor complexes enter 

early endosomes, with EEA-1 (+) and Rab5 (+), and then recycle back to the cell surface for 

sequential use141,142. This pathway is thought to facilitate TGFβ receptor signaling, specifically 

TGFβ-induced SMAD activation143. However, some results show that clathrin-mediated 

endocytosis may prevent TGFβ-induced SMAD activation141,144. The clathrin-associated AP2 

adaptor complex at the plasma membrane can interact with TGFβ receptors and facilitate 

clathrin-mediated endocytosis145. In addition, SMAD anchor for receptor activation (SARA) is 

another adaptor protein and enable to enhance the stabilization between the interaction with 

TGFBR1 and SMAD2 as well as is distributed in EEA-1 (+) early endosomes146.  
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Some studies demonstrated proteins-involved in the activation of SMADs colocalized with 

clarthrin-coated vesicles141,144,146.  

 

Caveolar endocytosis of TGFβ receptors 

 

On the cell surface, TGFβ receptors can be found in lipid rafts, dynamic micro-domains of 

protein and lipids108 and in non-lipid raft regions of the plasma membrane. Caveolae are enriched 

in lipid-raft domains on the plasma membrane and play an essential role in endocytosis147. 

Caveolin-1 and lipid-raft-medicated endocytosis leads TGFβ receptors to sequential degradation 

intracellularly141. Specifically, caveolin-1 can interact with TGFBR1, which leads the inhibition 

of TGFβ-induced-SMAD signaling147,148. Moreover, inhibition of caveolin-1 dependent 

endocytosis can increase the half-life of the TGFβ receptors141. Smad7 was found to be 

colocalized with caveolin-1 further contributing to the abrogation of TGFβ signaling141. Taken 

together, enhancement of caveolar endocytosis can facilitate the degradation of TGFβ receptors. 

In contrast, inhibition of this pathway can stabilize the receptors and allows for increased 

SMADs activation.  

 However, there are conflicting data showing both clathin-mediated and caveolin-mediated 

endocytosis can be related to TGFβ receptor degradation142. In addition, reduced internalization 

of TGFBR2 can be blocked by clathrin expression inhibition rather than caveolin-1-mediated 

inhibition142. The half-life of receptor was enhanced by the blocking of clathrin-dependent 
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internalization. Rajagopal et al. demonstrated SARA and SMAD7 in early endosomes with EEA-

1 (+) and Rab5 (+), indicating that SMADs activation and TGFβ receptors inhibition can both be 

related to clathrin-mediated endocytosis149. The clathrin-mediated and caveolin-1-mediated 

endocytic pathways are summarized in Figure 2.7. 
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Figure 2.7 Schematic representation of the endocytic routing of TGFβ receptors  
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2.6. CUTIS LAXA 

Cutis laxa (CL) is a rare disorder with inherited and acquired/late-onset forms. It is characterized 

by loose skin and may be associated with systemic involvement, including aortic aneurysms, 

pulmonary artery disease, and emphysema. Inherited forms include autosomal dominant, 

autosomal recessive and X-linked recessive inheritance patterns150. A shared pathological feature 

of cutis laxa syndromes is abnormal elastic fiber deposition in the affected tissues. Human 

genetic studies to date have identified 9 genes in various forms of cutis laxa, highlighting the 

diversity of molecular pathways required for elastic fiber biogenesis. These genes encode 

structural and accessory proteins of elastic fibers, including elastin (ELN) fibulin-4 

(FBLN4/EFEMP2), fibulin-5 (FBLN5) and LTBP4, proteins of the secretory pathway involved 

in sorting of cargo molecules, and mitochondrial enzymes involved in proline metabolism. The 

summary of types of CL and clinical manifestation is in Table 2.5. 

.  
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Table 2.5 Summary of types of cutis laxa and clinical manifestation 

 

Similar to CL, cardiovascular abnormalities are major manifestations in several inherited 

autosomal dominant connective tissue disorders, such as Marfan syndrome, Loeys-Dietz 

syndrome, arterial tortuosity syndrome and aneurysms-osteoarthritis syndrome. A shared 

clinical abnormality in these disorders is aortic root dilatation, a loss of elastic fibers in 

Subtype Mutant 
genes 

Clinical manifestation 

  Skin 
laxity 

Growth and 
developmental delay 

Emphysema CV GI Bone 

ADCL151,152 ELN + - + + - - 
 
ARCL1A153 

FBLN5 + + + + - - 

 
ARCL1B154-156 

FBLN4 
EFEMP2 

+ + + + - - 

ARCL1C/ 
URDS3 

LTBP4 + + + + + - 

ARCL2A157 ATP6V0A2 + + - + - - 
ARCL2B158,159 PYCR1 + + - + - + 
XLCL160-162 ATP7A + - - - - + 
DBS/ 
ARCL3163,164 

ALDH18A1 + + - + - - 

GO165 GORAB + - - - - + 
MACS166 RIN2 + - - - - + 
ATS167 SLC2A10 + - - + - - 
CV: cardiovascular, GI: gastrointestinal; ADCL, autosomal dominant cutis laxa; ARCL, autosomal recessive 
cutis laxa; URDS, Urban–Rifkin–Davis syndrome; XLCL, X-linked cutis laxa; DBS, De Barsy syndrome; GO, 
geroderma osteodysplasticum; MACS, macrocephaly alopecia cutis laxa scoliosis syndrome; ATS, arterial 
tortuosity syndrome. 
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abnormal smooth muscle cells in tunica media and anomalous structures and functions of the 

ECM. Several of these disorders are caused by heterozygous loss-of-function mutations in 

regulators and molecular elements related to TGFβ signaling. Intriguingly, however, there is 

evidence of elevated TGFβ signaling in tissues and cells from these patients 168,169 The precise 

mechanisms of this paradoxical activation of TGFβ signaling pathway are largely unknown.170 

2.7. TGFβ SIGNALING AND LTBP4 MUTATIONS IN CUTIS LAXA 

2.7.1. TGFβ and cutis laxa 

TGFβ up-regulates many genes for components of the elastic fibers, including fibronectin171, 

LTBPs172,173, ELN174,175, LOXs176,177, and FBLN5178 by transcriptional or porstranscriptional 

mechanisms. In cardiac fibrosis, TGFβ up-regulates ECM genes by reducing the expression of 

the miR-29 family of micro-RNAs, which otherwise inhibit ECM genes179.  

 Loss of function mutations in genes related to TGFβ sequestration, including FBN1 and 

LTBP4, contributed to abnormally elevated TGFβ signaling2,3,180. However, elevated TGFβ 

activity was also noted in several types of CL caused by genes, necessary for elastogensis but not 

directly involved in TGFβ sequestration, including ELN151,152, fibulin-4156,181 and ATP6V0A2182. 

Therefore, impaired elastic fiber function may lead to up-regulation of TGFβ activity indirectly, 

possibly through other molecules associated with ECM, such as integrins183. These findings also 

highlight the complex and reciprocal connections between the ECM and TGFβ signaling. 
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2.7.2. LTBP4-related cutis laxa 

Autosomal recessive CL type 1 C (ARCL1C) / Urban-Rifkin-Davis syndrome (URDS; 

MIIM613177) is a disease with severe gastrointestinal, pulmonary and urinary involvements, 

resulting from mutation in LTBP4 gene3. Respiratory complications, including emphysema, 

atelectasis and tracheomalacia are usually lethal during infancy. Gastrointestinal distension, 

stenosis and tortuosity as well as hydronephrosis and bladder diverticulosis are found in 

patients3. LTBP4 deficiency leads to altered production of active TGFβ and an abnormal 

formation of elastic fibers in the ECM. However, the mechanisms and downstream consequences 

of TGFβ dysregualtion in this disease remain incompletely understood.   

2.8. SUMMARY  

ECM and associated proteins form a complex network involving numerous macromolecules, 

which performs abundant mechanical, chemical and biological functions. It has been suggested 

that collagenous and elastic fibers provide tensile strength and elasticity in tissues. On the other 

hand, in extracellular space, structural glycoproteins maintain cellular cohesiveness119. ECM 

molecules can interact with cells and with each other to regulate of several processes, including 

TGFβ signaling. Members of the TGFβ family are multifunctional and pleiotropic growth 

factors, associated with cell proliferation, migration, and differentiation as well as extracellular 

matrix formation. Secreted latent TGFβ complexes are consistent of mature dimeric growth 
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factor, dimeric LAP and a LTBP molecule. The latent complex subsequently is required to be 

activated and this complex is secreted in a specific and targeted manner. Liberation from the 

latent complex enables the mature TGFβ to trigger the downstream signaling by interacting with 

its signaling receptors. Thus, ECM networks serve as major reservoirs for the storage of LTBPs 

and latent TGFβ. The complex regulation of TGFβ signaling by ECM molecules, specifically by 

LTBP4, is poorly understood.     

For proper TGFβ function, intergradation TGFβ complexes into the extracellular matrix is 

obligatory. The ECM contains several molecules, including LTBPs, which interact with latent 

TGFβ complexes and have potentially modulated TGFβ activation and signaling. Since TGFβ 

regulates the expression of multiple ECM components, TGFβ directs the generation of associated 

molecules that adjust its accessibility and signaling. Thus, the ECM does not act as a reservoir 

for TGFβ-mediated elements but a platform at which the availability of cytokines or associated is 

modulated to ensure proper interaction between TGFβ -responsive cells and the generation of 

TGFβ-responsive genes. However, there is a “TGFβ paradox” that loss-of-function mutants in 

genes, encoded certain TGFβ-mediated matrix proteins that lead to increased, rather than 

declined, TGFβ levels. These observations highlight the crucial and complicated roles of TGFβ. 

Further investigation of the interaction between matrix and cells in LTBPs mutants may shed 

light on the intriguing connections between the ECM and growth factor signaling.   
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3. MATERIALS AND METHODS  

3.1. BIOMECHANICAL PROPERTIES OF THE SKIN IN CUTIS LAXA  

3.1.1. Enrolment and disease diagnosis 

This study was conducted in accordance with the IRB protocols at Washington University School 

of Medicine and the University of Pittsburgh. One hundred and thirty six control individuals 

were enrolled from Washington University clinical and research populations. Cutis laxa patients 

(n=22) were enrolled during Cutis Laxa Research Clinics at the University of Pittsburgh. At the 

time of evaluation, participants, or their parents if the enrolled individual was a minor, completed 

a questionnaire providing demographic information and skin elasticity was measured using the 

DermaLab suction cup device (Cortex Technology, Denmark). The diagnosis of cutis laxa was 

based on physical examination, medical history, and whenever possible, based on positive 

mutational testing results.  

3.1.2. Skin Elasticity Measurements  

The suction cup was placed on the volar surface of each forearm, midway between the wrist and 

the elbow using a 2-sided adhesive sticker. Measurements were taken on both arms and the mean 

of the two measurements were used for analysis. The instrument applies vacuum in increasing 

increments to a small patch of skin (10 mm in diameter) under the suction cup, causing the skin 
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to be lifted up into the suction cup (Figure 3.1). There are two light beams in the suction cup and 

there is 1.5 mm between them. While the skin was lifted up at the level of the first beam and 

second beam by vacuum, the level of pressures are recorded as P1 and P2 respectively. After that, 

the skin is released. The device measures the amount of time required for the skin to cross the 

distance between two beams.  
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Figure 3.1 A schematic demonstration of the DermaLab suction cup device 
Two light beams are in the suction cup and there is 1.5 mm between them. While the skin was lifted up 
at the level of the first beam and second beam by vacuum, the information including pressures and 
retraction times are recorded. 
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 The output from the device is ΔP (P2-P1, measured in mBar) and RT (retraction time, 

measured in ms). This cycle is repeated two subsequent times. Data from cycles 2 and 3 showed 

similar characteristics to cycle 1, but lower effect sizes with respect to cutis laxa. There was a 

slight group and age effect for differences in RT by cycle, but this did not reach statistical 

significance (data not shown). Therefore, report cycle 1 data (dP1 and RT1) was used in analysis. 

The elastic modulus (E) is calculated by the DermaLab software in MPa units by solving 

the following equation:  

Δx = ψ × ΔP1 × r4 / (E × s3) 

 

Δx: skin displacement (0.0015 m for this probe) 

Ψ: an instrument constant 

ΔP1: pressure difference as described above, converted to MPa units 

r: the radius of the skin patch displaced (0.005 m)  

s: the thickness of the skin, estimated to be 0.001 m.  

Thus, E, as measured by the DermaLab instrument, is an approximate value assuming uniform 

skin thickness across all participants. Using 1 mm skin thickness and other probe constants, the 

formula used by the instrument is as follows:  

E = 0.3125 * ΔP1/1.5 

An approximate value for skin viscoelasticity (VE) is calculated by the instrument using the 

following formula:  
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VE = E / RTn 

RTn is a normalized recoil time obtained by dividing RT1 with 260 ms, the average control 

underarm recoil time.  

3.1.3. Quality control and statistical analysis of Dermalab data 

To ensure the reliability of the data, the following quality control measures were taken. If the 

measurements were only available on one arm or the difference of measurements over two arms 

were over two standard deviations of the age adjusted population mean, the participants were 

excluded. If the measurements of RT exceeded 10,000ms, the data were excluded from the study. 

Chi-square tests were used to evaluate categorical factors and independent t-tests for 

continuous data for initial analysis. Pearson’s correlations were calculated among age, E, VE and 

RT. Body mass index did not correlate significantly with any of the skin data and therefore was 

not included in any regression models. Logistic regression was used to determine the strength of 

each individual biomechanical variable in predicting affected status. Step-wise logistic regression 

was used to obtain a multivariate model for affected status, with age, sex, E, VE and RT in the 

initial model. Receiver operating characteristic (ROC) curve analysis was used to evaluate the 

power of the regression models to determine affected status, as quantified by the area under the 

ROC curve (AUC). Differences between logistic regression models were tested using ANOVA. 

For the potential overfitting in models, 4/5 samples, the training sub-dataset, was used to 

generate models while 1/5 samples, the validation or testing sub-dataset, was used to test those 
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models. This approach was repeated 20 times and the average AUC of ROC analysis in model 1 

and model 2 were calculated. Descriptive and multivariate statistics were carried out with SPSS 

software (IBM, version 21.0) and R software (version 2.14). P values < 0.05 were considered 

statistically significant. 

3.2. LTBP4 REGULATES EXTRACELLULAR MATRIX ASSEMBLY, 

TGFβ SIGNALING AND ITS IMPACT TO TGFβ RECEPTOR 

COMPLEX 

3.2.1. Cell culture conditions 

Human fibroblasts were harvested from patient skin tissues by biopsy. HEK 293 cells were 

purchased from the American Type Culture Collection (ATCC). Cells were cultured in 

Dulbecco’s modified Eagle’s medium (DMEM) supplemented with penicillin, streptomycin, 

10% fetal bovine serum (FBS), 20 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

(HEPES) and 45 mM sodium bicarbonate (NaHCO3). All cells were maintained at 37°C in a 

humidified environment containing 5% CO2. The media was exchanged at least every 48 hours. 

To subculture cells, 0.05% ~ 0.25% trypsin /ethylenediaminetetraacetic acid (EDTA) solution 

was used. Skin biopsies were collected via standardized protocols approved by the University of 

Pittsburgh Institutional Review board. Informed consent was obtained from all participants.  
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3.2.2. TGFβ activity assay 

Cultured reporter mink lung epithelial cells (MLECs)184 were used to detect the activity of TGFβ 

in media or supernatant of cultured human fibroblasts. This method we used has been published 

in our paper, Human Mutation 2013 Jan; 34(1): 111-21185.MLECs were stably transfected with a 

plasmid construct with a TGFβ-responsive plasminogen activator inhibitor-1 promoter 

connected to a luciferase cDNA. Human dermal fibroblasts cells were co-cultured with the same 

number of MLECs (2 x 105/ml) in Dulbecco’s modified Eagle’s medium (DMEM) containing 

2.0% fetal bovine serum (FBS) and were plated at 100μl per well in 96-well plates for overnight. 

The media samples was collected for measurement. Additionally, to check TGFβ activity in the 

supernatant of fibroblasts, cultured MLECs were suspended at 2 x 105 per ml in DMEM 

containing 2.0% FBS and seeded 100µl per well in 96-well plates. Six hours later, the cells were 

treated with conditioned media from human dermal fibroblast cultures incubated with the media 

overnight.  

A standard curve was constructed with a decreasing TGFβ1 (PeproTech; Recombinant 

Human TGFβ1) concentration series from 1000 pg/ml in DMEM with 2.0% FBS and performed 

2:1 serial dilution in DMEM containing 2.0% FBS. To activate latent TGFβ, samples were 

heated at 100°C for 10 minutes. The TGFβ1 concentration series, serum or plasma samples and 

heat-activated samples of conditioned media were added to triplicate wells in triplicates. Cells 

were incubated for 1 hour. To control for viable reporter cell numbers, In Vitro Toxicology Assay 
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Kit (Sigma) was used. The XTT reagent, a (2, 3-bis [2-methoxy-4-nitro-5-sulfophenyl]-2H-

tetrazolium-5-carboxyanilide inner salt)-based solution, was prepared according to the 

instructions and added to the culture medium. Measurement of the absorbance at 450nm was 

performed after 2 hours-XTT incubation. The supernatant, culture medium with XTT solution, 

was discarded and cells were washed with PBS (phosphate-buffered saline). Cells were lysed in 

Reporter Lysis Buffer (Promega) and assayed for luciferase activity by Luciferase Assay System 

(Promega). Luminescence units, normalized to viable cell numbers as measured by the XTT 

assay were converted to TGFβ concentration with the use of a standard curve. 

3.2.3. RNA isolation 

For large-scale isolation, total RNA was extracted using TRIzol reagent (Invitrogen) from dermal 

fibroblasts. TRIzol separates cell lysates, after adding in bromochloroporpane (BCP) and 

centrifugation, into three compartments: a lower red organic phase, an interphase containing 

DNA, and a colorless, upper aqueous phase with RNA. The procedures were conducted under 

the chemical hood and all surfaces, pipettes and gloves were sprayed with RNase Zap, a spray of 

RNase-inactivating solution, in order to prevent RNA degradation.  

Ten mL TRIzol reagent was add onto the surface of cells in a 15 cm culture dish after cells 

were washed by sterile PBS. Thorough washing of the cell layer and mixing with repeated 

pipetting was required to homogenize the lysate. BCP (2mL) was added, and the cell lysate was 

shaken vigorously. After 10 min storage at room temperature, the suspension was centrifuged at 
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10,000g for 15 min at 4 °C. The upper phase was transferred in to a new tube and mixed with 

5mL RNase-free 100% isopropanol and incubated for 30 min. An RNA pellet was generated after 

centrifugation at 10,000g for 10 min at 4 °C. The pellet was washed with 10mL 75% ethanol and 

25 % diethyl-pyrocarbonate (DEPC)-treated water. The ethanol was removed by centrifuging the 

samples at 7500g for 5 min and air-drying the pellet. The RNA pellet was dissolved in 100µl 

DEPC-treated water and the concentration of the RNA was measured by UV spectrophotometry 

using a Nanodrop instrument.  

 RNeasy Mini kit (Qiagen) was used to isolate RNA from a small amount of cells. Buffer 

RLT (350 µL) was added to cells growing in each well of 6-well plates. Centrifugation and 

buffer washes were performed according to the manufacturer’s instructions. The RNA was eluted 

in 50µL and the concentration of RNA was measured by UV spectrophotometry using a 

Nanodrop instrument. 

 

3.2.4. Reverse transcription polymerase chain reaction (RT-PCR) 

Complementary DNA (cDNA) was prepared using a SuperScript III Reverse Transcriptase kit 

(Invitrogen), following the manufacturer’s instructions. To each RNA sample (1µL), random 

hexamers (1µL, 50ng/µL), dNTPs (1µL, 10 mM), and DEPC-treated water (up to 10µL) were 

added before a 5 min incubation at 65 °C. Before PCR, 10X RT Buffer (2µL), MgCl2 (4µL, 

25mM), dithiothreitol (DTT, 2µL, 0.1M), RNase OUT (1µL, 40U/µl), SuperScript III Reverse 
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transcriptase (200U/µl; 1µl) were added to the mix. After incubations for 10 min at 25°C, 50 min 

at 50°C and 5 min 85°C, the reactions were chilled on the ice, briefly centrifuged, 1µl RNase H 

was added to each sample and the reactions were incubated at 37°C for 20 min. The cDNA 

reactions were stored in -20°C and 0.5 µl of this reaction was used in quantitative polymerase 

chain reaction (Q-PCR).  

 

3.2.5. Quantitative PCR  

To determine the expression of LTBP4, TGBR1, TGFBR2 and TGFB1, Q-PCR was used in 

control human dermal fibroblasts and LTBP4-mutant human dermal fibroblasts. I performed 

qRT-PCR using the ABI Prism 7900HT Sequence Detection System (Applied Biosystems). A 

customized quantitative real-time-PCR assay (TaqMan® Gene Expression Assay) was used to 

assess gene expression. The reaction dilution was prepared accorded to manufacturer’s 

instructions, including 0.5µl cDNA, 10µl TaqMan Universal Master Mix II 2X, RNase-free 

water (up to 20ul). The reaction in 20µl, cDNA and master mix solution, was transferred to 

appropriate wells of 96-well TaqMan® Array plate. The plate was briefly centrifuged to bring the 

solution to the bottom of the wells (1000rmp for 1min) before Q-PCR reactions (Table 3.1).  
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Table 3.1 Q-PCR conditions 

Cycles Temperature (°C) Time  
1 50 2 minutes 
1 95 10 minutes 
 
40 

Melt 95 15 seconds 
Anneal/Extend 60 1 minutes 

 

 

Sequence Detection System (SDS) Version 2.4 included with the ABI Prism 7900HT SDS 

and Microsoft Excel were used to perform the analysis of Q-PCR data. Experimental samples 

were run in triplicates where Ct measurements per samples were normalized by an endogenous 

housekeeping control gene, GAPDH. The relative expression of control and patient fibroblasts 

was determined using the comparative Ct method (2–ΔΔCt) 186. LTBP4, TGFBR1, TGFBR2, 

TGFB1, and FBN1 expression was compared between LTBP4-mutant and control human dermal 

fibroblasts. 

3.2.6. Protein extraction 

Conditioned media samples were prepared by incubating cultured dermal fibroblasts overnight 

with serum-free media. Protease inhibitor cocktail (1:200; Sigma) was added. Amico Ultra-15 

centrifugal filter units (Millipore) were used to concentrate media samples by centrifugation for 

40 min, at 6000g, 4°C. To study intracellular pathways, fibroblasts were lysed in CelLyticTMM 

52 



(Sigma) with Halt Protease and Phosphatase Inhibitor Cocktail (Thermo Scientific). Glass 

homogenizers were used facilitate complete cell lysis, and the lysates were incubated on ice for 

30 min before centrifugation for 10 min, at 16000g, 4°C.  

To study membrane proteins, the samples were prepared by using the Mem-Per Plus 

Membrane Protein Extraction Kit (Thermo Scientific) with Halt Protease and Phosphatase 

Inhibitor Cocktail (Thermo Scientific). Cultured, adherent cells were washed using the Cell 

Wash Solution twice in the plates and detached using cold scrapers in 3mL Cell Wash Solution. 

Cell pellets were collected by centrifugation (300g, 5 min at room temperature) and resuspended 

in 500 µL Permeabilization Buffer by vigorous vortexing. Incubation followed at 4°C for 10 min 

with intermittent mixing. After incubation, the suspension was centrifuged at 16000g, 4°C for 15 

min. This step left cytosolic proteins in the supernatant. The pellets, containing membrane 

proteins were resuspended in Solubilization Buffer (150µL-250µL) and then incubated for 30 

min at 4°C with intermittent mixing. The mixture was centrifuged at 16000g and 4°C for 15 min. 

Supernatant contained the membrane proteins. The protein concentration of the extract was 

quantified using the Bradford assay187. 10µg of cytosolic protein and 8µg of membrane protein 

per sample were used for immunoblotting.  

3.2.7. Immunoblotting 

Protein extracts were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis 

(SDS-PAGE) and transferred onto polyvinylidene difluoride membranes (Millipore). Equal 
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amounts of cell lysate or media samples were diluted with LDS Sample Loading Buffer (4X) (a 

nonreducing lithium dodecyl sulfate sample loading buffer, Thermo Scientific Pierce) or 

Laemmli Sample Buffer (2x, Bio-Rad) containing 1% β-mercaptoethanol was used. To prepare 

membrane proteins, samples were mixed with proper volume of loading buffer with β-

mercaptoethanol and incubated at room temperature for 30 min. For cytosolic proteins (cell 

lysates) or secreted proteins (conditioned media), the mixture was heated at 98°C for 5 min or 70°

C for 15 min. The protein samples were chilled before loading onto 6% - 10% SDS-PAGE gels. 

The gel was subjected to electrophoresis at 80V for 90 min to 120 min. The gel was positioned 

between packing pads, filter papers and polyvinylidene difluoride (PVDF) membrane and then 

placed into a Bio-Rad Mini Trans-Blot® Electrophoretic Transfer Cell for 90 min at 80V or 16 

hours at 30V, 4°C. The PVDF membranes were removed and washed in PBST (1x PBS, 0.1% 

Tween-20). Nonspecific binding sites were blocked by incubation in PBS-0.2% Tween 20 

containing 8% dried skim milk at 4°C overnight or 2 hours at room temperature. Following 

blocking, the membranes were incubated in PBS-0.1% Tween 20 containing the appropriate 

primary antibody (Table 3.2) overnight at 4°C or 1.5 hours at room temperature. After incubation, 

membranes were washed by PBS-0.2% Tween 20. The incubation with the secondary antibodies 

(Table 3.2) was for 1 hour at room temperature. Immunoreactive signals were detected by using 

SuperSignalWest Pico Chemiluminescent Substrate (Thermo Scientific) or Luminata Forte 

Western HRP substrate (Millipore).  
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Table 3.2 Antibodies for Western blots 

 Antibody  Species Dilution Manufacturer/Cat. No. 

Primary LTBP4 Rabbit polyclonal 1:500 Thermo;PA5-21378 

Fibrillin-1 Rabbit polyclonal 1:500 Dr. Robert Mecham 

Fibronectin Mouse monoclonal 1:1000 Takara; M002 

pSMAD2 Rabbit polyclonal 1:1000 CellSignaling; 4695 

pERK Rabbit polyclonal 1:1000 CellSignaling; 4377 

SMAD6 Mouse monoclonal 1:500 Sigma; SAB1406098 

SMAD7 Mouse monoclonal 1:500 Millipore; ST1625 

Tubulin Mouse monoclonal 1:1000 Sigma; T6793 

TGFBR1 Rabbit polyclonal 1:1000 CellSignaling; 3712 

pTGFBR1 Rabbit polyclonal 1:500 Abcam; ab112095 

TGFBR2 Rabbit polyclonal 1:500 Sigma; SAB4502958 or 

Abcam; ab61213 

Transferrin 

receptor 

Mouse monoclonal 1:1000 Introgen; 136890 

Secondary Anti-rabbit Goat polyclonal 1:7500 Thermo; PAI-20391 

Anti-mouse Goat polyclonal 1:10,000 Jackson & Immunology 
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3.2.8. Enzyme-linked immunosorbent assay (ELISA)   

TGFBR1 and TGFBR2 levels in the cell lysates were measured using commercial ELISA kits 

(DY241 R&D Systems and SEA397 Hu Cloud-Clone Corp., respectively). The procedures were 

performed according to the manufacturer’s instructions. All of the measurements were performed 

in triplicate for each sample. The optical density at 450 nm (OD450) was measured using an ELISA 

reader.  

3.2.9. Immunofluorescent staining 

The following quoted material has been published in our paper, Human Mutation 2013 Jan; 

34(1): 111-21185. ″Cultured human skin fibroblasts were seeded onto 22 mm × 22 mm square 

glass coverslips in 6-well tissue culture dishes at a density of 3,000 cells/cm2 and cultured in 2 

mL DMEM with 10% FBS,″ or in 4-well chamber slides in 0.5mL growth media. Cells were 

stained 4 weeks after confluence for LTBP4, LTBP1, FBN1 and FN. ″Briefly, cells were rinsed 

with PBS, fixed with PBS containing 4% paraformaldehyde (ElectronMicroscopy Sciences, 

Hartfield, PA) at room temperature for 15 min and rinsed three times with PBS for 5 min. The 

cells were incubated overnight in 3% BSA with 20% donkey serum and 0.3 M glycine to prevent 

background and nonspecific staining. The coverslips were incubated with anti-LTBP4, anti-

fibrillin-1, mouse anti-LTBP1, anti-fibulin-5, and anti-fibronectin primary antibodies at room 
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temperature for 1 hr and were then washed three times with PBS at 5 min intervals. Incubation 

time for secondary antibodies was 1 hr at room temperature. After counterstaining with Hoechst 

33258 (Sigma, St Louis, MO), slides were rinsed again three times with PBS and mounted with 

Cytoseal-60 mounting media (Thermo Scientific) after being completely dried. Specimens were 

examined and photographed using a fluorescence photomicroscope (Leica DM5000B, Leica 

Microsystems, Richmond, IL).″ 
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Table 3.3 Antibodies used for Immunoflurescent staining 

Antibody  Species Dilution Manufacturer/Cat. No. 

Primary LTBP4 Rabbit polyclonal 1:200 Thermo; PA5-21378 

LTBP4 Goat polyclonal 1:200 R&D; AD2885 

Fibrillin-1 Rabbit polyclonal 1:400 Dr. Robert Mecham 

Fibronectin Mouse monoclonal 1:400 Takara; M002 

TGFBR1 Rabbit polyclonal 1:100 Sigma; SAB4502958 

TGFBR2 Rabbit polyclonal 1:50 Abcam; ab61213 

Secondary Mouse 

Alexa Fluor 

594 

donkey IgG 1:500 Life Technologies; A21203 

Rabbit 

Alexa Fluor 

488 

donkey IgG 1:500 Life Technologies; 

A21206 

Goat Alexa 

Fluor 594 

donkey IgG 1:500 Life Technologies; 

A11058 

Goat Alexa 

Fluor 488 

donkey IgG 1:500 Life Technologies; 

A11055 
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3.2.10. Treatments with drugs and chemicals 

TGFβ1 (PeproTech, Rocky Hill, NJ) and TGFBR1 inhibitor (LY364947; Calbiochem) were 

prepared in tissue culture medium at concentrations of 5 ng/mL and 25 µM, respectively, and cells 

were treated for 90 minutes. Endocytosis inhibitor treatments lasted 30 minutes. Filipin (caveolin-

mediated endocytosis inhibitor; Sigma) was dissolved in dimethyl sulfoxide (DMSO) to a 

concentration of 1 mg/mL and prepared fresh at a concentration of 1 µg/mL in media. 

Monodansylcadaverine (MDC; clathrin-mediated endocytosis inhibitor; Sigma) was dissolved in 

DMSO at a concentration of 50 mM as a stock solution to make a final concentration of 100 µM 

in media. To block protein synthesis, cycloheximide (CHX; Sigma) was added to the culture 

medium at a final concentration of 20 µg/mL for the indicated times. Proteasome inhibitor 

(lactacystin) and lysosome inhibitor (ammonium chloride) were purchased from Sigma and added 

to media at final concentrations of 10 µM and 10 mM, respectively, for 8 hours. Cells were treated 

with the various reagents for the indicated times and were processed for immunoblotting or ELISA. 

Cells were cultured in 10-cm culture dishes or in 6-well platea for two weeks after confluence. 

3.2.11. LTBP4 knockdown 

To silence LTBP4 expression in human dermal fibroblasts, an antisense mophorlino 

oligonucleotide (MO), was designed to target the donor splice site of exon 5 (based on transcript 
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NM003573), an exon present in all common isoforms of LTBP4. The sequence complementary to 

the intron and exon shown in normal type and italic, respectively: 5’-

GGCCACCCTTTCCTCACCGTGCTCG-3’. Treatment with this mophorlino was expected to 

result in the skipping of exon 6, leading the elimination of the first epidermal growth factor-like 

domain of LTBP4, thought to be essential for the correct folding of the protein. A control MO was 

designed by mutating key residues in the LTBP4 MO, as shown by lower case letters: 5’-

GGCgAgCCTTTCgTCAgCcTGCTCG-3’. MOs were delivered into human dermal fibroblasts 

from a healthy individual using the Endo-Porter peptide delivery system (Gene Tools, Philomath, 

OR). For single delivery, cells were treated with 4 µM Endo-Porter and 4.5 µM MO for 2 days, 

given fresh media for 2 days prior to collecting the samples. For double delivery, cells were treated 

with the first dose for 2 days, given fresh media for 2 days, treated with a second dose for 2 days 

and given fresh media for 1 day prior to collecting samples (Figure 3.2). Media, membrane protein 

lysate and cytosol protein lysates were used for immunoblotting or ELISA.  
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Figure 3.2 The timeline for knocking downed LTBP4 in human dermal fibroblasts 
using antisense mophorlino oligos (MO) 
Endo-porter-MO: the mixture of Endo-Porter peptide delivery system and MO 
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3.2.12. Rescue of LTBP4-mutant human dermal fibroblasts using recombinant LTBP4 

Control lentiviral construct pLOC-TurboRFP and pLOC-LTBP4 containing the cDNA 

corresponding to reference sequence NM_003573 were purchased from Thermo Scientific 

(Pittsburgh, PA). A Myc-(His)6 tag was engineered to the 3’-end of the pLOC-LTBP4 by PCR 

(Appendix, page 134). The resulting pLOC-LTBP4-MycHis construct was transfected in to 

HEK293 cells and subjected to selection with 8 μg/mL blasticidin for 3 weeks. Using limiting 

dilution, 32 clones were isolated from the stably transfected cells and conditioned media and cell 

lysates from the clones were tested by ELISA for the expression of LTBP4 and the Myc tag. 

Eight clones showing the highest expression by ELISA were further tested by immunoblotting 

for LTBP4 and the Myc tag, and clone C13 was selected for subsequent experiments. HEK293 

cells stably transfected with pLOC-TurboRFP served as negative controls. The confirmation of 

the LTBP4 expression in clone C13 compared to HEK293 cells stably transfected with pLOC-

TurboRFP was performed by immunoblotting. Conditioned media of clone C13 was used to treat 

LTBP4-mutant dermal fibroblasts to exam the further changes of protein expression of TGFβ 

receptor and TGFβ.  

 Conditioned media was collected from transfected HEK293 cells 5 days after confluence, 

and centrifuged to remove the cell debris. Before collecting the conditioned media, cells were 

washed with sterile PBS twice to remove blasticidin and treated with DMEM with 10% FBS 

overnight to obtain contidioned media, which was then mixed with fresh growth media 1:1 
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and used to feed LTBP4-mutant dermal fibroblasts for seven days (Figure 3.3). The mixture of 

media was changed every day. By 2, 4, and 7 days of treatment, membrane protein and cytosol 

protein extracts were collected as described above. 
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Figure 3.3 Collecting conditioned media for rescue  
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3.2.13. Statistical analysis for study of molecular mechanisms (chapters 4.2 and 4.3) 

P values were calculated by analysis of variance (ANOVA) with a post-hoc test or independent t-

tests, as indicated in the figure legends. Analysis was performed with SPSS (Statistical Package 

for the Social Sciences) software (IBM, v.21) or Microsoft Excel. Values are expressed as the 

mean  ± standard error mean (SEM). Results with p values < 0.05 were considered to be 

statistically significant.  

  

65 



4. RESULTS 

4.1. BIOMECHANICAL PROPERTIES OF THE SKIN IN CUTIS LAXA 

PATIENTS  

An essential function of human skin is to protect against external mechanical insults, which 

enables a reversible deformation of its structure. In cutis laxa (CL) patients, multiple 

manifestations can be present according to different causative genes, however, loose skin is a 

share phenotype. The details about mechanical properties have been discussed in section 2.1 

(page 3). This association and observational study was conducted to evaluate the predictive value 

of skin mechanical properties, such as elasticity, generated from a DermaLab suction device in 

control individuals and CL patients. The information in section 4.1 has been submitted to Journal 

of Investigative Dermatology and is under revision.  

4.1.1. Demography and mutation status of participants 

From the 136 control individuals who participated in this study, one was excluded because of no 

measurements of the left arm, and 17 were excluded because of significant differences between 

measurements of the right and left arms, yielding 118 individuals for final analysis. From 22 CL 

patients who had undergone Dermalab testing, three were excluded because the difference 

between measurements of the two arms were large and two were excluded because of RT 
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measurements greater than 10,000 ms. Thus, 118 control individuals and 17 cutis laxa patients 

were subjected to further analysis. There was no significant difference in age or gender 

distribution between cases and controls (Table 4.1). Eight CL patients were positive for 

mutations in known CL genes with LTBP4 mutations in 2, ELN mutations in 3 and ATP6V0A2 

mutations in 3 patients (Table 4.2). Moreover, nine patients with unknown mutational status were 

enrolled (Table 4.3), including 3 individuals with congenital and 6 subjects with late-onset CL. 

Because skin elasticity measurements did not show significant differences among patients, the 

data of all the CL patients were pooled into one case group.  

Table 4.1 Age and gender in the participants 

 Controls (n=118) Patients (n=17) p-value 

Age (years)# 33.22 ± 1.58 29.21 ± 5.47 0.490* 

Gender (male; %) 37.3% 35.3% 0.874** 

Continues variables: mean ± standard error mean; *: independent t-test; **: Chi-square test; 
#: year of age when dermal mechanical parameters were taken.  
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Table 4.2 Enrolled cutis laxa patients with known mutations 

Study ID Age 

(years)# 

Gender Disease Onset Mutant Gene Type of CL OMIM 

Patient 1 14 F Congenital LTBP4 ARCL1C 613177 

Patient 2 23 F Congenital LTBP4 ARCL1C 613177 

Patient 3 27 M Congenital ELN ADCL1 123700 

Patient 4 16 M Congenital ELN ADCL1 123700 

Patient 5 66 F Late-onset ELN ADCL1 123700 

Patient 6 23 M Congenital ATP6V0A2 ARCL2A 219200 

Patient 7 3 F Congenital ATP6V0A2 ARCL2A 219200 

Patient 8 5 M Congenital ATP6V0A2 ARCL2A 219200 

ARCL1C: autosomal recessive cutis laxa type 1C, ADCL1: autosomal dominant cutis laxa type 1, 

ARCL2A: autosomal recessive cutis laxa type 2A, OMIM: Online Mendelian Inheritance in Man 

phenotype ID number. #: year of age when dermal mechanical parameters were taken.  
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Table 4.3 Enrolled cutis laxa patients with unknown mutations 

Study ID  Age (years)# Sex Disease Onset 

Patient 9  30 M Late-onset 

Patient 10 4 F Congenital 

Patient 11 42 F Late-onset 

Patient 12 68 F Late-onset 

Patient 13 1.6 F Congenital 

Patient 14 41 M Late-onset 

Patient 15 17 F Congenital 

Patient 16 58 F Late-onset 

Patient 17 58 F Late-onset 

#: year of age when dermal mechanical parameters were taken.  
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4.1.2. Elasticity parameters generated by the DermaLab device 

All participants underwent testing by using a DermaLab skin elasticity module, a suction cup 

device. During testing, the device applies vacuum to patch of skin and measures the pressure 

difference (P) required to lift up the skin to a height of 1.5 mm and the time required for the 

skin to return to the original position, the retraction time (RT). The elastic modulus (E) can be 

calculated from this pressure difference, assuming uniform skin thickness (1mm). The machine 

calculates the viscoelastic modulus (VE) from E and RT as variables. Elasticity parameters 

generated from tests by using DermaLab device are summarized in Table 4.4. CL patients had 

significantly lower E, higher RT and lower VE (p <0.05) than controls. Furthermore, there was 

no statistically significant difference between congenital and acquired patients in the VE 

(p=0.083), E (p=0.537) or RT (p=0.144).  
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Table 4.4 Elasticity parameters in participants 

 Controls (n=118) Patients (n=17) p-value 

E (MPa) 11.61 ± 0.15 7.85 ± 0.60 < 0.0001* 

Retraction time (ms)  622.82 ± 21.20 1152.82 ± 211.21 0.024* 

VE (MPa) 5.35 ± 0.14 2.51 ± 0.32 < 0.0001* 

E, elastic modulus; VE, viscoelastic modulus.  

Theoretically, mechanical properties of the skin includes elastic and viscous properties. 

Viscous properties of skin are related to delayed recovery from deformation and Young’s 

modulus (E) is the ratio of stress over strain, indicating the elasticity of the skin. The skin is a 

complex tissue and these dermal mechanical parameters can be related to each other 

physiologically. It has been suggested that these parameters can change with age. Thus, I 

checked the correlation between elasticity parameters and the age that the measurements were 

taken at (Table 4.5, Figure 4.1).  
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Table 4.5 Correlation matrix (Pearson r) among age and dermal elasticity parameters 

  Controls Cases 

  E RT VE E RT VE 
Age r -0.052 0.770 -0.801 -0.105 0.541 -0.461 
 p-value 0.574 <0.001 <0.001 0.689 0.025 0.063 

E r  0.090 0.246  0.160 0.068 
 p-value  0.333 0.007  0.541 0.795 

RT r   -0.898   -0.806 
 p-value   < 0.001   < 0.001 

 

RT and VE were significantly correlated with age but E was not. In CL patients, VE was 

marginally correlated with age. Scatter plots between age and elasticity parameters are shown in 

Figure 4.1. Moreover, the slope estimations in linear regression lines (VE vs age & RT vs age) 

were statistically significant between control and patient groups (p < 0.05). VE decreased in 

controls more rapidly than in patients, but the increase in RT was slower in controls than in 

patients. 
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Figure 4.1 Mechanical properties of the skin in control and CL patients.  
Elastic modulus (A), retraction time (B) and viscoelastic modulus (C) are plotted as a function of age for 
controls (magenta dots) and CL patients (green dots). Linear regression lines are shown for each variable 

in each group ( CL: green, controls: magenta); Slopec: slope of the linear regression line in controls; 
Slopep: slope of the linear regression line in patients. In panel (B) and (C), there were significant 
difference of slopes between slopes (p < 0.05) and in panel (A), there was no difference.  
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4.1.3. Multivariate logistic regression analysis of skin elasticty in CL 

Logistic regression analysis was used to determine the strength of each individual biomechanical 

variable to predict affected status. Step-wise logistic regression was used to obtain a multivariate 

model for predicting affection status, with age, sex, E, VE and RT in the initial model. Age 

(p=0.005, odds ratio (OR): 1.21, 95% confidence interval (CI): 1.06-1.37), VE (p=0.002, OR: 

16.39, 95% CI: 2.85- 95.18) and E (p=0.043, OR: 3.55, 95% CI: 1.04-12.15) were significant 

predictors of disease status. VE was the strongest predictor and one unit reduction in VE 

increased the odds of CL 16.39-fold. Moreover, the receiver operation characteristic (ROC) was 

calculated for each variable, including E, VE and RT (Figure 4.2A). VE performed best, with 

ROC area under curve (AUC) reaching 0.908 among all participants in the study.  

Pearson correlation r was limited between VE and E: 0.246 and 0.068 in controls and 

patients, respectively. In addition, RT strongly correlated with VE because of RT is a 

denominator in the equation to generate VE. There was no difference of age between controls 

and patients. Thus, E was added in to the logistic regression model to compare the reliability and 

stability between models, adjusted with age. Model 1 (AUC=0.992), incorporating age, VE and 

E, performed significantly (ANOVA, p=0.0026) better than model 2 (AUC=0.958), including age 

and VE in distinguishing cases from controls (Figure 4.2B). Moreover, bootstrap analysis has 

been performed to check the conclusion from the small sample size of patients would met in the 

large sample size. Based on 1000 bootstrap samples, model 1 performed better than model 2 
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(p=0.005, 95% CI: 0.45-130.810) and based on 5000 bootstrap samples, model 1 has higher 

predictive value than model 2 (p=0.009; 95% CI: 0.41-97.220).  

The performance of a model on the same data that was used to fit the model would give an 

overly optimistic measure of performance. To test if such overfitting or over-estimating could 

have occurred, cross-validation tests were performed. In 20 tests, the averages of AUC in ROC 

analysis of were 0.951 and 0.901 in model 1 and model 2, respectively (Table 4.6). As cross-

validation, on average resulted only modest decrease in AUC values, overfitting was not a major 

issue in this data, and similar sensitivity and specificity values can be expected in future 

replication studies to our present results. 
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Figure 4.2 ROC analysis of biomechanical and composite variables as diagnostic 
measures  
Viscoelastic modulus is more effective than elastic modulus or retraction time in differentiating cases 
from controls as indicated by receiver operating characteristic (ROC) curves. (A) ROC curve with AUC 
among all participants. (B) Composite variables under Model 1 (Age + VE + E) perform better than 
Model 2 (Age + VE).  
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Table 4.6 Results of cross-validation tests 

 
In each test, traninig dataset was included in 4/5 participants and Model (Age+VE+E) and Model (Age+VE) were 
generated. Models then fitted in testing dataset with 1/5 participants and the computed AUC values are shown in 
the table. Model 1: logistic regression model incorporating Age, VE and E. Model 2: logistic regression model 
incorporating Age and VE. AUC: area under ROC (receiver operating characteristic) curve.  
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A predictive variable (D) can be calculated from logistic regression analyses using the 

following device-specific formula:  

D ≅ −27.570 + 0.187 × Age + 2.795 × VE + 1.267 × E 

where “Age” is in years, VE is the viscoelastic modulus and E is the elastic modulus, both in 

MPa units. If an individual’s D is less than 2.538, the probability of the individual having CL is 

99.2%. D distinguished cases from controls with 100% specificity and 91.5% sensitivity.  

  

78 



 

 

Figure 4.3 Box plots and scatter plots of D values in controls and patients.  

(A): box plots; (B): scatter plots. Green lines indicate the reference “D” value of 2.538.  
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The skin was visually loose in cutis laxa patients with decreased VE values (Figure 4.4A). 

There were an insufficient number of individuals within each type of inherited cutis laxa to allow 

for subgroup analysis. However, individuals with ADCL caused by ELN mutations showed the 

greatest degree of variation in VE (Figure 4.4B) compared to those with other mutations, 

consistent with previous reports of variable expression of the skin phenotype in ADCL 

patients188.  
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Figure 4.4 Viscoelastic modulus in relation to visual skin laxity and the causative 
gene mutation 
(A) Images showing loose and wrinkled skin at the inner lower arm of several representative cases. Red 
tie-lines identify the data points on the viscoelastic modulus (VE)/age plot corresponding to each set of 
images. (B) VE values of individuals with known gene mutations. Note that one individual with 
ATP6V0A2-related CL had similar age and VE data to another participant with LTBP4-related CL, 
resulting in overlapping data points.  

 

81 



4.1.4. Discussion  

The results in this study show significant reduction of the elastic (E) and viscoelastic (VE) 

moduli and significant increase of the retraction time (RT) of the skin of CL patients irrespective 

of the etiology of the disease. Individuals with acquired or late onset CL had similar reductions 

in VE compared to controls as individuals with ELN, LTBP4 or ATP6V0A2 mutations, 

suggesting that the disruption of elastic fibers leads to similar biomechanical alterations 

independent of the precise molecular disease mechanisms. VE showed significant inverse 

correlation with age in both CL and control individuals, but in controls the decline started from a 

higher level and was thus steeper. Therefore, VE appears to be a good measure of biomechanical 

aging of the skin, and our observations suggest that CL results in similar changes in skin 

mechanics to aging. VE also offers the best specificity and sensitivity in distinguishing cases 

from controls among the individual variables measured. 

The elastic modulus (E) was significantly lower in CL patients compared to controls. We 

saw no correlation of E with age. This is consistent with previous reports that showed steady E 

values with age with an increase past 70 years189,190, an age range not covered by either enrolled 

cases or controls. The absolute value of E obtained by the DermaLab instrument (E = 5-14 MPa) 

is not directly comparable to E values obtained by other earlier designs of a suction cup device 

with E of 0.05MPa to 0.15MPa18,191. It is plausible that the DermaLab instrument interrogates a 

different part of the stress-strain curve. However, based on the previous studies, E obtained with 
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torsion tests ranged between 0.42 MPa and 0.85MPa192, and between 0.6Mpa and 20MPa for 

tensile tests193. Indeed, mechanical testing of human skin is challenging because of the 

complexity of skin layers, which may be differently engaged by various devices.  

RT showed age dependence and significant difference between cases and controls. In the 

calculation of VE, E is divided by a normalized RT value, as RT is thought to be proportional to 

the viscosity of the skin. However, RT is not only proportional to the viscosity of the skin, but 

also is inversely proportional to the recoil property of the skin and we propose that RT is 

increased in CL patients because of decreased recoil in the absence of functional elastic fibers, 

rather than because of increased viscosity. As a result of such complex biophysical contributions 

to VE, measurements obtained with the DermaLab suction cup device are not directly 

comparable to measurements of skin biomechanics with other devices.  

This study assumes uniform skin thickness (1 mm) in calculating the E and VE moduli. This 

is consistent with relatively constant skin thickness in the age range of 15-70 years by a variety 

of methods, including caliper (0.8-1.4 mm)190 or by ultrasound measurements (0.6-0.9 mm)189. 

Furthermore, previous studies found no difference in the thickness of skin between individuals 

with CL and controls194. Although the results presented here demonstrate that a composite 

variable incorporating Age, E and VE can distinguish between CL patients and controls with 

high specificity and sensitivity, additional studies will be needed to determine how to best 

distinguish CL cases from other connective tissue syndromes. 
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4.2. LTBP4 REGULATES EXTRACELLULAR MATRIX ASSEMBLY AND 

TRANSFORMING GROWTH FACTOR-β SIGNALING 

 

In CL patients, loose skin is a common phenotype in each subtype, caused by different mutant 

genes related to elastic fibers, provide elasticity and enable reversible deformation of the skin in 

response to external forces. In addition to determining the structure and mechanical properties of 

tissues, elastic fibers are also essential for the regulation of the activity of growth factors and 

hence are required for the proper development of multiple organs. In the second part of my work 

I focused on the function of one of the key proteins of the elastic fibers, LTBP4.  In patients 

with LTBP4 mutation, skin laxity, emphysema, hypotonia, and gastrointestinal abnormality are 

major manifestations. LTBP4-mutant skin fibroblasts from patients were used to understand the 

role of LTBP4 in the formation of the elastic fibers and in regulating the activity of TGFβ and the 

contribution of the loss of these functions to the pathogenesis of CL.  

 

4.2.1. Effects of mutations on LTBP4 synthesis, and deposition in to the ECM   

In this subsection 4.2.1, the results have been published in our paper, Human Mutation 2013 
Jan; 34(1): 111-21185. 

Dermal fibroblasts of CL patients with different LTBP4 mutations were used to detect the 

abnormal fibril networks and truncated protein expression. The mutations in these LTBP4-
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defiecent fibroblasts are illustrated in Figure 4.5. All, except one (p.C1286S), of these mutations 

were predicted to result in premature termination of the open reading frame (Table 4.7). 

 

 

 

 

Figure 4.5 Schematic representation of LTBP4, with mutation of dermal 
fibroblasts used in the study  
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Table 4.7 LTBP4 mutations in cutis laxa patients 

Patient ID cDNA Protein Type Domain 

C:II-2 c.1342C>T 

c.4115dupC 

p.Arg448X 

p.Tyr1373IlefsX2 

Nonsense 

Frameshift—PTC 

First 8-Cys domain 

Third 8-Cys domain 

E:II-1 c.3661C>T 

c.3886C>T 

p.Gln1221X 

p.Gln1296X 

Nonsense 

Nonsense 

Second 8-Cys domain 

Fourteenth EGF-like domain 

I:IV-6 c.4127dupC 

c.4127dupC 

p.Arg1377AlafsX27 

p.Arg1377AlafsX27 

Frameshift—PTC 

Frameshift—PTC 

Third 8-Cys domain 

Third 8-Cys domain 

PTC, premature truncation; EGF, epidermal growth factor; LTBP4: latent transforming growth factorβ 
protein 4.  
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Consistent with expectations, the lack of secreted LTBP4 in the media was observed by 

immunoblotting (Figure 4.6) in two mutant fibroblasts, presumably as a result of nonsense-

mediated decay of the mutant mRNA. However, LTBP4 was detected in the media from cultured 

mutant fibroblasts in patient I:IV-6 (homozygous for mutation p.Arg1377AlafsX27) using an 

antibody directed against the N-terminal half of LTBP4. In addition, LTBP4 antibodies against 

the C-terminus failed detect LTBP4 in the conditioned media from the same fibroblasts, 

indicating that escaping nonsense-mediated decay, a truncated, mutant protein was produced. 

The results in Figure 4.6 (p.88), Figure 4.7 (p.89) and Figure 4.8 (p.90) have been included in 

our published paper, Human Mutation 2013 Jan; 34(1): 111-21. 
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Figure 4.6 Protein expression of secreted LTBP4 and fibirllin-1 in conditioned 
media upon cultured control and LTBP4-mutant dermal fibroblasts  
FBN1: fibrillin-1; C1 & C2: control 1 & control 2185 
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Figure 4.7 Immunofluorescence staining for LTBP4 and fibrillin-1 (FBN1).  
Scale bar: 50μm. LTBP4: in green; FBN1: in red. Nuclei were counterstained in blue.185 

 

89 



 

Figure 4.8 Immunofluorescence staining for fibronectin (FN) and LTBP4.  
Nuclei were counterstained in blue. Scale bar: 50μm. FN: in green; LTBP4: in red185  

 

  

90 



Immunofluorescence staining results were consistent with the immunoblotting data. LTBP4 

was undetectable in the ECM of mutant fibroblasts C:II-2 and E:II-1 (Figure 4.7 & Figure 4.8). 

However, using an N-terminal half-specific antibody, LTBP4 was detectable in the ECM in 

patient I:IV-6 with thicker and wavy fibrillin-1 and LTBP4-containing fibers compared to those 

in controls. In control dermal fibroblasts, patchy co-localization between fibrillin-1 and LTBP4 

as well as fibronectin and LTBP4 were revealed. Interestingly, the distribution of LTBP4 and 

fibronectin in patient I:IV-6 was distinct, with little co-localization. 

4.2.2. TGFβ activity in LTBP4-mutant dermal fibroblasts 

This subsection 4.2.2, the results has been published in our paper, Human Mutation 2013 Jan; 
34(1): 111-21185. 

Co-culture of reporter mink lung epithelial cells (MLECs)184 and fibroblasts showed significantly 

increased extracellular TGFβ activity (p <0.001) in two fibroblast lines with greatly diminished 

LTBP4 expression, Interestingly, TGFβ activity in fibroblasts from patient I:IV-6, who expressed 

a C-terminally truncated LTBP4, was not statistically different from the controls (Figure 4.9; 

p=0.108).  
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Figure 4.9 TGFβ activity in controls (n=4) and mutant fibroblasts in co-culture 
experiments 
Measurements were doned for three times and in each experiments, tripilcation for TGFβ activity 
measurements in each cell line has been performed185. 
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The observation of mutation-specific effects on extracellular TGFβ activity guided my 

subsequent experiments. To eliminate mutation-dependent variability, a set of mutant cells, 

(CL28-1, CL45-1, CL52-1, and CL72-1) which had homozygous or compound heterozygous 

loss-of-function mutations was selected (Table 4.8 and Figure 4.5). 

 

 

Table 4.8 LTBP4 mutation in cutis laxa subjects 

Patient 
ID 

cDNA Protein Type  Domain 

CL45-1 c.791delC 
c.2570_2571delGCinsAA 

p.P264fsX300 p.C857X Nonsense 
Nonsense 

Hybrid domain 
11th EGF-like domain 

CL 52-1 c.2570_2571delGCinsAA  
c.4128insC 

p.C857X p.P1376fsX1403 Nonsense 
Frameshift-PTC 

11th EGF-like domain 
3rd 8-Cys domain 

CL 72-1 c.3554delA 
c.3554delA 

p.Q1185fsX1211 
p.Q1185fsX1211 

Frameshift-PTC 
Frameshift-PTC 

2nd 8-Cys domain 
2nd 8-Cys domain 

CL 28-1 c.3856T>A  
c.2377insA 

p.C1286S p.E793fsX797 Point mutation 
Frameshift-PTC 

14th EGF-like domain 
10th EGF-like domain 

PTC, premature truncation; EGF, epidermal growth factor; LTBP4: latent transforming growth factorβ protein 4 
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Conditioned media samples were collected from 4 mutant and 4 control fibroblast lines to 

measure active and total TGFβ levels. To assay for total TGFβ, samples were heated (100°C, 10 

min) to activate latent TGFβ prior to adding them to reporter cells. TGFβ activity measurements 

were normalized by fibroblast cell numbers. Active TGFβ results were subtracted from total 

TGFβ to obtain a calculated value for the latent form of TGFβ. Active, latent (not shown) and 

total forms of TGFβ were elevated in the conditioned media from LTBP4-mutant cells (Figure 

4.10A,B, p <0.001). Additionally, the expression of TGFB1, the major TGFβ isoform in skin 

fibroblasts, was not altered significantly at the mRNA level by qPCR (Figure 4.10C). 
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Figure 4.10 TGFβ activity in media (A, B) and mRNA level of TGFB1 (C) of 
cultured dermal fibroblasts  
C: controls (n=4); P: patients (n=4). p-value: obtained from t-test.  
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4.2.3. Intracellular TGFβ signaling pathway in LTBP4-mutant cells  

To understand the downstream signaling triggered by increased extracellular TGFβ, both the 

canonical (SMAD-dependent) and the non-canonical (SMAD-independent) pathways were 

studied. Surprisingly, despite elevated extracellular TGFβ activity, mutant cells had decreased 

levels of SMAD2 phosphorylation compared to the controls (Figure 4.11A; p=0.014). TGFβ 

supplementation led to a further relative decrease in SMAD2 and ERK phosphorylation (Figure 

4.11B) in patients vs. controls. (p <0.05) TGFBR1 inhibitor treatment eliminated this relative 

reduction (Figure 4.11C).  
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Figure 4.11 Immunoblots probing pSMAD2, pERK and tubulin as a loading 
control and quantitative analysis of the blots. 
A: baseline; B: TGFβ1 stimulation for 90min; C: TGFβ1 + TGFβR1 inhibitor for 90 min. Immunoblots 
were quntified by by densitometry. pSMAD2: phosphorylated SMAD2; TGFBR1 inh.: TGFβ receptor 1 
inhibitor. NS: non-significant. p-value: obtained from t-test. C: contols (n=4); P: patients (n=4)      
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To investigate the mechanisms of reduced TGFβ signaling in LTBP4-mutant dermal 

fibroblasts, I checked the expression of feedback inhibitory by inhibitory SMADs. However, 

reduced pSMAD2 levels were not accompanied with increased abundance of either SMAD7 or 

SMAD6 (Figure 4.12). Therefore, the observation of high extracellular TGFβ activity with 

reduced intracellular TGFβ signaling cannot be explained by increased negative feedback from 

inhibitory SMADs. In fact, both inhibitory SMAD levels were significantly decreased in mutant 

cells. As the expression of both SMAD6 and SMAD7 are under positive transcriptional control 

of the TGFβ signaling pathway, these results indicate that TGFβ-dependent transcriptional 

regulation is also depressed in mutant cells. 
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Figure 4.12 Expression of inhibitory SMADs in LTBP4-mutant fibroblasts 
Tubulin served as a loading control. p-value: obtained from t-test. C: contols; P: patients      

. 

4.2.4. Discussion 

4.2.4.1. LTBP4 mutations impair ECM assembly 

The following quoted statements have been published in our paper, Human Mutation 2013 
Jan; 34(1): 111-21185. 

All, except one (p.C1286S), of these mutations were predicted to result in premature termination 

of the open reading frame. The results showed different microfibril assembly would happen in 

different mutant loci in LTBP4. ″A mutation, p.Arg1377Alafs*27 (Patient I:IV-6 ), partially 

escaped nonsense-mediated decay (NMD), producing significant amounts of truncated LTBP4. 

According to immunofluorescence staining, this C-terminally truncated protein altered the 

structure of microfibril bundles by producing thicker and wavier structures. In addition, the 
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colocalization patterns of the mutant LTBP4 with both fibrillin and fibronectin were abnormal. 

In normal fibroblasts, LTBP4 showed patchy colocalization with both fibronectin and with 

fibrillin-1. In contrast, truncated LTBP4 showed more uniform colocalization with fibrillin-1 

microfibrils and reduced colocalization with fibronectin. These findings suggested that the C-

terminal region of LTBP4 may be required for binding fibronectin but was not necessary for 

interacting with fibrillin-1 microfibrils. Loss-of-function mutations did not cause alterations in 

fibrillin-1 microfibril morphology. It is plausible that the C-terminal truncation mutation 

produced these alterations in a gain of function manner. Although the exact molecular 

mechanism remains unclear, uniform binding of truncated LTBP4 to fibrillin-1 microfibrils may 

enhance lateral association with microfibril bundles or impede their normal turnover leading to 

the observed thickening of the bundles. Because the C-terminus of LTBP4 is known to be 

required for cell attachment,79 the interaction of these abnormal bundles with cells may also be 

impaired. Interestingly, in the family of patient I:IV-6, which carried the p.Arg1377Alafs*27 

mutation, all patients had severe gastrointestinal involvement. Thus, fibrillin-1 bundle-size or the 

ability of microfibrils to support cell attachment via LTBP4 may be particularly important for 

gastrointestinal development.″  
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4.2.4.2. Elevated extracellular TGFβ activity with paradoxically reduced intracellular TGFβ 
signaling  

 

I was surprised to find decreased intracellular TGFβ signaling in LTBP4-deficient human dermal 

fibroblasts despite abnormally elevated extracellular TGFβ activity. The binding of TGFβ to 

TGFβ receptors on the cell surface triggers intracellular TGFβ signaling pathways. This ligand-

receptor interaction bridges extracellular and intracellular signals. I hypothesize that TGFβ 

receptor complexes on the cell surface may play a role to attenuate down-stream molecular 

signaling in micro-environments lacking LTBP4. To date, most of the therapeutic approaches to 

connective tissue disorders are designed to block TGFβ signaling but this approach may not be 

applicable to treating LTBP4-related CL patients, as such treatments may further reduce an 

already diminished TGFβ pathway. Thus, it is crucial to discover the mechanisms of TGFβ 

dysregulation in the absence of LTBP4 at the translational or post-translational levels.  

4.3. LTBP4 REGULATES TRANSFORMING GROWTH FACTORβ 

RECEPTOR STABILITY 

In ARCL1C/URDS patients, elevated TGFβ activities, in total, latent and active forms, have been 

detected in my previous experiments (Figure 4.9, above), consistent with previously published 

data3. Loss of cysteine residues were shown to impair functions in both LTBP1 and fibrillin 

proteins195,196. It may link to the dysregulation of TGFβ associated signaling to the pathogenesis 

101 



of phenotypes in patients with cutis laxa 197,198 and other inherited connective tissue disorders, such 

as the Marfan180 and Loeys-Dietz syndromes199. Thus, it is important to understand TGFβ signaling 

furthermore in ARCL1C patients, especially reduced intracellular TGFβ signaling found in my 

results shown above (Chapter 4.2). 

4.3.1. The expression of TGFβ receptors at the mRNA and protein levels 

To test the hypothesis that TGFβ receptors play an essential role in altered TGFβ signaling in 

LTBP4-mutant fibroblasts, the expression of TGFBR1 and TGFBR2 at the mRNA and protein 

levels were investigated. There was no significant difference in the expression of TGFBR1 and 

TGFBR2 mRNAs (Figure 4.13, controls vs patients; p > 0.05). 
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Figure 4.13 RNA levels of TGFBR1 and TGFBR2 among patients and controls 
Quantitative RT-PCR shows similar TGFBR1 and TGFBR2 mRNA expression in control and patient 
dermal fibroblasts. Three replicates of RNA samples were used from each individual. The reference 
gene was GAPDH. Annotions of “n=4x3” indicate triplication of samples from four patients. 
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Immunoblotting was performed to assess the abundance and phosphorylation status of 

TGFβ receptors. Membrane extracts were prepared from fibroblasts and processed for 

immunoblotting to probe for TGFBR1, TGFBR2, TGFBR3 and pTGFBR1. TGFBR1 levels were 

decreased in LTBP4-mutant cells at baseline (Figure 4.14A) and showed a dramatic reduction 

(Figure 4.14B) upon TGFβ supplementation. Although the lower abundance of TGFBR2 in 

mutant cells at baseline was not significantly different from controls, TGFβ treatment resulted in 

a significant reduction of receptor levels (Figure 4.14B). TGFBR1 inhibitor treatment rescued 

depressed TGFBR1 and TGFBR2 levels in mutant fibroblasts, showing that the elimination of 

TGFBR1/TGFBR2 complexes in mutant cells was dependent on TGFBR1 activity (Figure 

4.14C). There was no significant difference in TGFBR3 levels between control and patient 

groups under any of the treatment conditions.  
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Figure 4.14 Reduced pTGFBR1, TGFBR1, TGFBR2 and TGFBR3 in protein level 
among LTBP4-mutant fibroblasts 
Immunoblotting of membrane protein extracts from dermal fibroblasts left untreated (A), treated with 
TGFβ1 (B) or with TGFβ1 and TGFBR1 inhibitor (C). Immunoblots were quantified by densitometry. 
Transferrin receptor (Transferrin R) served as a loading control. Bar graphs show the mean ± SEM, 
pTGFBR1: phosphorylated TGFBR1. Quantifications are shown below the blots, which were 
normalized by the loading control. *: Statistically significant as demonstrated by p < 0.05 obtained with 
a t-test. C: controls (n=4); P: patient (n=4). 
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Phosphorylated TGFBR1 was less abundant in mutant cells both under baseline and 

TGFβ supplementation conditions, but pTGFBR1 levels normalized upon inhibitor treatment 

(Figure 4.14). To determine if pTGFBR1 reduction was caused by an overall reduction of the 

entire TGFBR1 pool or by reduced phosphorylation, I calculated the pTGFBR1/TGFBR1 ratio 

(Figure 4.15), which showed similar proportion of the receptor pool phosphorylated in mutant 

and control cells under baseline conditions as well as significantly higher proportion of the 

receptor pool phosphorylated upon treatment with additional TGFβ1. Thus, TGFBR1 

phosphorylation occurred appropriately in LTBP4-mutant dermal cells, and the main reason for 

reduced TGFβ signaling was an overall reduction of the TGFBR1/TGFBR2 pool. 
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Figure 4.15 The proportion of pTGFBR1/TGFBR1 levels.  
Untreated human dermal fibroblasts cells: (A); cells treated with TGFβ1: (B). Bar graphs show the mean 
± SEM. P-value: obtained with t-test. 
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Figure 4.16 Summary of extracellular and intracellular TGFβ signaling and expression of 
TGFβ receptors in the LTBP4-mutant dermal fibroblasts.  

Reduced expression of TGFβ receptors (TGFBR1 & TGFBR2) potentially leads decreased pSMAD2, pERK and 
SMAD7, accompanying with extracelluar TGFβ activity.  
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4.3.2. The molecular mechanisms of TGFBR internalization and degradation  

The finding of reduced TGFBR1/TGFBR2 levels in LTBP4-deficient cells led me to investigate 

the degradation of TGFβ receptor complexes. The hypothesis was that increased endocytosis 

reduced the levels of TGFBR1/TGFBR2 complexes in LTBP4-deficient cells. For studying the 

half-lives of TGFBR1 and TGFBR2, cells were treated with a protein synthesis inhibitor, 

cycloheximide, and membrane protein extracts were collected at 2 hours, 4 hours, 8 hours and 24 

hours after treatment. The responses of individual cell lines to the cycloheximide treatment 

varied. Therefore, immunoblots of TGFβ receptors of one control and one patient are shown as 

representative examples (Figure 4.17). The quantification of protein levels for four control and 

four LTBP4-mutant dermal fibroblasts based on immunoblotting experiments is shown in Figure 

4.18.  
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Figure 4.17 Immunoblotting for TGFβ receptors after cycloheximide treatment 
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Figure 4.18 Densitometric quantification of immunoblots probing for TGFBR1 and 
TGFBR2 after cycloheximide treatment. 
x-axis: timepoints after cycloheximide treatement. C: control; P: patient 
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The expression of TGFBR1 and TGFBR2 were relatively steady at 24 hours of 

cycloheximide treatment. At 8 hours of cycloheximide treatment, TGFβ receptor levels showed 

marked reduction in patients compared to controls. Thus, TGFBR1 and TGFBR2 levels were 

further quantified by ELISA allowing for more sensitive measurements with higher numbers of 

replicates. Following inhibition of protein synthesis by cycloheximide, I observed accelerated 

decay of both TGFBR1 and TGFBR2 in mutant cells compared to controls by ELISA (Figure 

4.19). 

Two primary endocytic pathways direct endocytic routs of cell surface receptors include 

clathrin-mediated endocytosis and lipid-raft- or caveolae-mediated endocytosis. To explore the 

mechanisms by of TGFBR1 and TGFBR2 degradation, cells were treated with inhibitors of 

clathrin-mediated (monodansylcadaverine; MDC) and caveolin-mediated endocytosis (filipin). 

Both treatments normalized the expression of TGFBR1 and TGFBR2 (Figure 4.20).  
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Figure 4.19 Increased turnover of TGFBR1 and TGFBR2 in LTBP4-mutant 
fibroblasts 
Cells were treated with cycloheximide for 0, 8 and 24 hours. Enzyme-linked immunosorbent assays 
(ELISA) for TGFBR1 (A) and TGFBR2 (B) extracted from control and LTBP4-mutant fibroblasts, were 
performed. Bars indicate the mean ± SEM of three replicates samples for each of the four cases and 
controls. *: p < 0.05 (t-test). 
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Figure 4.20 Endocytosis inhibitor treatment of control and LTBP4-mutant human 
dermal fibroblasts. 
Cells were treated with filipin (A) or mododansyl cadaverine (MDC) (B) and membrane lysates were 
analyzed by immunoblotting. Transferrin receptor (transferrin R) served as a loading control.  
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TGFβ1 with or without TGFBR1 inhibition had no effect on the expression of TGFβ 

receptors in control and patient fibroblasts pre-treated with filipin or MDC (data not shown). As 

endocytosis inhibitors eliminated the differences in the expression of TGFBR1 and TGFBR2 

between patients and controls, I conclude that the potential mechanism of TGFβ receptor 

destabilization is resulted from LTBP4-deficient microenvironments, involving internalization of 

TGFβ receptor complexes.   

Moreover, protein degradation is primarily mediated by two routes, including the 

proteasome pathway and the lysosome pathway. In order to understand the sequential 

degradation pathways of TGFβ receptor complexes. A proteasome inhibitor, lactacystin and a 

lysosome inhibitor, ammonium chloride, were applied to human dermal fibroblasts. Ammonium 

chloride reversed the reduction of TGFBR1 and TGFBR2 proteins caused by LTBP4 deficiency 

(Figure 4.21 A), but lactacystin did not (Figure 4.21 B). Therefore, in LTBP4-mutant cells, TGFβ 

receptors are internalized and degraded by lysosomes.     
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Figure 4.21 Lysosomal degradation of TGFβ receptors in mutant cells 
TGFBR1 and TGFBR2 levels were normalized in mutant cells by the lysosome inhibitor ammonium chloride 
(NH4Cl) (A) but not by the proteasome inhibitor lactacystin (B). Immunoblots were quantified by densitometry. 
The transferrin receptor (transferrin R) served as a loading control. Bar graphs show the mean ± SEM, p values 
represent t-tests. C: controls (n=4); P: patient (n=4) 
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4.3.3. Consequences of LTBP4 knockdown on TGFβ signaling and TGFβ receptor 

abundance 

To generate further evidence supporting the function of LTBP4 as a regulator of TGFβ receptor 

stability, I experimentally depleted LTBP4 in normal cells. Antisense morpholino oligonucleotides 

(MO) were used to knock down LTBP4 expression in skin fibroblasts from a healthy donor. Two 

doses of MO created a more efficient (60%) knockdown of LTBP4 compared to a single dose of 

MO (8%; Figure 4.22A). In addition, immunofluorescence staining for LTBP4 showed no 

detectable LTBP4-positive fibers in the ECM after knockdown (Figure 4.23). Therefore, I studied 

the protein expression in LTBP4 knockdown cells treated with a double dose of MO. LTBP4 

knockdown noticeably decreased the expression of TGFBR1, TGFBR2 and pSMAD2, replicating 

my findings in LTBP4-mutant cells (Figure 4.22B). 
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Figure 4.22 Protein expression of LTBP4 knockdown cells.  
(A) LTBP4 protein expression in media in human human fibroblasts treated with control scrambled 
morpholino (CO MO) or antisense LTBP4 morpholino administered once (LTBP4 MO1) or twice 
(LTBP4 MO2). (B) Normal human dermal fibroblasts treated by two doses of LTBP4 antisense 
morpholinos (LTBP4 MO2) or scrambled control morpholinos (CO MO). Immunoblots were probed by 
TGFBR1, TGFBR2, transferrin receptor, pSMAD2, pERK and tubulin. 

  

  

118 



 

 

Figure 4.23 Immunofluorescence staining of the ECM in human dermal fibroblast 
subjected to LTBP4 MO. 
CO MO: control mophorlino oligos, LTBP4 MO: antisense LTBP4 mophorlino administered in two doses Scale 
bar: 50µm  
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4.3.4. Rescue of mutant cells by recombinant LTBP4 treatment  

I next queried if supplementation of recombinant LTBP4 would rescue the molecular phenotype 

of LTBP4-mutant cells. Thus, I overexpressed LTBP4 in HEK293 cells using a lentiviral vector, 

pLOC (Figure 4.24A). A vector expressing red fluorescent protein (RFP) was used to generate 

control HEK293 cells. Conditioned media from these two cell lines were used in subsequent 

experiments. To determine how long it took for LTBP4-mutant human dermal fibroblasts to 

respond to recombinant LTBP4, TGFBR2 levels were measured at different time points after 

treatment by using ELISA and I found that starting 2 days post-treatment, the expression of 

TGFBR2 increased gradually (Figure 4.24B). By 7 days, the expression peaked (Figure 4.24B). I 

therefore compared the expression of TGFβ receptors and signal transduction molecules by 

immunoblotting after 7 days of treatment (Figure 4.25). The expression of pSMAD2, pERK, 

TGFBR1 and TGFBR2 were elevated in LTBP4-mutant dermal fibroblasts treated with 

recombinant LTBP4 compared to controls (Figure 4.25). These findings provide evidence that 

alteration of TGFβ receptor levels in LTBP4-mutant cells is not an epiphenomenon, but is a 

consequence of LTBP4 deficiency. 
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Figure 4.24 Rescue with recombinant LTBP4.  
(A) LTBP4 expression in a HEK 293 cell clone stably transfected with a lentiviral vector expressing 
LTBP4 (+LTBP4) or a control vector expressing red fluorescent protein (+RFP). Blotting for fibrillin-1 
(FBN1) served as a loading control (B) LTBP4-mutant human dermal fibroblasts were treated with 
conditioned media form HEK293 cells overexpressing LTBP4 (Solid bars) or transfected with a control 
vector expressing red fluorescent protein (empty bars) for different durations (Days 0-7).  
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Figure 4.25 TGFβ receptors and TGFβ signaling in LTBP4-mutant cells after the 
treatment recombinant LTBP4. 
LTBP4-mutant human dermal fibroblasts were treated with conditioned media form HEK293 cells 
overexpressing LTBP4 (+LTBP4) or red fluorescent protein (+RFP) for 7 days. Immunoblots were 
probed for TGFBR1, TGFBR2, transferrin receptor (transferrin R), pSMAD2, pERK and tubulin. 
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4.3.5. Discussion  

In the present study, I investigated the role of LTBP4 in TGFβ signal transduction and in 

regulating the stability of TGFβ receptors. Extracellular TGFβ activity has been reported to be 

abnormally elevated in LTBP4-mutant CL patients185, and the involvement of ECM-related 

regulation of TGFβ function in human genetic disease has been studied intensively, such as the 

FBN1 gene mutant in Marfan syndrome. Importantly, both the canonical and non-canonical 

TGFβ signaling pathways were decreased in fibroblasts of LTBP4-mutant CL patients. Upon 

additional TGFβ1 stimulation, the difference in pSMAD2 expression between control and 

LTBP4-mutant cells became greater, representing a further relative decrease in SMAD2 and ERK 

phosphorylation. In addition, reduced amounts of TGFBR1 and TGFBR2 were detected in 

LTBP4-mutant human dermal fibroblasts compared to controls. These results suggested that the 

abnormally low amount of the TGFβ receptor complex attenuated the intracellular TGFβ 

signaling even when the cells encountered elevated extracellular TGFβ activity. These 

observations indicate that LTBP4 is involved in the stabilization of TGFβ receptors on the cell 

surface and prevents internalization. Consistent with this notion, the inhibition of endocytosis 

reduced the discrepancy in the TGFβ receptor expression between control and patient cells.  

 LTBP4 is thought to perform an essentially structural role in elastogenesis and an important 

functional role in regulating TGFβ signal transduction 22. In an Ltbp4S-/- mouse model, lung 

abnormalities were partially rescued when Tgfb2 expression was reduced, initially interpreted as 

123 



evidence for excess TGFβ signaling contributing to pathogenesis2. The interpretation of this 

finding, however, is complicated by the observation of paradoxically elevated TGFβ signaling in 

Tgfb2+/- mice200. Thus, it is possible that decreased TGFβ in Ltbp4S-/- is rescued by 

paradoxically elevated TGFβ signaling caused by the Tgfb2+/- genotype.  

Among LTBP4-mutant CL patients, I found decreased intracellular TGFβ signaling despite 

higher extracellular TGFβ activity compared to controls. TGFβ signaling requires TGFBR1 and 

TGFBR2, which interact upon ligand binding, and the pathway is dynamic, with SMADs 

constantly shuttling between the cytoplasm and the nucleus201. Negative feedback mediated by 

Smad7 with the E3 ubiquitin ligases Smurf1 or Smurf2 has been proposed as an important 

mechanism to induce TGFBR1 degradation202,203. However, the results did not show up-

regulation of either SMAD7 or SMAD6 in LTBP4-mutant dermal fibroblasts. These results 

suggested that the loss of LTBP4 may modify the receptors in a manner that would facilitate 

sequential degradation, contributing to the attenuation of the intracellular pathway. Thus, I 

reasoned that the expression of the TGFβ receptor complex may be altered in a way to explain 

reduced intracellular signaling instead of an upregulation of the inhibitory SMAD negative 

feedback pathway. 

I found that reduced levels of TGFBR1 and TGFBR2 with shorter half-lives in LTBP4-

mutant dermal fibroblasts compared to controls. Thus, LTBP4 plays a role in the stabilization and 

internalization of TGFβ receptors. When there is a lack of LTBP4, TGFβ receptors may become 

less stable and more prone to internalization, reducing the levels of TGFBR1 and TGFBR2 and, 
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consequently, attenuating the downstream signaling. Recently, Vizan et al. reported that TGFβ 

binding triggered the internalization of signaling-competent receptors from the cell surface and 

suggested that receptor dynamics regulated the long-term signaling behavior of TGFβ signaling 

but did not involve TGFβ-induced gene expression in a human keratinocyte cell line204. Unlike in 

Vizan’s study, in our case, internalization did not occur in a context, which allowed continued 

signaling. Moreover, additional TGFβ1 led a further relative decrease in SMAD2 and ERK 

phosphorylation and enhanced the differential expression of pSMAD2 and pERK (Figure 4.11). 

Cell insensitivity to ligands was less likely, as exogenous TGFβ1 further decreased expression of 

intracellular TGFβ signal mediators. Consistent with my findings, several studies suggest that the 

internalization and trafficking of TGFβ receptors have important implications for disease 

mechanisms205,206. Thus, proteins that may manipulate the TGFβ receptor stability, such as 

LTBP4, may facilitate the development of new therapeutic approaches. 

Prior evidence indicated that TGFβ receptors can be internalized via clathrin-dependent145,207 

or lipid raft/caveolae-dependent141,208 endocytosis. Similarly, my results demonstrated that 

treatment with filipin and MDC eliminated the difference in the levels of TGFβ receptor expression 

between control and LTBP4-mutant cells. In addition, TGFBR1 and TGFBR2 levels were 

normalized in mutant cells by the lysosome inhibitor NH4Cl but not by the proteasome inhibitor 

lactacystin. This finding indicates that segregation into the lysosome is the major processes 

involved in the degradation of TGFβ receptors in human dermal fibroblasts. 

 
125 



Importantly, treatment of mutant human fibroblasts recombinant LTBP4 stabilized TGFBR1 

and TGFBR2. As the treatment took 7 days to reach maximal effect, I hypothesize that LTBP4 

did not act in its monomeric form on a cell surface receptor. Rather, to stabilize TGFβ receptors, 

LTBP4 may require incorporation into the ECM, a more time-consuming process than direct 

receptor interaction. These results support my discovery of a new function for the extracellular 

matrix: regulating stability of cytokine receptors. Consistent with increased stability of TGFβ 

receptors, intracellular canonical and non-canonical TGFβ signaling pathways also normalized in 

LTBP4-mutant dermal fibroblasts treated with recombinant LTBP4.  

 In the absence of LTBP4, the dynamics of TGFBR1 and TGFBR2 are altered, and their 

stability is affected, potentially facilitating segregation of the receptors into the endocytic 

pathway. Further studies are required to investigate the interaction of LTBP4, ECM and the 

TGFβ receptor complex to elucidate the precise mechanism by which LTBP4 stabilizes the 

receptors. Many drugs that target TGFβ signaling have been developed, and some have reached 

phase III clinical trials for a couple of disease applications, but most of these drugs are TGFβ 

signaling antagonists. However, in LTBP4-mutant CL patients, ECM normalization may be 

useful as another avenue for drug development in the future. 
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5. CONCLUSION

The ECM regulates cellular proliferation, differentiation, homeostasis and death by interacting 

with dedicated membrane-bound integrin, discoidin and proteoglycan receptors and by regulating 

the activity of soluble cytokines. Accumulating evidence supports complex interactions between 

the ECM, soluble cytokines and their receptors, including ECM-dependent storage, release and 

diffusion of cytokines, proteolytic fragments of ECM molecules activating cytokine receptors, 

signaling crosstalk between ECM and cytokine receptors and multi-domain ECM molecules 

serving as localized, multivalent signal integrators33. My studies highlight a previously 

unrecognized activity of the ECM molecule, LTBP4, in stabilizing complexes of TGFBR1 and 

TGFBR2 for sustained signaling in response to TGFβ (Figure 5.1). In LTBP4-mutant cells, TGFβ 

receptors undergo ligand- and receptor kinase activity-dependent endocytosis and lysosmal 

degradation. 
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Figure 5.1 Model for potential LTBP4 stabilizing TGFβ receptors  
(A) In normal cells, LTBP4 may stabilize TGFBR1 and TGFBR2 via matrix-related molecules (yellow rectangle). 
(B)  In the absence of LTBP4, the TGFBR1 and TGFBR2 complex become less stable and degraded by 
endocytosis. (  ): tan triangles represent possible binding interaction. 
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Experimental knockdown of LTBP4 destabilized the receptors leading to diminished TGFβ 

signaling, whereas supplementation with LTBP4 led to stabilization of the receptors, providing 

three independent lines of evidence for LTBP4 as a regulator of TGFβ receptor stability and activity. 

This new function complements known activities of LTBP4 in elastic fiber assembly and TGFβ 

sequestration22,209. 

The activity of TGFβ receptors is regulated, in part, by segregating the receptor complexes into 

different endocytic compartments. Endocytosis via clathrin coated pits into early endosome 

antigen-1 (EEA1) positive endosomes permits ongoing receptor signaling, whereas segregation 

into lipid rafts followed by caveolin-mediated endocytosis leads to the degradation of the receptor 

complex141. TGFBR3 enhances TGFβ signaling, by serving as a co-receptor of TGFβ and by 

facilitating the clathrin-mediated endocytosis of TGFBR1 and TGFBR2210. TGFβ receptor 

degradation in the absence of LTBP4 did not involve shifting the balance of the receptors from 

clathrin to caveolin-mediated endocytic pathways, as inhibition of either of the pathways stabilized 

the TGFβ receptor complex. Nor did the endocytic elimination of the receptor complex involve 

TGFBR3, as TGFBR3 levels remained unchanged in LTBP4 deficient cells. 

The known degradation pathway of TGFβ receptors involves recruitment of ubiquitin ligases 

Smurf1202 or Smurf2203 to TGFBR1 by SMAD7, causing proteasomal and lysosomal degradation 

of the receptor complex. As SMAD7 is a transcriptional target of TGFβ, it serves as a negative 

feedback to limit the duration and intensity of signaling. As SMAD7 levels were not affected, it is 

plausible that TGFβ receptor degradation occurred by a different mechanism in LTBP4 deficient 
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cells. Consistent with this notion, a proteasome inhibitor did not rescue TGFβ receptor loss in 

mutant cells, but a lysosome inhibitor did. Whereas the exact mechanism, which targets TGFβ 

receptors to degradation in the absence of LTBP4 remains unclear, recruitment of sorting nexins, 

known to traffic TGFβ receptors to lysosomes211, is a likely candidate. 

 The receptor through which the cells sense the presence of LTBP4 and the precise domain of 

LTBP4 serving as a ligand for this putative receptor remain to be identified. Interaction of 

monomeric LTBP4 directly with TGFBR1 or TGFBR2 is unlikely, as the response of cells to 

LTBP4 supplementation takes at least 2 days, consistent with a requirement of LTBP4 to be 

incorporated into a complex, multimeric ECM structure. As LTBP4 is known to support cell 

adhesion and bind heparin 79, it may stabilize TGFβ receptors indirectly, by binding cell surface 

heparan sulfate proteoglycans, such as TGFBR3210 or syndecan-2212. An alternative indirect 

mechanism may involve alterations of integrin binding to fibrillin-1 microfibrils213 containing 

LTBP4, with subsequent integrin-TGFβ receptor crosstalk214. 

 Those findings are relevant to understanding of the molecular mechanisms and to developing 

treatments for a range of inherited and complex diseases. ARCL1C is a rare recessive disorder 

associated with prematurely redundant and inelastic skin and disorganized ECM in the dermis. In 

addition to impaired assembly of the elastic fibers, the pathological alterations in these patients 

may be exacerbated by inadequate signaling by TGFβ, a key diver of ECM gene expression. With 

respect to treatment, LTBP4-like ligands may be effective in stabilizing the TGFβ receptor 

complex and allowing for adequate signal intensity and improved ECM production. 
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Several inherited aortic aneurysm syndromes, such as Marfan syndrome and Loeys-Dietz 

syndrome are associated with disorganized vascular ECM and excessive TGFβ signaling 215. In 

Loeys-Dietz syndrome, excess TGFβ activity is considered paradoxical, as it is caused by 

heterozygous loss-of-function mutations in positive regulators of the pathway, such as TGFBR1, 

TGFBR2, TGFB2 or SMAD3. The current hypothesis to explain these observations is that reduced 

canonical TGFβ signaling results in the elimination of negative feedback mechanisms leading to 

excessive non-canonical TGFβ activity215. Molecular disease models and treatment approaches for 

these conditions may be refined by considering the consequences of these mutations and the 

resulting changes in the ECM for the stability of TGFβ receptors.  

Tissue fibrosis is a common consequence of injury and is considered a barrier to tissue repair 

and functional recovery. It is characterized by overproliferation of fibroblasts, excessive TGFβ 

signaling and ECM production8. Increased tissue stiffness is known to serve as a positive feedback 

mechanism by enhancing integrin-mediated TGFβ activation 216. These data, taken together with 

my results, suggest that increased LTBP4-mediated TGFβ receptor stabilization may be an 

additional positive feedback mechanism in this condition. In muscular dystrophy, myofibrillar 

damage results in extensive fibrosis and functional decline. Interestingly, LTBP4 has been 

identified as a modifying gene of muscular dystrophy in both mice217 and humans218, highlighting 

its function in modulating fibrosis.  
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5.1. FUTURE WORK 

All results in my dissertation indicate that altered extracellular matrix lead to abnormal skin 

elasticity and potentially impact on abnormal TGFβ signaling I am planning to conduct the 

following experiments in order to extend the results we found.  

5.1.1. Future work on skin elasticity  

The predictive value (D) was generated from a small data set so it will be interesting to study the 

application and predictive value of D in other inherited connective diseases and in a larger 

sample of CL patients.  

1. The implication of the predictive value (D) in other inherited diseases with hypoelasitc 

skin.  

2. Apply the equation generating the predictive value (D) to other dataset including control 

individuals, CL patients, and other inherited diseases with altered ECM assembly.  

5.1.2. Future work on the impact of LTBP4 on TGFβ signaling 

It is important reproduce my findings in vivo, even though LTBP4 knock-down cell lines 

successfully reproduce my finding in LTBP4-mutant skin fibroblasts, including reduction of 

intracellular TGFβ singling and TGFβ receptor complexes. In vivo may be carried out using skin 

tissue samples from knock-out mice.  
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1. Interrogate the expression of pSMAD2, pERK, TGFBR1 and TGFBR2 in skin

fibroblasts from Ltbp4S-/- mice to establish that our observations are generalizable to 

other mammals. 

2. Obtain skin tissue of Ltbp4S-/- knockout mice and interrogate the expression of same

proteins by immunoblotting to obtain in vivo evidence. 

Additionally, it is highly plausible that LTBP4 in extracellular space stabilizes the TGFβ receptor 

complexes on the cell membrane. Therefore, it is relevant to prove direct or indirect interactions 

between LTBP4 and TGFβ receptors. 

1. Direct interaction: Solid-phase binding essay can be used to demonstrate the potential

direct interaction between TGFβ receptors and LTBP4. 

2. Indirect interaction: Co-immunoprecipitation can be used. If the result of direct

interaction is negative, it is plausible that an auxiliary protein may help to form a large 

complex, composed of LTBP4 and TGFβ receptors, to stabilize receptors on the cell 

membrane. 
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APPENDIX: PCRs for the generation of the pLOC-LTBP4-

MycHis construct 

Vectors designed for the generation of pLOC-LTBP4-MycHis and the schematic representation 

of the constructs are shown in Figure 6.1. The primers used, their sequence, melting temperature 

(Tm), the number of cycles for the reactions, annealing temperatures (AT) and extension 

durations (ED) used in the PCRs, are summarized in Table 6.1. 

# PCR 1: the amplification of approximately 1000 bp, a part of LTBP4 with NotI restriction site, 

ending at exon 35 and excluding the stop codon. 

# PCR 2: the amplification of a 100 bp product, including the last base pairs of exon 35, a Myc 

site, His tag, a stop codon and an AscI restriction site. 

# PCR 3: the complementary parts (exon 35) of products in PCR 1 and PCR 2, annealed and 

hybridized; The whole construct was amplified using short variants of the outside primers. 
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Figure 6.1 Vectors used for the creation of the pLOC-LTBP4-MycHis plasmid.  
The pLOC LTBP4 plasmid with its NotI restriction site (yellow) in the LTBP4 protein (pale blue). The protein is 
terminated by the stop codon (red) and an AscI restriction site (lime green). (b) The Myc (orange) and His 
sequence (purple) of the pcDNA 3.1(+) / MycHis vector were used as template for the addition of the tag to the 
pLOC LTBP4 plasmid via PCR. (c) The desired plasmid, after the insertion of the tag via PCR, with all relevant 
elements combined. Modified from Christine Weckenmann’s Master’s thesis, 2012. 
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Table 6.1 Primers and PCR conditions for the generation of the pLOC-LTBP4-MycHis 

vector 

Product size Name of primers Tm [°C] Primers sequence (5’  3’) 

1000 bp 

hLTBP4_e31_3s 68.6 
GAGGGCGGCCGCTGTGTCAACAC

TGT 

hLTBP4_e35_3a 78.5 
GGCCCGGGGCCGTGCGGGCGCAC

AGT 

100 bp 

hLTBP4_e35_3s 

_Myc 
74.7 

ACTGTGCGCCCGCACGGCCCCGG

GCCGAACAAAAACTCATCTCAGA

AGAG 

pcDNA_His_ 

pLOC_ASCI_a 
69.1 

GGGCGCGCCTCAATGGTGATGGTG

ATGATGA 

1100 bp 

hLTBP4_e31_4s 63.5 GCGGCCGCTGTGTCAACACT 

pcDNA_His_ 

pLOC_ASCI_2a 
61.3 GGCGCGCCTCAATGGTGAT 

Modified from Christine Weckenmann’s Master’s thesis, 2012 
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