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Abstract:

Microarray analysis to simultaneously monitor expression activities in thousands of genes has

become a routine experiment in biomedical research during the past decade. The microar-

ray expression data generated by high throughput experiments may consist of thousands of

variables and therefore pose great challenges to researchers in a wide variety of statistical

and computational issues. A commonly encountered problem by researchers is to detect

genes differentially expressed between two or more conditions and is the major concern of

this thesis.

  In the first part of the thesis, we consider imputation of incomplete data in transcriptomic 

meta-analysis. In the past decade, a tremendous amount of expression profiles are generated 

and stored in the public domain and information integration by meta-analysis to detect dif- 

ferentially expressed (DE) genes has become popular to obtain increased statistical power 

and validated findings. Methods that combine p-values have been widely used in such a ge- 

nomic setting, among which the Fisher’s, Stouffer’s, minP and maxP methods are the most 

popular ones. In practice, raw data or p-values of DE evidence of the entire genome are often 

not available in a subset of genomic studies that are to be combined. Instead, only the de- 

tected DE gene lists under certain p-value threshold (e.g. DE genes with p-value< 0.001) are 

reported in journal publications. The truncated p-value information voided the aforemen- 

tioned meta-analysis methods and researchers are forced to apply less efficient vote counting
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method or näıvely drop the studies with incomplete information. In the thesis, effective

imputation methods were derived for such situations with partially censored p-values. We

developed and compared three imputation methods – mean imputation, single random im-

putation and multiple imputation – for a general class of evidence aggregation methods of

which Fisher, Stouffer and logit methods are special examples. The null distribution of each

method was analytically derived and subsequent inference and genomic analysis frameworks

were established. Simulations were performed to investigate the type I error and power for

univariate case and the control of false discovery rate (FDR) for (correlated) gene expression

data. The proposed methods were also applied to several genomic applications in prostate

cancer, major depressive disorder (MDD), colorectal cancer and pain research.

  In the second part, we investigate statistical properties of adaptively weighted (AW) 

Fisher’s method. The traditional Fisher’s method assigns equal weights to each study, which 

are sim- ple in nature but can not always achieve high power for a variety of alternative 

hypothesis settings. Intuitively more weight should be assigned to the studies with higher 

power to detect the difference between different conditions. The AW-Fisher’s method, where 

the best binary 0/1 weights are determined by minimizing the p-value of the weighted test 

statistics, was proposed in Li and Tseng (2011). By using the order statistics technique, the 

searching space for adaptive weights reduces to linear complexity instead of exponential, 

which reduce the computational complexity dramatically, and a closed form is derived to 

compute the p-values for combining two studies, and an importance sampling algorithm is 

proposed to evaluate the p-values for combining more than two studies. Theoretical properties 

of the AW-Fisher’s method such as consistency and asymptotical Bahadur optimality (ABO) 

are also investigated. Simulations will be performed to verify the asymptotical Bahadur opti- 

mality of the AW-Fisher and compare the performance of AW-Fisher and Fisher’s methods.

  Meta-analysis of multiple genomic studies increases the statistical power of biomarker de- 

tection and therefore the work in this thesis could improve public health by providing more 

effective methodologies for biomarker detection in the integration of multiple genomic studies 

when the information is incomplete or when different hypothesis settings are tested.
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1.0 INTRODUCTION

The rapid development of high-throughput experimental technology in the past decade has

made the generation of genomic data increasingly affordable. This results in the rapid accu-

mulation of experimental data in the public domains. The Gene Expression Omnibus (GEO;

http://www.ncbi.nlm.nih.gov/geo/) is one example that is the largest public database to

store gene expression data.

Among the vast amounts of gene expression data stored in the public domain, it is common

that many of them were generated to test the same or similar hypothesis for the same dis-

ease. Since a single individual study in general only contains a limited number of samples,

the statistical power of the test is relatively low and the generalizability of the conclusions is

often unreliable. In order to improve the statistical power of the tests and provide validated

conclusions, it is very common in practice that researchers attempt to combine information

across different, independent studies. This is done using a class of meta-analysis methods

that are particularly useful in microarray data analysis.

In this thesis, I will emphasize on applying meta-analysis to microarray data. The Chapter 1

is outlined as follows. In section 1.1 I briefly review the microarray data analysis. In section

1.2, univariate meta-analysis methods and microarray meta-analysis are introduced. In

section 1.3 several complementary hypothesis settings are introduced, and several important

questions are posed that will be answered in this thesis and the structure of the dissertation

is outlined.
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1.1 MICROARRAY DATA ANALYSIS

In the past decades, microarray technology has become one of the most important and pow-

erful tools that many researchers use to monitor genome wide expression levels of genes.

In general a microarray may contain thousands of genes for a limited number of samples.

Commonly used statistical methods for microarray data analysis include class comparison,

multiple testing, class discovery, class prediction and pathway analysis and so on. Among

them, the most popular application is to compare the expression of a set of genes for different

conditions (for instance, cases versus controls).

Unlike the traditional epidemiological problems, microarrays monitor gene expression for

thousands of genes simultaneously. The standard data structure of a set of microarray data

are a series of rectangular matrices in which the rows represent the expression of genes and

the columns represent samples. Therefore, one can express the microarrays by ygsk, where

ygsk denotes the gene expression for the gth gene in the sth sample of the kth study for

g = 1, · · · , G; s = 1, · · · , S and k = 1, · · · , K. Usually samples are identified by a clinical

variable rsk indicating their classes. Thus, for a given study k, rsk ∈ {0, 1} represents a two-

class comparison problem and rsk ∈ {1, · · · , S} leads to a multi-class comparison problem.

Microarray meta-analysis usually refers to combining multiple transcriptomic studies for

detecting differentially expressed (DE) genes (or biomarkers) across two or more conditions

(e.g., case and control) with statistical significance and/or biological significance (e.g., fold

change). For DE gene detection, hypothesis testing (such as two-sample t-test) is performed

per gene. Since multiple hypothesis tests are performed, the problem of multiple comparisons

should be addressed. For example, N tests generate an average of αN significant genes or

biomakers at significance level α by chance. Therefore, false discovery rate (FDR) should

be controlled for microarray analysis. A widely used procedure to control FDR is the B-H

method proposed by [Benjamini and Hochberg, 1995].
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1.2 META-ANALYSIS AND MICROARRAY META-ANALYSIS

Meta-analysis refers to systematic methods that integrate information from different, in-

dependent studies by using statistical techniques. Although the name of ”meta-analysis”

was invented by Glass in 1976 [Glass 1976], some of the techniques of meta-analysis can be

traced back to a long time before that. Pearson performed the first meta-analysis in 1904 to

summarize the correlation coefficients across studies of typhoid vaccination (Pearson 1904).

Tippett (1931), Fisher (1948), and Wilkinson (1951) also proposed methods for to combine p-

values. Today, meta-analysis is widely used in epidemiology and the field of medical research.

In meta-analysis, two major types of statistical techniques have been used: combining effect

sizes and combining p-values.

1.2.1 Combining effect sizes

In the methods of combining effect sizes, the fixed effect model and random effect model are

most popular [Cooper et al., 2009]. These methods are usually more straightforward and

powerful to directly synthesize information of the effect size estimates and should be used in

priority when the effect sizes are well-defined and comparable across different studies.

1.2.1.1 Fixed effects model In fixed effect model, one assumes that there is one true

effect size θ and all the differences in observed effects are due to sampling error. In other

words, the fixed effect model can be written as

Tk = θ + εk with εk ∼ N(0, σ2
k),

where Tk is the observed effect size of study k. So each effect size Tk estimates a single mean

effect θ, and differs from this mean effect by sampling error εk.

3



1.2.1.2 Random effects model In fixed effect models, the true effect size is assumed

to the same in all studies, which in many applications is implausible. More generally, in

random effect models, each effect size is assumed to differ from the underlying population

mean θ, due to both sampling error and the underlying population variance, i.e., the random

effect model can be writen as

Tk = θ + εk + ζk with εk ∼ N(0, σ2
k), ζk ∼ N(0, τ 2).

1.2.2 Combining p-values

P-value combination methods are good alternatives of effect size combination methods when

the effect sizes are not directly comparable across different studies. The well-known p-value

combination methods include Fisher’s method [Fisher, 1948], Stouffer’s method [Stouffer,

1949], minP method [Tippett, 1931] and maxP method [Wilkinson, 1951].

These methods can be divided further into two classes: evidence aggregation methods and

order-statistics based methods. The maxP and minP methods are two commonly used order-

statistics based meta-analysis methods, since they use the order statistics of the observed

p-values as their test statistics. On the contrary, Fisher and Stouffer methods are among

the most popular evidence aggregation meta-analysis methods, in which the test statistics

are defined as the sum of selected transformations of p-values for each individual study, i.e,

the evidence is aggregated when new studies are included into the analysis. In this section,

we assume that the null hypothesis is H0 : ∩Kk=1{θk = 0}, where θk is the true effect size of

study k.

1.2.2.1 Evidence aggregation methods For evidence aggregation methods, given a

set of p-values {p1, · · · , pK}, the test statistic is defined as

T =
K∑
k=1

Tk :=
K∑
k=1

F−1
X (pi),

where FX(·) is the cumulative distribution function (CDF) of some random variable X.

4



In theory, any random variable X can be picked up to form a combining p-values method.

However, only those Xs such that the null distribution of T is simple under the null hypoth-

esis H0 are selected. In this thesis, we focus on three popular special cases:

1. Fisher’s method: When X ∼ χ2
2, Tk = F−1

X (pk) = −2 log(pk).

2. Stouffer’s method: When X ∼ N(0, 1), Tk = F−1
X (pk) = Φ−1(pk).

3. Logit method: When X ∼ Logistic(0, 1), Tk = − log pi
1−pi and

√
3
π2

5K+4
K(5K+2)

T ∼ t5K+4

approximately (Hedges and Olkin 1985) under null hypothesis. For K ≥ 5, it has been

further approximated
√

3
π2

5K+4
K(5K+2)

T ∼ N(0, 1).

1.2.2.2 Order-statistic based methods Given a set of p-values {pk}Kk=1, let {p(k)}Kk=1

be its ordered version. Then for order-statistic based methods, the order statistic is selected

as the test statistic (Song and Tseng 2014), i.e.,

T := p(r) ∼ Beta(r,K − r + 1) for 1 ≤ r ≤ K.

Obviously minP and maxP are special cases with r = 1 and r = K respectively.

1.2.3 Microarray meta-analysis

When multiple microarray studies are available, meta-analysis can be used to increase the

statistical power for DE gene detection. Most meta-analytic methods for microarray studies

are based on extensions of the univariate meta-analysis methods used for traditional medical

research. Rhode was the first one to apply the conventional Fisher’s method for combining

multiple microarray studies [Rhode 2002]. In this thesis I will focus on the methods of com-

bining p-values. Since these test statistics have simple analytical forms of null distributions,

they are easy to apply to the genomic setting. Recall that given study k, suppose an appro-

priate test statistic Tk is selected for comparison {rsk, 1 ≤ s ≤ Sk} and the resulting p-values

for each gene g (denoted as pgk) can be derived from the observed expression intensities,

then for each fixed g, the conventional meta-analysis methods can be applied to {pgk}Kk=1 for

information integration. The final p-values obtained for each gene {pg}Gg=1 will be adjusted

by the B-H method to control the FDR, and the DE genes can be detected at different FDR

thresholds.

5



1.3 COMPLEMENTARY HYPOTHESIS SETTINGS

In meta-analysis one needs to combine independent p-values from a set of hypothesis tests.

Given K individual hypotheses H0k : θk = 0 for k = 1, · · · , K, the joint null hypothesis is

defined as H0 : ∩Kk=1{θk = 0}. Obviously H0 is true only if all the effect sizes are 0 and

false when at least one effect size is non-zero. It has been shown that there is no uniformly

most powerful test, and some tests may be more powerful than others when some specific

alternative hypotheses are true.

Two commonly encountered hypothesis settings are defined at what follows:

HSA : H0 :
K⋂
k=1

{θk = 0} versus HA :
K⋂
k=1

{θk 6= 0},

HSB : H0 :
K⋂
k=1

{θk = 0} versus HA :
K⋃
k=1

{θk 6= 0}.

In order for the null hypothesis to be false, in HSA, the alternative hypothesis is the intersec-

tion event that effect sizes of all K studies are non-zero (i.e., the effect sizes in all studies are

zero), while HSB pursues non-zero effects in one or more studies (the alternative hypothesis

is the union event instead of intersection in HSA). Obviously, HSA is more stringent and

more desirable to identify consistency across all studies if the combined studies are homoge-

neous. HSB, however, is useful when heterogeneity in effect sizes is expected.

HSA and HSB are closely related to two often-asked biological questions in genomic studies:

”Which genes are significant in one or more data sets?” and ”Which genes are significant

in all data sets?”. It is easy to know that the maxP method targets on HSA and all other

combining p-value methods target on HSB.

Note that since in practice it is a priori unknown which individual null hypotheses are false,

it is difficult for researchers to select appropriate hypothesis test with high power. In or-

der to find a test which can achieve good power properties across such uncertainty, a new

complementary hypothesis setting HSr is defined as

HSr : H0 versus Hr :
r⋂

k=1

{θk 6= 0} and
K⋃

k=r+1

{θk = 0}.
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In order the null hypothesis is false, at least r effect sizes should be non-zero.

1.4 SCOPE OF THE THESIS

In this thesis, I will focus on methods of combining p-values, which in turn implies that in

order to utilize the methods, the p-value of each study is available in advance. Although

this is generally true in conventional meta-analysis, it is not unusual that in many genomic

studies the raw data are unavailable and only a partial DE gene list is reported with a given

p-value threshold [Griffth et. al., 2006]. Therefore, for some gene g, only the range of pgk is

available, i.e., whether the gene is differentially expressed at a given p-value threshold αk.

The näıve methods which drop either the genes or the studies with incomplete information

are not plausible, because they neglect the rich information contained in the truncated data.

Therefore, there are practical needs to develop meta-analysis approaches that can efficiently

combine truncated p-value information. One solution is to impute the truncated p-values

before applying conventional meta-analysis. In this thesis, three imputation methods - the

mean imputation, the single random imputation and the multiple imputation - are applied.

In chapter 2, I investigate the imputation of truncated p-values for evidence aggregation

meta-analysis methods.

When integrating multiple genomic studies, the expression patterns of genes may vary in a

study specific manner. Li and Tseng proposed an adaptively weighted Fisher’s method (AW-

Fisher) to uncover the altered gene expression pattern across different studies [Li and Tseng,

2011], in which they started with the weighted statistic Ug(wg) = −
∑K

k=1wgk log(pgk), where

wgk ∈ {0, 1} is the weighted assigned to the kth study and wg = (wg1, · · · , wgK). Denoting

by pU(ug(wg)) the corresponding p-value, the adaptively weighted statistic is defined as the

minimal p-value among all possible weights:

V AW
g = min

wg
pU(ug(wg)) and ŵg = arg min

wg
pU(ug(wg)).
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The resulting weight ŵg reflects a natural biological interpretation of whether or not a study

contributes to the statistical significance of a gene.

Recall that the number of studies where the null hypotheses are false is unknown a pri-

ori, the proposed AW-Fisher’s method can maintain good power properties across such an

uncertainty. In chapter 3, the AW-Fisher’s method is generalized to a class of evidence aggre-

gation meta-analysis methods and some properties such as the linear searching complexity,

the asymptotical consistency of the weights and the asymptotic Bahadur optimality of the

proposed tests will be investigated.
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2.0 IMPUTATION OF TRUNCATED P-VALUES FOR EVIDENCE

AGGREGATION META-ANALYSIS METHODS AND ITS GENOMIC

APPLICATION

2.1 INTRODUCTION AND MOTIVATION

Microarray analysis to monitor expression activities in thousands of genes simultaneously has

become routine in biomedical research during the past decade. The rapid development in bio-

logical high-throughput technology results in a tremendous amount of experimental data and

many datasets are available from public domains such as Gene Expression Omnibus (GEO)

and ArrayExpress. Since most microarray studies have relatively small sample sizes and

limited statistical power, integrating information from multiple transcriptomic studies using

meta-analysis techniques is becoming popular. Microarray meta-analysis usually refers to

combining multiple transcriptomic studies for detecting differentially expressed (DE) genes

(or candidate markers). DE gene analysis identifies genes differentially expressed across two

or more conditions (e.g., cases and controls) with statistical significance and/or biological

significance (e.g., fold change). Microarray meta-analysis in many situations refers to per-

forming traditional meta-analysis techniques on each gene repeatedly and then controlling

the false discovery rate (FDR) to adjust p-values for multiple comparison (Borovecki et al

2005; Cardoso et al. 2007; Pirooznia et al. 2007; Segal et al. 2004). Fisher’s method (Fisher

1931) was the first meta-analysis technique introduced in microarray data analysis in 2002

(Rhodes et al. 2002), followed by Tippett’s minimum p-value method in 2003 (Moreau et al.

2003). Subsequently many meta-analysis approaches have been used in this field, including

extensions of existing meta-analysis techniques and novel methods to encompass the chal-
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lenges presented in the genomic setting (Choi et al. 2003, Choi et al. 2007, Moerau et al.

2003, Owen 2009, Li and Tseng 2011, and see the review paper Tseng et. al. 2012).

To combine findings from multiple research studies, one needs to know either the effect size or

the p-value for each study. Since the differences in data structures and statistical hypotheses

across multiple studies may make the direct combination of effect sizes impossible or the re-

sult suspicious, combining p-values from multiple studies is often more appealing. One major

category of combining p-value methods are evidence aggregation methods, which utilize sum-

mation of certain transformations of p-values as their test statistics and evidence will aggre-

gate when new studies are included. Among evidence aggregation methods, Fisher’s method

is the most well-known, in which the test statistic is defined as T Fisher = −2
∑K

k=1 log(pk),

where K is the number of independent studies to be combined and pk is the p-value of

individual study k, 1 ≤ k ≤ K. Under the null hypothesis of no effect size in all studies

and assuming that studies are independent and models for assessing p-values are correctly

specified, T Fisher follows a chi-square distribution with degrees of freedom 2K. Fisher’s

method has been popular due to its simplicity and some theoretical properties, including

admissibility under Gaussian assumption (Birnbaum 1954 & 1955) and asymptotically Ba-

hadur optimality (ABO) under equal non-zero effect sizes across studies (Littel and Folk,

1971). Some variations of Fisher’s methods were proposed by using unequal weights or a

trimmed version of Fisher’s test statistic (Olkin and Saner, 2001). Another widely used ev-

idence aggregation method is the Stouffer’s method, in which the test statistic is defined as

T Stouffer =
∑K

k=1 Φ−1(pk) (Stouffer 1949), where Φ(·) is the inverse CDF of standard normal

distribution.

In order to combine p-values, all p-values across studies should be known. In genomic appli-

cations, however, raw data and thus p-values are often not available and usually only a list of

statistically significant DE genes (p-value less than a threshold) is provided in the publication

(Griffith et. al., 2006). Although many journals and funding agencies have encouraged or en-

forced data sharing policies, the situation has only improved moderately. Many researchers

are still concerned about data ownership, and researchers whose studies are sponsored by
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private funding are not obligated to share data in the public domain. For example, in Chan

et. al (2007), publications of 23 colorectal cancer versus normal gene expression profiling

studies were collected to perform meta-analysis to identify consistently reported candidate

disease-associated genes. However only one raw dataset is available from the Gene Expres-

sion Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/, GSE3294) and most other papers

only provided a list of DE genes (and their p-values) under a pre-specified p-value threshold.

A second motivating example comes from a microarray meta-analysis study for pain research

(LaCroix-Fralish 2011), in which 20 microarray studies of pain models were collected to de-

tect the gene signature and patterns of pain conditions. Among the 20 studies, only one raw

dataset was available on the author’s website and all the other papers reported the DE gene

lists under different thresholds.

In these two motivating examples (details to be shown in Section 4.1 and 4.2), the incom-

plete data forced researchers to either drop studies with incomplete p-values or apply the

convenient vote counting method (Hedges and Olkin, 1980). Dropping studies with incom-

plete information greatly reduces statistical power and is obviously not applicable in the two

motivating examples since only one study was available with complete data. The conven-

tional vote counting procedure is well-known as flawed and low-powered (McCarley et al.,

2001). Ioannidis et al., (2009) attempted to reproduce 18 microarray studies published in

Nature Genetics during 2005-2006. Interestingly, only two were ”in principle” replicated,

six ”partially” replicated and ten could not be reproduced. This result illustrates well the

wide-spread difficulty of obtaining raw data or reproducing published results in the field.

Therefore, developing methods to efficiently combine studies with truncated p-value infor-

mation is an important problem in microarray meta-analysis.

In this chapter, we assume that K = K1 + K2 studies are to be combined. In K1 studies,

the raw gene expression data matrix and sample annotations are available and the complete

p-values pgi (1 ≤ g ≤ G for genes and 1 ≤ i ≤ K1) can be reproduced for meta-analysis.

For the remaining K2 studies, either the raw data or annotation are not available. Only

incomplete information of a DE gene list (under p-value threshold αi for study i) is provided
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from the Journal publication. In this situation, the available information is an indicator

function 1{pgi≤αi} to represent whether the p-value of gene g in study i is smaller than αi

or not. We outline the chapter structure as the following. In Section 2.2, a general class

of evidence aggregation meta-analysis methods under univariate scenario are investigated

for the mean imputation, the single random imputation and the multiple imputation meth-

ods respectively, in which the exact or approximate null distributions are derived under the

null hypotheses and the results are shown for three popular special cases of Fisher, Stouffer

and Logit methods. Simulations for Fisher and Stouffer methods are performed in Section

2.3.1 to demonstrate the correct control of type I errors and the power of different im-

putation methods are compared with näıve methods and complete cases in the univariate

meta-analysis scenario. In Section 2.3.2 simulations of expression profiles were performed to

compare performance of different methods. Simulations were further performed in Section

2.3.3 using 8 major depressive disorder (MDD) and 7 prostate cancer studies where raw

data were completely available and the true best performance (complete case) could be ob-

tained. In Section 2.4 the proposed methods were applied to the two motivating examples.

In Section 2.4.1 the proposed methods were applied to 7 colorectal cancer studies, where the

raw data are available only in 3 studies and the rest of 4 studies only have DE gene lists

under different p-value thresholds. In Section 2.4.2, the proposed methods were applied to

11 microarray studies of pain conditions, where no raw data was available.In Section 2.4.3,

we developed an unconventional application of the proposed methods to facilitate the large

computational and data storage needs in a liquid association meta-analysis. Discussions and

conclusions are included in Section 2.5.
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2.2 METHODS AND INFERENCES

2.2.1 Evidence aggregation meta-analysis methods

Here we consider a general class of univariate evidence aggregation meta-analysis methods

(for gene g fixed), in which the test statistics are defined as the sum of selected transforma-

tions of p-values for each individual study. Without loss of generality, assuming that FX(·)

is the cumulative distribution function (CDF) of a random variable X, the test statistic T

is defined as

T =
K∑
i=1

Tk :=
K∑
k=1

F−1
X (pk), (2.2.1)

where pk is the p-value of study k.

Theoretically X can be any continuous random variable. However, in practice, X is usu-

ally selected such that the test statistic T follows a simple distribution. For instance, when

X ∼ χ2
2, it holds T ∼ χ2

2K (Fisher’s method) and T ∼ N(0, K) holds, provided X ∼ N(0, 1)

(Souffer’s method).

The hypothesis that corresponds to testing the homogeneous effect sizes of K studies by

evidence aggregation methods is a union-intersection test (UIT) (Roy 1953):

H0 :
K⋂
k=1

{θk = 0} versus HA :
K⋃
k=1

{θk 6= 0}. (2.2.2)

In this paper, we focus on two popular special cases:

1. Fisher’s method (Fisher 1931): Tk = −2 log(pk), i.e., X ∼ χ2
2. Under null hypothesis,

T ∼ χ2
2K if studies are independent.

2. Stouffer’s method (Stouffer 1949): Tk = Φ−1(pk), i.e., X ∼ N(0, 1). Under null hypothe-

sis, T ∼ N(0, K) if studies are independent.
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Another example is the logit method (Hedges and Olkin, 1985), where Tk = − log( pk
1−pk

). But

since this method is rarely used in practice, we will not examine it further here. To apply

the evidence aggregation meta-analysis methods mentioned above, all the p-values should be

observed. However, in genomic applications, it often happens that p-values of some studies

are truncated and only their ranges are reported. Two näıve methods are commonly used

to overcome this situation: vote counting method or the available-case method which only

combines studies with observed p-values. The available-case method discards rich informa-

tion contained in the studies with truncated p-values, and therefore the statistical power is

reduced. Hedges and Olkin (1980) showed that the power of vote counting converges to 0

when many studies of moderate effect sizes are combined and therefore the vote counting

method should be avoided whenever possible. In this section, three imputation methods -

mean imputation, single random imputation and multiple imputation method - are proposed

and investigated to combine studies with truncated p-values and the corresponding null dis-

tributions are derived analytically, respectively. We first define some notations.

Assume that K independent studies are to be combined and p1, · · · , pK are the correspond-

ing p-values. Without loss of generality, assume that all the p-values are available in the the

first K1 studies and only the indicator function of DE evidence are reported in the other K2

studies.

Define a pair (ci, xi), i = 1, · · · , K for each study, in which ci is the ”censoring” indicator

satisfying

ci :=

 0, if pi is observed( i.e., 1 ≤ i ≤ K1),

1, if pi is censored( i.e., K1 + 1 ≤ i ≤ K),
(2.2.3)

and xi is the final observed values which is defined as

xi :=

 pi, if ci = 0,

1{pi<αi}, if ci = 1,
(2.2.4)

where αi is the p-value threshold for study i (K1 + 1 ≤ i ≤ K1 + K2 = K). For each

i = 1, 2, · · · , K, one can impute the missing value by p̃i:

p̃i = pi · 1{ci=0} + [qi · 1{xi=1} + ri · 1{xi=0}] · 1{ci=1}
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with qi ∈ (0, αi), and ri ∈ [αi, 1). Section 2.2-2.4 develop three imputation methods for

selection of qi and ri.

2.2.2 Mean imputation method

The simplest imputation method is the mean imputation method, in which qi = αi
2

and

ri = 1+αi
2

. Then the test statistic T̃ for truncated data satisfies

T̃ =
K∑
i=1

T̃i =
K∑
i=1

F−1
X (p̃i) =

K1∑
i=1

F−1
X (pi) +

K2∑
j=1

F−1
X (p̃K1+j) = A+

K2∑
j=1

Bj, (2.2.5)

with A =
∑K1

i=1 F
−1
X (pi) and

Bj = F−1
X (p̃K1+j) = F−1(

αK1+j

2
) · 1{pK1+j<αK1+j} + F−1(

1 + αK1+j

2
) · 1{pK1+j≥αK1+j} (2.2.6)

for j = 1, · · · , K2. Recall that under null hypothesis, the random variable A satisfies

A ∼ χ2
2K1

for the Fisher’s method and A ∼ N(0, K1) for the Stouffer’s method. Obvi-

ously Bj follows a Bernoulli distribution.

The results can be summarized into the following theorem:

Theorem 2.2.1. For j = 1, 2, · · · , K2 and given t, by defining

bj = F−1
X (

αK1+j

2
)− F−1

X (
1 + αK1+j

2
) and c =

K2∑
j=1

F−1
X (

1 + αK1+j

2
), (2.2.7)

it holds

P(T̃ ≤ t) =
∑

(j1,··· ,jK2
)∈{0,1}K2

ΠK2
i=1α

ji
K1+i(1− αK1+i)

1−jiFA(t− c−
K2∑
i=1

jibi), (2.2.8)

where FA(·) is the CDF of A. Given the CDF, the expected values of test statistic T̃ under

null distributions can be calculated as follows.
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1. For the Fisher’s method, it holds

E(T̃ ) = 2K1 − 2

K2∑
j=1

[αK1+j log(
αK1+j

2
) + (1− αK1+j) log(

1 + αK1+j

2
)],

while the expectation of the original T is E(T ) = 2K1 + 2K2 = 2K.

2. For the Stouffer’s method, it holds

E(T̃ ) =

K2∑
j=1

[αK1+jΦ
−1(

αK1+j

2
) + (1− αK1+j)Φ

−1(
1 + αK1+j

2
)],

while the expectation of the original T is E(T ) = 0.

Proof. Note that in this case, for j = K1 + 1, · · · , K, it holds

Bj = F−1
X (

αj
2

) · 1{pi<αj} + F−1
X (

1 + αj
2

) · 1{pi≥αj}. (2.2.9)

Let Yj ∼ Bernoulli(αj). Since pi ∼ Uniform(0, 1) under null hypothesis, it holds

Bj = [F−1
X (

αj
2

)− F−1
X (

1 + αj
2

)]Yj + F−1
X (

1 + αj
2

) = bjYj + cj, (2.2.10)

and therefore

T̃ = A+

K2∑
j=1

bjYj + c with c =

K2∑
j=1

cj. (2.2.11)
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For given t, it holds

P(T̃ ≤ t) = P(A+

K2∑
i=1

biYi + c ≤ t) (2.2.12)

=
∑

(j1,··· ,jK2
)∈{0,1}K2

P(A+

K2∑
i=1

biYi + c ≤ t|Y1 = j1, · · · , YK2 = jK2)P(Y1 = j1, · · · , YK2 = jK2)

=
∑

(j1,··· ,jK2
)∈{0,1}K2

ΠK2
i=1α

ji
i (1− αi)1−jiP(A ≤ t− c−

K2∑
i=1

jibi)

=
∑

(j1,··· ,jK2
)∈{0,1}K2

ΠK2
i=1α

ji
i (1− αi)1−jiFA(t− c−

K2∑
i=1

jibi),

where FA(·) is the CDF of A.

Note that there are 2K2 terms summation in the right hand side of Equ. (2.8), which may

cause severe computing problem when K2 is large. However, when some αi are equal, the

formula can be simplified. Without loss of generality, assume there are r ≥ 1 different p-value

thresholds {β1, · · · , βr} such that

K2∑
j=1

1{αK1+j=β1} = n1, · · · ,
K2∑
j=1

1{αK1+j=βr} = nr and
r∑
l=1

nl = K2, (2.2.13)

then by defining f(j;nl, βl) := Cnl
j β

j
l (1 − βl)

nl−j for j = 0, · · · , nl and l = 1, · · · , r, the

formula can be simplified as

P(T̃ ≤ t) =

n1∑
j1=0

· · ·
nr∑
jr=0

Πr
l=1f(jl;nl, βl)FA(t− c−

r∑
l=1

jl(F
−1
X (

βl
2

)− F−1
X (

1 + βl
2

))). (2.2.14)

Therefore, the summation is reduced from 2K2 terms to Πr
l=1(nl + 1) terms.

From the above theorem one concludes that T̃ is a biased estimator of the original T . This

motivates the following two stochastic imputation methods.

17



2.2.3 Single random imputation method

It is well-known that the mean imputation method will underestimate the variance of

{pK1+j}K2
j=1 (Little and Rubin 2002). Furthermore, Theorem 2.2.1 shows that the test statis-

tic T̃ from the mean imputation method is a biased estimator of the original T . To avoid this

problem, one can replace the mean by randomly simulating qi and ri from Uniform(0, αi)

and Uniform(αi, 1) respectively.

Recall that for j = 1, · · · , K2, Bj = F−1
X (p̃K1+j). The next theorem states that Bj ∼ X

holds under the null hypothesis, i.e., Bj and X follow the same distribution.

Theorem 2.2.2. For j = 1, 2, · · · , K2, it holds

Bj ∼ X. (2.2.15)

Proof. We show that for given t

P(Bi ≤ t) = P(F−1
X (p̃i) ≤ t) = P(p̃i ≤ FX(t))

= P(xi = 1) ·P(p̃i ≤ FX(t)|xi = 1) +P(xi = 0) ·P(p̃i ≤ FX(t)|xi = 0)

= αiP[qi ≤ FX(t)] + (1− αi)P[ri ≤ Fx(t)]

=


αi · FX(t)

αi
= FX(t), if t ∈ (−∞, F−1

X (αi)],

αi + (1− αi) · FX(t)−αi
1−αi = FX(t), if t ∈ (F−1

X (αi),∞)

= FX(t), (2.2.16)

which implies that

Bi ∼ X. (2.2.17)
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The following corollary is a simple consequence of the above theorem.

Corollary 2.2.3. For the single random imputation method, the following facts hold for T̃ :

1. For Fisher’s method, it holds Bj ∼ χ2
2 and T̃ ∼ χ2

2K.

2. For Stouffer method, it holds Bj ∼ N(0, 1) and T̃ ∼ N(0, K).

Therefore, in this case, T̃ is a unbiased estimator of T .

2.2.4 Multiple imputation method

Although the single random imputation method allows the use of standard complete-data

meta-analysis methods, it cannot reflect the sampling variability from one random sample.

The multiple imputation method (MI) overcomes this disadvantage (Little and Rubin 2002).

In MI, each missing value is imputed D times. Therefore {T̃ l}Dl=1 is a sequence of test

statistics which are defined as

T̃ l =
K∑
i=1

F−1
X (p̃li) = A+

K2∑
j=1

Bl
j, for l = 1, · · · , D (2.2.18)

with

qli ∼ Uniform(0, αi) and rli ∼ Uniform(αi, 1). (2.2.19)

The test statistic is defined as the average T = 1
D

∑D
l=1 T̃

l which satisfies,

T = A+

K2∑
j=1

[(
1

D

D∑
l=1

F−1
X (qlK1+j)) · 1{pK1+j<αK1+j} + (

1

D

D∑
l=1

F−1
X (rlK1+j)) · 1{pK1+j≥αK1+j}]

= A+

K2∑
j=1

[(
1

D

D∑
l=1

W l
j) · 1{pK1+j<αK1+j} + (

1

D

D∑
l=1

V l
j ) · 1{pK1+j≥αK1+j}]

= A+

K2∑
j=1

[W j · 1{pK1+j<αK1+j} + V j · (1− 1{pK1+j<αK1+j})] = A+

K2∑
j=1

Zj.

Since Zj = W j with probability αK1+j and Zj = V j with probability 1 − αK1+j, Zj is

a mixture distribution of W j and V j and therefore T − A is a mixture distribution of

{W j, V j, j = 1, · · · , K2}.
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Note that W l
j and V l

j are independent and identically distributed (i.i.d) for fixed j. Denote

by (µWj
, σ2

Wj
), (µVj , σ

2
Vj

) the mean and variance of W l
j and V l

j respectively. By the central

limit theorem one concludes that for large enough D > 0 it holds

W j = (
1

D

D∑
l=1

W l
j) ∼ N(µWj

,
σ2
Wj

D
), and V j = (

1

D

D∑
l=1

V l
j ) ∼ N(µVj ,

σ2
Vj

D
).

Then the following theorem holds.

Theorem 2.2.4. For (j1, · · · , jK2) ∈ {0, 1}K2, by defining U(j1, · · · , jK2) =
∑K2

i=1(jiW i +

(1− ji)V i) which satisfies

U(j1, · · · , jK2) ∼ N[

K2∑
i=1

(jiµWi
+ (1− ji)µVj),

1

D

K2∑
i=1

(jiσ
2
Wi

+ (1− ji)σ2
Vj

)], (2.2.20)

then for sufficiently large D, it holds approximately that

P(T ≤ t) =
∑

(j1,··· ,jK2
)∈{0,1}K2

ΠK2
i=1α

ji
i (1− αi)1−jiP(A+ U(j1, · · · , jK2) ≤ t). (2.2.21)

The detailed notations are left to Section 2.2.5.

Similar to the mean imputation method, the formula can be simplified when some p-value

thresholds are equal, i.e.,

P(T ≤ t) =

n1∑
j1=0

· · ·
nr∑
jr=0

Πr
l=1f(jl;nl, βl)P(A+ U(j1, · · · , jr) ≤ t), (2.2.22)

with U(j1, · · · , jr) =
∑r

l=1(jlF
−1
X (ql) + (nl − jl)F

−1
X (rl)), ql ∼ Uniform(0, βl) and rl ∼

Uniform(βl, 1).
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2.2.5 Some parameters in theorem 2.2.4 for the Stouffer’s and Fisher’s methods

2.2.5.1 Stouffer’s method It is easy to obtain that

µWi
=

∫ α

0

1

α
· Φ−1(t)dt =

1

α

∫ Φ−1(α)

−∞
udΦ(u) = − 1

α
√

2π
e−

[Φ−1(α)]2

2 , (2.2.23)

µVi =

∫ 1

α

1

1− α
· Φ−1(t)dt =

1

1− α

∫ ∞
Φ−1(α)

udΦ(u) =
1

(1− αi)
√

2π
e−

[Φ−1(α)]2

2 .

and

σ2
Wi

= 1− Φ−1(α)

α
√

2π
e−

[Φ−1(α)]2

2 − 1

2πα2
e−[Φ−1(α)]2 ,

σ2
Vi

= 1 +
Φ−1(α)

(1− α)
√

2π
e−

[Φ−1(α)]2

2 − 1

2π(1− α)2
e−[Φ−1(α)]2 . (2.2.24)

2.2.5.2 Fisher’s method Similarly it holds

µWi
=

∫ α

0

1

α
(−2 ln(t))dt = 2[1− lnα],

µVi =

∫ 1

α

1

1− α
(−2 ln(t))dt = 2 +

2α

1− α
ln(α), (2.2.25)

and

σ2
Wi

= E(W 2
i )− µ2

Wi
= 4,

σ2
Vi

= E(V 2
i )− µ2

Vi
= 4− 4α

(1− α)2
ln2 α. (2.2.26)

2.3 SIMULATION RESULTS

Below we evaluate the proposed imputation methods using type I error and power in sim-

ulated data under univariate meta-analysis scenario in Section 2.3.1. In Section 2.3.2, we

extend to simulated microarray data with correlated gene structure and assess the perfor-

mance using the numbers of detected DE genes and false discovery rate (FDR). In Section

2.3.3, the proposed methods were applied to two real microarray datasets.
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2.3.1 Control of type I error and power analysis for univariate meta-analysis

In this subsection we perform simulations to study the type I errors and statistical power of

the proposed methods at various nominal levels of α. Two scenarios were used to investigate

the type I errors and powers respectively at what follows:

(I) Investigation on type I errors: two random samples {Xi}50
i=1 and {Yi}50

i=1 were both drawn

from N(0, 1);

(II) Investigation on powers: random samples {Xi}50
i=1 ∼ N(0, 1) and {Yi}50

i=1 ∼ N(0.3, 1).

T-test was used to compare the means of the two samples and the p-values were generated.

A vector of p-values with 8 entries, (p1, · · · , p8), was generated by repeating the process

eight times and among them 5 were selected for p-value truncation. The observed data

after truncation were (xi, ci) where xi = pi for ci = 0 (1 ≤ i ≤ 3) and xi = 1{pi<α} for

ci = 1 (4 ≤ i ≤ 8). The three proposed imputation methods (mean imputation, single

random imputation and multiple imputation) and available-case method were applied to the

truncated data and the corresponding p-values were calculated by the closed form solutions

forms given in Section 2.2. 1000 iterations were carried out and the proportion of cases that

gave significant difference in means between two samples was evaluated at a given nominal

level α = 0.05, 0.10 or 0.15, which gave the empirical estimation for the type I error and

powers respectively. For a full comparison, we also compared to the result using all eight

raw p-values without truncation. The simulations were repeated 20 times for scenario I and

scenario II to obtain the means and standard errors of the Type I errors and statistical power

respectively.

The error bar plots of the simulation results for Type I errors and statistical power are pre-

sented in Figure 2.1 and 2.2 respectively, where D is set to be 100 in multiple imputation

method. Figure 2.1 shows that all methods controlled their type I errors accurately for dif-

ferent significant level α. This is expected, because for all the methods we have derived their

exact (or good approximated) null distributions. Figure 2.2 shows that the three imputation

methods were more powerful than the available cases method, since they incorporated trun-

cated information neglected by the available-case method. Among the imputation methods,
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the single random imputation method has the lowest power. It took only one random draw

which could be a bad guess of the underlying true value. The mean imputation method

imputed by the mean value. Although it underestimated the variation in the imputation,

the bias seemed relatively small and it offered better power than the single random impu-

tation method. Multiple imputation method and mean imputation method achieved similar

statistical power at various significant level α. Comparing to the complete case situation,

we surprisingly found that mean imputation and multiple imputation methods could recover

most of the statistical power that the complete case situation could achieve (e.g., for α = 0.05

in Fisher’s method, power = 0.807 and 0.804 for mean and multiple imputation compared

to power = 0.887 for complete cases and power = 0.577 for available-case method.) This is

particularly notable since large amount of p-value information has been truncated (5 out of

8 studies) in this simulation.
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Figure 1: Type I error analysis. C: complete cases; A: available-case; Me: mean-imputation;

S: single-imputation; Mu: multiple imputation when α = 5%, 10% and 15%.

In order to investigate the performance of multiple imputation method across different impu-

tation number D, we repeated the two simulation scenarios for multiple imputation method

with D = {20, 40, 60, 80, 100, 120, 140, 160, 180} at significance level α = 0.05. Similarly the
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Figure 2: Power analysis. C: complete cases; A: available-case; Me: mean-imputation; S:

single-imputation; Mu: multiple imputation when α = 5%, 10% and 15%.

error bar plots of the simulation results for Type I errors and powers are presented in Figure

2.3 and 2.4 respectively. Figure 2.3 demonstrates that Type I error for both methods can be

well-controlled for moderately large D. In Figure 2.4 the horizontal dashed lines represent

the power obtained by setting D = 1000, where for Fisher’s method it is 0.805 and for Stouf-

fer’s method it is 0.797. Stouffer’s method appears to converge faster than Fisher’s method

probably because its truncated transformation of W l
j and V l

j is closer to a Gaussian distri-

bution. However, since the null distributions of the proposed multiple imputation method

were derived based on central limit theorem, we recommend to set D being at least 50 for

good approximation.
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Figure 3: Type I error analysis at α = 0.05 for different numbers of imputation D.

2.3.2 Simulated expression profiles

To evaluate performance of the proposed imputation methods in the genomic setting, we

simulated expression profiles with correlated gene structure and variable effect sizes as fol-

lows.

Step 1 Randomly sample gene cluster labels of 10, 000 genes (Cg ∈ {0, 1, 2, · · · , C} and 1 ≤

g ≤ G), such that C = 200 clusters each containing 20 genes are generated (
∑

g 1(Cg =

c) = 20, ∀1 ≤ c ≤ C = 200) and the remaining 6, 000 genes are unclustered genes

(
∑

g 1(Cg = 0) = 6, 000).

Step 2 For any cluster c (1 ≤ c ≤ C) in study k (1 ≤ k ≤ K), sample Σ′ck ∼ W−1(Ψ, 60), where

Ψ = 0.5I20×20 +0.5J20×20,W
−1 denotes the inverse Wishart distribution, I is the identity

matrix and J is the matrix with all the entries being 1. Set vector σck as the square roots

of the diagonal elements in Σ′ck. Calculate Σck such that σckΣckσ
T
ck = Σ′gk.

Step 3 Denote by g
(c)
1 , · · · , g(c)

20 as the indices for genes in cluster c. In other words, C
g

(c)
j

=

c, where 1 ≤ c ≤ 200 and 1 ≤ j ≤ 20. Sample expression of clustered genes by

(X ′
g

(c)
1 nk

, · · · , X ′
g

(c)
20 nk

)T ∼ MVN(0,Σck), where 1 ≤ n ≤ N = 100 and 1 ≤ k ≤ K = 10.
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Sample expression for unclustered genes X ′gnk ∼ N(0, 1) for 1 ≤ n ≤ N and 1 ≤ k ≤ K

if Cg = 0.

Step 4 Sample effect sizes µgk from Unif(0.1, 0.5) for 1 ≤ g ≤ 1, 000 as DE genes and set µgk = 0

for 1, 001 ≤ g ≤ G as non-DE genes.

Step 5 For the first 50 control samples, Xgnk = X ′gnk (1 ≤ g ≤ G, 1 ≤ n ≤ N/2 = 50, 1 ≤ k ≤

K). For cases, Ygnk = X ′g(n+50)k + µgk (1 ≤ g ≤ G, 1 ≤ n ≤ N/2 = 50, 1 ≤ k ≤ K).

In the simulated datasets, K = 10 studies with G = 10, 000 genes were simulated. Within

each study, there were N
2

= 50 cases and 50 controls. The first 1, 000 genes were DE in all 10

studies with effect sizes randomly simulated from a uniform distribution on (0.1, 0.5) respec-

tively, and the remaining 9, 000 were non-DE genes. Therefore, the DE genes have different

effect sizes in different studies and the averaged mean effect size is (0.1 + 0.5)/2 = 0.3. In

each study, 200 gene clusters existed, each containing 20 genes. The correlation structure

within each cluster was simulated from an inverse Wishart distribution.

In the simulations, we performed a two sample t-test for each gene in each study and then

combined the p-values using the imputation methods proposed in this paper. For simplicity,

we viewed the p-values from the last 5 studies as truncated with thresholds (α1, · · · , α5) =

(0.001, 0.001, 0.01, 0.01, 0.05) respectively. In most genomic meta-analysis, researchers often

use conventional permutation analysis by permuting sample labels to compute the p-values

to preserve gene correlation structure. However, such a nonparametric approach is not

applicable in our situation, since raw data are not available in some studies. In order to

control the false discovery rate (FDR), we examined Benjamini-Hochberg (B-H) method

(Benjamini and Hochberg, 1995) and Benjamini-Yekutieli (B-Y) method (Benjamini and

Yekutieli, 2001) separately. The number of DE genes detected at nominal FDR rate 5%

were recorded and the true FDR rates were computed for each meta-analysis method by

FDR =

∑
g 1(gene g detected with g ≥ 1001)

#{genes detected}
.

In the multiple imputation method, D = 50 was selected. Simulations were repeated for 50

times and the mean and standard errors of numbers of DE genes controlled by BH and BY
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methods and their true FDR are reported in Table 1. The results showed that the FDRs were

controlled well for B-H correction but rather conservative for B-Y correction (the true FDR

of B-Y is only 1/10 of B-H at nominal FDR = 5%). This is consistent with the previous ob-

servation that the B-Y adjustment tends to be over-conservative since it guards against any

type of correlation structure (Benjamini and Yekutieli, 2001). As a result, the BH correction

will be used for all applications hereafter. The simulation results showed consistently that

imputation methods had higher statistical power than the available-case method, and the

mean imputation and multiple imputation methods outperform single random imputation

method with similar performance. Surprisingly, the ratio of detected DE genes compared

to complete case increased from 41.6% in available case (263.5/632.9) to 80.4% in mean

imputation (508.6/632.9) using Fisher’s method. The improvement is even more significant

using Stouffer’s method (from 41.8% to 86.7%), while at the same time the true FDRs

were controlled at similar level for all methods. The result shows that imputation methods

successfully utilize the incomplete p-value information to greatly recover the detection power.

We further examined the situation when gene dependence structure does not exist (i.e. Steps

1-3 were skipped and X ′gnk ∼ N(0, 1) ). Table 2.2 shows the true Type I error control under

nominal significance level 5% (i.e.

True type I error =
∑10,000
g=1,001 1(gene g is detected at significance level 0.05)

9,000
). The result shows

adequate type I error control and confirms the validity of the closed form or approximated

formula of different imputation methods in Section 2.

To investigate the impact of D on the performance of multiple imputation method, simula-

tions were performed for D ∈ {20, 30, 50, 100, 150, 200, 250, 300, 500}. The result is shown in

Figure 2.4 which demonstrates that the performance of multiple imputation method is quite

robust for different number of imputation D. We use D = 50 throughout this thesis.

2.3.3 Simulation from complete real datasets

In this subsection, the proposed methods were applied to two real microarray datasets,

including 7 prostate cancer studies (Gorlov 2009) and 8 major depressive disorder (MDD)

27



studies (Wang et al., 2012)). The details are summarized in Table 2.3. For each dataset,

about half of the studies (four for MDD and three for prostate cancer) were randomly selected

with p-value truncation threshold 0.05. Five methods including complete data, available-

case, single random imputation, mean imputation and multiple imputation methods were

applied to the datasets with the simulated incomplete data to impute by Stouffer’s and

Fisher’s methods respectively. The generated p-values were corrected by the B-H method

and the simulation was repeated for 50 times. Figure 1 shows boxplots of the numbers

of differentially expressed (DE) genes at FDR = 1% for different methods in MDD and

FDR = 0.5% for prostate cancer data. The result in Figure 2.6 indicates similar conclusion

that multiple imputation and mean imputation methods detect more DE genes than the

available-case method and single random imputation method. In the MDD example, very few

DE genes (average of 16 and 83 for Fisher and Stouffer respectively) were detected using the

available-case method if half of the studies have truncated p-values. The mean and multiple

imputation methods greatly improved the detection sensitivity. About 95.2% (Fisher) and

96.3% (Stouffer) of DE genes detected by the mean imputation method overlapped with

DE genes detected by complete data analysis in MDD and about 94.7% (Fisher) and 88.1%

(Stouffer) of DE genes detected by the mean imputation method overlapped with DE genes

detected by complete data analysis in prostate cancer, showing the ability of imputation

methods to recover DE gene detection power.

2.4 APPLICATIONS

2.4.1 Application to colorectal cancer

In the first motivating example, we followed Chan et. al. (2007) and attempted to collect 23

colorectal cancer versus normal gene expression profiling studies. Raw data were available in

only one study (Bianchini 2006) and other 4 studies containing more than 100 DE genes were

included in our analysis. We searched the GEO database and identified two additional new

28



studies (Jiang et. al. 2008 and Bellot et. al. 2012). The seven studies under analysis were

summarized in Table 3. After gene-matching, 6, 361 genes overlapped in all three studies

with raw data. The available-case method, the mean imputation method, the single random

imputation method and the multiple imputation method were applied for the seven studies

for the Fisher and Stouffer methods respectively and the results were reported in Table 2.4.

For the single random imputation method and multiple imputation method, the analyses

were repeated 50 times and the mean and standard error of the number of DE genes detected

were reported under FDR control by the BH method. The results demonstrate that for

various FDR thresholds, the mean imputation method and the multiple imputation method

detected more DE genes than the available-case method and the single random imputation

method, which was consistent with previous findings in simulations. Under FDR = 0.01%

control, Fisher and Stouffer mean imputation detected 2.07 (1183/571) and 10.35 (383/37)

times of DE genes than those by available-case method, respectively.
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Table 1: Simulation results for correlated data matrix at nominal FDR=5%

Fisher Stouffer

Method/Mean(s.e.) No. DE True FDR No. DE True FDR

BH Complete cases 632.9(32.5) 0.043(0.0013) 518.6(36.2) 0.046(0.0015)

available-case 263.5(37.4) 0.048(0.0076) 216.8(35.3) 0.064(0.022)

Mean imputation 508.6(35.1) 0.046(0.0016) 449.8(36.2) 0.047(0.0022)

Single imputation 408.9(35.7) 0.043(0.0018) 293.9(32.6) 0.045(0.0027)

Multiple imputation 509.2(35.0) 0.045(0.0015) 463.8(35.7) 0.050(0.0019)

BY Complete cases 354.0(34.4) 0.0041(0.00083) 261.7(33.9) 0.0036(0.00097)

available-case 102.4(21.9) 0.0047(0.0012) 82.8(20.6) 0.0029(0.00096)

Mean imputation 234.5(32.1) 0.0037(0.00074) 203.8(30.8) 0.0034(0.00073)

Single imputation 164.0(27.3) 0.0057(0.0014) 113.5(22.3) 0.0039(0.0015)

Multiple imputation 235.3(32.0) 0.0037(0.00075) 216.1(30.9) 0.0050(0.0010)

30



Table 2: Type I error control for independent data matrix at nominal significance level 5%

Fisher Stouffer

Complete cases 0.050(0.00031) 0.050(0.00037)

available-case 0.050(0.00035) 0.050(0.00033)

Mean imputation 0.050(0.00031) 0.050(0.00033)

Single imputation 0.050(0.00032) 0.051(0.00032)

Multiple imputation 0.050(0.00031) 0.051(0.00031)
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Figure 4: Number of DE genes at significance level 0.05 by multiple imputation method with

different numbers of imputation D. The dashed lines represent the theoretical asymptotic

power obtained by setting D = 1000.
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Table 3: Detailed data sets description

Author Year Platform Sample Size Source

(Case/Controls)

Welsh 2001 HG-U95A 34(25/9) public.gnf.org/cancer/

Prostate Cancer Singh 2002 HG-U95Av2 102(52/50) www.broad.mit.edu

Studies Lapointe 2004 cDNA 103(62/41) GSE3933

(Normal v.s Yu 2004 HG-U95Av2 83(65/18) GSE6919

Primary) Varambally 2005 HG-U133 Plus 2 13(7/6) GSE3325

(6940 genes) Wallace 2008 HG-U133A2 89(69/20) GSE6956

Nanni 2006 HG-U133A 30(23/7) GSE3868

MD1 AMY 2009 HG-U133 Plus 2 28(14/14) Dr. Sibille

MD1 ACC 2009 HG-U133 Plus 2 32(16/16) Dr. Sibille

MD3 ACC 2009 HumanHT-12 44(22/22) Dr. Sibille

MDD Studies MD2 ACC M 2010 HG-U133 Plus 2 18(9/9) Dr. Sibille

MD2 ACC F 2010 HG-U133 Plus 2 26(13/13) Dr. Sibille

(7570 genes) MD2 DLPFC M 2010 HG-U133 Plus 2 28(14/14) Dr. Sibille

MD2 DLPFC F 2010 HG-U133 Plus 2 32(16/16) Dr. Sibille

MD3 AMY 2009 HumanHT-12 42(21/21) Dr. Sibille33
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Figure 5: Number of DE genes detected by Fisher’s or Stouffer’s method. C: complete data;

A: available-case; Me: mean-imputation; S: single-imputation; Mu: multiple imputation
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Table 4: Seven colorectal cancer versus normal tissue expression profiling studies included in analysis

Study No. of samples No. of genes Raw data No. of DE No. of overlapped p-value

availability genes DE genes threshold

Bianchini 2006 24 7403 GSE3294 - - -

Bellot 2012 17 18191 GSE24993 - - -

Jiang 2008 48 18197 GSE10950 - - -

Grade 2007 103 21543 - 1950 635 1e-7

Croner 2005 33 22283 - 130 47 0.006

Kim 2004 32 18861 - 448 143 0.001

Bertucci 2004 50 8074 - 245 97 0.009
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Table 5: Summary of results for colorectal cancer

Fisher Stouffer

FDR Available Mean Single Multiple Available Mean Single Multiple

1% 2587 2855 2172.4(2.90) 2785.4(2.93) 1318 1675 668.4(3.96) 1616.0(2.10)

0.1% 1472 1874 1265.6(2.34) 1805.7(1.50) 299 709 252.7(1.93) 680.5(1.12)

0.01% 571 1183 748.4(1.89) 1138.6(2.00) 37 383 102.5(1.65) 366.7(0.69)
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2.4.2 Application to pain research

The second motivating example comes from the meta-analysis of 20 microarray studies of

pain to detect the patterns of pain (LaCroix-Fralish, 2011). The original meta-analysis uti-

lized DE gene lists from each study under different threshold criteria from p-value, FDR

or fold change and identified 79 ”statistically significant” genes that appeared in the DE

gene lists of four or more studies. The vote counting method essentially lost tremendous

amount of information with flawed statistical inference. When we attempted to repeat the

meta-analysis, raw data of only one of the 20 studies (Barr 2005) could be found. The old

platform used in that study, however, contained only 792 genes and had to be excluded from

further meta-analysis. In the remaining 19 studies, 11 studies contained DE gene lists under

various p-value thresholds (marked bold in Table 2.6) and were included in our application.

In other words, this example contained exclusively only studies with truncated p-values. Ta-

ble 2.7 shows the result of three imputation methods. Fisher and Stouffer identified 280 and

45 genes under 5% FDR control, respectively. Note that the original meta-analysis tested

the 79 genes using an overall binomial test and the statistical significance was controlled at

an overall p-value level, not at a gene-specific FDR level. As a result, DE gene lists from the

new imputation methods are theoretically more powerful and accurate.

To validate the finding, we used the Gene Functional Annotation tool from the DAVID

Bioinformatics Resources website (http://david.abcc.ncifcrf.gov). DAVID applied a modi-

fied Fisher’s exact test to evaluate the association between the DE gene lists and pathways.

Functional annotation of the 280 DE genes from the Fisher’s mean imputation method iden-

tified 208 pathways at FDR= 5%, among which selected important pain-related pathways

were grouped into five major biological categories and displayed in Table 6. In contrast,

the 79 genes from vote counting identified only 14 pathways, of which the expected pain-

related pathways under the categories of inflammation and of differentiation, development

and projection are missing (see Table 2.8). The pathway enrichment q-values after multiple

comparison control of the ”280 gene list” were very significant, while those of the ”79 gene

list” were not. Since the p-value calculation from Fisher’s exact test can be impacted by the
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DE gene size, we further compared the enrichment odd-ratios of genes in the pathway versus

in the DE gene list. Still the enrichment odds-ratios of the ”280 gene list” were generally

much higher than those for the ”79 gene list”, showing stronger pain functional association

from the Fisher’s mean imputation method.

2.4.3 Application to a three-way association method (liquid association)

In the literature, it has long been argued that positively correlated expression profiles are

likely to encode functionally related proteins. Liquid association (LA) analysis (Li 2002) is

an advanced three-way co-expression analysis beyond the traditional pairwise correlations.

For any triplet of genes X, Y and Z, the LA score LA(X, Y |Z) measures the effect that

expression of Z to control on and off of the co-expression between X and Y . For example,

high expression of Z turns on positive correlation between X and Y while when expression

of Z is low, X and Y are negatively or non-correlated. The theory in Li (2002) simplified

the calculation of the LA score to a linear order of sample size and made the genome-wide

computation barely feasible. Suppose we want to combine K studies of the liquid associa-

tion, liquid association p-values of all triplets in all K = 10 studies have to be stored for

meta-analysis. When the number of genes G = 1, 000, the number of p-values to be stored

is G · CG−1
2 ·K = 4.99GB. For a reasonable G = 20, 000 genome-wide analysis, storage size

for all p-values quickly increases to 39.99TB. One may argue that univariate (i.e. triplet

by triplet) meta-analysis may be applied repeatedly to avoid the need of storing all p-value

results. There are many other genomic meta-analysis situations when this may not be feasi-

ble. For example, in GWAS meta-analysis under a consortium collaboration, raw genotyping

data cannot be shared for privacy reasons and only the derived statistics or p-values can be

transferred for meta-analysis. Below we describe how imputation methods can help circum-

vent the tremendous data storage problem.

We performed a small scale of analysis on 566 DE genes previously reported from the meta-

analysis of the eight MDD studies used in Section 3.2 (Wang et al., 2012). The total number
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of possible triplets (X, Y |Z) was 90, 180, 780. By setting up p-value threshold at 0.001, we

only needed to store exact p-values for 2, 094, 123 (∼ 2.32%) triplets and the remaining

were truncated as considered in this paper. Since we also needed to store the truncation

index information, we only needed to store 2 × 2.32% = 4.64% of the information and the

compression ratio was 95.36%. To investigate the loss of information by the truncation,

Figure 2.7 indicates meta-analysis p-values (at − log(p) scale) from Fisher’s method using

full data and Fisher mean imputation method using truncated data. The result shows high

concordance in the top significant triplets, which are the major targets of this exploratory

analysis. Among the top 1000 triplets detected by Fisher’s method using complete p-value

information, 83.7% of them were also identified by the top 1000 by Fisher mean imputation.

The remaining 163 triplets were still in top ranks (rank between 1199 and 4763) using

truncated data in the result of Fisher mean imputation. This result suggests good potential

of applying data truncation to preserve the most informative information and performing

imputation to approximate the finding of the top targets when meta-analysis of ”big data” is

needed. The compression ratio may further increase by a more stringent truncation threshold

but the performance may somewhat decline as a trade-off.

2.5 DISCUSSION AND CONCLUSION

When combining multiple genomic studies by p-value combination methods, the raw data

are often not available and only the ranges of p-values are reported for some studies in

genomic applications. This is especially true for microarray meta-analysis since owners of

many microarray studies tend not to publish their data in the public domain. This incom-

plete data issue is often encountered when one attempts to perform a large-scale microarray

meta-analysis. If raw data are not available, two näıve methods - vote counting method and

available-case method - are commonly used. Since these two methods completely or largely

neglect the information contained in the truncated p-values, and their statistical power is

generally low. In this chapter, we proposed three imputation methods for a general class of
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evidence aggregation meta-analysis methods to combine independent studies with truncated

p-values: mean imputation, single random imputation and multiple imputation methods.

For each proposed imputation method, the null distribution was derived analytically for the

Fisher and Stouffer methods. Theoretical results showed that the test statistics from the sin-

gle random imputation and the multiple imputation methods were unbiased, while those for

mean imputation method were biased. Simulations were performed for the imputed Fisher

method and imputed Stouffer method. The simulation results showed that type I errors

were well-controlled for all methods, which was consistent with our theoretical derivation.

Compared to the naive available-case method, all the imputation methods achieved higher

statistical powers, and the mean imputation and the multiple imputation methods recovered

much of the power that the complete cases method achieved even when half of the studies

had truncated p-values. Furthermore, Supplementary Figure 1 showed that the power of the

multiple imputation method was robust to the number of imputation D. Although small

to moderate D provided good results, we recommend choosing D being larger than 50 to

guarantee that central limit theorem can approximate well. Applications to two motivating

examples in colorectal cancer and pain conditions showed that both mean imputation and

multiple imputation performed among the best in terms of detection sensitivity and biolog-

ical validation by pathway analysis.

In regression-type missing-data imputation methods, the null distribution of the error term

is unknown and is assumed to be normally distributed with equal variance, a setting in which

multiple imputation method usually outperforms mean imputation in practice and in theory

(Little and Rubin 2002), particularly because mean imputation underestimates the true vari-

ance. However, our simulation results demonstrated that the power of the two methods were

quite similar. Two reasons may contribute to this result. First, although the test statistic

from the mean imputation method is biased and neglects the variation of truncated p-values,

its p-value can be computed accurately when the null distribution is derived analytically.

Second and more importantly, we find that the test statistic of mean imputation is in fact

F−1
X (E(p)), while for sufficiently large D, the test statistic of multiple imputation converges

to E(F−1
X (p)) in distribution. It is easy to show that these two quantities are very close
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to each other for a small range of p, provided F−1
X (·) is smooth. Since F−1

X (·) is infinitely

differentiable for the Fisher and Stouffer methods, and the small p-value range in (0, α) are

particularly of interest to us, it is not surprising that the mean imputation method and

multiple imputation method perform similarly. Since the mean imputation method achieved

almost the same power as the multiple imputation method with less computational com-

plexity, it is more appealing and is recommended for microarray meta-analysis, where the

imputed meta-analysis method is performed repeatedly for thousands of genes. In this paper

only the evidence aggregation meta-analysis methods are investigated and further work will

be needed to extended these results to order statistic based methods such as minP and maxP.

Note that although the truncated p-value issue discussed in this chapter may appear similar

to the problem of ”publication bias”, it is fundamentally different. Publication bias refers

to the fact that a study with a large positive treatment effect is more likely to be published

than a study with a relatively small treatment effect, resulting in bias if one only considers

published studies. Denote by p1, p2, · · · , pN the p-values of all conducted studies that should

have been collected. Only a subset of likely more significant p-values p1, p2, · · · , pn are ob-

served. Under this setting, N is unknown and pn+1, · · · , pN are unknown as well. Since the

number of missing publications is unknown, Duval and Tweedie proposed the ”Trim and

Fill” method to identify and correct for funnel plot asymmetry arising from publication bias

(Duval and Tweedie, 2000a and 2000b), in which an estimate of the number of missing stud-

ies is provided and an adjusted treatment effect is estimated by performing a meta-analysis

including the imputed studies. For the truncated p-value problem we consider here, the total

number of studies, the number of studies with truncated p-values and the p-value truncation

thresholds are all known. Therefore, investigation of the imputation of truncated p-values in

meta-analysis is different from the traditional ”publication bias” problem and has not been

studied in the meta-analysis literature, to the best of our knowledge.

In this chapter, the methods we developed mainly target on microarray meta-analysis but the

issue can happen frequently in other types of genomic meta-analysis (e.g. GWAS; Begurn et.

al. 2012). In section 2.4.3, we demonstrated an unconventional application of our methods
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to meta-analysis of liquid association. Due to the large number of triplets tested in the

three-way association, the needed p-value storage is huge. By preserving only the most

informative data by truncation, the storage burden is greatly alleviated and our imputation

methods help approximate and recover the top meta-analysis targets with little power loss.

In an on-going project, we also attempt to combine multiple genome-wide eQTL results via

meta-analysis. In eQTL, regression analysis is used to investigate the association of a SNP

genotyping and a gene expression. It is impractical to store all genome-wide eQTL p-values

as the storage space required is too large (25, 000 genes × 2, 000, 000 SNPS = 5 × 1010 p-

values). A practical solution is to record only the eQTL p-values smaller than a threshold (say

10−4) for meta-analysis, which leads to the same statistical setting as discussed in this paper.

In another project, we combine results from multiple ChIP-seq peak calling algorithms to

develop a meta-caller. Since each peak caller algorithm can only report the top peaks with

p-values smaller than a certain p-value threshold, we again encounter the same truncated

p-value problem in meta-analysis. As more and more complex genomic data are generated

and the need for meta-analysis increases, we expect the imputation methods we propose in

this chapter will find even more applications in the future.
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Table 6: Eleven pain-relevant microarray studies included in the analysis

Study Species No. of DE genes (% of total) type of threshold threshold

Ko 2002 Rat 42(0.5%) fold change 2-fold

Costigan 2002 Rat 197(2.2%) p-value 0.05

Xiao 2002 Rat 117(1.8%) fold change 2-fold

Wang 2002 Rat 166(2.4%) p-value 0.05

Sun 2002 Rat 44(0.6%) p-value 0.05

Bonilla 2002 Mouse 13(0.2%) fold change 2-fold

Kubo 2002 Mouse 53(0.6%) fold change 2-fold

Valder 2003 Rat 139(2.0%) p-value 0.05

Yang 2004 Rat 169(2.6%) p-value 0.05

Ren 2005 Rat 31(15.1%) FDR 0.05

Barr 2005 Rat 47(3.7%) FDR 0.05

Nesic 2005 Rat 36(0.1%) p-value 0.05

Rodriguez 2006 Rat 40(1%) p-value 0.00047

LaCroix-Fralish 2006 Rat 805(17.1%) p-value 0.01

Geranton 2007 Rat 74(0.2%) p-value 0.05

Griffin 2007 Rat 96(1.1%) p-value 0.01

Yukhananrov 2008 Rat 798(2.6%) p-value 0.01

Nishida 2008 Rat 51(0.3%) fold change 2-fold

Levin 2008 Rat 195(1.3%) fold-change 3-fold
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Table 7: Summary of results for patterns of pain

Fisher Stouffer

Mean 280 45

Single 57.04 (1.6228) 16.44(0.8605)

Multiple 280.36(0.8105) 77.56(0.6616)
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Table 8: Summary of pathway analysis by DAVID

280 DE 79 DE

(Fisher’s mean imputation) (Vote counting)

Category Pathway ID pval qval odds ratio pval qval odds ratio

Differentiation, GO : 0030182 ∼ 5.6e-6 0.0006 3.1 0.26 0.95 1.6

development and GO : 0045664 ∼ 1.6e-5 0.0011 4.7 0.37 0.98 1.9

projection GO : 0048666 ∼ 2.5e-6 0.0003 3.6 0.24 0.94 1.7

GO : 0051960 ∼ 6.5e-6 0.0006 4.2 0.29 0.96 1.9

GO : 0031175 ∼ 1.6e-5 0.0012 3.7 0.27 0.96 1.8

GO : 0042995 ∼ 3.6e-11 3.2e-9 3.5 0.033 0.47 1.9

GO : 0043005 ∼ 3.0e-11 3.4e-9 4.3 0.043 0.51 2.0

GO : 0030030 ∼ 1.6e-5 0.0012 3.3 0.24 0.94 1.7

Response to stimuli GO : 0009611 ∼ 3.8e-10 2.8e-7 4.3 2.7e-5 0.016 3.6

GO : 0009719 ∼ 3.2e-8 1.7e-5 3.4 0.35 0.97 1.3

GO : 0048584 ∼ 7.9e-8 2.5e-5 4.9 0.0049 0.34 3.6

GO : 0032101 ∼ 1.1e-5 0.001 4.8 0.043 0.71 2.8

Immune GO : 0050778 ∼ 4.2e-7 7.6e-5 5.9 0.018 0.57 4.0

GO : 0002684 ∼ 1.9e-6 0.0003 4.4 0.0009 0.13 4.2

GO : 0006956 ∼ 3.0e-5 0.0016 11.5 0.011 0.46 8.4

GO : 0002478 ∼ 1.3e-6 0.00022 19.0 0.00098 0.12 10.64

Inflammation GO : 0002673 ∼ 1.4e-6 0.0002 14.1 0.19 0.93 3.8

GO : 0002526 ∼ 7.1e-06 0.0007 6.7 0.012 0.48 4.4

GO : 0050727 ∼ 1.9e-5 0.0012 6.9 0.17 0.92 2.8

GO : 0006954 ∼ 1.5e-5 0.0012 4.1 0.001 0.11 3.8
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Figure 6: − log(p) comparison of the mean imputation method using truncated data with

the complete case method using complete data. Vertical line: x = 71.3. Horizontal line:

y = 72.58. Points right to vertical line are top 1, 000 triplets detected by Fisher’s complete

case method, and points above to horizontal line are top 1, 000 triplets detected by Fisher’s

mean imputation method
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3.0 ON ADAPTIVE WEIGHTING FOR P-VALUE COMBINATION

META-ANALYSIS

3.1 INTRODUCTION OF META-ANALYSIS

3.1.1 Genomic meta-analysis

Meta-analysis techniques have been widely used to combine results from multiple clinical

or genomic studies which test the same or a similar hypothesis. To combine findings from

multiple research studies, one can either combine the effect sizes directly or combine the

p-values. Since the differences in data structures and statistical hypotheses across multiple

studies may make the direct combination of effect sizes impossible or the result suspicious,

combining p-values from multiple studies is often more appealing in omics applications. The

frequently used p-value combination methods include the Fisher’s method (Fisher, 1925),

the Stouffer’s method (Stouffer et al., 1949), the logit method (Lancaster 1961) and minP

and maxP methods (Tippett 1931;Wilkinson 1951).

With the availability of tremendous genomic data in public domain, there is increased in-

terest in combining multiple studies by meta-analysis techniques. In general, the genomic

meta-analysis technique involves firstly performing combining p-values procedures for tens of

thousands of biomarkers simultaneously and then controlling the false discovery rate (FDR)

to correct the p-values for multiple comparisons. Since performing meta-analysis for large
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amount of biomarkers simultaneously is computationally demanding, there is an urgent need

to have a fast computation algorithm to reduce the computing cost. Furthermore, in order

to control the FDR well, the p-values should be evaluated by a closed form solution or ap-

proximated accurately.

In the meta-analysis of genomic studies, in order to make a stronger scientific statement, it

is more important and practical to identify those genes which are differentially expressed in

a consistent pattern across multiple studies, i.e., to detect signals in the majority of studies.

However, most combining p-value methods are targeting on the gain of statistical power by

pooling together independent studies and producing a single combined p-value to show that

at least one hypothesis is false, i.e., they are designed to test the hypothesis setting HSB.

Therefore, those combining p-values procedures can not handle the gene-specific heterogene-

ity, which makes it impossible to make a stronger scientific statement about the biological

findings.

The problem first gained attention in fMRI research (Friston, Penny and Glaser 2005) and

many other authors have tried to address this problem since then. For example, Song

and Tseng (2013) proposed the rth ordered p-value (rOP) method to test the alternative

hypothesis that the signal presents in at least a given percentage of studies. Li and Ghosh

(2014) proposed a class of meta-analysis methods based on summaries of weighted ordered

p-values (WOP). Li and Tseng (2011) proposed an adaptively weighted Fisher’s method

(AW-Fisher’s) for gene expression data analysis to test the conjunction of null hypotheses

against the alternative that at least one is false, where the weight of each study takes the

value 0 or 1 and therefore only the subset of studies yielding the most significant results were

selected for further analysis. Since expression of some important biomarkers may be altered

in a study-specific manner, 0/1 weights reflect a natural biological interpretation of whether

or not a study contributes to the statistical significance of a gene. Similar ideas such as AW-

FEM and AW-Bayesian approach were applied to GWAS meta-analysis (Han and Eskin 2012;

Bhattacharjee et al. 2012), where only the effect sizes in a subset of studies were assumed

to be non-zero in alternative hypotheses (Flutre et al., 2013). In addition to producing a
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single combined p-value, the AW-Fisher’s method also returns a vector of weights indicating

which studies are contributing to the significance of the signal. Therefore, although the AW-

Fisher’s method doesn’t target on testing for partial conjunction hypotheses, one still can

make a stronger scientific statement regarding how many studies share a consistent pattern

when the null hypothesis is rejected.

3.1.2 Adaptively weighted Fisher’s method

In this section we assume there are K studies to be combined and the effect size and cor-

responding p-value of study k is {θk, pk}, and the alternative hypothesis setting being dealt

with in this section is defined as

HSB : H0 :
K⋂
k=1

{θk = 0} versus HB :
K⋃
k=1

{θk 6= 0}. (3.1.1)

For Fisher’s method, the test statistic T Fisher is T Fisher := −2
∑K

k=1 log(pk), which follows

a chi-square distribution with degree freedom of 2K (i.e., T Fisher ∼ χ2
2K) under the null

hypothesis. Note that the Fisher’s method only returns a p-value indicating whether the

test of null hypothesis is statistical significant or not at a given significance level α, but

gives no indication which studies contribute to the statistical significance. Although the

AW-Fisher’s method is designed to test hypothesis setting HSB too, the returned adaptive

weights indicate which studies have contributed to the statistical significance.

Figure 3.1 shows the heatmaps of gene expression for DE genes identified by Fisher’s and

AW-Fisher’s methods for three tissue mouse datasets. The heatmap of Fisher’s method

gives no indication which studies contribute to the statistical significance, but the adaptive

weights of AW-Fisher’s method grouped together the genes sharing the same gene expres-

sion pattern. Therefore, the AW-Fisher’s method can deal with gene-specific heterogeneity,

which makes it very appealing in genomic data analysis.

Now by defining the vector of true weights W ∗ as

W ∗ = (w∗1, · · · , w∗K)T with w∗k = 1(θk 6= 0) for k = 1, · · · , K, (3.1.2)
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then only the studies with nonzero effect size are included in the test statistic TW
∗

and the

tests are more powerful than T 1. However, W ∗ is unknown and can only be approximated.

Given a vector of weights W 6= 0, it holds TW ∼ χ2
2
∑K
k=1 wk

and therefore the corresponding

p-value pW is

pW = P(χ2
2
∑K
k=1 wk

≥ −2
K∑
k=1

wk log(pk)). (3.1.3)

The estimate of W ∗ and the corresponding test statistic of AW-Fisher’s method are defined

as (Li & Tseng 2011)

Ŵ := argminW 6=0{pW} and TAW := − log(min
W 6=0
{pW}). (3.1.4)

Here we show how to find the best weights by a simple toy example. Assume three studies

are to be combined and the corresponding p-values of gene 1 are (1, 1, 0.001). Table 3.1

summarizes every nonzero vector of weights and their corresponding test statistics and p-

values. It is easy to know that (0, 0, 1) are the best weights, since the p-value with respect

to these weights is the most significant.

3.1.3 Open questions of AW-Fisher’s method in Li and Tseng (2011)

It has been shown in Li & Tseng (2011) that AW-Fisher is admissible and have better power 

in a wide range of alternative hypotheses compared to minP, maxP and Fisher’s methods. 

However, there remains several important theoretical and computational questions. As de- 

scribed in Li and Tseng (2011), in order to determine the best weights, theoretically all but 

nonzero vector of weights need to be searched and compared (i.e., 2K − 1), which is very 

time-consuming in genomic studies when the number of the studies to be combined is large. 

For example, if there are p-values of 10, 000 genes across 20 studies to be combined, the 

total number of searches for the best weights will be 10, 000 × (220 − 1) = 10, 485, 750, 000. 

Furthermore, since the null distribution of the test statistic was not provided in Li and 

Tseng (2011), all the p-values were obtained by permutation tests, which further increased 

the computational burden and the p-values are not accurate and inefficient. For example, 

assuming there are 10,000 genes, in order to achieve precision to 10−12, one needs to perform

10   permutations test, which generally is impossible in practice.
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In addition to computing issues, there are also open theoretical questions. The goal of the 

AW-Fisher’s method is to assign weights 1 to the studies with non-zero effect size and 0 to 

the studies with zero effect size. Therefore one question arises naturally that if the adaptive 

weights are asymptotically consistent? Since Fisher’s method is ABO under a simplified 

Gaussian circumstance, one also wants to know if AW-Fisher is ABO.

In the sequel the solutions of two computing problems are shown in Section 3.2 and the 

answers to two theoretical questions are shown in Section 3.3.

3.2 SOLUTIONS TO TWO COMPUTING PROBLEMS

In this section the solutions to two open computational problems in Li & Tseng (2011) are

discussed. A fast algorithm of searching the adaptive weights is provided in Section 3.2.1

and an importance sampling technique is proposed to obtain accurate p-values for K ≥ 3 in

Section 3.2.2.

3.2.1 Fast searching of the adaptive weights

Note that the searching space Ω = {W : W 6= 0} contains 2K − 1 vectors of weights and

therefore searching the whole space Ω to find the adaptive weights Ŵ becomes very expensive

when K is large. The situation becomes more severe when the AW-Fisher’s method is applied

to genomic data, in which the same procedure will be repeatedly performed for thousands

of biomarkers simultaneously. In this section, based on the ordered p-values {p(i)}Ki=1, we

proposed a fast algorithm to find Ŵ by searching only K vectors of weights instead of

searching the whole exponential space. To this end, let’s firstly rewrite Ω as Ω =
⋃K
k=1 Ωk

with Ωk = {W :
∑K

j=1wj = k} for k = 1, 2, · · · , K, then it holds Ŵ = minW∈Ω{pW} =
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min1≤k≤K{minW∈Ωk{pW}}.

Lemma 3.2.1. Denote {p(1), · · · , p(K)} as the ordered version of {p1, · · · , pK}, then for

k = 1, 2, · · · , K, it holds

−2
k∑
i=1

log(p(i)) = max
W∈Ωk

{−2
K∑
i=1

wi log(pi)}.

Proof. The proof is trivial.

Without loss of generality, denote by W k the vector of weights such that

−2
K∑
j=1

wkj log(pj) = −2
k∑
j=1

log(p(j)),

then Lemma 3.2.1 demonstrates that the test statistic involving the first k ordered p-values

will generate the most significant p-value in Ωk, therefore in each Ωk, only one vector of

weights W k has to be considered for further searching, which implies that instead of searching

the whole space Ω, it is enough to search only K vectors of weights to find the adaptive

weights Ŵ , i.e.,

Corollary 3.2.2. TAW satisfies

TAW = − log( min
1≤k≤K

{pWk}) and Ŵ = arg min
1≤k≤K

{pWk}. (3.2.1)

The proposed fast algorithm contains two steps: firstly sorting K p-values and then searching

K vectors of weights. The complexity of sorting a vector of K p-values varies from O(K) to

O(K log(K)) and to O(K2) by different sorting algorithms, and the complexity of searching

K vectors of nonzero weights is of the order O(K). Therefore, the fast searching algorithm

proposed in this section reduces the computational complexity fromO(2K) to at mostO(K2),

which saves a lot of computing time when K is large (see Table 3.2 for comparison).
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3.2.2 Computation of P(TAW > − log(t))

Recall that TAW = − log(t), where t = min1≤k≤K{pWk} = pŴ . Let tj = exp(−χ−2
2j (t)/2) and

Tj =
∏j

i=1 P(i), then

P(TAW > − log(t)) = P(∪Kj=1Tj < tj). (3.2.2)

Since the joint distribution of P(i), i = 1, . . . , K is f(p1, . . . , pK) = K!, 0 ≤ P(1) ≤ P(2) ≤

· · · ≤ P(K) ≤ 1, it is possible to estimate P (TAW > − log(t)) analytically. Without loss of

generality, let’s denote by Aj the event {Tj < tj}, then P(TAW > − log(t)) can be rewritten

as

P(TAW > − log(t)) = P(∪Kj=1Aj) = P(A1) +
K∑
k=2

P(Ak ∩ (∪k−1
j=1A

c
j)), (3.2.3)

where Acj is the complementary event of Aj. The above formula provides an analytical way

to compute the p-value P(TAW > − log(t)). For example, when K = 2,

P(TAW > − log(t)) = P(∪Kj=1Tj < tj) = 1−P(T1 ≥ t1, T2 ≥ t2)

= 1−
∫ 1

t1

∫ 1

t2/p11

2 · 1(p1 ≤ p2)dp2dp1 = 1−
∫ 1

t1

∫ 1

max{t2/p11,p1}
2dp2dp1

= 1−
∫ 1

t1

2[1−max{t2/p1, p1}]dp1.

In the case t21 ≥ t2,∫ 1

t1

2[1−max{t2/p1, p1}]dp1 =

∫ 1

t1

2{1− p1}dp1 = (1− t1)2.

If t21 < t2, ∫ 1

t1

2[1−max{t2/p1, p1}]dp1 =

∫ 1

t1

2dp1 −
∫ 1

√
t2

2p1dp1 −
∫ √t2
t1

2t2/p1dp1

= 2(1− t1)− (1− t2)− t2 log(t2/t
2
1) = 1− t1 + t2 − t2 log(t2/t

2
1).

Therefore, for K = 2, the p-value P(TAW > − log(t)) for given observed test statistic− log(t)

can be computed analytically by

P(TAW > − log(t)) =

2t1 − t21 t21 ≥ t2

t2 log(t2/t
2
1) + 2t1 − t2, t21 < t2

. (3.2.4)
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Theoretically, P(TAW > − log(t)) can be computed analytically for any K ≥ 2. However,

the computation of P(Ak∩(∪k−1
j=1A

c
j)) involves the evaluation of a k-fold integral and the inte-

gration domain becomes very complicated for k ≥ 3, which makes the derivation of the close

form of P(Ak ∩ (∪k−1
j=1A

c
j)) very tedious and fallible. Hence in this paper, we propose to use

importance sampling technique to obtain a numerical approximation of P(TAW > − log(t)).

Importance sampling is a method to reduce variance when using Monte Carlo sampling

method. The idea behind importance sampling is to draw samples from a different distribu-

tion rather than the distribution of interest and assign a weight to each sample based on the

two distributions. This technique is very useful when evaluating an unknown distribution or

obtaining the mean of a certain function.

To evaluate P(TAW > − log(t(p1, . . . , pK))), we use beta-distribution to draw Pi so that we

can ”over-sample” those small p-values that result in a large − log(t).

P(TAW > − log(t)) = E[1(TAW > − log(t))]

=

∫
1(TAW > − log(t))

f(tAW )

f ∗(tAW )
f ∗(tAW )dtAW

= E
∗[1(TAW > − log(t)) ∗W (TAW ])

where W (·) = f(·)/f ∗(·) and E∗(·) is the expectation with respect to f ∗(·).

Under the null hypothesis, Pi ∼ U(0, 1), so the joint distribution of {Pi}Ki=1 is f(p1, . . . , pk) =

1. If we instead using Beta(1, a) distribution to draw Pi, the joint distribution of P1, . . . , PK

will be f ∗(p1, . . . , pK) = (a − 1)K(p1 · · · pK)a−1. Optimal a should be chosen such that

P(TAW > − log(t)) has the smallest variance for a given test statistic − log(t). For a given

K, we predefine test statistics t1, · · · , t20. For each ti, i = 1, · · · , 20, we select different a and

use enough number of samples n such that sd(p̂) < p̂
100

.

In Figure 3.2, the p-values in log-scale for K = 3 and K = 20 are presented and it can be

seen that when − log(t) is large, the p-values in log-scale are almost on a straight line, which
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implies that the p-value of a new test statistic may be obtained by interpolation. Therefore,

for a given K ≥ 3, one can generate a table, where the first column are pre-selected test

statistics − log(t) and the second column are the corresponding p-values of the test statistics

computed by importance sampling technique. Therefore, when a new test statistic comes,

we provide accurate p-value using monotone cubic spline interpolation in log-scale. We will

provide an R-package that can generate p-values for K = 2, 3, · · · , 1000.

3.3 ASYMPTOTICAL PROPERTIES OF THE AW-FISHER’S METHOD

In the last section, a fast algorithm of searching the adaptive weights and an accurate and

fast method of computing the p-value P(TAW > − log(t)) are given, which make the AW-

Fisher’s method more practical and very appealing in real data analysis. In this section we

will investigate some asymptotical properties of the AW-Fisher’s method, such as consistency

of the adaptive weights and the asymptotical Bahadur optimality (ABO).

3.3.1 Assumptions and notations

Suppose we have K independent studies for testing H0 : θ = 0 with sample size nk and

p-value pk for k = 1, · · · , K. Assume that for each k = 1, · · · , K, the statistical test for

study k has exact slope ck(θ), i.e.,

− 2

nk
log(pk)→ ck(θ) as nk →∞.

Obviously by definition, ck(θ) is always non-negative. This assumption states that when

ck(θ) is positive, the p-value pk will decay to 0 exponentially as n goes to infinity.

Furthermore, we assume

lim
n→∞

nk
n

= λk for k = 1, · · · , K,

where n = 1
K

∑K
k=1 nk.
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Obviously n is the averaged sample size and it holds
∑K

k=1 λk = K and − 2
n

log(pk)→ λkck(θ).

This assumption guarantees no study will dominate the others and the sample sizes of all

the studies will tend to infinity at the same rate.

3.3.2 Consistency of the estimated weights Ŵ

In this section we will show that the consistency of the estimated adaptive weights Ŵ, i.e.,

Ŵ → W∗ with probability one when the averaged sample size n tends to infinity. To this

end, we first give the following lemmas.

Without loss of generality, let’s assume the 100(1 − α)% quantile of χ2
m is χ−2

m (α), i.e.,

P(χ2
m ≥ χ−2

m (α)) = α. Obviously χ−2
m (α) → ∞ as α → 0. The next lemma states that

χ−2
2k+2l(α) > χ−2

2k (α) for k, l ≥ 1 and small α.

Lemma 3.3.1. For small enough α > 0 and k, l ≥ 1, it holds

χ−2
2k+2l(α) > χ−2

2k (α). (3.3.1)

Proof. Note that

P(χ2
2k+2l > χ−2

2k (α)) =

∫ ∞
χ−2

2k (α)

xk+l−1e−
x
2

2k+lΓ(k + l)
dx =

∫ ∞
χ−2

2k (α)

(
x

2
)l

Γ(k)

Γ(k + l)

xk−1e−
x
2

2kΓ(k)
dx

> (
χ−2

2k (α)

2
)l

Γ(k)

Γ(k + l)

∫ ∞
χ−2

2k (α)

xk−1e−
x
2

2kΓ(k)
dx = (

χ−2
2k (α)

2
)l

Γ(k)

Γ(k + l)
P(χ2

2k > χ−2
2k (α))

= (
χ−2

2k (α)

2
)l

Γ(k)

Γ(k + l)
α.

Therefore, given k, l ≥ 1, there always exists α > 0 such that (
χ−2

2k (α)

2
)l Γ(k)

Γ(k+l)
> 1 and thus

P(χ2
2k+2l > χ−2

2k (α)) > α, which implies χ−2
2k+2l(α) > χ−2

2k (α).
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Lemma 3.3.1 shows that χ−2
2k+2l(α) > χ−2

2k (α) holds for some small α > 0. Furthermore, the

following lemma shows that in fact χ−2
2k+2l(α)− χ−2

2k (α) will tend to infinity as α→ 0.

Lemma 3.3.2. Given significance level α > 0 and integers k, l ≥ 1, it holds

42l := χ−2
2k+2l(α)− χ−2

2k (α)→∞ as α→ 0.

Proof. Recall that the cumulative distribution function of χ2
k is F (x, k) =

γ( k
2
,x
2

)

Γ( k
2

)
, where γ(·, ·)

is the lower incomplete Gamma function. Therefore, it holds

α = P(χ2
2k ≥ χ−2

2k (α)) = 1−
γ(k,

χ−2
2k (α)

2
)

Γ(k)
= e−

χ−2
2k

(α)

2

k−1∑
j=0

(
χ−2

2k (α)

2
)j

j!
.

Similarly, it holds

α = P(χ2
2k+2l ≥ χ−2

2k+2l(α)) = 1−
γ(k + l,

χ−2
2k+2l(α)

2
)

Γ(k + l)
= e−

χ−2
2k+2l

(α)

2

k+l−1∑
j=0

(
χ−2

2k+2l(α)

2
)j

j!
.

By setting χ−2
2k+2l(α) = χ−2

2k (α) +42l, it holds 42l > 0 for small enough α > 0. Furthermore,

it is easy to show that

e−
42l

2 =

∑k−1
j=0

(
χ−2

2k
(α)

2
)j

j!∑k+l−1
j=0

(
χ−2

2k
(α)+42l

2
)j

j!

→ 0 as α→ 0,

which proves the lemma.

Recall that 42l = χ−2
2k+2l(α) − χ−2

2k (α) is the discrepancy of 100(1 − α)% quantiles between

χ2
2k+2l and χ2

2k. Therefore, Lemma 3.3.2 states that when α is small, in order for χ2
2k+2l to

preserve the same significant level α as χ2
2k does, the l newly included studies should have

very small p-values {pj}k+l
j=k such that −2

∑k+l
j=k log(pj) ≥ χ−2

2k+2l(α)−χ−2
2k (α) . Next theorem

demonstrates that the adaptive weights Ŵ of AW-methods are asymptotically consistent.
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Theorem 3.3.3. Ŵ → W ∗ as n → ∞, i.e. all and only the studies with non-zero effect

sizes will contribute to the test statistic, and the convergent rate of Ŵ is of the order O(n−1).

Proof. Let − 2
n

∑i
j=1 log(pj) →

∑i
j=1 λjcj(θ) = Ci for i = 1, . . . , K. Suppose i studies have

weight 1.

Firstly, if θi+1 6= 0,

lim
n→∞

1− χ2
2i(−2

∑j
j=1 log(pj))

1− χ2
2(i+1)(−2

∑i+1
j=1 log(pj))

→ lim
n→∞

1− χ2
2i(2nCi)

1− χ2
2(i+1)(2nCi+1)

→ lim
n→∞

iCi−1
i

iCi−1
i+1 + nCi

i+1

exp{n(Ci+1 − Ci)} → ∞

since Ci+1−Ci = λi+1ci+1 > 0 and 1−χ2
2i(2nCi) = P(χ2

2i > 2nCi). Therefore study i+1 will

eventually get a weight 1. Therefore, we have shown that if θi+1 6= 0, including the (i+ 1)th

study into analysis results in a more significant p-value which converges to 0 at accelerated

convergent rate ni+1 exp{−ni+1ci+1(θ)}.

Secondly, if there exists a study with zero effect size that has a weight 1. Without loss of

generality, let θi = 0. In order to have weight 1 for study i, one must have

1− χ2
2i(−2

i∑
j=1

log pj) ≤ 1− χ2
2(i−1)(−2

i−1∑
j=1

log pj).

Since

χ2
2i(t) = 1−

i−1∑
j=0

1

j!

(
t

2

)j
exp{− t

2
},
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we have

i−1∑
j=0

1

j!

(
−

i∑
j=1

log pj

)j

exp{
i∑

j=1

log pj} ≤
i−2∑
j=0

1

j!

(
−

i−1∑
j=1

log pj

)j

exp{
i−1∑
j=1

log pj}.

Thus,

pi = exp{log pi} ≤

∑i−2
j=0

1
j!

(
−
∑i−1

j=1 log pj

)j
∑i−1

j=0
1
j!

(
−
∑i

j=1 log pj

)j → n−1(i− 1)Ci−2
i−1C

−i+1
i → n−1(i− 1)C−1

i ,

as n → ∞, i.e. pi ≤ n−1(i − 1)C−1
i → 0. Therefore, eventually, no studies with zero effect

size will have weight 1. Now we have proven that the adaptive weights are asymptotically

consistent. Since the convergent rate of the adaptive weights depends on how fast one assigns

weights 0 to the studies with zero effect size, one concludes from the above discussion that

the convergence rate of the adaptive weights is of order O(n−1).

3.3.3 The asymptotic Bahadur optimality (ABO) of AW-Fisher’s method

In last subsection we proved that the adaptive weights are asymptotically consistent. In

this subsection we will investigate the optimality of the AW-Fisher’s method. One way to

compare the performance of different tests is the Bahadur relative efficiency (Bahadur 1967),

which is defined as the ratio of the exact slopes of different statistical tests and therefore

the test with larger exact slope is viewed as superior. In this paper we will use the Bahadur

relative efficiency as our primary index of comparing combined p-value procedures. In fact,

by assumption − 2
n

log(pi) → ci(θ) as n → ∞, the exact slope measures how quickly the p-

value of a test converges to 0 as n tends to infinity when θ 6= 0, and therefore it can be used

to compare the performances of different tests. Assuming there are two tests for testing the

same hypotheses and have exact slopes c1(θ) and c2(θ) respectively, then the ratio c1(θ)/c2(θ)
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is the exact Bahadur efficiency of test 1 relative to test 2, and c1(θ)/c2(θ) > 1 implies that

p1 converges to 0 faster than p2 for large enough n. Note that the exact Bahadur efficiency

is asymptotic property of two tests, so c1(θ)/c2(θ) > 1 doesn’t imply p1 < p2 for small n.

Lemma 3.3.4. For θ = 0, it holds − 2
n

log(p)→ 0 with probability one, i.e., if the effect size

is 0, the exact slope c(θ) of the statistical test is 0.

Proof. Recall that for θ = 0, the p-value p is distributed uniformly on the interval (0, 1). So

it holds

E(− 2

n
log(p)) = − 2

n

∫ 1

0

log(x)dx =
2

n
→ 0. (3.3.2)

Since − 2
n

log(p) is always positive for p ∈ (0, 1), one concludes that

− 2

n
log(p)→ 0, (3.3.3)

i.e., c(0) = 0.

Lemma 3.3.4 states that non-significant studies have no impact on the exact slope of com-

bined p-value procedures which fits our intuition.

Littel and Folk had shown that given K independent studies with p-values, sample sizes and

exact slopes {(pk, nk, ck(θ))}Kk=1 respectively, the exact slope of Fisher’s method is cFisher(θ) =∑K
k=1 λkck(θ) (Littel and Folk, 1971) and the Fisher’s method is ABO, i.e., cFisher(θ) is the

largest among all combining p-value procedures (Littel and Folk, 1973), under the assumption

θk ≡ θ 6= 0. This assumption is very stringent, since the global null hypothesis H0 :⋂K
k=1{θk = 0} will be rejected if at lease one θk is nonzero. In this paper we will consider the

alternative hypothesis Ha :
⋂r
k=1{θk ≡ θ 6= 0},

⋂K
j=r+1{θj = 0}. Therefore in this case, when

the null hypothesis is false, the exact slope of Fisher’s method is cFisher(θ) =
∑K

k=1 λkck(θ) =
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∑r
k=1 λkck(θ), which is still ABO. In the sequel we will investigate if the AW-Fisher’s method

is ABO under this assumption.

In the sequel we will calculate cAW (θ). Next theorem shows that cAW (θ) = cFisher(θ), i.e.,

the AW-Fisher’s method is ABO.

Theorem 3.3.5. It holds cAW (θ) = cFisher(θ), i.e., the AW-Fisher’s method is ABO.

Proof. Let {p′1, . . . , p′j} is a subset of {p1, . . . , pK} with size j for j = 1, . . . , K, then for a

given test statistic − log(t), it holds

P(TAW ≥ − log(t)) = P(
K⋃
j=1

{−2

j∑
i=1

log(P ′i ) ≥ χ−2
2j (t))})

≤
K⋃
j=1

P({−2

j∑
i=1

log(P ′i ) ≥ χ−2
2j (t)})

= (2K − 1)t

as n goes to infinity.

Since the adaptive weights are consistent, it holds

lim
n→∞

− 2

n
log(t) = lim

n→∞
− 2

n
log(1− χ2

2r(−2
r∑
i=1

log(pi))) =
r∑
i=1

λici(θ),

we have

lim
n→∞

− 2

n
log(P(TAW ≥ − log(t))) ≥ lim

n→∞
− 2

n
{log(t) + log(2K − 1)} =

r∑
i=1

λici(θ).

On the other hand, since

P(TAW ≥ − log(t)) ≥ P({−2
r∑
i=1

log(Pi) ≥ χ−2
2r (t)}) = t,
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by utilizing the consistency of the adaptive weights again, we have

lim
n→∞

− 2

n
log(P(TAW ≥ − log(t))) ≤ lim

n→∞
− 2

n
log(t) =

r∑
i=1

λici(θ),

i.e., cAW (θ) = cFisher(θ) and so AW-Fisher’s method is ABO too under the alternative

hypothesis Ha :
⋂r
k=1{θk ≡ θ 6= 0},

⋂K
j=r+1{θj = 0}.

3.4 SIMULATIONS

3.4.1 ABO of AW-Fisher’s method

In this subsection, the following hypotheses H0 : θ1 = θ2 = 0 vs. HA : θ1 = 0.3, θ2 = 0 

for K = 2 and H0 : θ1 = θ2 = θ3 = 0 vs. HA : θ1 = 0.3, θ2 = θ3 = 0 for K = 3 

were tested. We expect the estimated exact slopes of AW-Fisher’s method and the Fisher’s 

method are similar, provided the sample sizes are large enough. The sample sizes were cho- 

sen as {20, 30, 50, 75, 100, 125, 150, 175, 200, 250, 300, 350,

400, 450, 500, 750, 1000, 2000, 3000, 4000, 5000, 7500, 10000, 12500, 15000, 17500, 20000}. For 

each sample size, 5000 simulations were performed and the mean exact slopes were cal- 

culated.

Figure 3.3 shows clearly that the AW-Fisher’s method is ABO, since the exact slopes of 

AW-Fisher’s method and Fisher’s method converge as n tends to infinity.

3.4.2 Comparison of AW-Fisher and Fisher’s method

In this subsection, K = 20 independent studies are combined, in which 10 studies have

zero effect sizes and 10 studies have nonzero effect sizes. Figure 3.4 compares the p-values
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of AW-Fisher and Fisher’s method and the plot shows that in most cases the AW-Fisher’s 

method will produce more significant p-values.

Table 3.1 summarizes the powers that AW-Fisher and Fisher’s method achieve at different 

significance levels α. The results shows that AW-Fisher is powerful than Fisher’s method.

3.4.3 Accuracy of importance sampling algorithm

In this chapter, we proposed an importance sampling algorithm to obtain accurate p-values 

for K ≥ 2. Since the close form of p-value calculation is available for K = 2, in this section, we 

will compare the p-values generated by the close form and by the importance sampling 

algorithm for K = 2 for validation. Figure 3.5 shows the scatter plots of log-scaled p-values 

generated by close form and importance sampling algorithms for three hypotheses setting 

where 0, 1 or 2 studies have non-zero effect sizes. The plots indicate that the importance sam- 

pling algorithm can reach to the accuracy of 10−30 which validates our numerical algorithm for 

p-value approximation.

3.5 DISCUSSION AND CONCLUSION

The AW-Fisher’s method proposed in Li & Tseng 2011 possesses good properties such as

admissibility and better overall power compared to minP, maxP and Fsiher’s method. Fur- 

thermore, the adaptive weights give the indication which studies contribute to the statistical

significance, which makes it more appealing in genomic data analysis.

In genomic meta-analysis, it is very crucial to have a fast and accurate algorithm to reduce the

computing cost and increase the reliability of the results. However, in Li & Tseng 2011, the

computational complexity of searching the adaptive weights is exponential and the p- values

were evaluated by permutation tests, which is inaccurate and inefficient. Furthermore, some

asymptotical properties such as the consistency of the weights and the asymptotic Bahadur 

optimality (ABO) remain open in Li & Tseng (2011).
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In this chapter, we investigated the theoretical questions and concluded that the adaptive

weights are consistent and the AW-Fisher is also ABO. Furthermore, based on order statistic

technique, we successfully reduce the complexity of searching the best weights from expo-

nential to linear. Now the total cost of the fast searching algorithm involves sorting the

vector of K p-values and searching k non-zero vector of weights, which results in an overall

complexity of at most O(K2) depending on the sorting algorithm used. The close form of

the p-value computation is derived for K = 2, and for K ≥ 3, an importance sampling

algorithm was proposed to evaluate the p-values. Since the p-values are almost linear to

large test statistics in log-scale, for each K ≥ 3, a table containing a column of test statistics

and their corresponding p-values can be generated in a very accurate manner and then saved

for later use. When a new statistic is coming, one can compute the corresponding log-scaled

p-value by cubic interpolation, which is very efficient and accurate.

Since the AW-Fisher has good theoretical properties and the computation of the p-values is 

fast and accurate, we expect it will find more applications in the future.
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Fisher’s method AW method 

Figure 7: Heatmaps of gene expressions for DE genes identified by Fisher’s and AW-Fisher’s

methods in the mouse energy metabolism datasets.
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Table 9: Toy example of finding the adaptive weights

Weights Weighted statistic Null distribution p-value

(1,1,1) 13.82 χ2
6 0.032

(1,1,0) 0 χ2
4 1

(1,0,1) 13.82 χ2
4 0.008

(0,1,1) 13.82 χ2
4 0.008

(1,0,0) 0 χ2
2 1

(0,1,0) 0 χ2
2 1

(0,0,1) 13.82 χ2
2 0.001
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Table 10: Comparison of complexities 2K − 1 vs. K. Total cost: sorting (at most O(K2))

and linear searching (O(K))

K/Methods exponential searching Linear searching

2 3 2

3 7 3

4 15 4

5 31 5

6 63 6

7 127 7

8 255 8

9 511 9

10 1023 10

11 2047 11

12 4095 12

13 8191 13

14 16383 14

15 32767 15
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Figure 8: p-values of AW-Fisher’s method in log scale for K = 3 and K = 20
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Figure 9: Comparison of the approximated exact slopes for AW-Fisher and Fisher’s method

for K = 2 and K = 3. Only the first study has non-zero effect size 0.3.
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Figure 10: Comparison of the p-values of AW-Fisher and Fisher’s method

Table 11: Powers of AW-Fisher and Fisher’s method at different significance levels α

Method/α 10−3 10−5 10−7 10−9

AW 0.98 0.93 0.86 0.77

Fisher 0.97 0.91 0.82 0.72
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Figure 11: Comparison of the p-values in log-scale. Case 1: P1, P2 ∼ Uniform(0, 1); Case

2: P1 ∼ Uniform(0, 1), P2 ∼ Beta(1, 1020); Case 3: P1 ∼ Beta(1, 1015), P2 ∼ Beta(1, 1020).
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4.0 CONCLUSION AND FUTURE WORKS

4.1 CONCLUSION

The rapid development of high-throughput experimental technology in the past decade has

made the generation of genomic data more and more affordable. However, the sample size in

each individual study is usually small and therefore using meta-analysis to combine multiple

genomic studies can increase the statistical power and make it possible to draw a stronger

scientific statement. In this dissertation, I proposed a series of tools for univariate meta-

analysis methods which can be easily applied to genomic data.

In chapter 2, I proposed three imputation methods for evidence aggregation p-value com-

bination methods. In order to apply the conventional p-value combination methods such

as the Fisher’s method or the Stouffer’s method, all the p-values should be known in ad-

vance. However, in many medical publications, usually only a partial DE gene list was

reported with respect to a given p-value threshold, which results in the artificially ”cen-

sored” p-values and the conventional meta-analysis methods can not be applied directly to

those ”censored” p-values. Based on the null hypothesis that the true effect size is zero and

thus the p-value follows uniform distribution on [0, 1], I proposed three imputation meth-

ods (the mean imputation, the single random imputation and the multiple imputation) and

imputed the ”censored” p-values accordingly. The conventional evidence aggregation meta-

analysis methods now can be applied to the imputed p-values. In order to compute the

p-values accurately, the analytical null distributions of the test statistic were derived for
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the mean imputation and the single random imputation methods and the asymptotical null

distribution was derived for the multiple imputation. The proposed imputation methods

were compared with the available case method for simulated expression profiles and two

real prostate cancer and MDD data. The results indicate that the proposed imputation

methods have higher DE gene detection capacity than the available method and among the

imputation methods, the mean imputation and the multiple imputation methods are more

powerful than the single random imputation method. The proposed imputation methods

were also applied to two real examples in colorectal cancer and pain data and the results

indicate that both mean imputation and multiple imputation performed among the best in

terms of detection capacity and biological validation by pathway analysis. The mean impu-

tation method is recommended in practice, since it possesses similar detection capacity as

the multiple imputation method does and it requires lower computational burden.

In chapter 3, I revisited the AW-Fisher’s method. The AW-Fisher’s method aims to assigning

weight 1 to the studies with non-zero effect size and assigning 0 to the studies with zero effect

size. Therefore the estimated adaptive weights provide insights on which studies contribute

to the statistical significance. In chapter 3, I investigated some asymptotical properties of

the AW-Fisher’s method such as the consistency of the adaptive weights and asymptotical

Bahadur optimality (ABO). Furthermore, two computing issues were discussed. Firstly, I

provided a fast algorithm basing on ordered p-values to search for the adaptive weights and

the computational complexity of total cost is reduced from O(2K) to at most O(K2) (at

most O(K2) for sorting the p-values and O(K) for searching the best weights). Secondly,

I provided a closed form to compute the p-values for K = 2 and an importance sampling

algorithm was proposed to compute the p-values for K ≥ 3. Since for each given K ≥ 3, the

p-values in log-scale are almost linear for large test statistic, we provided a fast algorithm to

compute the p-value for a given test statistic. We firstly generate a table of some preselected

test statistics and their corresponding p-values by importance sampling algorithm, then for

any new test statistic we approximate the p-value by monotone cubic interpolation. The

fast algorithm was compared to the closed form for K = 2 and the results indicate that

the numerical approximation can reach the precision of 10−30 which is accurate enough in
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practice. The fast algorithms make the AW-Fisher’s method very useful and appealing in

practice.

4.2 FUTURE WORKS

In the future, I intend to further extend my current work in several ways, including method-

ology and software.

Firstly, I will polish my R codes and make it easy to use. An R package will be developed

for the methods discussed in this dissertation. And the package will be submitted to the

comprehensive R archive network (CRAN, http://cran.r-project.org).

Secondly, I will extend my methodologies into the vertical integration of multiple data types.

So far, I mainly focus on the horizontal genomic meta-analysis, i.e., combining multiple rele-

vant studies (e.g. microarray or GWAS) to increase statistical power. It should be noted that

recent technology has made it possible to simultaneously perform multi-platform genomic

profiling of biological samples and produce multi-dimensional genomic data. Such data de-

scribe the biological properties of the same cohort from different angles and it provides great

opportunity to study the coordination between regulatory mechanisms on multiple levels.

With the rapid decline of sequencing costs, such data will soon accumulate rapidly and the

need for integrating the information contained in the multi-dimensional genomic data will

increase. Since existing tools are designed for one-dimensional or at most two-dimensional

genomic data, novel methods, for example, vertical genomic integrative analysis, for ana-

lyzing multi-dimensional datasets for effective information extraction and hypothesis testing

should be developed.

Unlike horizontal genomic meta-analysis, the vertical genomic integrative analysis, which

integrates multiple studies that measure multiple dimension of genetic information of the
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same cohort (e.g. transcription, genotyp- ing, copy number variation, methylation, miRNA

etc), is more challenging. This is a relatively new research filed and it contains rich topics

and open questions waiting for researchers to solve. In future research I will devote myself

to methodology research of the vertical genomic integrative analysis and their applications.
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