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Currently, depression diagnosis relies primarily on behavioral symptoms and signs, instead of 

underlying brain characteristics, and treatment is guided by trial and error instead of individual 

suitability associated with underlying brain characteristics. Also, previous brain-imaging studies 

attempting to resolve this issue have traditionally focused on mid-life depression using a single 

imaging modality and region-based approach, which may not fully explain the complexity of the 

underlying brain characteristics; especially for late-life depression. We aimed to evaluate and 

compare underlying brain characteristics of late-life depression diagnosis and treatment response 

by estimating accurate prediction models using multi-modal magnetic resonance imaging and 

non-imaging measures. Based on our finding, late-life depression diagnosis and treatment 

response predictors involve measures from different imaging modalities, which are indicative of 

differences in underlying brain characteristics.  
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1.0  INTRODUCTION 

In a given year, approximately 6% of the US population aged 65 and older (i.e. 2 million people) 

is diagnosable with depression not associated with normal aging [Mental Health America]. This 

elderly population above the age of 65 represented 13% (40.3 million people) of the U.S. 

population according to the 2010 census, and is predicted to increase to 19% (72.1 million 

people) in 2030 by the Administration of Aging [Vincent & Velkoff, 2010]. This portion of the 

population is growing fast due to the aging of the baby boomers and the increasing life 

expectancy. As a result, the number of elderly people with late life depression (LLD) is also 

increasing rapidly.   

The current method for classifying mental disorders including LLD is to use the 

guidelines provided by Diagnostic and Statistical Manual of Mental Disorder 5 (DSM 5). 

However, the DSM categorizes mental disorders based on the symptoms experienced by the 

patient. The DSM 5 is criticized for being solely based on observable behavioral patterns of the 

disorders it classifies. It lacks the reliability and validity that could accrue via the use of 

biomarkers of the underlying brain changes. Thus, in order to advance the agenda of 

personalized medicine for persons with mental disorders, it is important to identify biomarkers 

reflecting the neural circuit abnormalities that characterize a given disorder and/or that provide 

the neurobiological basis of spectra of related disorders. 
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1.1 SPECIFIC AIMS 

The goal of this dissertation is to successfully estimate predictive models using multimodal 

magnetic resonance imaging measure and machine learning methods to help better 

understand late-life depression and associated treatment response. We pursued this goal in 

three aims: 

• Aim 1: To compare linear vs. non-linear model for studying: (1) brain functional

connectivity in the elderly, (2) late-life depression diagnosis, and (3) late-life

depression treatment response

– Hypothesis: (1) Better model = non-linear for both cases

• Aim 2: To determine which features best predict (1) brain functional connectivity in

the elderly, (2) late-life depression diagnosis, and (3) late-life depression treatment

response

– Hypothesis: Imaging features will have a greater significant influence then the

demographic and cognitive ability features, which may exert their influence

though changes in brain structure.

• Aim 3: To accurately predict (1) brain functional connectivity in the elderly, (2) late-

life depression diagnosis, and (3) late-life depression treatment response

– Hypothesis: There exists a model for each outcome variable that can

accurately predicted it with the given features within a 10-20% error margin.
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1.2 OUTLINE OF CHAPTERS 

The experiments that address these aims are described in chapters 5-7. The next three chapters of 

this dissertation outline the background knowledge needed to understand the experiments. The 

second chapter describes late-life depression, its treatment, associated underlying neural circuit 

abnormalities, and other related factors. The third chapter discusses multimodal magnetic 

resonance imaging including image acquisition, image analysis methods, and image processing 

methods specific to neuroimaging. This chapter also discusses underlying brain structure and 

function alterations associated with late-life depression and its treatment response by past 

magnetic resonance imaging studies. The fourth chapter describes various machine learning 

methods that can be used to estimate accurate prediction models. The fifth chapter describes an 

experiment that shows how brain structure can affect the function magnetic resonance imaging 

signal acquired to study functional brain activation in the elderly. The sixth chapter describes an 

experiment that attempts to better understand the relationship between brain function and brain 

structure. The motivation behind studying this relationship is to identify if and how it varies 

between normal aging and late-life depression. The experiment uses multimodal imaging and 

machine learning to estimate a prediction model that would explain the relationship between 

brain function and structure. However, the study has several limitations and an accurate 

prediction model could not be estimated. Thus, a follow-up study in pursued by addressing the 

limitations, but again with little success (see “Appendix A”). So, in the seventh chapter, we 

attempt to directly estimate prediction models for late-life depression diagnosis and treatment 

response with greater success. 
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2.0  LATE-LIFE DEPRESSION 

This chapter gives a background understanding of late-life depression and its treatment. It 

primarily describes the underlying brain changes and characteristics associated with late-life 

depression and its treatment. This chapter also describes potential demographic, clinical, and 

cognitive ability predictors of late-life depression and its treatment response based on past 

studies. 

2.1 INTRODUCTION 

When major depressive disorder (MDD) occurs in older adults it is often referred to as late-life 

depression (LLD). The age cut-off for LLD varies by research group, and has ranged from older 

than 55, to older than 70. Age-related neuropathology, along with other biological, 

psychological, and social factors have been identified as important contributors to the 

development and phenomenology of LLD. 

2.1.1 Risk Factors of LLD 

Biological risk factors for LLD include genetics, anatomical and physiological abnormalities (see 

“Anatomy and Physiology of LLD” section for more details), and medical (including myocardial 
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infarctions and stroke) and psychiatric co-morbidity (including dementia, alcohol abuse, and 

anxiety related disorders). Psychological risk factors include personality disorder, cognitive 

distortions (e.g. overreaction and exaggeration), and lack of emotional control and self-efficacy. 

Social risk factors include stressful life events, bereavement, socio-economic disadvantage, and 

impaired social support [Blazer & Hybels, 2005; Gottfries 2001]. 

2.1.2 Early-Life vs. Late-Life Depression 

LLD is different from early-life depression in characteristics including late onset, executive 

dysfuntion, and/or vascular disease [Lebowitz et al., 1997, Alexopoulos et al., 2009]. Treatment 

of LLD is similar to early-life depression, but there is a greater risk of adverse events in the 

elderly [Gottfries 2001]. 

2.2 DIAGNOSIS OF LLD 

Currently, the diagnosis of LLD is based on the Diagnostic and Statistical Manual of Mental 

Disorders, 5th edition (DSM V). The DSM V determines diagnosis of mental disorders based on 

the symptoms experienced by the patient. Nine criteria proposed by the DSM V for diagnosis of 

depression are primarily depressed mood, reduced interest or pleasure in most activities, 

substantial unintended weight loss or gain, insomnia or excess sleeping, agitation or 

psychomotor retardation observed by other, fatigue or energy loss, feelings of worthlessness or 

excessive guilt, indecisiveness or reduced ability to think or concentrate, and reoccurring 

thoughts of death. The occurrence of at least five of these criteria approximately every day for a 
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two-week period, a score of at least 10 on the Beck Depression Inventory, or a score of at least 

10 on the Geriatric Depression Scale supports the diagnosis of LLD [American Psychiatric 

Association]. 

DSM V is solely based on observable behavioral patterns of the disorders it classifies. It 

lacks the reliability and validity that would come from a model that considers underlying brain 

changes. Improvement of such deficiencies in the DSM could not only improve the diagnosis of 

mental health disorders like LLD, but also improve the remission rates for the disorders by 

helping make the treatment more personalized. 

2.2.1 Relative Prevalence of LLD and Potential Predictors 

Several recent late-life studies have shown relative prevalence of LLD to be associated with 

demographics (e.g. age, gender, and education) and cognitive ability. In regards to age, these 

late-life studies have shown that the prevalence of depression in the elderly population decreases 

with an increase in age [Forlani et al., 2013], increases with an increase in age [Luppa et al., 

2012], and has a U-shaped relationship with age [Wild et al., 2012; Wu et al., 2012]. In regards 

to gender, these late-life studies have shown that women are more at risk of depression than men 

[Luppa et al., 2012], as well as a decrease in these differences with age [Forlani et al., 2013]. A 

study reviewing the literature for association between education and LLD has concluded that less 

education is related to a greater risk of LLD [Chang-Quan et al., 2010]. Another study has shown 

that the level of education does not affect the cognitive decrements related to LLD [Bhalla et al., 

2005]. Other studies have also supported a relationship between reduced cognitive ability and 

LLD [Ganguli et al., 2006; Kohler et al., Apr 2010; Wilkins et al., 2009]. 
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2.3 ANATOMY AND PHYSIOLOGY OF LLD 

2.3.1 Neurotransmitter-Specific Systems’ Decline 

Several behavioral changes commonly found in LLD patients are most often associated with 

reductions in activation of certain neurotransmitter-specific systems (i.e. circuitry associated with 

a specific neurotransmitter) due to neurotransmitter loss [Meltzer et al., 1998]. Neurotransmitters 

are chemical substances that transfer information between neurons to allow different brain 

regions of the corresponding neurotransmitter-specific systems to communicate. This allows the 

nervous system to process sensory information and control behavior associated with the brain 

regions of the corresponding neurotransmitter-specific systems [Hyman, 2005]. 

Other important components of the neurotransmitter-specific systems that modulate the 

transfer of information between brain regions include synaptic vesicles, and neurotransmitter-

specific receptors and transporters—both of which are proteins [Hyman, 2005; Meltzer et al., 

1998]. The neurotransmitter-filled synaptic vesicles are responsible for releasing the 

neurotransmitter from a neuron into the synaptic cleft (space between two neighboring neurons) 

[Blakely & Edwards, 2012]. The released neurotransmitter then excites the neighboring neuron 

to continue relaying information via the help of neurotransmitter-specific receptors. The 

neurotransmitter-specific receptors are located at presynaptic—information transferring end of 

neuron that released the neurotransmitter, i.e. axon terminal—and/or postsynaptic—information 

receiving end of neighboring neuron, i.e. dendrites—sites of the systems. Both types of receptors 

bind with the appropriate neurotransmitters released into the synaptic cleft. Upon binding with 

the neurotransmitter, the presynaptic receptor inhibits further release of that neurotransmitter to 

modulate excitation of the neurotransmitter-specific system, while the postsynaptic receptor 
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excites the postsynaptic neuronal cell continuing the signal transfer and excitation of the 

neurotransmitter-specific system [Hyman, 2005; Raiteri, 2001]. In order to subdue the extent and 

duration of the signaling amongst the neurotransmitter-specific system, the neurotransmitter-

specific transporter perform the reuptake of the neurotransmitter released in the synaptic cleft 

back and store it for future usage [Blakely & Edwards, 2012]. 

The “Pharmacotherapy” section further explains how neurotransmitters, neurotransmitter-

specific receptors, and neurotransmitter-specific transporters of certain neurotransmitter-specific 

systems are targeted by common antidepressants to treat LLD. The mostly frequently studied 

neurotransmitter-specific systems in relation to LLD include the serotonin, norepinephrine, and 

dopamine systems. 

Serotonin is often connected to mood, aggression, feeding and sleep. There are two 

known serotonin systems. The first system has serotonin neuronal cell bodies located primarily 

in the dorsal and median raphe nuclei of the caudal midbrain. These neurons project extensively 

through the thalamus, hypothalamus, basal ganglia, basal forebrain, and the neocortex. The 

organization of the projections, interaction with postsynaptic elements, and the distribution of 

terminals in cortical and limbic regions of the serotonin neurons suggests that this system is 

associated with regulation of behavioral state and modulation of more specific behaviors. The 

second system has serotonin neuronal cell bodies located primarily in the pontine and medullary 

raphe. This system projects through the brainstem, cerebellum, and spinal cord. As a result, it 

seems to be associated with modulation of sensory input and motor control. Overall, serotonin is 

associated with mediating various behaviors including mood, anxiety, sleep, temperature, 

appetite, sexual behavior, eating behavior, movements, gastrointestinal motility, and more 

[Meltzer et al., 1998; Stahl, 1998]. 
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Norepinephrine is linked to alertness, energy, anxiety, attention, and interest in life [Nutt, 

2008]. The norephinephrine system is formed of noradrenergic neurons. These neurons originate 

at the locus coeruleus (a region in the brain stem) and project to the neocortex, hippocampus, 

cerebellum, and thalamus. Inputs projections from the locus coeruleus are denser in brain regions 

associated with spatial attention. Overall, this system is associated with modulation of arousal, 

attention, and stress response [Benarroch, 2009]. 

Dopamine is primarily related to motivational control in regards to rewarding, aversive, 

and alerting events [Bromberg-Martin et al., 2010]. There are several dopamine systems and they 

are formed of the dopaminergic neurons. One of the major systems associated with depression, 

originates at the ventral tegmental region of the midbrain and projects to the ventral pallidum and 

limbic system regions including the hippocampus, amygdala, medial prefrontal cortex, and 

nucleus accumbens. Thus, the dopamine system plays an important role in modulating the 

information flow across the limbic circuitry, which is responsible for influencing motivational, 

emotional, contextual, and affective behavior [Pierce & Kumaresan, 2006]. 

2.3.2 Fronto-Striatal and Fronto-Limbic Circuitry Dysfunction 

Several imaging studies have found associations of LLD with the fronto-striatal and fronto-

limbic circuitry dysfunction. See chapter 3 for more details on these studies. Below is a 

description of the fronto-striatal and fronto-limbic circuitry. Abnormalities in these circuits are 

associated with several functions and/or behaviors that are altered in LLD patients. 

The fronto-striatal brain circuitry gets inputs from different neurotransmitter systems 

(including those associated serotonergic, noradrenergic, and dopaminergic neurons), which 

modulate corticostriatal information processing. There are about five known fronto-striatal 
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circuits. Two of these circuits—motor and oculomotor circuits—are responsible for motor 

functions, while the other three circuits—dorsolateral prefrontal, orbital frontal, and anterior 

cingulate circuits—are responsible for executive functions (e.g. selecting and perceiving 

essential information, handling information in the working memory, planning and organizing, 

controlling behavior, adapting to changes, and making decisions), social behavior and 

motivational states. The overall anatomy for all five circuits includes a closed loop circuitry 

connecting regions of the following structures in the given order: frontal cortex; striatum 

(caudate, putamen, ventral striatum); globus pallidus and substantia nigra; and thalamas 

[Chudasama & Robbins, 2006; Tekin & Cummings, 2002]. Compromised structural integrity of 

fronto-striatal circuits are associated with executive dysfunction in LLD [Alexopoulos, 2002]. 

The fronto-limbic circuitry consists of neuronal pathways connecting the frontal lobe 

areas to the limbic regions. This circuitry is responsible for emotional and motivational 

processing. The anatomy of the circuit is majorly composed connections between the frontal 

cortex (e.g. prefrontal cortex and orbitofrontal cortex) and limbic lobe (e.g. hippocampus, 

amygdala, and anterior cingulate cortex) regions [Hart & Rubia, 2012]. Alterations of this 

circuitry are associated with induced sadness in non-depressed individuals [Alexopoulos, 2002]. 

2.3.3 Cerebrovascular Disease 

LLD is also believed to be associated with vascular disease. This association is proposed by the 

vascular depression hypothesis [Taylor et al., 2013]. One potential cause of LLD is thought to be 

atherosclerosis, which is an underlying cause of vascular disease. The cerebral lesions formed by 

atherosclerosis may lead to depression by either disrupting pathways linked to mood regulation 

or amassing of lesions beyond an acceptable threshold. It may also lead to a stroke, which would 
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then result in ischemic lesions. On the contrary, LLD may also be the cause of vascular disease. 

Vascular disease may be a result of LLD related hypercortisolemia effects, immune activation, 

increased thrombosis due to platelet accumulation, loss of arterial endothelial functioning, or 

irregular metabolism of folate or homocysteine. Greater evidence of associations between LLD 

and vascular disease is given by Magnetic Resonance Imaging (MRI) studies (see chapter 3 for 

more details) [Kales et al., 2005]. 

2.4 TREATMENT OF LLD 

Various treatment options exist for late-life depression. For the elderly, compared to the younger 

patients, the post-treatment risks of adversities are greater and side effects are not endured as 

well [Gottfries 2001]. However, when effective, the treatment can help improve the quality of 

life emotionally, socially, and physically. Treatment recommendations for patients should 

consider personal preferences, effectiveness of previous treatment(s), and comorbid conditions. 

Effectiveness of a given treatment is individual dependent and thus is typically guided by a trial 

and error process that requires monitoring especially during the first 8-10 weeks to reduce 

chances of premature discontinuation. Pharmacotherapy (i.e. antidepressants) is the most 

common form of treatment. Other treatment options proven to be effective include 

psychotherapy, electroconvulsive therapy, and physical exercise programs.  

11 



2.4.1 Pharmacotherapy 

As a part of pharmacotherapy for the LLD patients, the Food and Drug Administration has 

approved twenty antidepressant medications. These antidepressants include the selective 

serotonin-reuptake inhibitors (SSRIs), serotonin-norepinephrine reuptake inhibitors (SNRIs), 

tricyclic antidepressants, monoamine oxidase inhibitors (MAOIs), norepinephrine-dopamine 

reuptake inhibitors (NDRIs), and more. 

Most commonly, patients are asked to try SSRIs as a first attempt at treatment. The 

physiological mechanism behind SSRIs involves blocking the serotonin transporter to inhibit the 

reuptake of serotonin neurotransmitters after being released into the synaptic cleft. This causes 

greater concentration of serotonin to remain in the synaptic cleft. The increased serotonin level in 

the synaptic cleft is thought to first desensitize the presynaptic serotonin receptors to decrease 

inhibition of serotonin release. Consequently, function of the serotonin system in enhanced by an 

increase in serotonergic neurotransmission. The results include improved mood and other 

depressive symptoms like reduction of depression-related anxiety [Nutt et al., 1999; Stahl, 1998]. 

SSRIs include antidepressants like Fluoxetine (Prozac), Sertraline (Zoloft), Citalopram (Celexa), 

Escitalopram (Lexapro), and Paroxetine (Paxil). 

The physiological mechanism behind SNRIs is similar to SSRIs, except it involves 

inhibition of the reuptake of both serotonin and norepinephrine neurotransmitters after being 

released into the synaptic cleft. This causes concentrations of both neurotransmitters to increase 

in the synaptic cleft and subsequently enhances the function of both serotonin and 

norepinephrine systems. The results include improvement of depressive symptoms including 

lower anxiety and improved general life functioning [Lambert & Bourin, 2002]. SNRIs include 

antidepressants like Venlafaxine (Effexor) and Duloxetine (Cymbalta). 
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Other antidepressants that work as reuptake inhibitors include tricyclic antidepressants 

like Nortriptyline (Pamelor) and Desipramine (Norpramin), and NDRIs like Bupropion 

(Wellbutrin). Tricyclic antidepressants behave similar to SNRIs by inhibiting uptake of serotonin 

and norepinephrine by blocking the respective transporters, except they also have an affinity to 

other receptors, thus increasing chances of adverse side effects [Lambert & Bourin, 2002]. They 

used to be one of the first antidepressants recommended to patients, but because of their side 

effects—including sedation, weight gain, dry mouth, urinary retention, constipation, blurry 

vision, orthostatic hypotension, and impairment of cardiac conduction— they no longer are. 

Because of their side effects, studies have associated tricyclic antidepressants with greater 

dropout rates than SSRIs [Unutzer et al., 2007]. Now, they are recommended for patients who 

have had previous successful responses with them or for patients who do not respond to other 

antidepressants. NDRIs are involved in inhibiting the reuptake of norepinephrine and dopamine 

neurotransmitters, thus increasing their availability for enhancing function of norepinephrine and 

dopamine systems respectively. Bupropion is the only Food and Drug Administration (FDA) 

approved NDRI. It is associated with anti-craving and anti-withdrawal effects as well as 

improved attention [Stahl et al., 2004]. 

Other types of antidepressants include MAOIs like Phenelzine (Nardil) and 

Tranylcypromine (Parnate), Mirtazapine (Remeron), and Nimodipine (Nimotop). MAOIs work 

by inhibiting monoamine oxidase activity, which prevents the breakdown of monoamine 

neurotransmitters thereby increasing their concentrations and chances of respective 

neurotransmitter system excitations. Monoamine neurotransmitters include serotonin, 

norepinephrine, and dopamine [Racagni & Popoli, 2008; Quitkin et al., 1979]. Mirtazapine helps 

increase both serotonin and norepinephrine related activity by acting as an antagonist to 

 13 



respective presynaptic receptors (i.e. marginally blocks the presynaptic receptors to have weaker 

affects compared to SNRIs on inhibition of serotonin and norepinephrine reuptake) [Stimmel et 

al., 2012]. Its effects, unlike Bupropion, are related to sedation and help increase appetite as well 

as gain weight. Thus, it is beneficial to patients with insomnia and weight loss. Nimodipine is a 

calcium channel blocker, which is believed to improve blood flow and guard neurons from injury 

or degeneration, thus also benefiting cognition and brain function. As a result, it is hypothesized 

to be beneficial for vascular depression associated with ischemic lesions in the brain [Whyte et 

al., 2009]. 

Treatment response to a given antidepressant differs from person to person. It is 

essentially guided by a trial and error process. To help improve the chances of a positive 

response, some possible selection considerations to make other than side effects include past 

treatment response(s), potential interactions with other drugs, frequency of dosing, overdose 

effects, cost, and/or treatment response(s) of close relatives with depression. Other than that, the 

common procedure is to first test an SSRI and then continue with or change the medication based 

on the response, symptoms, and resulting side effects. To determine if a medication is working or 

not, it takes up to 4-6 weeks of treatment. Only 40-65% of the patients show signs of adequate 

treatment response to any given antidepressant. Thus, alternative treatment methods are often 

required, which is not ideal as it increases cost and chances of side effects especially since older 

adults need to take full doses for determination of adequate response. Also, on top of the low 

response rate, there is also a 70% chance of recurrence after remission. Thus, to avoid 

recurrences, a medication that has shown signs of success should be continued for 6-12 months 

after remission for a 60% decrease in the chances of recurrence according to a study in a sample 

patient population [Unutzer et al., 2007]. 
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2.4.2 Other Forms of Therapy 

As mentioned earlier, other treatment options for LLD are psychotherapy, electroconvulsive 

therapy, and physical exercise programs. Psychotherapy is recommended for patients who fail to 

respond to pharmacotherapy. Patients with chronic depression are often recommended a 

combination of pharmacotherapy (i.e. antidepressants) and psychotherapy. Psychotherapy often 

takes about 6-12 sessions by a trained therapist, although some patients benefit significantly from 

longer-term therapy. Effective types of psychotherapy include cognitive behavior therapy, 

interpersonal psychotherapy, and problem-solving therapy. Cognitive behavior therapy focuses 

on correcting negative depression related thoughts, interpersonal psychotherapy deals with 

interpersonal causes of depression, and problem-solving therapy teaches ways to solve daily 

depression related problems. Such methods of psychotherapy have been related to an increase in 

the density of serotonin receptors may be the underlying cause of improved social and 

occupational functioning associated with psychotherapy [Karlsson, 2012]. Statistically, these 

methods of treatment have been shown to reduce depressive symptoms by 50% with a success 

rate of 45-70% in a sample population [Unutzer et al., 2007]. 

Electroconvulsive therapy involves electrical induction of 6-8 seizures in patients to 

produce behavioral changes similar to antidepressants. The mechanisms of electroconvulsive 

therapy’s efficacy in treating depression are not fully understood.  It is believed that changes in 

the neurotransmitter systems play a role. These include the following effects of electroconvulsive 

therapy: (1) enhances dopamine receptor function (after seizures 1 to 2) leading to increased 

duration of interest in activities and restored appetite and drive; (2) increases synaptic 

norephinephrine (after seizures 3 to 5) leading to increase in energy and attention; and (3) 

increases serotonin function (after seizures 6 to 8) leading to positive change and loss of 
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negativity in cognition as well as resolved co-existing anxiety [Madsen et al., 2000; Nutt, 2008]. 

Electroconvulsive therapy has success rates of 60-80% and consists of 6-12 treatment sessions 

within 2-4 weeks. However, due to its high recurrence rate of 84%, it is usually followed by a 

pharmacology treatment, which has shown to reduce the recurrence rate to 39-60% in a sample 

population [Unutzer et al., 2007]. It is more beneficial for patients with psychotic depression, 

suicidal thoughts, or severe malnutrition. Most common side effects for this form of therapy 

include headache, temporary confusion, and or memory impairment. 

For mild or moderate forms of depression, exercise programs have been shown to be 

effective. Exercising is known to release endorphins in the brain, which bind with neuronal 

receptors to reduce the perception of pain and elicit positive feelings resulting in a more positive 

and energized attitude towards life [Zetin et al., 2010]. However, sometimes LLD patients may 

find it difficult to participate in exercise programs, in which case they could also try other 

methods of treatment. This program requires about 12 weeks of participation under supervision 

in group-based aerobic exercises like walking. It has been shown to significantly decrease 

depressive symptoms in 45-65% of the patients in a sample population [Unutzer et al., 2007]. 

2.4.3 LLD Treatment Response and Potential Predictors 

Not many recent studies have shown any results on the association of demographics and 

cognitive ability with the treatment response of LLD. One late-life study showed age and gender 

are not significantly related to treatment response [Katon et al., 2010], while another study 

showed that antidepressants are affective for ages 55 and up, but the effectiveness may reduces 

after 65+ years [Blazer et al., 2012]. Another study has also shown older age of onset in 

conjunction to early symptom improvement (based on change in Hamilton Rating Scale for 
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Depression) and lower baseline anxiety to be predictors of treatment response [Andreescu et al., 

2008]. Similarly, a recent study has also shown higher baseline depressive symptom severity, 

smaller improvement of symptoms in the first two weeks after treatment, the male gender, a 

duration of current episode greater than two years, and sufficient past depression treatment to 

predict a lower probability of treatment remission [Joel et al., 2014]. In regards to cognitive 

ability, one study showed lower cognitive impairment (i.e. higher MMSE) may lead to a more 

positive treatment response [Ribeiz et al., 2013]. To the best of our knowledge, there are also no 

studies comparing years of education to the treatment response of LLD. 
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3.0  MAGNETIC RESONANCE IMAGING 

This chapter gives a background understanding of magnetic resonance (MR) multi-modal 

imaging. It primarily describes how different MR modalities are acquired and methods used to 

extract essential brain structure and function measures from each modality. This chapter also 

describes potential MR imaging biomarkers of late-life depression and its treatment response 

based on past studies. 

3.1 INTRODUCTION 

Imaging is a non-invasive technique commonly used to study brain structure and function for 

normal biological process as well as pathology-related processes. It has been proven to be safe 

and is widely used for clinical purposes and research. For extracting brain structure and function 

measures, there are two commonly used imaging options: (1) a combination of Computer 

Tomography (CT) and Positron Emission Tomography, or (2) Magnetic Resonance Imaging 

(MRI). MRI is the focus of this chapter because its advantages outweigh the disadvantages for 

performing research studies attempting to gain a better understanding of the brain and model 

pathology. Disadvantages of MRI include its lesser availability and greater imaging time. 

However, unlike CT and PET, it does not involve the use of harmful radiation or a contrast 

agent, and offers a greater variety of modalities. This allows one to study the structure and 

18 



function of the brain more extensively without exposing participants to even marginally harmful 

chemicals [Butcher et al. 2010; Srinivasam et al., 2006]. 

3.2 NEUROIMAGING USING MRI MODALITIES 

The most common MRI modalities used to study brain structure include T1-weighted imaging, 

T2-weighted imaging, and Diffusion Tensor Imaging (DTI). To study brain function, functional 

MRI (fMRI) is generally used. Each of the MRI modalities helps examine different aspects of the 

brain. T1-weighted images are used to study the differences and changes in cortical 

regions/structures, due to its high gray-white tissue contrast, which allows for more accurate 

labeling of gray matter regions and defining their boundaries. These images can be used to study 

the severity of atrophy in cortical regions by studying regional volume differences and changes. 

T2-weighted images are used to study white matter hyperintensities (WMHs), indicating the 

presence of ischemic or pre-ischemic white matter lesions. Both local and global volume 

measures of WMHs are used to study their affect on cognition. DTI images are used to gain an 

understanding of the brain from a microscopic level and study the diffusion of molecules in brain 

tissues. Two important measures acquired from DTI images include mean diffusivity (MD) and 

fractional anisotropy (FA), which signify the displacement and directionally of diffusion in 

tissue, respectively. These measures help evaluate the tissue integrity by helping determine 

cortical regions where diffusion is significantly decreased and dispersed due to lesions. 

Functional MRI images are used to study brain activity as well as functional connectivity 

between different cortical regions [Bihan et al., 2001; Blink, 2004; Vink, 2007]. 
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3.3 MRI IMAGE COMPONENTS 

An MRI image is usually 3-dimensional. To form the 3D MRI image, multiple 2D images—each 

representing a slice of the brain—are concatenated in the same order as their location in the 

brain. The plane in which the brain is sliced during image acquisition is pre-defined by the user. 

Since the images are 3D, they are composed of voxels instead of pixels. Voxels are 3D pixels. 

Each voxel of the image is given an intensity value. The intensity value is based on tissue 

characteristics and imaging modality (see the “MRI Image Acquisition for Neuroimaging” 

section for more details). For a visual representation of the image, the intensity value is 

translated into a gray scale color [McRobbie et al., 2007]. 

3.4 MRI IMAGE ACQUISITION FOR NEUROIMAGING 

Different MRI modalities described earlier are acquired by using different image acquisition 

pulse sequences. Different pulse sequences can be acquired by varying certain image acquisition 

parameters. These details along with a generalized version of an image acquisition protocol are 

provided in this section. 

3.4.1 Generalized Image Acquisition Protocol 

MRI takes advantage of the large presence of protons in the body—from water, fat tissue, etc.—

and their magnetic properties. To acquire an image, a MRI scanner (with a superconducting 

magnet and gradient coils), a transmitter radiofrequency (RF) coil, and a receiver RF coil—
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which may be combined with or separate from the transmitter coil—are used. For neuroimaging, 

the head is the body part of interest to be scanned for an image of the brain. The procedure for 

image acquisition of the brain is as follows (Note: for the procedure, the directions are defined in 

terms of the Cartesian coordinate system as follows: X-direction is from left to right of scanner, 

Y-direction is from bottom to top of scanner, and Z-direction is along the center of the scanner 

from the foot to the head) [Blink, 2004; Hornak, 1996]: 

1. The head is enclosed in a RF coil and placed inside the scanner.

2. The superconducting magnet of the MRI scanner applies a strong uniform magnetic field

(known as the B0 field) to align all the protons in the same direction—the Z-direction.

The number of protons that fully align with the B0 field depends on the corresponding

tissue characteristics. The aligned protons, in addition to spinning, also start precessing

(i.e. wobbling like a spinning top).

3. Slice encoding/selection is performed by:

3a. Switching on the Gz gradient coil of the MRI scanner to apply a gradient 

magnetic field in the Z-direction. This gradient causes protons at different 

locations along the Z-direction to precess at different frequencies. 

3b. Using the transmitter RF coil to apply an RF pulse at a pre-defined frequency to 

generate a weak magnetic field (B1 field), which is at a pre-defined angle (e.g. 

900) from the B0 field. The B1 magnetic field only excites protons at the location 

along the Z-direction that are precessing at the same frequency as the transmitted 

pulse. The excited protons then align with the B1 field. 

3c. Switching off the Gz gradient coil after a slice of the brain in the X-Y plane at a 

specific location along the Z-direction has been selected via RF pulse excitation. 
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4. Phase encoding is performed by:

4a. Switching on the Gy gradient coil of the MRI scanner to apply a gradient 

magnetic field in the Y-direction. This gradient causes protons at different 

locations along the Y-direction to precess at different frequencies. 

4b. Switching off the Gy gradient coil to cause the protons to precess at same 

frequencies as before but be out-of-phase (i.e. out of sync) with each other. In 

other words, now the protons at different locations along the Y-direction are 

precessing with different phases. 

5. Frequency encoding and signal readout are performed by:

5a. Switching on Gx gradient coil of the MRI scanner to apply a gradient magnetic 

field in the X-direction. This gradient causes protons at different locations along 

the X-direction to precess at different frequencies. 

5b. Turning on the receiver RF coil to read the emitted RF waves of the excited 

protons in the process of relaxing back to align with B0 field.  The emitted RF 

waves are received by the RF coil in the form of a signal with a complex mixture 

of frequencies, phases, and amplitudes. 

• During the relaxation process, the protons experience 2 forms of

independent yet simultaneous relaxations: T1 relaxation and T2 

relaxation. T1 relaxation—i.e. spin-lattice relaxation—is the recovery of 

the net magnetization of all the protons in the given slice back to Z-

direction of the B0 field. This relaxation occurs because of the strong 

magnetic B0 field forcing the protons to re-align along the Z-direction. 

T2 relaxation—i.e. spin-spin relaxation—is the decay (i.e. becoming 
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out-of-phase) of the protons away from the direction of the previously 

applied B1 field in the X-Y plane. This relaxation occurs because of a 

sudden absence of a magnetic field in the X-Y plane causing the protons 

to scatter in all different directions or de-phase.  

6. Steps 3-5 are repeated for varying amplitudes of phase encoding gradients to gather 

information about the rate of change of phases. This will help gather enough information 

to sufficiently distinguish locations of received signals along the Y-direction. 

7. Frequency and Phase information acquired for each slice is organized in a k-space image. 

Each row of the k-space image represents the data collected from each repetition of step 

6. Also, the k-space image is organized such that at the frequency value at the center of k-

space image is zero. The phase is also zero at the center of k-space image because the 

image is real.  

• There are many different k-space filling techniques. The easiest to 

understand is the linear methods, in which the acquired data from each 

repetition of step 6 is filled from top to bottom. Another variation is 

filling the information from center out. The fastest technique is to use 

Echo Planar Imaging. For this technique, multiple phase encoding 

gradients are consecutively applied after the same excitation pulse and a 

read-out of the resulting change in signal is acquired each time. This 

technique has a poorer spatial resolution, but requires fewer repetition of 

step 6 and makes the whole process faster. 
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8. Steps 3-7 are repeated to select different slices along the Z-direction in step 3 until

information from every location of the head—or a pre-defined specific portion of the

head—is acquired.

9. Two-dimensional Fourier transforms are applied to each 2D k-space image formulated in

step 7 to acquire 2D images of the brain slices selected in the corresponding step 3. All

the 2D images are compiled to form a 3D image of the brain. The intensity value at each

voxel in the image is determined by the signal’s amplitude—which reflects the number of

protons emitting energy—and the spatial distribution of the intensity values is determined

by the signal’s frequency and phase—which reflect the location on the body part of

interest.

3.4.2 Important Image Acquisition Parameters 

In the process of acquiring MR images, several acquisition parameters can be altered to control 

either image properties or representation. 

Primary parameters that control image properties include: field of view, resolution, and 

slice thickness. All three of these parameters adjust appropriate settings of the gradient coils in 

the MR scanner to alter the overall resolution of the acquired image. The field of view parameter 

affects the overall size of the image. The resolution parameter affects the image’s voxel size in 

the X-Y plane (determines the number of repetitions of step 6), while the slice thickness 

parameter affects the image’s voxel size in the Z plane of the Cartesian coordinate system 

(determines the number of repetitions of step 8).  

Primary parameters that control image representation include: repetition time, echo time, 

inversion time, and flip angle. Repetition time (TR) is the time between each repetition of RF 
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pulse transmission by the transmitter RF coil (step 3b). Thus, it determines the time allotted to 

the protons for T1 relaxation to flip back to the B1 field. Echo time (TE) is the amount of time 

between the RF pulse transmission (step 3b) and data acquisition (step 5b). Thus, it determines 

the time allotted to the protons for T2 relaxation for them to become de-phased. Together the TR 

and TE will determine whether the image acquired is a T1-weighted, T2-weigthed, or Proton 

Density image (see “T1-weighted vs. T2-weighted vs. Proton Density Imaging” section for more 

details). The inversion time (TI) is the time allowed for T1 relaxation in the inversion recovery 

sequence before the spin echo sequence is applied. For the inversion recovery sequence, the echo 

time begins with the initiation of the incorporated spin echo sequence. The flip angle is the angle 

at which the protons are flipped (i.e. the magnetization vector is rotated) towards the X-Y plane 

by the transmission of the RF pulse in step 3b of the above-described procedure. It is mostly 900 

for the spin echo and inversion recovery sequences, but for the gradient echo sequence it varies 

within a range of 10 to 900 [Blink, 2004; Hornak, 1996]. 

3.4.3 Image Acquisition Pulse Sequences 

The above-described procedure is the general protocol used to acquire MRI images. However, 

there are several variations that allow for improved image acquisition. Three well-known 

acquisition pulse sequences are spin echo, gradient echo, and inversion recovery sequences. 

The spin echo sequence requires the transmitter RF coil to apply an additional re-phasing 

RF pulse of 1800 between the transmission of the 900 RF pulse (step 3b) and signal read out (step 

5b). This additional RF pulse causes the de-phasing protons during T2 relaxation to re-phase and 

emit a stronger signal to the receiver RF coil, and in the process, compensating for local 

magnetic field inhomogeneities. 
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The gradient echo sequence, instead of applying an additional 1800 RF pulse, applies a 

gradient polarity reversal using the frequency encoding gradient coil of the MRI scanner to re-

phase the protons during T2 relaxation. The gradient polarity reversal requires the frequency 

encoding gradient coil to first apply a negative polarity, followed by a positive polarity. Thus, the 

protons precessing faster during the negative polarity begin to precess slower in the positive 

polarity and eventually all the protons re-phase to emit a stronger signal to the receiver RF coil. 

The gradient echo sequence is much faster than the spin echo and inversion recovery sequences, 

because it uses small flip angles (< 900) and very short recovery times. Nevertheless, it does not 

compensate for local magnetic field inhomogeneities leading to more artifacts in the image. 

The inversion recovery sequence is the same as the spin echo sequence except for the 

addition of an extra 1800 RF pulse that starts the sequence. This 1800 RF pulse at the beginning 

of the sequences allow for a large T1 relaxation period with no T2 relaxation since the protons 

are not flipped to the X-Y plane, but are instead flipped to the negative Z-direction. Following a 

long period of T1 relaxation, the spin echo sequence is applied within a short time frame during 

which the emitted signal is read by the receiver RF coil. This sequence takes much longer than 

the spin echo sequence since the T1 relaxation takes twice as long, but it has a greater T1 

contrast—i.e. allows for greater tissue distinction based on the T1 relaxation. The inversion 

recovery sequence is used to suppress a certain tissue type or cerebrospinal fluid (see “T1-

weighted vs. T2-weighted vs. Proton Density Imaging” and “T2-weighted Fluid Attenuated 

Inversion Recovery (FLAIR) Imaging” sections for more details) [McRobbie et al., 2007]. 
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3.4.4 Imaging Modalities 

3.4.4.1 T1-weighted vs. T2-weighted vs. Proton Density Imaging  

T1-weighted images are acquired to delineate anatomical structures and study pathology, where 

as T2-weighted and Proton Density images are acquired primarily to study pathology.  

The differences between the T1-weighted, T2-weighted, and Proton Density imaging are 

based on the differences in T1 and T2 relaxation among various tissue types. Additionally, the 

T1 and T2 relaxation time allotted to the protons of all the tissue types are controlled by the TR 

and TE parameters respectively as mentioned earlier. Thus, to acquire the desired imaging 

modality—T1-weighted, T2-weighted, or Proton Density—the appropriate TR and TE 

parameters must be defined. 

In regards to T1 relaxation, the differences between tissues are as follows: (1) fluids like 

the cerebrospinal fluid and urine have a slow T1 relaxation rate, (2) tissue like gray matter has a 

medium T1 relaxation rate that is slower than the T1 relaxation rate of white matter, and (3) the 

most fibrous tissues like white matter, tendons, and fat have fast T1 relaxation rate. A greater T1 

relaxation leads to a greater energy emission from the protons. Consequently, greater energy 

emission leads to a larger intensity value—and brighter gray-scale color—observed on the 

acquired image. Thus, when the image acquisition sequence allows for a shorter period of T1 

relaxation (i.e. short TR), the different tissue types are more distinguishable in the acquired 

image-based variations in intensity values. However, if the image acquisition sequence allows 

for a longer period of T1 relaxation (i.e. long TR), the protons from all tissue types reach full 

relaxation and thus they have similar intensity values making it harder to identify them on the 

image.  
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In regards to T2 relaxation, the differences between tissues is as follows: (1) fluids have a 

slow T2 relaxation rate; (2) tissues like gray matter have a T2 relaxation rate more comparable to 

the T2 relaxation rate of white matter than fluids; and (3) the most fibrous tissue like muscle and 

fat have a fast T2 relaxation rate. A greater T2 relaxation leads to poorer strength of the signal 

emitted from the protons since they are more out-of-phase. Consequently, poorer signal strength 

leads to a smaller intensity value—and darker gray-scale color—observed on the acquired image.  

Thus, when the image acquisition sequence allows for a longer period of T2 relaxation (i.e. long 

TE), the different tissue types are more distinguishable in the acquired image based variations in 

intensity values. However, if the image acquisition sequence allows for a shorter period of T2 

relaxation (i.e. short TE), the protons from different tissue types have not been given enough 

time to become sufficiently out-of-phase; thus the tissues have similar intensity values and 

cannot be easily distinguished.  

Therefore, to acquire a T1-weighted image, a short TR and short TE must be used. This 

allows for the tissue contrast to be weighted by the T1 contrast (i.e. T1 relaxation differences 

amongst the tissues). Typically, these images have the highest contrast between the cerebrospinal 

fluid, gray matter, and white mater. The cerebrospinal fluid appears the darkest and the white 

matter appears the brightest on the acquired image. Due to the greater contrast between tissues 

observed in these images, they are acquired with a high resolution to outline anatomical 

structures and study tissue atrophy. 

To acquire a T2-weighted image, a long TR and TE must be used. This allows for the 

tissue contrast to be weighted by the T2 contrast (i.e. T2 relaxation differences amongst the 

tissues). Typically, these images are better for distinguishing the cerebrospinal fluid from the 

gray and white matter. The gray and white matter cannot be separated as well as the gray matter 
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appears only slightly brighter than the white matter. The cerebrospinal fluid appears to be the 

brightest on the acquired image. Due to the greater distinction between fluids and other tissues 

observed in these images, they are acquired with a sufficiently high resolution to study 

pathology—which also appears bright like the cerebrospinal fluid—that may be associated with 

excess water in tissue (e.g. edema), loss of fibrous tissue, degeneration of myelin resulting in 

axons with greater intracellular and extracellular water content, gliosis, and/or infarction.  

To acquire a Proton Density image, a long TR and a short TE must be used. These 

images are thus independent of T1 and T2 relaxation. They are instead dependent on the number 

(i.e. density) of protons in the tissue. Tissues with a greater number of protons appear brighter in 

the image. This image modality is also used to study pathology that may be better observed than 

on the T2-weighted images [Blink, 2004; McRobbie et al., 2007; Wahlund et al., 2001]. 

3.4.4.2 T2-weighted Fluid Attenuated Inversion Recovery (FLAIR) Imaging  

T2-weighted FLAIR images are acquired to better isolate age- or pathology-related tissue 

lesions—similar to T2-weighted imaging—from the rest of the brain regions. They are acquired 

using an inversion recovery image acquisition sequence with a long TE. The inversion recovery 

sequence is used to suppress the cerebrospinal fluid signal, while the long TE is used to acquire 

T2-weighted tissue contrast for highlighting the tissue lesions. To suppress the cerebrospinal 

fluid, the spin echo sequence is initiated when the protons in the cerebrospinal fluid have relaxed 

900 and are aligned with the X-Y plane during the inversion time. This is measured to occur at 

approximately 2000ms (i.e. TI = 2000ms). By initiating the spin echo sequence at this time, there 

are no protons in the cerebrospinal fluid along the Z-direction to be flipped on to the X-Y plane, 

and consequently there is no signal emission from the cerebrospinal fluid. Thus, the acquired 

image looks like a T2-weighted image, but the cerebrospinal fluid appears dark. This allows the 
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pathology-based ischemic white matter regions to appear more distinct and pronounced with 

hyperintensities (i.e. larger intensity values and brighter in color) compared to the rest of the 

image content [Blink, 2004; McRobbie et al., 2007]. 

3.4.4.3 Diffusion Tensor Imaging (DTI)  

DTI measures are estimated using raw diffusion-weighted imaging. Diffusion-weighted imaging 

is used to characterize and track the 3D diffusion of water within the body. It can be used to 

determine tissue integrity by identifying development-, age- or pathology-related—e.g. ischemic 

stroke, demyelination, inflammation, edema, neoplasia, etc.—altered diffusion of water with the 

tissue. Anatomically, these alterations in water diffusion may be indirectly caused by changes in 

tissue microstructure and organization.   

To acquire diffusion-weighted images, a pulsed gradient, spin eco sequence is used. This 

sequence is similar to the spin echo sequence except for the addition of a pair of large gradient 

pulses with a pre-defined direction placed on both sides of the 1800 re-phase RF pulse. The first 

of the two gradient pulses de-phases the magnetization, while the second pulse re-phases it. This 

helps determine the amount of water diffusion that occurred in the direction of the gradient 

pulses. If the water molecule were stationary, the phases induced by the two gradient pulses 

would cancel each other out resulting in a stronger signal emission. Thus, greater amounts of 

diffusion would lead to greater signal attenuation. This protocol is repeated at least 6 different 

times. Each time the pair of gradient pulses is configured to a different direction and a new 3D 

diffusion-weighted image is acquired. To more accurately track the diffusion of water, it is 

beneficial to gather information from more directions by acquiring more diffusion-weighted 

images with directionally varying gradient pulses. To improve the signal-to-noise of DTI 

measures, one acquires and averages over multiple images for each direction.  
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Diffusion-weighted imaging acquisition also widely involves the use of echo planar 

imaging. The advantages of echo planar imaging are that it is fast, efficient and insensitive to 

small motion. This is beneficial since diffusion-weighted imaging is very sensitive to head 

motions.  

A problem with diffusion-weighted imaging, though, is that diffusion-gradient eddy 

currents can lead to misalignment of diffusion-weighted images. This issue is addressed during 

image processing of diffusion-weighted images [Alexander et al., 2007]. 

3.4.4.4 Functional MRI (fMRI)  

Functional MRI (fMRI) is thought to indirectly measure neuronal activity. Both spin echo and 

gradient echo sequences have been tested for acquiring fMRI images. Most studies have used 

gradient echo sequences, but some studies have shown that the spin echo sequence may be 

advantageous [Budde et al., 2014; Miyapuram et al., 2009]. Using the desired pulse sequence, 

multiple 3D brain images are acquired over a period of time to create 4D fMRI data where the 4th 

dimension represents time. Thus, at every voxel of the 3D brain volume, a time series thought to 

indirectly measure neuron activity is captured.  

Primarily, fMRI is acquired using blood-oxygen level dependent (BOLD) contrast. The 

process of measuring neuronal activity starts with performance of a task, followed by 

corresponding change in regional neural activity, and ends with a change in the acquired MR 

signal. If the performed task increases the regional neural activity, the MR signal is also 

increased in that region in the following order of BOLD-related events: (1) increase in neuronal 

activity, (2) increase in local cerebral blood flow, (3) decrease of deoxyhemoglobin compared to 

oxygenated hemoglobin (Note: deoxyhemoglobin, unlike oxygenated hemoglobin, is 

paramagnetic and creates magnetic field distortions by altering local magnetic susceptibility, thus 
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reducing strength of received MR signal), and (4) increase in strength (i.e. amplitude) of the 

received MR signal due to a greater alignment of the spins with the applied magnetic field. Thus, 

acquired MR BOLD signal reflects the change in blood flow, which is related to the change in 

regional neural activity. The blood flow and consequently measured BOLD response to a brief 

stimulus (i.e. excitation of a neuron) is known as a hemodynamic response. It consists of a 1-2 

seconds delay, potentially a 1-2 seconds initial dip, a 4-6 seconds response in which it increases 

and then decreases, and a post-stimulus undershoot which may be 30 seconds or more. By 

evaluating BOLD-related presence of hemodynamic responses in the MR signal, studies are able 

to map patterns thought to indirectly represent neuronal activity during specific tasks and resting 

state [Buxton et al., 2004]. Tasks utilized for task-based fMRI and networks studied for resting 

state fMRI are described below. A variant of BOLD fMRI is arterial spin labeling perfusion MRI 

[Detre et al., 2009]. 

Task-based fMRI 

One of the simplest and most common tasks used in fMRI studies is the finger-tapping task. It 

requires the participant to tap their fingers while being scanned and is used to study the human 

motor system [Witt et al., 2008]. Specific to late-life depression, the common tasks include: 

executive tasks, working memory tasks, and affective tasks. 

Executive tasks involve executive control, such as integrating other cognitive activities.  

The prefrontal cortex plays a prominent role in the performance of executive tasks. Due to the 

involvement of the prefrontal cortex, executive tasks help analyze reflecting conscious, strategic, 

and goal-directed cognitive activity [Bryan & Luszcz, 1999]. Examples of executive tasks used 

in functional MR studies include: the Stroop task—which is known to test response inhibition, 

interference resolution, and behavioral conflict resolution [Adleman et al., 2001], and task-
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switching tests—which help test cognitive efficiency, processing speed, performance, as well as 

controlling and coordinating execution of goal-directed behavior [Dove et al, 2000; DiGirolamo 

et al., 2001; Sylvester et al., 2003]; 

Working memory is a function of the brain that involves temporary storage and 

manipulating information for complex cognitive tasks like language comprehension, learning 

and reasoning. Working memory has been subdivided into three subcomponents: (1) central 

executive system responsible for attentional-control system, (2) visuospatial sketchpad 

responsible for manipulating visual information, and (3) phonological loop responsible for 

storing and rehearsing verbal information. The central executive subsystem also integrates and 

controls the other two subsystems. The regions associated with these subcomponents 

respectively include: (1) prefrontal cortex for updating or actively maintaining visual and/or 

verbal stimuli, (2) bilateral parietal and occipital cortices for perceptual processing of visual 

stimuli, and (3) left inferior frontal gyri and left inferior parietal cortex (specifically left 

supramarginal gyrus) for processing verbal stimuli. Functional MRI tasks used to study working 

memory involve remembering and later recalling verbal and/or visual stimuli. An example of 

such tasks includes item-recognition tasks, which help test accurate recollection of visual and/or 

verbal stimuli [Baddeley, 2008; Na et al., 2000; Salmon et al., 1996].  

Affective tasks are used to evaluate neural systems associated with mood and emotion. 

Commonly associated regions with affective processes—e.g. emotion regulation—include limbic 

regions, such as the hippocampus, amygdala and anterior cingulate cortex. Also, because of its 

role in affect regulation, the prefrontal cortex (especially ventral prefrontal cortex) is also often 

studied with affective tasks. Functional affective tasks used to study these regions involve 

arousal and/or control of emotion and mood (e.g. emotional faces task) [Davidson et al., 2002]. 
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Resting State fMRI 

There are several resting state networks identified by fMRI studies. These are networks of brain 

regions which show correlated functional activity while a participant is resting (i.e. not 

performing a task). To identify these regions, the participants are asked to lie in the scanner, 

thinking of nothing in particular and resting with eyes focused on a fixation cross. Regions found 

to be significantly active with highly correlated BOLD signals during the resting state are 

defined to form a resting state network. Well-studied resting state networks include the default 

mode network and the salience network.  

The default mode network mainly consists of the medial prefrontal cortex, posterior 

cingulate cortex, medial temporal cortex, inferior parietal lobule, and hippocampus. The 

involvement of this network in functional processes is still up for debate, however, there are two 

possibilities: 1) it plays a role in forming dynamic internal mental images of perspectives and 

scenarios not related to the present while the mind is detached from the external world (e.g. 

planning future actions based on past experiences), or 2) it plays a role in monitoring the external 

environment in an exploratory manner whenever focused external attention and sensory 

processes are relaxed [Buckner et al., 2008; Greicius et al., 2009].  

The salience network primarily consists of the anterior insula and anterior cingulate 

cortex. The function of this network is to identify most relevant internal (e.g. self-regulated 

cognition) and extrapersonal (e.g. attention) stimuli for guiding behavior [Menon & Uddin, 

2010]. Additionally, the salience network may also play role in modulating the activity of other 

large-scale networks, including the default mode network [Chiong et al., 2013]. 

 34 



3.5 MRI IMAGE ANALYSIS FOR NEUROIMAGING 

Image analysis techniques are used to acquire various summary measures effectively and with 

reduced bias from MR images during image processing. Essential image analysis techniques 

include filtering, registration, and segmentation. 

3.5.1 Filtering 

Filtering is used to remove artifacts (i.e. reduce noise) from acquired images. It is generally used 

as a pre-processing step, because removing artifacts helps improve the accuracy of other image 

analysis and processing methods. Artifacts are present in medical images potentially due to 

imperfect hardware characteristics (e.g. gradient nonlinearities, concomitant gradients, timing 

errors, RF field non-uniformity, and limited dynamic range), resonant offsets (e.g. B0 field 

inhomogeneity, magnetic susceptibility, and chemical shift), intrinsic tissue properties and 

biological behavior (e.g. respiration, cardiac cycle), and voluntary patient motion [Smith & 

Nayak, 2010]. To remove these artifacts, common MR neuroimaging preprocessing steps involve 

bias field correction, smoothing, and/or sharpening. For 4D medical images (e.g. fMRI, DTI), 

additional forms of filtering and de-noising are required. Though not a filtering method, 

realignment is also used in 4D medical imaging to de-noise spatial artifacts due to head motions 

and thus is also mentioned in this section. Also, for fMRI images used to study time series, 

additional 2D signal-processing filters (e.g. low-pass, high-pass, band-pass) may be used. 

Bias field correction methods are used to reduce the low frequency intensity 

inhomogeneity artifacts (i.e. bias field) present in MRI images during scanning due to poor radio 

frequency coil uniformity, eddy currents driven by the gradients applied by the scanner, and the 
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participant’s anatomy. A popular method used to remove these artifacts is called nonparametric 

nonuniform intensity normalization (N3). N3 requires the selection of only two parameters: (1) 

defining the smoothness of the bias field to be estimated and (2) controlling for the accuracy 

versus convergence rate tradeoff. Using these pre-defined parameters and an iterative approach, 

N3 estimates and the underlying bias field from the noisy image acquired during scanning. Then, 

it divides the original noisy image by the estimated bias field to produces a new image with the 

inhomogeneity artifacts filtered out [Sled et al., 1998]. 

Smoothing filters are used to reduce sharp changes in intensities (i.e. high frequencies in 

the signals), which make the image look grainy. This filter blurs the boundaries and conceals 

subtle details of the structures in the images. The most commonly used smoothing filter is the 

Gaussian blurring filter. It recalculates each voxel’s intensity value by taking into account 

neighboring voxels’ intensity values, giving the greatest consideration to most immediate 

neighbors. In other words, it performs a weighted average where the weightage depends on 

distance—shorter distance equals greater weight—from the voxel whose intensity is being 

recalculated. By taking the neighbors’ intensity values into consideration, the filter makes sure 

all sharp changes are blurred out to produce a smoother signal. There are several smoothing filter 

variants, which differ in the weights’ distribution (i.e. kernel function) and combination (e.g. 

averaging or computing the median) to recomputed intensity values at each voxel [Lee, 1983]. 

Sharpening filters are opposite in function to the smoothing filters. They are used to 

accentuate sharp changes in intensities, like those at edges (i.e. boundaries) in the image. This 

exaggerates the contrast at the boundaries of the structures in the images. The simplest 

sharpening filter method is to (1) high-pass filter the image (i.e. to extract the high frequencies in 

the signals that represent boundaries), (2) scale the high-pass filtered image to a desired amount 
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of sharpening, and (3) add the scaled version of the high-pass filtered image to the original 

image. However, this process is very sensitive to noise due to the high pass filtering [Polesel et 

al., 2000]. Thus, most commonly used sharpening filter is the unsharp filter. It does the 

following: (1) creates a new blurred version of the image using a smoothing filter (i.e. a new 

image containing the low frequencies of the original image), (2) subtracts it from the original 

image to create a new image with only high frequencies that appear as edges, (3) scales the new 

image by the desired percentage of sharpening of the edges, and (4) adds the new scaled image 

of only high frequencies to the original image, thereby enhancing the affects of the higher 

frequencies in the image. Variants of this filter include an adaptive unsharp filtering method 

[Singh, 2013].  

 Medical images that are 4D consist of multiple 3D volumes of the same brain with the 4th 

dimension in functional images often representing time. Since there is a time component 

involved, there is also a greater risk of head movement in between resulting in anatomical 

artifacts—i.e. incorrect alignment of brain regions. To correct this, realignment is used.  

Realignment is simply a rigid-body linear registration (see “Registration” section for more 

details) used to align all 3D volumes across the dimension of time to the first 3D volume 

acquired [Friston et al., 1996]. Additionally, for fMRI images, the time series at every voxel is 

also shown to contain cardiac, respiratory, and other scanner-related low frequency noise. Thus, 

a high pass filter is usually used to filter out this noise. For resting state studies, the time series 

signal is further filtered with a low pass filter to extract the signal specific for the resting-state 

frequency range [Weissenbacher et al., 2009]. 
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3.5.2 Registration 

Registration is used to transform one image—known as the moving image—to match the spatial 

information of another image—known as the fixed image. There are two broad categories of 

registration: area-based and feature-based. Area-based registration uses the variations in 

intensities across images to perform registration, while feature-based registration uses features of 

structures within images (e.g. end points or centers of line features, centers of gravity of regions, 

etc.) to perform registration. Area-based registrations methods are more commonly used for 

neuroimaging related MR image analysis [Zitova & Flusser, 2003]. Thus the focus of this section 

will be on area-based registration. 

Area-based registration is an iterative process that, given two input images (i.e. fixed and 

moving images), iterates through the following: (1) a metric is used to compare the two images 

and thus determine a cost function (i.e. objective function) to minimize the difference between 

the them, (2) an optimizer is used to optimize the cost function and thus determine transform 

parameters, (3) a transform is used to map points from the moving image to the fixed image 

using the transform parameter, and (4) an interpolator is used to interpolate voxel values of the 

transformed fixed image that are not exactly mapped to original grid positions. This iterative 

process stops when the change in transformation between consecutive iterations becomes 

minimal. Thus, the four important components of the area-based registration process include the 

metric, optimizer, transform, and interpolator [Johnson et al., 2013]. 

The selection of a metric depends on the image types of the fixed and moving images. If 

they are of the same image type and thus have a similar intensity distribution, common metrics 

include: least squares and normalized correlation. To compare the input images, the least squares 

metric computes sum of squared differences and the normalized correlation metric computes 
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correlation coefficients between their intensity values at every voxel respectively. The optimizer 

will need to minimize the cost function for both metrics. However, if the fixed and moving 

images are of different image types (i.e. multi-modal images), then the common metrics include: 

mutual information and correlation ratio. These metrics do not directly look for linear 

relationships between intensity values, but focus more on the dependency between intensity 

values of the two images since different image types, particularly among medical images, have 

different intensity distributions for the same structures. Thus, to compare the input images, the 

mutual information metric determines how much uncertainty about one image’s intensity values 

is reduced by the knowledge of the other image’s intensity values; and the correlation ratio 

metric measures the relationship between the statistical dispersion of various regions—in regards 

to the number of voxels—within each individual image and across both images. The optimizer 

will need to maximize the cost function for both metrics [Jin & Yang, 2013; Johnson et al., 2013; 

Roche et al., 1998].  

There are primarily two types of optimizers: continuous and discrete. Continuous 

optimizers are limited to problems that involve real-valued transformation parameter values and 

a differentiable cost function. These methods estimate optimal transform parameters using an 

iterative process that starts with a best guess estimate of the transform parameter. Then, the 

transform parameters are updated every iteration based on a computed search direction and step 

size—which controls the amount of change of the optimal transform parameters in the computed 

direction. The search direction is re-computed every iteration using the cost function and an 

optional regularization term—i.e. which imposes constraints on the transformation based on 

prior knowledge. The step size can also be recomputed every iteration if preferred. The approach 

used to compute the step size and search direction every iteration is what distinguishes various 

 39 



continuous optimization methods. Most common continuous optimization methods include 

gradient descent, conjugate gradient, Powell’s conjugate directions, Quasi-Newton, Gauss-

Newton, Levenberg-Marquardt, and stochastic gradient descent. On the contrary, discrete 

optimizers are limited to problems that involve discrete-valued transformation parameter values. 

These methods use graph representation to compute optimal transform parameters (i.e. Markov 

Random Field formulations). The nodes (i.e. vertices) of the graph represent the parameter 

values, while the edges connecting the nodes represent the similarity costs based on variations in 

labels of adjacent nodes. The goal of these methods is to determine the optimal label for each 

node from a predefined set of label options by optimizing the sum of the edge costs. There are 

three common types of discrete optimization methods: graph-based, message passing, and linear-

programming [Sotiras et al., 2013; Zikic et al., 2010]. 

The selection of the transform depends on the degree of variations between the two input 

images. A linear transformation—which is computationally less expensive—may suffice for a 

lesser degree of variations (e.g. two different images of the same individual subject), while a 

nonlinear transformation may be required for a greater degree of variations (e.g. between a 

template and individual subject image). Linear transformations are restricted by the pre-selected 

degrees of freedom (i.e. the flexibility in deformation). The degrees of freedom may be increased 

as the degree of variations between the two input images increases. The number of degrees of 

freedom and their representations in relation to the three axes of the 3D Cartesian coordinate 

system are as follows: 3 degrees of freedom for translation along the three axes, 3 degrees of 

freedom for rotation about the three axes, 3 degrees of freedom for scaling along the three axes, 

and 3 degrees of freedom for skewing along the three axes. Well-known linear transformations 

include the rigid body (6 degrees of freedom in translation and rotation) and affine (12 degrees of 
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freedom in translation, rotation, scaling, and skewing) transformations [Hill et al., 2001]. A 3x3 

matrix is often used to represent such transformations. On the other hand, nonlinear 

transformations have much greater degrees of freedom—up to millions of degrees of freedom—

and have the greatest flexibility with fewer constraints; thus better for tackling larger 

deformations. Non-linear transformations include curved or elastic transformations, which can 

map lines to curves. Nonlinear transformations are utilized for deformable registration models 

including elastic body models, viscous fluid flow models, diffusion models (e.g. Demons), 

curvature registration, and flows of diffeomorphisms. Either local vector displacement fields or 

polynomial transformations in terms of original coordinates are often used to represent such 

transformations [Maintz & Viergever, 1998; Sotiras et al., 2013]. 

 The selection of the interpolator depends on the degrees of freedom selected for the 

transformation and precision required for the recomputation of a transformed image’s intensity 

values. Generally, with an increase in the degrees of freedom for the transform, there is also a 

need for more precision in the interpolation. There is also trade-off between precision and 

computation time. Common interpolators in order of increasing precision include nearest 

neighbor, trilinear, and B-spline. Nearest neighbor interpolation assigns each new voxel of the 

transformed image the intensity value of the spatially closest voxel from the original image 

before transformation. This is most useful when the original set of unique intensity values are 

better left unchanged—e.g. for the transformation of binary images (e.g. region masks) [Parker et 

al., 1983]. Trilinear interpolation is a linear interpolation method for 3D images. To determine 

the intensity values at each voxel of the transformed image, trilinear interpolation takes a 

weighted average of intensities from the nearest eight neighboring voxels of the original image. 

The weighting of the intensities is inversely proportional to the distance of the corresponding 
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voxel from the original image to the new voxel of interest in the transformed image [Hill et al., 

2001]. A linear interpolation is a B-spline interpolation of the first order [Thevenaz et al., 2000]. 

Thus the B-spline interpolation is similar to the trilinear interpolation. The differences are that 

the B-spline interpolation (1) uses polynomial functions, instead of a linear function, to weight 

the intensities of neighboring voxels, and (2) incorporates intensities from a larger neighborhood 

of voxels from the original image to compute the intensity value at each new voxel of the 

transformed image [Mahmoudzadeh & Kashou, 2013]. 

3.5.3 Segmentation 

Segmentation is used to isolate or classify regions of interest. It can be performed on the basis of 

image properties. Most commonly used image properties in MR neuroimaging include 

intensities, gradient, energy, region, shape, etc. Each image property is associated with different 

segmentation methods described below. Furthermore, these image properties in addition to 

others like texture are also used in combination with machine learning techniques for 

segmentation. 

For medical images, intensity-based segmentations are the most common. The simplest 

intensity-based segmentation technique is thresholding, which zeros all voxels with an intensity 

value that does not meet the thresholding criteria.  Another well-known technique is region-

growing, which extends thresholding by also considering the connectedness of regions. Region-

growing starts with a seed and iteratively grows by included neighbor voxels that meet a 

homogeneity criteria. It stops growing when there are no more neighboring voxels that meet the 

homogeneity criteria, thus segmenting a connected region. Another common variant of intensity-
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based segmentation techniques is fuzzy connectedness [Balafar et al., 2010, Johnson et al., 

2013].  

A well-known gradient-based segmentation method is the watershed technique. A 

gradient is the rate of change of intensity values. For the watershed technique, the gradient value 

at each voxel is represented as a height measurement. Thus, the boundaries in an image—where 

the greatest change in intensity values occur (i.e. gradient value is the largest)—will represent 

local maximum heights. On the other hand, the homogeneous connected regions—i.e. regions 

with similar intensity values and low gradient values depicting the same structure within the 

image—will represent local minimum heights. These represent the regions to be segmented. 

Together, the boundaries form the watersheds and the regions to be segmented form catchments 

basins. Then each region separated by the watersheds is segmented as a separate structure and 

assigned the average intensity of the region [Balafar et al., 2010].  

Energy-based segmentation methods include active contours. For implementing active 

contours, there are two principal techniques: snakes and level sets. Both start off with an initial 

estimate of a contour representing the structure of interest to be segmented and then grow the 

contours to more accurately segment the structure. Snakes grow active contours by trying to 

minimize the sum of the internal and external energy. The internal energy controls the rigidity of 

the deforming curve and increases when the curvature increases. The external energy guides the 

deforming curve to the target and increases when the gradient in the image decreases (i.e. when 

the contour edge is in a homogenous region as opposed to the structure boundary). In doing so, 

the contours are attracted toward the desired structure’s boundaries. Level sets grow active 

contours with a more implicit approach that involves minimizing scalar function. Nevertheless, 

level sets also grow the active contours by taking into consideration the mean curvature of the 
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contour and the gradient information in the image. The mean curvature of the contours controls 

the speed of growth of the contour. The more curved the contour is, the faster it grows. The 

gradient information in the image determines when the contour stops growing. If the gradient is 

high enough (i.e. structure boundary is reached), then the contour stops growing [Maistrou, 

2008].  

Regions-based segmentations use pre-defined masks (i.e. binary images) of a region of 

interest to isolate or classify it. The technique simply multiplies the given region mask with the 

image, thereby zeroing out all voxels except those identified as the region of interest by the 

mask. The difficulty with this technique is to create the region masks. One tedious way to do it is 

to manually draw the images. Another way to do it is to use automated template to individual 

image registration and apply the transformation to the regions of interest in template space (see 

“Registration” section). This results in less bias and greater efficiency. Also, the regions will 

only need to be manually traced once on the template. The disadvantage to this technique is that 

its accuracy is depends on the accuracy of the registration [Rosano et al., 2005; Wu et al., 2006]. 

Shape-based segmentations use prior shape knowledge to perform segmentation. For 

MRI image analysis, this has generally been done using machine learning techniques (see 

chapter 4). In short, prior shape knowledge has been provided via a large ranging of similar 

segmentation examples from past images to predict the segmentation of the region of interest 

from a new image. Variants of shape-based segmentation methods have been proposed by Abd 

El Munim et al. (2005), Rousson et al. (2004), and Tsai et al. (2004). 

 Machine learning can also be used in different ways to perform segmentation. 

Information used to help achieve a good segmentation may include any of the above-defined 

image properties as well as texture information. Additionally, examples of benchmark 
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segmentations (e.g. manual segmentations) from similar images can also be inputted to help 

segment new images using supervised machine learning techniques. If no benchmark 

segmentation examples exist, unsupervised machine learning techniques (e.g. clustering 

methods) can be used instead. These techniques require only the input of image properties from 

the new image to be segmented. See chapter 4 for more details on these techniques. Note that for 

these techniques, image properties denote the input features and the image properties of each 

voxel in the image denote each individual data instance. Also for the supervised machine 

learning techniques, the benchmark segmentation classification of each voxel in the image 

denotes the corresponding label value [Kruggel et al., 2008; Punia & Singh, 2013]. 

3.6 MRI IMAGE PROCESSING FOR NEUROIMAGING 

Image processing is performed on an image to obtain valuable information about the brain. The 

image processing performed varies for different imaging modalities since different modalities 

provide information about the brain in different ways. More specific examples of image 

processing pipelines are described in the chapters 5-7. 

3.6.1 T1-weighted, T2-weighted, Proton Density, & T2-weighted FLAIR Imaging 

Image processing is performed on T1-weighted, T2-weighted, Proton Density and T2-weighted 

FLAIR imaging to acquire volume-based information. For T1-weighted imaging, the information 

acquired is the volume of anatomical structures, while for the other images it is the volume of 

pathology-related abnormalities (e.g. ischemic lesions). These volume measures are acquired via 
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segmentation of the regions of interest. Sometimes, for segmentation, registration methods can 

also be utilized as described earlier [Wu et al., 2006]. To improve segmentation results, it may 

also be beneficial to first filter the image(s) using N3 correction and/or any other filtering 

method [Garg & Kaur, 2013]. 

3.6.2 Diffusion Tensor Imaging (DTI) 

Image processing of diffusion-weighted images first requires a filtering method to remove the 

misalignment created by the presence of eddy currents during scanning. This can be resolved by 

using image registration methods [Alexander et al., 2007]. Then, multiple linear regression is 

used to obtain diffusion tensor components from the set of diffusion weighted images with 

varying directional/orientation information regarding diffusion of water. A tensor is a 3x3 matrix 

that represents molecular mobility along each direction and correlation between these directions 

at each voxel of the image. Next, “diagonalization” of the tensors is performed to obtain 

eigenvectors and eigenvalues that represent the main diffusion directions and related diffusivities 

respectively. These main directions and eigen diffusivity are used to depict tensors in the form of 

diffusion ellipsoids [Bihan et al., 2001].  

The tensors and their ellipsoid representations define various DTI measures that relate to 

the tissue microstructure and architecture at each voxel. These measures including mean 

diffusivity, fractional anisotropy, and main direction of diffusivity. Mean diffusivity describes 

the overall mean-squared displacement of water molecule. It may be affected by the presence of 

obstacles that could impede diffusion. It is represented by size of the ellipsoid, where a larger 

size indicates greater displacement. Fractional anisotropy describes the degree to which 

molecular displacements vary in space (i.e. degree of anisotropy in water diffusion). It may be 
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affected by the presence of oriented structures (e.g. bundles of myelinated axonal fibers running 

in parallel to form white matter tracks) that would increase anisotropy of diffusion. It is 

represented by the eccentricity of the ellipsoid, where a greater degree of eccentricity indicates 

greater anisotropy. The main direction of diffusivity is represented by the main axis of the 

ellipsoid (i.e. primary eigenvector of the tensor). It is associated with the orientation of the tissue 

microstructures at each voxel and useful for performing brain fiber tracking of white matter 

tracks to infer brain connectivity [Bihan et al., 2001].  

Thus, once the tensors are constructed, the next processing steps include: (1) computing 

mean diffusivity and fractional anisotropy maps for statistical analysis, and (2) performing 

tractography (i.e. fiber tracking). For the statistical analysis (e.g. tract-based spatial statistics), the 

mean fractional anisotropy maps are registered to a common template space (i.e. fractional 

anisotropy skeleton) for appropriate group comparisons. For tractography, the tensors are used to 

locate axonal tracts via a deterministic or probabilistic approach. The deterministic approach 

attempts to determine the exact path of the axonal tracts in a 3D continuous manner by following 

the main direction of diffusion from voxel to voxel. It requires more detailed information from a 

greater number of directions to accurately perform tracking. Thus, the number of images 

acquired to perform deterministic tractrography is significantly larger. When the necessary 

amount if information is not available, the probabilistic approach is recommended. The 

probabilistic approach determines the probabilistic path of axonal tracts by computing a 

probability density function of the neuronal fiber orientation. In the process, it results in more 

dispersed trajectories of probable axonal tracts [Mukherjee, Chung et al., Apr 2008; Mukherjee, 

Berman et al., May 2008].  
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One limitation of DTI is its lack of ability to directly image multiple fiber orientations 

within a single voxel. To solve this limitation, alternative approaches including diffusion 

spectrum MRI and Q-ball methods have been studied [Wedeen et al., 2008]. 

3.6.3 Functional MRI (fMRI) 

Image processing for fMRI images begins with pre-processing. The first pre-processing step is to 

correct for head motion-related artifacts by realigning all images to the first 3D fMRI image as 

discussed in the “Filtering” section. Then, the all fMRI images are linearly co-registered to the 

same subject’s high-resolution image. Next, the high-resolution image is normalized using a 

combination of linear and nonlinear registration to a high-resolution template brain. The 

corresponding transformation from the normalization is applied to the co-registered fMRI image. 

Thus, the high-resolution images act as a mediatory image that helps register the fMRI to 

template space because of its greater resolution. Lastly, the fMRI images are smoothed using a 

Gaussian filter to increase the signal-to-noise ratio, increase inter-subject overlap, and increase 

validity of analysis. Pre-processing prepares the fMRI images for appropriate individual and/or 

group level analyses. There are two forms of analyses that can be performed including 

activation-based and connectivity-based analysis [Vink, 2007].   

For activation-based individual level analysis, the time series (i.e. 4th dimension of the 

fMRI images) from the images are evaluated for probability of task-specific activation using 

general linear model analysis. The general linear model attempts to perform multiple linear 

regression to compute the scalar values in the following equation: (actual time series at a voxel) 

= (expected time series from a region with task-based neuronal activation)*(scalar_0) + 

(covariate_1)*(scalar_1) + …+ (covariate_N)*(scalar_N) + (a noise term). The expected time 
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series is formulated by convolving the design matrix (which defines the time points at which the 

task was expected to have occurred based on the experimental design) with the hemodynamic 

response (which is the expected MR signal from an activated neuron). The covariates include 

factors that may be affecting the actual time series but are not of interest like head motion 

artifacts, age, etc. Regions that show strong correlations between the actual and expected time 

series resulting in large scalar values are considered to be active during and play an important 

role for the task performed during image acquisition. For activation-based group level analysis, 

the regions of activation found in the individual level analysis are compared across or between 

group(s) of subjects to find regions of strong overlap. For all analyses, t-tests are commonly used 

to determine significance of regional activation [Vink, 2007]. Though the general linear model 

technique is most widely used, the field is progressing towards finding more accurate techniques 

for determining regions of activation. Such techniques include information theory and/or 

machine learning approaches [Ostwald & Bagshaw, 2011].  

For connectivity-based analysis, the above-described pre-processed time series is further 

processed before analysis. First, the effects of non-interest like head motion artifacts, average 

white matter BOLD signal, and average cerebrospinal fluid BOLD signal are co-varied out of the 

time series signal using regression. Then, the new time series signal is band pass filtered as 

mentioned in the “Filtering” section. Using the temporally processed signal, individual level 

connectivity analysis is performed. Various pre-defined combinations of region pairs are 

compared using correlation or regression methods. Regions that show high correlations between 

their respective time series are considered as connected and part of the same neural network for 

the task—e.g. resting state—performed during image acquisition. Then, if required the analysis 

is extended to group level comparisons for determining significant overlap in functionally 
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connected regions across or between group(s) of subjects [Whitfield-Gabrieli & Nieto-

Castanono, 2012]. 

3.7 LLD BIOMARKERS 

Biomarkers are frequently studied in clinical research studies. They are evaluated as indicators of 

normal biological processes, pathogenic processes, or responses to pathology-related treatment. 

They are quantifiable and reproducible characteristics or medical signs that are objectively 

measured. Overall, they play an important role in helping better understand the normal 

physiology and pathophysiology, as well as improve processes for the treatment of pathologies 

[Strimbu & Tavel, 2010]. 

3.7.1 LLD Diagnosis 

A number of recent late-life studies have shown an association between imaging measures and 

LLD diagnosis. In regards to structural measures, these studies indicate that LLD is associated 

with the following: (1) gray matter volume reductions mostly within the frontal-subcortical and 

limbic networks [Chang et al., 2011; Ribeiz et al., 2013; Sexton et al., 2013], (2) greater WMH 

burden supporting the vascular depression hypothesis [Aizenstein et al., 2011; Crocco et al., 

2010; Disabato et al., 2012; Firbank et al., 2012; Gunning-Dixon et al., 2010; Kohler et al., Feb 

2010; Teodorczuk et al., 2010], and (3) abnormalities in DTI measures [Colloby et al., 2011; 

Mettenburg et al., 2012; Sexton et al., 2013; Shimonv et al., 2009]. In regards to functional task-

based activation, past studies have related LLD with both increase and decrease in task-related 
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activity within different regions of the fronto-striatal and fronto-limbic circuitry. For the fronto-

striatal circuitry, executive tasks have been used to show hypoactivation in the dorsolateral 

prefrontal cortex and hyperactivity in the striatum (caudate and putamen). The hypoactivation of 

the dorsolateral prefrontal cortex may be due to the executive function deficits associated with 

LLD. The hyperactivity of the striatum may indicate a greater response to negative rewards and 

altered emotional processes in LLD patients [Aizenstein et al., 2005; Aizenstein et al., 2009; 

Bobb et al., 2011; Wang et al., 2008]. For the fronto-limbic circuitry, affective tasks have been 

used to show attenuated activation in the ventromedial prefrontal cortex and increased limbic 

activity in LLD patients. The attenuated activation in the ventromedial prefrontal cortex may be 

due to its role in evaluating and regulating emotional occurrences and contextual reward 

processing [Brassen et al., 2008]. The increased limbic activity may be due to its role in 

responding to emotional stimuli [Aizenstein et al., 2011]. In regards to functional resting state 

connectivity measures, past studies have shown greater, lower, and non-significant resting state 

functional connectivity difference between LLD and controls in varying regions—including 

some regions from the dDMN and aSN [Alalade et al., 2011; Alexopoulos et al., 2012; 

Andreescu et al., 2013; Bohr et al., 2012; Crocco et al., 2010; Steffens et al., 2011; Wu et al., 

2011]. 

3.7.2 LLD Treatment Response 

Several recent late-life studies have shown an association between imaging measures and LLD 

treatment response. In regards to High-Resolution structural measures, a couple studies indicated 

that LLD remission is associated with higher baseline gray matter volumes [Marano et al., 2013; 

Ribeiz et al., 2013]. In regards to WHM burden and DTI measures, there are varying findings in 
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the literature. Some studies have shown LLD remission to be associated with low baseline WMH 

severity [Disabato et al., 2012; Gunning-Dixon et al., 2010], while others have shown no 

significant association [Disabato et al., 2012]. Similarly, LLD remission is shown to be 

associated with greater baseline WM integrity by some studies [Alexopoulos et al., 2008], and 

with lower baseline WM integrity by another study in similar ROIs [Taylor et al., 2008]. To the 

best of our knowledge there are no studies evaluating the association of baseline functional task-

based activation with LLD treatment response. However, there are studies that have focused on 

associating changes in functional task-based activation from pre- to post-treatment with LLD 

treatment response. These studies have shown increased activation post-treatment compared to 

pre-treatment in the dorsolateral prefrontal cortex (fronto-striatal circuitry) and ventromedial 

prefrontal cortex (fronto-limbic circuitry) [Aizenstein et al., 2011; Brassen et al., 2008]. The 

functional resting state connectivity studies have shown decreased connectivity between the 

dorsal anterior cingulated cortex and dorsolateral prefrontal cortex as well as increased 

connectivity between the posterior cingulated cortex and striatum to be associated with poorer 

LLD treatment response [Andreescu et al., 2013; Alexopoulos et al., 2012]. 
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4.0  MACHINE LEARNING 

This chapter gives a background understanding of machine learning methods. It primarily 

describes learning methods and potential methods for improving these methods to estimate 

accurate prediction models for a given framework or problem. This chapter also describes 

potential predictors and biomarkers for prediction models of depression and its treatment 

response based on past studies. 

4.1 INTRODUCTION 

Machine learning consists of a group of methods used to find relationships or patterns from 

empirical data for a given framework (i.e. problem). The input data used for the learning is made 

up of instances, i.e. samples. The number of instances in the input data defines the sample size of 

the data. Every instance of the input data is defined by a feature vector that describes the instance 

by the values assigned for each feature in the feature vector. The length of the feature vector (i.e. 

number of scalar values contained in it) defines the dimensionality of the data (i.e. number of 

features used to describe the data set). When the data is labeled, a label (i.e. output/outcome 

variable) is also assigned to every instance of the data. When developing a generalized model, a 

training data set is used as the input data. Once the model is created, it is used to predict the label 

or category of any new unseen data samples, also known as the test data set. The training and test 
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data are similar in the number and type of features used to define each instance and represent the 

same type of empirical data. The test data set is used to determine how well the generalized 

model represents this type of empirical data [Kapitanova & Son, 2012; Taskar et al., 2003]. 

4.2 TYPES OF LEARNING 

Depending on the data, three possible types of learning include supervised learning, semi-

supervised learning, and unsupervised learning. Supervised learning is performed if all of the 

data is labeled, semi-supervised learning is performed when there is unlabeled data along with 

labeled data, and unsupervised learning is performed when all of the data is unlabeled. For each 

type of learning, there are linear and nonlinear methods. Linear methods are simpler, while 

nonlinear methods are more flexible in nature. For supervised and semi-supervised learning, the 

methods can be further categorized as classification- or regression-based methods. 

Classification-based methods attempt to classify the data by discrete and categorical labels, while 

regression-based methods attempt to fit the data to a continuous function and thus work with 

continuous labels for the data. For unsupervised learning, the methods can be primarily 

categorized as clustering methods—which attempt to group the data into clusters based on 

underlying similarities [Ghahramani et al., 2004; Kapitanova & Son, 2012; Muller et al., 2003]. 

A list of common methods for each type of learning is summarized in table 1. 
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Table 1. Common Machine Learning Methods 

Supervised Learning Methods 

Linear Nonlinear 

Classification • Logistic Regression
• Support Vector

Machines (Linear
Kernel)

• Bayesian Networks

• Artificial Neural Networks
(with discrete output(s))

• Support Vector Machines
(Radial Basis Function
(RBF) or Polynomial Kernel)

• Bayesian Networks
• K-Nearest Neighbor
• Decision Trees

Regression • Linear Regression
• Support Vector

Regression (Linear
Kernel)

• Bayesian Networks

• Artificial Neural Networks
(with one continuous output)

• Support Vector Regression
(RBF or Polynomial Kernel)

• Bayesian Networks
• K-Nearest Neighbor
• Decision Trees

Semi-Supervised Learning Methods 

Linear Nonlinear 

Classification • Expectation
Maximization +
Generative Model

• Transductive Support
Vector Machines

• Expectation Maximization +
Generative Model

• Graph Mincut

Regression • Transductive Regression • COREG

Unsupervised Learning Methods 

Linear Nonlinear 

Clustering • K-Means Clustering • Self-Organizing Maps
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4.2.1 Supervised Learning Methods 

Supervised learning methods consist of discriminative models, generative models, and more. 

Discriminative models (e.g. logistic regression, linear regression, artificial neural networks, 

support vector machines, support vector regression, etc.) are either (1) used to directly model the 

conditional distribution probability (i.e. p(y|x) where y = output variable, and x = input data) 

without knowing anything about the distribution of input features (i.e. p(x)); or (2) used to 

identify a representation of a function that maps input features to output variable(s). On the other 

hand, generative models (e.g. Bayesian Networks) attempt to estimate the underlying unknown 

probability distribution from the data. They first require the computation of the joint distribution 

between the output variable and input data (i.e. p(x,y)), from which they determine the model for 

the dependence of the output variable on the input data (i.e. conditional probability p(y|x) = 

p(x,y)/p(x)). More details on generative models and how they compute the joint distribution for 

classification-based frameworks are given in the “Semi-Supervised Learning Methods” section 

[Ng & Jordan, 2002; Peharz et al., 2013; Xue & Titterington; 2008]. 

Among the supervised learning methods listed in table 1, the first method in each section 

(i.e. logistic regression, linear regression, and artificial neural networks) is an example of a 

discriminative model and is similar in approach for creating a prediction model. Each of these 

methods attempts to fit a pre-defined function(s) (e.g. sigmoid for logistic regression, linear for 

linear regression, etc.) to the data. In the process, optimum weights are assigned to each input 

feature such that the combination of the weighted inputs results in predictions of the output 

variable. The artificial neural networks are multiple layered versions of the linear models. These 

additional layer(s) are known as hidden layer(s), which allow the weighted inputs to be 

combined in a linear and/or non-linear fashion—depending on the pre-defined function(s) for 
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each layer—to predict the output variable [Dreiseitl & Ohno-Machoda, 2002; Sarle, 1994; Zhao 

& Yu, 2006]. Variations to logistic and linear regression include an addition of a regularization 

or penalty term explained more extensively in “Appendix B” [Liu & Zhang, 2008]. Several 

variations of the artificial neural networks also exist as a part of the deep learning family of 

algorithms [Le et al., 2011].  

The second method in each section of table 1 (i.e. support vector machines and support 

vector regression) is also an example of a discriminative model and is similar in the make-up of 

the prediction model it develops, but differs in model objectives. The components of the 

prediction models they create consist of hyperplane(s) and corresponding equidistance support 

vectors that define error margins based on the training data. For support vector machines the 

model components form a decision boundary in attempts to divide the data into label-based 

categories, while for support vector regression the model components attempt to fit the data. 

Both methods are part of a group of algorithms called kernel methods because they depend on 

the data only through dot products computed using kernel functions. Kernel functions help 

reduce computation time—especially for high-dimensional data—by allowing for non-linear 

model components when required without explicitly mapping the data to high-dimensional 

feature space. The utilized kernel function determines whether the model components will be 

linear or non-linear in the original input data space [Ben-Hur & Weston, 2010; Smola & 

Scholkopf, 2004]. Other kernel methods include least squares support vector machines and least 

squares support vector regression. More recent popular kernel methods include relevance vector 

machines and relevance vector regression [Tipping, 2001]. 

Other supervised learning methods listed in table 1 include Bayesian networks, which are 

an example of generative models and can be used for both classification- and regression-based 
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frameworks. Bayesian networks graphically depict probabilistic dependencies between random 

variables (e.g. features and outcome labels). Bayesian network methods first compute the joint 

probability distribution between features and labels in the training data. Then, using Bayes 

theorem, these methods compute the conditional distribution of labels given features to predict 

the outcome variable from the input test data. Naïve Bayes is a static variation of Bayesian 

network classifiers that assumes that the input features are independent of one another. Further 

variations of this method involve assumptions of various input features’ distribution (e.g. 

Gaussian distribution) [Friedman et al., 1997; Pavlovic et al., 2002]. Other variations of the 

Bayesian networks classifiers include the Hidden Markov model that can be considered as a 

simple dynamic Bayesian network [Jing et al., 2008]. A form of Bayesian network method that 

can also be used for regression-based frameworks is the Tree-Augmented Naïve Bayes 

[Fernandez et al., 2007].  

Similar to Bayesian networks, k-nearest neighbors can also be used for classification- or 

regression-based frameworks. This method uses a distance metric (most commonly the 

Euclidean distance) to find the k training samples most similar to the test sample. The most 

frequent occurring label from the k-nearest neighbor training samples is then assigned to the test 

sample as the predicted label [Dreiseitl & Ohno-Machado, 2002; Weinberger et al., 2006]. 

Variations of this method include distance-weighted k-nearest neighbor and large margin nearest 

neighbor classifiers [Domeniconi et al., 2005; Gou et al., 2012]. There are also k-nearest 

neighbor regression methods [Maltamo & Kangas, 1998]. 

Last, but not least, decision trees can also be used for classification- or regression-based 

frameworks. This method creates a tree with nodes and edges (i.e. branches) to predict the output 

variable. The nodes of the tree represent an input feature and the edges, which branches off the 
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nodes, split the input feature values by a threshold. Each edge is then connected to another new 

node, which represents another input feature. The node from which the edge branches is known 

as the parent node, while the new nodes added to the branched edges are known as the children 

nodes. This pattern continues until adding more nodes to the edges will no longer produce 

optimal prediction results. The input feature at every node and corresponding threshold values at 

the edges are selected based on a metric. A commonly used metric is information gain, which 

represents the reduction in uncertainty of the outcome predictions after adding a particular input 

feature as a child node. The aim would be to select input features for the children nodes such that 

the information gain is maximized. After the decision tree algorithm terminates, the ending edges 

that have no nodes attached to them are assigned a leaf node with a prediction value for the 

dependent variable (i.e. outcome). For classification trees, this value is the most likely label 

value in the form of a finite number of unordered values, while for regression trees it is in the 

form of a continuous or ordered discrete values [Friedman et al., 1996; Loh, 2011]. There are 

several variations of decision tree methods that incorporate approaches used by other learning 

algorithms. For example, Naïve Bayes is combined with decision trees to form the Naïve Bayes 

decision tree method. Other variations of decision trees include methods that use different 

strategies to combine decision trees and produce a more accurate prediction model. Examples of 

such methods are random forests—which randomly creates multiple decision trees and selects a 

label for the output variable based on the most frequent label predicted by these trees—and 

alternating decision trees—which use boosting to combine multiple weak classifiers to form a 

stronger classifier in the form of a generalized decision tree [Kingsford & Salzberg, 2008; 

Kohavi, 1996]. 
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4.2.2 Semi-supervised Learning Methods 

Several different techniques have been used to solve semi-supervised learning problems. These 

include generative models, self-training, co-training, avoiding dense regions changes (e.g. 

transductive support vector machines), and graph-based methods. Generative models, self-

training, co-training, transductive support vector machines tend to be more inductive in nature 

(i.e. learner can predict unseen test data after being trained on the labeled and unlabeled training 

data), while some graph-based methods are more transductive in nature (i.e. learner can only 

work with labeled and unlabeled training data, thus it cannot predict future unseen data) [Zhu, 

2006]. Table 1 lists some commonly used methods related to these techniques.  

Generative models assume a mixture distribution [p(x|y) where x is the input data and y 

the output variable/label], for instance mixture of Gaussian distribution (Gaussian mixture 

models). Based on this assumption, the joint probability distribution [p(x,y) = p(y)p(x|y)] is 

determined. Then, the test data is classified by assigning each instance in the test data with the 

label that produces the greatest joint probability given its input features (i.e. by computing p(y|x) 

= p(x,y)/p(x)). However, in the presence of unlabeled data and insufficient labeled data, it may 

be beneficial to incorporate the unlabeled data for determining the mixture distribution. In order 

to do so, the Expectation Maximization (EM) algorithm is used. This algorithm is used to 

identify the mixture components (i.e. individual distributions of the input features; when these 

distributions are combined, they form the mixture distribution) of the assumed mixture model 

using both the labeled and unlabeled data. The EM algorithm first initiates with an estimate of a 

classifier approximating the mixture distribution, possibly using the labeled data. Then, until the 

classifier is optimized by finding the maximum likelihood estimates of its parameters, the 

method iterates with primarily 2 steps: (1) Expectation step: uses current classifier parameters to 
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compute the expected values of the unlabeled data, and (2) Maximization step: re-computes the 

classifier parameters using the expected values found in the expectation step. An alternative 

method for the combined approach of generative models and EM algorithm is the combined 

approach of Hidden Markov Models and Baum-Welch algorithm [Nigam et al., 2006; Zhu, 

2006].   

Self-training methods use an iterative process to classify the unlabeled data and thereby 

increase the sample size of the labeled data set. This process involves first training a classifier on 

the small amount of labeled data set. Second, the trained classifier is used to predict the 

classification of the unlabeled data and the most confident of the classified unlabeled data are 

added to the labeled data set. Then, this two-step process is reiterated by re-training the classifier 

on the newly increased labeled data set until a pre-defined heuristic convergence criterion is met 

[Didaci & Roli, 2006]. The combined approach of generative models and EM algorithm is 

considered a special case of ‘soft’ self-training [Pise & Kulkarni, 2008]. 

Co-training, like self-training, methods also uses an iterative process to classify the 

unlabeled data and thereby increase the sample size of the labeled data set. However, instead of 

using one classifier to train the entire labeled data set, for this method two classifiers are first 

trained on respectively two sub-feature sets (i.e. features of the data set are split into two subsets) 

of the labeled data set. Secondly, after training on the small amount of labeled data set, both 

classifiers are individually used to predict the classification of the unlabeled data. The most 

confident of the classified unlabeled data are added to the labeled data set. Similar to the self-

training, for co-training also this two-step process is reiterated by re-training the classifier on the 

newly increased labeled data set until a pre-defined convergence criterion is met. For this method 

to work well, two assumptions about the sub-features sets should be made: (1) both classifiers 
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are compatible such that they produce the same classification labels for all test patterns, and (2) 

the two sub-features sets are conditionally independent such that they can both individually help 

train an optimal classifier if there is sufficient labeled data [Didaci & Roli, 2006; Zhou & Li, 

2005]. Also, for this method, regressors can also be used in place of classifiers. COREG, 

described by Zhou & Li (2005), is an example of a co-training method that uses regressors, 

specifically k-nearest neighbor regressors with different distance metrics.  

Another semi-supervised learning technique involves using discriminative models and 

classifying the data according to regional data density (i.e. amount of data points in a given 

region). Data density is involved because without it a discriminative method directly predicts 

p(y|x) to classify the data and does not consider if it shares parameters with p(x) or the input data 

distribution. When p(x) is not related to the classification made by a trained discriminative model 

classifier, semi-supervised learning doesn’t perform as well. Thus, the incorporation of data 

density as an important factor in the classifier training process of discriminative methods is 

essential. Transductive support vector machines (TSVMs) is an example of such a method. 

TSVMs is a modified version of the discriminative model called support vector machines that 

determines classification boundaries—defined by a hyperplane and support vectors (as described 

earlier)—by avoiding high density regions. In order to do so, TSVMs attempts to classify the 

data by finding a linear boundary that has maximum margin (i.e. largest error margin between 

linear support vectors and hyperplane) for both the labeled and unlabeled data. The inclusion of 

unlabeled data instinctively guides the linear boundary towards low-density regions. Other 

similar methods include Gaussian Processes, Information Regularization, and Entropy 

Minimization [Pise & Kulkarni, 2008; Zhu, 2006].  
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Graph-based methods also have a discriminative and transductive nature like TSVMs. 

Graphs used for these methods consist of nodes—that represent labeled and unlabeled 

instances—connected by weighted edges—that represent how similar the nodes are that it 

connects. Similarity weights of the edges are computed using features (e.g. Euclidean distance, 

etc.). A graph-based method used to classify data using graphs is mincut. Mincut first determines 

the labels for each node of the labeled data set. It then weights the edges connecting nodes with 

the same labels infinitely high. The edges connected to nodes of unlabeled data instances are 

weighted according to some relationship with other nodes. For example, if distance is used to 

represent the relationship between nodes, then edges connecting two nearby nodes will be 

weighted higher than edges connecting two far apart nodes. This is based on the notion that 

nearby nodes will generally have the same label. After weighting all the edges, a minimum cut is 

applied to the graph by removing minimum total weight set of edges such that nodes of different 

labels are disconnected. Then, the unlabeled nodes in each new graph set are labeled according 

to the labels of the labeled nodes in the graph set [Blum & Chawla, 2001]. Variations of the 

mincut methods include Gaussian random fields and harmonic function methods, and discrete 

Markov random fields. In addition to classification-based frameworks, graph-based methods can 

also be used for regression-based frameworks since they estimate a function for the graph [Zhu, 

2006]. 

Regression-based frameworks can also be attempted using other types of methods that are 

discriminative and transductive in nature. An example of such a method is transductive 

regression. This method first locally estimates the labels for the unlabeled data by using its 

position information. Essentially, the unlabeled data is estimated to have labels corresponding to 

the weighted average of label values from neighboring labeled data. Then, the method uses a 
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discriminative method called ridge regression (see “Appendix B” for more details) with an extra 

regularization term that globally optimizes the label estimates [Cortes & Mohri, 2006]. 

4.2.3 Unsupervised Learning Methods 

Unsupervised learning methods primarily consist of clustering-based methods. Clustering-based 

methods are used for categorizing data into groups or labels since there is no labeled data and 

thus there are no labels to begin with.  

One well-known unsupervised clustering method is k-means clustering. The most 

common algorithm used for this method is called Lloyd’s algorithm. This algorithm uses an 

iterative process to partition the input data into k clusters. It begins by initializing k centers for a 

preliminary estimate of k clusters. The centers are computed such that the mean squared 

Euclidean distance between it and each data instance in the cluster is minimized. Then, the data 

instances from the training data are redistributed. Each instance is assigned to the cluster with 

which the shortest Euclidean distance is computed using the cluster’s center. The algorithm re-

iterates between redistributing the data instances and re-computing the k centers until a 

predefined convergence criterion is reached. There are many other centroid models for clustering 

that cluster based on information at the center of each cluster including k-medians clustering, 

fuzzy-c-means clustering, etc [Bezdek et al., 1984; Kanungo et al., 2002]. Also, there are several 

alternative clustering methods including connectivity models that cluster based on distance 

connectivity, distribution models that cluster based on statistical distributions of the data, and 

density models that cluster based on regional data density [Kapitanova & Son, 2012].  

 Another type of unsupervised clustering method is self-organizing maps. Self-organizing 

maps is an unsupervised version of Artificial Neural Networks. They are used to find hidden 
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patterns in unlabeled data. Self-organizing maps consist of nodes (i.e. neurons) and each node is 

assigned a weight vector the size of an input data instance. These weight vectors are either 

initialized with random small values or sampled uniformly from the subspace defined by the 

input data’s two largest principal component eigenvectors. To begin with these maps are either 

rectangular or hexagonal in shape. The method goes through an iterative process until the nodes 

of the self-organizing maps are aligned with the input training data. The process consists of three 

phases: competitive phase, cooperative phase, and adaptive phase. To start the process, for the 

competitive phase, an instance from the training data is selected and the Euclidean distance 

between it and every node’s weight vector is computed. In the next phase, the cooperative phase, 

the center of the topological neighborhood formed by the winning node (i.e. the nodes whose 

weight vector is the shortest distance away from the selected instance) and its neighboring nodes 

(i.e. cooperating nodes) is determined. Note that over time the size of the topological neighbor 

decreases. Then in the adaptive phase, the weights of the winning and cooperating nodes are 

updated to move closer to the selected instance of the training data using the information from 

the previous phase. This process is repeated for every instance in the training data until the 

weight vectors of all the nodes follow the distribution of the input training data [Anvar et al., 

2013; Sathya & Abraham, 2013]. Variations of this method include generative topographic 

maps, adaptive self-organizing maps, and growing hierarchical self-organizing maps [Bishop & 

al., 1998; Rauber et al., 2002; Wang et al., 2005]. 
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4.3 VALIDATION MEASURES 

Validation measures are used to assess how well the learning methods developed a generalized 

model for any given data set. To compute these measures, the trained prediction model is first 

applied to a test data set and predictions of labels/categories for each instance is acquired. Then, 

the validation measures are computed by comparing these predictions with actual labels if they 

are available. The validation measures differ based on the type of framework used for the 

learning method.  

For classification-based frameworks, some common validation measures include 

accuracy, specificity, sensitivity, and receiver operating characteristic curve—which consists of 

true positive rates (i.e. sensitivity) as a function of false positive rates (i.e. 1 - specificity). The 

accuracy measure helps evaluate how accurately the prediction model classifies the test data 

overall, the specificity and sensitivity measures respectively help evaluate how accurately the 

prediction model classifies each label of the test data, and the receiver operating characteristic 

curve illustrates the overall performance of the classifier. Confusion matrices can also be used 

when labeled data is available, especially for models with more than two labels, to display how 

well each label was classified and the distribution of misclassification. The confusion matrix is a 

KxK matrix for K labels, where one side of the matrix represents actual labels and the other side 

represents predicted labels [Baldi et al., 2000].  

For regression-based frameworks, some common validation measures include correlation 

coefficients and mean squared error. The correlation coefficients and their corresponding 

significance values help evaluate how well the model predictions are correlated with the actual 

label values, and the mean squared error helps evaluate the level of error in the model predictions 

[Baldi et al., 2000; Meyer, 2014]. 
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For clustering-based frameworks, some common validations measures can be sorted into 

three types: external, internal, and relative. External measures help evaluate how well the clusters 

were predicted based on pre-specified external information. An example of an external measure 

is entropy. Entropy helps evaluate how varied the categorization is of the data instances in each 

cluster. Other similar external measures include mutual information and purity. Internal 

measures help quantitatively evaluate how well the model formed clusters from the data. 

Examples of internal measures include the Davies-Bouldin index that measures average 

similarity between clusters, the Dunn index that measures the ratio of inter-cluster to intra-cluster 

distance between data instances, and the Bayesian information criterion that evaluates how well 

the model fits the data including its complexity. Relative measures (e.g. can be an external or 

internal measure) help compare two different sets of clusters formed by using the same learning 

method, but different parameter values of the learning method. These measures are usually 

defined based on compactness—how close data instances in each cluster are to each other—and 

separability—how distinct two clusters are [Halkidi et al., 2001, Rendon et al., 2011]. 

4.4 PRACTICAL PROBLEMS 

Due to the nature of real-world data, several problems are encountered when trying to use 

learning methods to estimate a generalized prediction model. More often than not, real-world 

data is high dimensional (i.e. has too many features) and limited in sample size: both of which 

can cause problems with estimating an optimal learner. Problems can also be encountered if the 

learning methods are not correctly selected and/or setup (e.g. regularized, combined with a filter 

reduction technique, etc.) based on the nature of the data. 
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4.4.1 Bias vs. Variance 

With empirical data, learning methods often face a trade-off between high bias and high 

variance. High bias indicates that the learning method is learning an incorrect model, while high 

variance indicates that the learning method is learning a random model. When the prediction 

model created by a learning method is too simple and results in a high error when predicting 

labels/categories for the training data to begin with, the learning method is considered to have 

high bias in its ability to make predictions. In such a case, the prediction model is underfitting 

the data and most likely the prediction error for the test data will also be high. Linear learning 

methods tend to suffer more from a high bias. On the contrary, when the prediction model 

created by a learning method is too complex and fits the training data very accurately but the test 

data poorly (i.e. the model does not generalize well), the learning method is considered to have 

high variance in its ability to make predictions. In such a case, the prediction model is overfitting 

the data. Nonlinear learning methods tend to suffer more from a high variance [Domingos, 2012; 

Yu et al., 2006]. Solutions to this problem can be found in the “Parameter(s) Selection for 

Learning Methods”, “Boosting”, and “Feature Reduction” sections under “Practical Solutions”. 

4.4.2 High Dimensionality 

High dimensionality (i.e. large number of features) is another real-world problem often faced by 

learning methods. When the data has a very high dimensionality, it becomes harder to develop a 

generalized model. This is because it is harder to learn and understand what is happening when 

the data has high dimensions. For example, with the involvement of too many features, there is a 

chance that a large number of the features are noise (i.e. irrelevant), thus making it harder to 
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accurately model the data. On the other hand, there is also a possibility of a larger number of 

relevant features in high dimensionality data. If there are too many relevant features, there is also 

a greater change of redundant information, which can lead to random learning. In both cases, 

there is a risk of overfitting [Domingos, 2012; Mwangi et al., 2013]. Solutions to this problem 

can be found in the “Feature Reduction” section under “Practical Solutions”. 

4.4.3 Sample Size 

A small sample sized data can also pose a problem for learning methods. The number of 

instances required for a learning method is considerably more than the number of features 

included. Generally, the greater the ratio of sample size to feature size, the better the results. 

Reasonably for optimal results, this ratio should be greater than three. However, when the 

sample size is small, it is harder for the learning method to build an accurate prediction model 

due to lack of information and sufficient representation of the framework it is trying to learn. 

Therefore, on a training data set with a small sample, a learning method will most likely build a 

high variance prediction model that represents the training data very well since there is less 

information to account for. In other words, the prediction model will show signs of overfitting by 

performing very accurately when predicting on the training data, but poorly when predicting on 

the test data since there is a greater chance that the information contained in the test data was 

missing in the training data. On the contrary, extremely large sized data can also pose a problem 

of scalability. Due to the large amount of information present in large sized data, it can cost both 

computation time and memory, which may be limited [Domingos, 2012; Foley, 1972]. Solutions 

to this problem can be found in the “Feature Reduction” and “Cross Validation” sections under 

“Practical Solutions”. 
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4.5 PRACTICAL SOLUTIONS 

One solution to most real world learning problems is to add more training data and increase the 

sample size. However, in practice, this is not always possible. Thus, in this section, we explore 

other options for solving learning problems with empirical data. 

4.5.1 Boosting 

Boosting methods are used in conjunction with learning methods to reduce the risk of high bias. 

These methods work by iteratively combining weak prediction rules to form a strong (i.e. very 

accurate) prediction rule for estimating a model that represents the given data. To generate these 

weak prediction rules, a weak learning method is used. The weak learning method iterates 

through different subset of the training data or differently weighted training data and trains on 

the modified training set to develop a new weak prediction rule each time. There are several 

boosting methods and the main differences between these methods include the process of 

modifying the training set every iteration and the technique used to combine all the weak 

prediction rules into one strong prediction rule. The well-known boosting method is adaptive 

boosting (AdaBoost), which uses weights to modify the training data at every iteration and 

combines the weak predictions rules to form a more accurate prediction rule. This method 

assigns the largest weights to the most misidentified data instances and thereby focuses the 

attention of the learning method on the most difficult examples. AdaBoost has also been used to 

form a modified version of the decision trees learning method called alternating decision trees 

[Freund  & Schapire, 1999; Opitz  & Maclin, 2011; Schapire et al., 2003]. 
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4.5.2 Feature Reduction 

Feature reduction methods are used to reduce the number of features in high-dimensional data to 

a limited number of most relevant features for estimating a more accurate prediction model. 

These methods can be primarily categorized into supervised and unsupervised methods. 

Supervised methods require labeled data as they perform feature reduction with the help of the 

labels. Unsupervised methods, on the other hand, perform feature reduction based solely on 

information available in the features included in the data. Additionally, there is an alternative 

option of forced feature selection, which can be computationally expensive [Mwangi et al., 2013; 

Reif  & Shafait, 2014]. 

4.5.2.1 Supervised Feature Reduction Methods 

Supervised feature reduction methods are primarily used to perform feature selection (i.e. select 

the most relevant features from a larger set of input features) and thus reduce the noise in the 

input data. These methods include filter techniques, wrapper techniques, and embedded 

techniques. Each technique also includes different types of methods described below [Mwangi et 

al., 2013].  

Filter techniques select features independent of the learning method and based on 

relationships determined by the labels. These techniques differ slightly between classification- 

and regression-based frameworks. For classification-based frameworks, filter techniques involve 

categorizing the training data instances into groups by labels. Then for each feature, a statistical 

test (e.g. t-test, ANOVA, correlation, etc.) is performed to determine the significant difference or 

degree of correlation between the groups. The features for which the groups demonstrate the 

greatest significant difference or correlation based on a predefined threshold are selected for 
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developing the prediction model. For regression-based frameworks, filter techniques involve 

comparing each feature with the corresponding labels of the training data using correlational 

statistical analysis (e.g. Pearson’s correlation, Kendall tau rank correlation, etc.) and selecting the 

features that demonstrate the greatest significant correlation based on a predefined threshold for 

developing the prediction model [Ladha et al., 2011; Mwangi et al., 2013; Saeys et al., 2007; 

Zeng et al., 2012].  

Wrapper techniques depend on the selection of the learning method since features are 

selected based on how well they help a particular learning method develop accurate prediction 

models. These techniques do not vary much based on the type of framework and include 

methods that perform either backward elimination or forward selection of features. Backward 

elimination methods (e.g. Recursive Feature Elimination) start out with the inclusion of all the 

features in the data set. Then, using an iterative process the following is implemented: (1) a small 

subset of features is removed at every iteration, (2) a prediction model is developed with the 

remaining features using an appropriate learning method, and (3) a cross validation is used to test 

the accuracy of this model. This process stops when a predefined termination criterion is reached 

or all features are eliminated. In the end, the features selected are based on the features used in 

the iteration that produced the most accurate prediction model. Forward selecting methods (e.g. 

Searchlight, a method for Neuroimaging studies), on the other hand, start out with an empty data 

set with no features. Then, they use an iterative process similar to the backward elimination 

methods, but instead of removing features, one feature is added at every iteration. To determine 

which feature to add at the first iteration, every feature is individually used to develop a 

prediction model. Then, cross validation is used to determine the feature that produces the most 

accurate prediction model and that feature is added as the first selected feature. For every other 
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iteration, each remaining feature is individually incorporated with the already selected feature(s) 

to develop prediction models and cross validation is used to determine the most optimal 

prediction model. The feature whose incorporation results in the most accurate prediction model 

is added to the data. Similar to the backward elimination method, the iterative process stops 

when a predefined termination criterion is reached or all features have been added. In the end, 

the feature set that resulted in the most accurate prediction model is selected. Individual and 

combined variations of both above described backward elimination and forward selection 

methods also exist. An example of a method that implements a combination of the two methods 

is the Plus-L-Minus-R Selection [Kohavi & John, 1997; Ladha et al., 2011; Mwangi et al., 2013].  

 Embedded techniques include learning methods—for both the classification- and 

regression-based frameworks—that inherently perform feature selection in the process of 

developing an optimal prediction model. Examples of such methods include decision trees. Other 

examples include regularized or penalized discriminative methods. These types of methods 

include L1-regularized logistic regression and least absolute shrinkage and selection operator 

(LASSO) regression (i.e. L1-regularized linear regression). In general, a regularization term 

penalizes the learning method when its complexity increases. The regularization term can 

sometimes help further reduce the complexity of the resulting prediction model by allowing the 

weights associated with some feature(s) to go to zero (i.e. by eliminating the least important 

features). Thus, it helps reduce the variance in the learning method’s ability to predict and risk of 

overfitting. Variations of these methods include the L1/2-regularized logistic regression and 

Elastic Nets (i.e. linear regression with a L1- and L2-regularization term) [Chen et al., 2013; 

Grabczewski & Jankowski, 2005; Ladha et al., 2011; Mwangi et al., 2013]. For more detailed 

information on regularization, see “Appendix B”. 
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4.5.2.2 Unsupervised Feature Reduction Methods 

Unsupervised feature reduction methods are primarily used for feature extraction (i.e. extracting 

features that are different from the original input features, yet formed by patterns found among 

the input features) in order to reduce the dimensionality of the input data. Nevertheless, 

variations of unsupervised feature reduction methods are also used to reduce data dimensionality 

by performing feature selection. Most widely used unsupervised feature reduction methods 

include Principal Components Analysis and Independent Components Analysis [Mwangi et al., 

2013].  

Principal component analysis (PCA) extracts uncorrelated features that are a weighted 

linear combination of the input features. It does so by first finding orthogonal (i.e. uncorrelated) 

directions that represent the input data. The top directions that account for the most variance in 

input data are then selected such that they span a lower dimensional space than the input features 

(i.e. there are a fewer number of directions selected than the number of features in the input 

data). Next, the input features are linearly projected onto this lower dimension subspace spanned 

by the selected directions to form the extracted features, also known as the principal components. 

There are several variations of the principal component analysis method. One example is the 

kernel principal component analysis method, which can extract features that are a nonlinear 

combination of the input features. Additionally, modifications can also be made to the principal 

components analysis method to perform feature selection. One such modification involves 

simply selecting one feature from the input data for each selected eigenvector such that the 

selected feature is the most similar in directionality to the eigenvector (i.e. the selected feature’s 

axis is the most dominating in the direction of the eigenvector). Put another way, the feature 

vectors that require the least amount of transformation to be projected onto the first eigenvector 
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are selected. This is performed in place of projecting all the input features on the selected 

eigenvectors [Lu et al., 2007]. Additionally, there is a variant of principal component analysis 

method in the form of a supervised feature extraction method called linear discriminant analysis 

(LDA) [Khan & Farooq, 2011]. 

Independent component analysis (ICA) extracts independent features, which form the 

source of the input features. In other words, these new features are extracted such that the input 

features are a weighted linear combination of the extracted features. The method first assumes 

that the source of the input features consists of independent features [Mwangi et al., 2013]. Then, 

the method attempts to extract components (i.e. features) such that the components have 

maximum statistical independence. Different independent component analysis methods vary in 

the ways by which the method achieves maximum statistical independence. These include but 

are not limited to minimizing mutual information and maximizing non-Gaussianity among the 

components [Langlois et al., 2010]. There also exist other variations including non-linear 

independent component analysis methods, which extracts new features such that the input 

features are decomposed into nonlinear components [Hyvarinen & Pajunen, 1999]. 

4.5.2.3 Forced Feature Reduction 

Another way to reduce the dimensionality of the data is to perform forced feature reduction (i.e. 

manually remove features thought to be irrelevant based on prior information). A 

computationally intensive version of forced feature reduction is known as brute-force feature 

selection. For this method, all possible subsets of the input features are tested to determine the 

optimal subset, which achieves the highest prediction accuracy [Reif & Shafait, 2014]. Less 

computationally intensive variations of this method involve reducing the number of input 

features’ subsets tested. This can be done in several ways including using the knowledge of the 
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relationships among the features or optimal features found in past studies. However, it is 

important that the reduction method is unsupervised and independent of the labels, if any, to 

avoid biasing the results. A similar feature reduction technique has been utilized by Muller et al. 

(2005). 

4.5.3 Selection of Learning Method(s) 

To accurately learn a framework or problem, it is not only important to select the right features, 

but it is also important to select the right learning method. The first step is to simply determine 

whether the given data to be learned consist of labeled instances only, a mixture of labeled and 

unlabeled instances, or unlabeled instances only. Consequently, this will determine whether to 

use a supervised, semi-supervised, or unsupervised learning method respectively. If data consist 

of a mixture of labeled and/or unlabeled instances, it would be beneficial to determine whether or 

not the unlabeled would help the learner. If the unlabeled data does not sufficiently increase the 

overall sample size, it may be better to exclude it. The second step is to determine the goal (e.g. 

classification, regression, or clustering) of the learner. The third step is to determine whether the 

nature of the data is linear or non-linear. Generally, when the data size is small, it is better to use 

a linear method to avoid overfitting. However, if the data size is sufficiently large, it may be 

beneficial to test non-linear methods to allow for more flexibility in the learning. The fourth step 

is then to decide the learning method from the narrowed down options.  

Since no one learning method is the best for all application, it may be useful to test 

multiple methods. When selecting a learning method(s) for a given framework or problem, one 

should consider evaluating several different aspects of the method(s) including: computation 

time, underlying assumptions, interpretability, complexity, flexibility, optimization ability, and 
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tested applications by past studies. If there are still too many options of methods to choose from, 

it may be helpful to use machine learning libraries (e.g. LIBSVM, LIBLINEAR, etc.) or software 

(e.g. MATLAB, Python scikit-learn, WEKA, etc.) for testing the performance of different 

methods on the data. On the other hand, if there are too few options, it may be beneficial to 

modify—e.g. add constraints, regularize, combine methods (including learning, feature 

reduction, and/or boosting methods), etc.—existing learning methods to make them more 

suitable for learning the given data. Similar techniques for selecting learning methods have been 

utilized by Bibi & Stamelos (2006), Frank et al. (2004) and Kotthoff et al. (2012). 

4.5.4 Cross-Validation 

Cross-validation is used to estimate the accuracy of a prediction model created by the learning 

method(s) of choice. There are several techniques for performing cross-validation including 

holdout, k-fold cross-validation, and leave-one-out cross-validation. These techniques can be 

essentially considered as variants of the k-fold cross-validation technique. For all techniques, the 

respective validation measures described earlier are used to assess performance of the learning 

method(s). 

When the available data set has a considerably large sample size, one way to perform 

cross-validation is to take the holdout approach by first splitting the data set into training and test 

sets without repetition of instances. Then, the learning method is used to estimate a model that 

describes the data by training the learner on the training set. Lastly, the estimated model is tested 

on the test set and the performance of the learning method is evaluated using appropriate 

validation measure(s). This is essentially a k-fold cross-validation technique (described below) 

where k equals one.  
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When the available data set is not sufficiently large enough to be split in two, a k-fold 

cross-validation technique is used. This technique first divides the data into k equal sized sets. 

Then, it does the following: (1) classifies one of the k sets as the test set, while combining the 

others to form the training set; (2) uses the learning method to estimate a model that describes 

the data by training the learner on the training set; (3) tests the estimated model on the test set; 

and (4) computes appropriate validation measure(s) to determine the precision of the model. This 

4-step process is reiterated for k-iterations, each time classifying a different set as the test set 

without repetition. Lastly, the validation measure(s) values from all the iterations are averaged to 

evaluate the overall performance of the learning method. 

When the available data set has a small sample size, a leave-one-out cross-validation 

method is used. This method is essentially a k-fold cross-validation method with k equal to the 

sample size of the data. In other words, for each iteration of the above-described 4-step process, 

one instance of the data is classified as the test set, while the rest of the instances are used for the 

training set.  

 A variation of these cross-validations methods includes bootstrapping. Bootstrapping 

methods are similar to cross-validation methods, except they increase the number of iterations 

for every fold of cross-validation by resampling with replacement from the given data, instead of 

using it as given. For example, a bootstrapping method using k-fold cross-validation replaces the 

above-described 4-step process with the following: (1) classifies one of the k sets as the test set, 

while combining the others to form the training set; (2) generates a pre-defined number of 

training and corresponding test set instances of the same size from the existing test and training 

set respectively with replacement; and (3) performs for each pair of newly generated training and 

test sets an iterative process that (a) uses the learning method to estimate a model that describes 
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the data by training the learner on the training set, (b) tests the estimated model on the test set, 

and (c) computes appropriate validation measure(s) to determining the precision of the model 

[Kohavi, 1995]. A variation of bootstrapping is bagging [Maclin & Opitz, 2011]. 

4.5.5 Parameter(s) Selection for Learning Methods 

When slight changes to a certain parameter’s values of a given learning method cause 

considerable variability in the resulting prediction model, it may be useful to perform a 

parameter selection process. Selection of a parameter(s) that somehow regulate the complexity 

(e.g. regularization parameters, which penalize complexity and target the overfitting problem) of 

the prediction model developed by the learning method is especially important. This is because, 

as discussed earlier, the complexity of a prediction model determines whether it adequately 

generalizes, overfits, or underfits the data. The most common approach used for parameter 

selection is cross-validation to determine optimal parameter values [Lim & Yu, 2013].  

However, most likely, a cross-validation technique is already being used to evaluate the 

overall generalization-based performance of a learning method. Thus to perform parameter 

selection, a nested inner cross-validation loop would need to be implemented. For this inner 

cross-validation loop, the training set at every iteration of the outer cross-validation loop is used 

as the full data set on which parameter selection is performed. This inner cross-validation loop 

would be implemented between steps one and two of the above-described 4-step process of the 

k-fold cross-validation technique. 

Any of the cross-validation techniques described in the “Cross-Validation” section or any 

variant of these techniques (e.g. estimation stability with cross validation) can be used for the 

inner cross-validation looped to perform parameter selection. The only difference is that instead 
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of iterating through different test sets, the parameter selection method iterates through each of 

the pre-defined set of possible parameter values. At every iteration, it uses the same training and 

test set to estimate a model that describes the data and assess the precision of the model by 

computing appropriate validation measure(s) respectively. The optimal parameter value—i.e. the 

parameter value that results in the most precise model—is then selected. The selected parameter 

value is then used to train the full data set (i.e. the training set of the outer cross-validation loop) 

for step 2 from the 4-step process of the k-fold cross-validation technique [Kohavi & John, 1995; 

Lim & Yu, 2013].  

The process of selecting multiple parameters’ optimal values is similar to the process 

used to select one parameter’s optimal value. The only difference is that the cross-validation 

method iterates through each possible set of values from each parameter to find the optimal set. 

All possible combinations of a set of parameters’ values are identified from pre-defined options 

of values for each parameter using the grid search technique [Bergstra & Bengio, 2012]. 

4.6 DEPRESSION PREDICTION MODELS 

To the best of our knowledge, there are no past studies that have attempted at establishing a 

predictive model using MR neuroimaging for the elderly population. However, there have been 

several past studies that have successfully explored predictive models for diagnosis and 

treatment response of depression in the younger populations. Below is a survey of the studies 

that have used magnetic resonance imaging measures for estimating the prediction models in 

depression diagnosis and treatment response. 

 80 



4.6.1 Depression Diagnosis 

Studies of depression in younger populations involving prediction models have used both 

functional [Fu et al., 2008; Hahn et al., 2011; Marquand et al., 2008; Nouretdinov et al., 2011; 

Zeng et al., 2012] and structural [Costafreda et al., 2009; Mwangi et al., May 2012] imaging 

measures to obtain accurate classifications. Most of these studies have focused on utilizing 

support vector machines as their classifier, with the exception of one that successfully used 

Gaussian process classifiers [Hahn et al., 2011]. The highest classification accuracy (94.3%) 

among all these studies was achieved by using support vector machines with a filter feature 

reduction method (Kendall-tau). In this study, the biomarkers of depression diagnosis were found 

to be functional connections in the default mode network, affective network, visual cortical areas 

and cerebellum [Zeng et al., 2012]. 

4.6.2 Depression Treatment Response 

Studies of depression remission after treatment in younger populations that successfully obtained 

accurate classification models have majorly utilized T1-weighted Hi-Res structural imaging 

measures [Costafreda et al., 2009; Liu et al., 2012; Nouretdinov et al., 2011]. One study that 

attempted to use a task-based functional measure did not achieve very high accuracy [Marquand 

et al., 2008]. All of these studies have focused on utilizing support vector machines as their 

classifier. The highest classification accuracy (88.9%) among all these studies was achieved by 

combining support vector machines with a filter feature reduction method (ANOVA). In this 

study, the biomarkers of depression treatment response were found to be whole brain structural 

neural correlates—especially greater grey matter density in the right rostral anterior cingulate 
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cortex, left posterior cingulated cortex, left middle frontal gyrus, and right occipital cortex 

[Costafreda et al., 2009]. 
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5.0  ASSOCIATION OF SMALL VESSEL ISCHEMIC WHITE MATTER CHANGES 

WITH BOLD FUNCTIONAL MR IMAGING IN THE ELDERLY 

This chapter describes an experiment that shows how alterations in brain structure 

observed in structural MR images can affect the acquisition of functional MR images in late-life 

depression. More specifically, it shows how lesions in the white matter are associated with the 

acquired functional task-based activation signal in late-life depression. 

5.1 INTRODUCTION 

In the elderly, magnetic resonance imaging (MRI)—particularly T2-weighted images—

often reveal white matter hyperintensities (WMHs), which indicate the presence of ischemic or 

pre-ischemic white matter lesions. The lesions are generally associated with myelin pallor, tissue 

rarefraction, and mild gliosis [Gunning-Dixon et al., 2009; Madden et al., 2009; Debette and 

Markus, 2010]. Neuroimaging studies have shown that WMH burden is associated with 

cognitive changes of aging, as well as neuropsychiatric disability in the elderly [Wen and 

Sachdev, 2004]. Past studies have indicated an association between greater WMH burden and 

poorer global cognitive performance, executive function, and processing speed, as well as an 

increased risk of stroke, dementia, and death [de Groot et al., 2000; Gunning-Dixon et al., 2009; 

Debette and Markus, 2010]. Similarly, diffusion tensor imaging (DTI) studies have shown a 
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direct correlation between white matter integrity and cognitive performance, executive function, 

and information processing speed [Gunning-Dixon et al., 2009; Madden et al., 2009; Vernooij et 

al., 2009]. A DTI study by Taylor et al. (2001) also showed that WMHs are associated with 

damage to tissue structure, thus suggesting disruption of white matter tracts. These studies 

suggest that the white matter lesions underlying the WMHs affect neuronal activity.  

Other studies have shown how cerebrovascular disease influences the coupling between 

neural activity and corresponding hemodynamics (i.e. cerebral blood flow, cerebral blood 

volume, and cerebral metabolic rate of oxygen consumption) [Carusone et al., 2002; Rossini et 

al., 2004]. Thus, considering WMHs as a marker for cerebrovascular disease, one would predict 

that WMHs might contribute to altered hemodynamic coupling, and the neural activity 

interpreted by blood oxygen level dependent (BOLD) functional magnetic resonance imaging 

(fMRI) might also be affected in the presence of WMHs. Additionally, the white matter lesions 

associated with the WMHs affect the T2* BOLD signal itself.  On the T2* functional images, the 

areas with WMHs have increased intensity, similar to T2-weighted fluid attenuated inversion 

recovery (FLAIR) images (see Figure 1). The presence of WMHs on the T2*-weighted images 

may alter the sensitivity of the regional T2* BOLD signal.  

As a summary, Figure 2 demonstrates the three stages where WMHs may influence the 

study of brain function (neuronal activity) using fMRI BOLD signals. Some past studies have 

studied the association between WMHs and functional activity based on specific tasks using 

BOLD fMRI [Nordahl et al., 2006; Aizenstein et al., 2011; Hedden et al., 2011; Linortner et al., 

2012], however the relationship between WMHs and the BOLD fMRI signal is underexplored. 

Thus, this study evaluates how WMH burden in the elderly is associated with the BOLD signal 

change determined using a sensory-motor task, which is known to not be significantly associated 
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with WMH burden in task related regions [Linortner et al., 2012]. The simple finger-tapping 

fMRI task was chosen for this study because of its known reliability and reproducibility. Also, 

we used total WMH burden to represent WMH burden for each subject to reduce the number of 

independent variables and based on evidence indicating global WMH burden is associated with 

local WMH burden [DeCarli et al., 2005]. 

Figure 1. Presence of WMHs on T2-weighted FLAIR (left) and T2*-weighted images (right) of the same 

subject 
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Figure 2. Flow chart of the physiology behind the BOLD fMRI signal in black. Three ways in which WMHs can 

affect the BOLD signal in red: 1) by affecting neuronal activity; 2) by affecting the coupling between neural activity 

and corresponding hemodynamics; and 3) by altering the sensitivity of the regional T2* BOLD signal 

5.2 METHODS 

5.2.1 Subject Recruitment 

Elderly non-psychotic, unipolar major depressive disorder (MDD) patients and non-depressed 

individuals were recruited from the community for a late-life depression study and the same data 

was used for this structural and functional MRI study. All participants were required to undergo 

a SCID-IV evaluation. The exclusion criteria included: history of Axis I disorders (except MDD 

and anxiety disorders for the depressed patients only), stroke, significant head injury, 

Alzheimer’s, Parkinson’s, and/or Huntington’s disease. Individuals were also excluded if they 

had taken psychotropic medications within 2 weeks prior the scans. Ten subjects (2 non-

depressed and 8 depressed) were excluded from this analysis due to motion artifacts or poor 

image registration results (evaluated visually using Statistical Parametric Mapping 5 software 

(SPM5) [Friston et al., 1994] running on MATLAB (Math Works, Natick, Massachusetts, USA)) 
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during the normalization step. Forty-one non-depressed and 33 depressed elderly individuals 

were included in this analysis. Demographics of the included subjects are shown in Table 2. 

Table 2. Demographics of the included depressed and non-depressed subjects 

Depressed Non-Depressed 

Age in years, mean (SD) 68.3 (6.6) 71.7 (7.9) 

Sample Size 33 41 

Gender 13 Males & 20 Females 12 Males & 29 Females 

Mini Mental Score(a), mean (SD) 27.2 (4.0) 29.9 (1.7) 

Hamilton D(b), mean (SD) 20.0 (5.1) ——— (c) 

Normalized WMH Volume, mean (SD) 0.00197 (0.0034) 0.00379 (0.0067) 

(a) Missing data from 4 depressed & 1 non-depressed subjects is not included in average & standard deviation calculations  
(b) Missing data from 1 depressed subject is not included in average & standard deviation calculations 
(c) Depression screening through psychiatric interviews was performed, but Hamliton Depression Rating Scale was not 
performed on these subjects 

5.2.2 Image Acquisition and Data Collection 

Subjects were scanned on a 3T Siemens TIM TRIO scanner. T1-weighted images were acquired 

with a 1 mm slice thickness, 256x224mm resolution, 256x224mm field of view (FOV), 2300ms 

repetition time (TR), 900ms inversion time (TI), 3.43ms echo time (TE), and 9 degrees flip angle 

(FA) in the axial plane. T2-weighted images were acquired with a 3 mm slice thickness, 

256x224mm resolution, 256x224mm FOV, 3000ms TR, 100ms TI, 101ms TE, and 150 degrees 

FA in the axial plane. T2-weighted Fluid Attenuated Inversion Recovery (FLAIR) images were 

acquired with a 3 mm slice thickness, 256x240mm resolution, 256x212mm FOV, 9160ms TR, 

2500ms TI, 88ms TE, and 150 degrees FA in the axial plane. Functional images were acquired 
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using a gradient-echo echo planar imaging sequence with a 3 mm slice thickness, 128x128mm 

resolution, 256x256mm FOV, 2000ms TR, 34ms TE, integrated parallel acquisition technique 

(IPAT) = 2, and 90 degrees FA in the axial plane. The paradigm performed by the subjects 

during the functional image acquisition was a 5-minute block-design. There were five 30 seconds 

long experimental blocks (during which the tapping cue was presented 40 times), and it was 

alternated with five 30 seconds long control blocks.  During the experimental blocks subjects 

tapped the right hand index finger for 30 seconds while looking at a cue (the word tap).  During 

the control blocks, subjects rested while looking at a fixation-cross in the center of the screen 

[Howseman et al., 1997]. During the performance of this task, behavioral data pertaining to task 

performance—including accuracy and reaction times—were collected for each subject. For our 

statistical analyses, we computed the median of reaction times corresponding to accurate tapping 

responses by each participant (except for 3 depressed subjects for whom we are missing 

behavioral data). 

5.2.3 Image Processing and Analysis 

The following image processing steps were performed for each subject using SPM5. All 

functional images were realigned to the first image in the sequence and then co-registered with 

the subject’s structural grey matter. The co-registered structural MR image and all realigned 

functional images were normalized to Montreal Neurological Institute (MNI) space using the a 

priori grey matter template in SPM5. The normalized functional images were smoothed with a 

Gaussian kernel (full width at half maximum (FWHM) = 10mm) to account for the greater 

morphologic variability in elderly subjects [Reuter-Lorenz PA and Lustig, 2005]. The effect of 

task on BOLD signal intensity was examined by general linear modeling (GLM) in SPM5. The 
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tapping block was modeled by a box function and convolved with a hemodynamic response 

function then submitted to the GLM. Prior to the GLM, a high pass filter of 128 seconds was 

applied to the image to correct low frequency drift. The serial autocorrelation was corrected 

using an autoregressive model.  

 Additionally, an automated WMH segmentation method was used to obtain whole-brain 

WMH volumes from each subject’s T2-weighted FLAIR images [Wu et al., 2006]. Acquired 

WMH volume measurements were then normalized by total brain volume [Wu et al., 2006]. In 

addition to WMHs, ventricles were manually segmented from each subject’s T1-weighted image 

and the computed volume was also normalized by total brain volume. A final analysis included 

the computation of a WMH map indicating the number of subjects with WMH in various regions 

of the white matter above the cerebellum. To obtain this map, each subject’s T2-weighted 

FLAIR along with the corresponding WMH segmentation was co-registered to the structural 

image, and all co-registered images were registered to the MNI template. 

5.2.4 Statistical Analysis 

First, the general linear model was used to estimate task-related significant BOLD signal changes 

for each subject. Then, group level analyses were performed using a two-sample t-test, 

Wilcoxon’s rank-sum tests, and a regression analysis. The two-sample t-test compared the 

differences in the BOLD signal change between the non-depressed and depressed groups. Due to 

the skewed distribution of the reaction time and WMH, we performed Wilcoxon rank-sum tests 

comparing these variables: (1) median reaction times to analyze differences in task-related 

behavior; and (2) normalized WMH volume measures in the whole brain and in each of the 20 

regions from the Johns Hopkins University White Matter Atlas [Wakana et al., 2004] to analyze 
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differences in global and local WMH burden distribution among subjects respectively. Since no 

significant differences were detected in task-related BOLD signal change, median reaction times, 

and normalized WMH volumes between the two groups, they were combined. Voxel-wise 

regression analysis was performed with BOLD signal change on finger-tapping versus fixation as 

the response variable, and the normalized WMH volume as a predictor. Normalized ventricle 

volume and group (a dichotomous variable categorizing depressed and non-depressed 

participants) were also included in the regression analysis as covariates of non-interest. The 

normalized ventricle volume was included as a covariate to ensure that the results are not biased 

by ventricle size since large ventricles are associated with high WMH burden and are prone to 

cause poor registration, which may in turn significantly affect the statistical analysis. Similarly, 

group was also included as a covariate to control for any group differences. Lastly, we also 

performed two post-hoc analyses: (1) we performed a Wilcoxon rank-sum test comparing BOLD 

signal change at the peak coordinate found to be significant in our regression analysis between 

participants with and without co-localized WMHs within a one-voxel neighborhood of the peak 

coordinate; and (2) we performed a Spearman’s rank correlation analysis between the medians of 

reaction times and WMH burden to ensure that the performance of the task was not associated 

with WMH severity. All statistical parametric analyses were performed in SPM5 and non-

parametric tests were performed using MATLAB. 

5.3 RESULTS 

No significant task-related difference in BOLD signal change was found between the depressed 

and non-depressed groups from the two-sample t-test (t(1,72) = 3.0, SPM Family wise error 
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(FWE) corrected p = 0.92). Similarly, no significant group difference was found from the 

Wilcoxon rank-sum tests comparing median reaction times (z = 0.70, p = 0.48), global 

normalized WMH volumes (z = -1.78, p = 0.07), and local WMH volume in all 20 regions 

(z(min,max,std) = (-2.17,-0.03,0.53), p(min,max,std) = (0.03,0.97,0.26); none of them survive 

Bonferroni correction) between the two groups. For both groups, most subjects (> 80% of the 

subjects) had a normalized WMH volume within a range of 0 to 0.005 (see Figure 6). Therefore, 

the non-depressed and depressed groups’ data were pooled.  

As expected, the group random-effects analysis between all subjects indicate presence of 

significant positive BOLD signal change in regions of the motor cortex (including primary 

motor, premotor, and supplementary motor regions) during motor activity of tapping (t(1,73) > 

4.48, k = 100, FWE corrected p < 0.05). Additionally, regions known to be a part of the default 

mode network (including the mid-temporal, prefrontal, and posterior cingulate regions) were 

significantly deactivated during the tapping task when compared to the baseline fixation period. 

(t(1,73) > 4.48, k = 100, FWE corrected p < 0.05) predominantly in the left hemisphere (see 

Figure 3). 
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Figure 3. Projected activation maps in neurologic orientation showing significant regions (t(1,73) > 4.48, k = 100, 

FWE corrected p < 0.05) for main effect of tap (top 3 blue images) & main effect of fixation (bottom 3 red images ) 

 

 

Figure 4. Results of regression analysis performed usign SPM5. Crosshairs indicate the region of significance 

(t(1,70) = -5.13, k = 60, FWE corrected p < 0.05, peak coordinate MNI -22 -50 30) 
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The regression analysis results indicate a significant negative correlation (t(1,70) = -5.13, 

k = 60, FWE corrected p < 0.05, peak coordinate MNI -22 -50 30) between the whole-brain 

normalized WMH burden and BOLD signal change during finger-tapping (see Figure 4), and no 

group based significant differences (t(1,70) = 2.92, FWE corrected p = 0.95) were found. The 

region of significance is located in the parietal white matter and largely overlaps with regions 

where at least two subjects presented with WMHs as shown in Figure 5. As shown by the 

histogram in figure 6, essentially all of the subjects with the highest WMH burden have WMH 

lesions near (within 1 voxel of) the peak of the ROI identified in the fMRI analysis. Although, 

the overall number of subjects with co-localized WMHs is limited (13 out of 71 subjects), these 

subjects account for much of the overall WMH burden in the sample (69%). Thus, the 

distribution of WMH across subjects in this sample does mostly co-localize with fMRI activity. 

In support of our assertion, the Wilcoxon rank-sum test results also showed significantly greater 

(z = -3.07, p < 0.005) BOLD signal change in participants with co-localized WMHs within a 

one-voxel neighborhood of the peak coordinate in the ROI. Also, based on the Spearman’s rank 

correlation analysis results, there is no significant correlation between median reaction times and 

WMHs (r = -0.08, r2 = 0.006, t = 0.65, p = 0.52), indicating that the participant’s performance on 

the task was not significantly associated with WMH severity and thus had no significant affect 

on the regression analysis results. 
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Figure 5. This figure shows the region of significance from the regression analysis (in green), areas where at least 2 

subjects had WMHs (in blue), and region of overlap between the two (in red) 
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Figure 6. Histogram displaying normalized WMH volume distribution of subjects included in this study. The red 

“X”s indicate subjects with co-localized WMHs in region of significance from the regression analysis. 

5.4 DISCUSSION 

In this study, we found WMH burden in the elderly was inversely associated with BOLD signal 

change on a simple finger-tapping task in a small region of the white matter. Individuals with 

higher WMH burden showed a decreased BOLD signal change on tapping (relative to fixation 

condition). The area of significance was located in the parietal white matter: an area that was not 

strongly associated with the task based on the BOLD signal analysis, but is nevertheless a region 

where WMHs are found in several individuals. Thus, it is not clear whether WMHs are 

associated with a global decrease of BOLD signal change, or perhaps have local effects where 

the WMHs are most prominent. The significant results in the white matter suggest one of two 

ideas: fMRI is able to detect BOLD signal change reflective of individual differences in neural 

activation in the white matter, or the presence of WMHs significantly affects the BOLD MR 

contrast leading to individual differences not necessarily related to neural activation. 
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Mazerolle et al., 2008 have shown support for detecting a significant BOLD signal 

change indicating activation in the white matter. Also, Brickman et al., 2009 studied the cerebral 

blood flow (CBF) using arterial spin labeling (ASL) and concluded that CBF is significantly 

lower in WMH laden areas compared to normal appearing white matter and grey matter. If 

indeed it is possible to generate a detectable BOLD fMRI response in the white matter, our 

results that show a decrease in BOLD signal change (also indicative of decreased CBF) with an 

increase in WMH burden, would then be consistent with the conclusions of Mazerolle and 

Brickman. Our results also would agree with conclusions of other perfusion-weighted MRI 

studies [Marstrand et al., 2002; Sachdev et al., 2004] with similar pathologies (i.e. 

hypoperfusion) associated with WMHs.   

Nevertheless, detection of the BOLD signal in the white matter is controversial. Two 

main reasons for this are: 1. Cerebral blood flow and volume are lower in the white matter 

compared to the grey matter, and 2. Post-synaptic potentials, instead of action potentials, are 

thought to be associated with the BOLD signal [Gawryluk et al., 2009]. Therefore, we believe 

the stronger argument explaining the significant inverse correlation results is that the T2* BOLD 

MR contrast is significantly affected by the presence of WMHs. The WMHs are visible on the 

T2* weighted images and could be significantly affecting preprocessing steps and/or distorting 

the BOLD signal. Thus, the WMHs and their relation to the functional images need to be further 

studied. Limitations of this study to fully understand the relation also necessitate future studies. 

Longitudinal studies and additional BOLD independent studies involving event-related potentials 

(ERPs) measured using electroencephalogram (EEG), event-related fields (ERFs) measured 

using magnetoencephalography (MEG), and/or metabolically based 18F-fluorodeoxyglucose 

positron emission tomography (PET) may help understand the affects of WMHs better. Some 

 96 



other limitations of this study include the limited sample size and the skewed distribution of 

WMH burden across subjects.  An additional limitation is a possible selection bias, which is 

suggested by the lack of difference in WMH burden between depressed and control subjects.  

However, since depression is not a variable of interest for the current report, we do not think the 

possible subject selection influences these results. 
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6.0  RELATING STRUCTURAL MRI, DEMOGRAPHIC AND COGNITIVE 

ABILITY MEASURES TO FUNCTIONAL MRI MEASURES 

This chapter describes an experiment that attempts to directly study the relationship 

between brain structure and function using magnetic resonance imaging. For the study, resting 

state functional connectivity was used to study brain function because it is simple, allows for a 

whole brain analysis, and is widely studied for late-life depression in the literature. 

6.1 INTRODUCTION 

Magnetic resonance imaging (MRI) is used by researchers to study various facets of the 

human body, especially the brain. Different aspects of the brain are studied using different 

MR pulse sequences. T1-weighted images are used to study the anatomy, specifically 

differences and changes in brain regions/structures, due to its high-resolution, which allows 

for more accurate labeling of regions and defining their boundaries. These images can be 

used to study the severity of atrophy in brain regions by studying regional volume 

difference and changes. Diffusion Tensor Imaging (DTI) images are used to gain an 

understanding of the brain from a microscopic level and study the diffusion of molecules in 

brain tissues. Two important measures acquired from DTI images include mean diffusivity 

(MD) and fractional anisotropy (FA), which signify the amount and directionality of 
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diffusion in tissue respectively. These measures help evaluate the tissue integrity by helping 

determine brain regions where diffusion is significantly decreased and dispersed due to 

lesions. T2-weighted images are used to study white matter hyperintensities (WMHs), 

indicating the presence of ischemic or pre-ischemic white matter lesions. Both local and 

global volume measures of WMHs are used to study their affect on cognition. Functional 

MRI (fMRI) images are used to study brain activity as well as functional connectivity 

between different brain regions. Using each of these MR modalities, the goal of this study is 

to analyze the relationship of the structure measures acquired from the structural images 

(i.e. T1-weighted, DTI, and T2-weighted images) in addition to demographic and cognitive 

ability measures (e.g. Age, Education, Gender, and Mini-Mental Score Examination 

(MMSE) score) with the functional connectivity measure acquired from the functional 

images (specifically resting state function images). 

Past studies have shown a relationship between functional measures and normal 

aging differing from neuropsychiatric disorders of aging [Fox & Greicius, 2010; Greicius, 

2008]. Several past studies have shown a relation of only a select few of structural 

[Greicius, et al., 2009; Honey et al., 2009; Steffens et al., 2011; Teipel et al., 2010; Wu et 

al., 2011], demographic [Weissman-Goel et al., 2010], and/or cognitive ability measures 

with functional measures. However, to the best of our knowledge, this is the first study to 

relate all of these non-functional measures with functional measures. This study aims to 

determine potential biomarkers and achieve a more comprehensive understanding of which 

non-functional measures are most associated with functional circuit abnormalities in the 

elderly. To study this association, we used linear regression and artificial neural networks 

(ANN) as a non-linear alternative for comparison. Both methods were used to attempt to 
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predict function from structure, demographics, and cognitive ability as well as determine 

which features (i.e. structural, demographic, and/or cognitive ability) best help predict 

function. For the functional measure, we chose to study resting state functional 

connectivity—due to its well-known usage for studying interactions between brain 

regions—and focus on connectivity between regions involved in one of the major resting 

state networks: the default mode network. These regions include the amygdala, Brodmann’s 

area 23 (which includes the posterior cingulate cortex (PCC)), hippocampus, inferior 

parietal, and rectus. 

In the long-term, we believe an accurate predictive model will help us better 

understand the relationship between the structural and functional brain changes associated 

with normal aging, and also to better identify predictive biomarkers to improve prevention 

and treatment strategies for the neuropsychiatric disorders of aging. Such a model can help 

better classify neuropsychiatric disorders and thus lead to the helping provide personalized 

treatment. 

6.2 METHODS 

6.2.1 Subject Recruitment 

Elderly individuals were recruited for this MRI study from the community and from the 

healthy controls registry of the Pittsburgh Alzheimer’s Disease Research Center. All 

participants underwent a SCID-IV evaluation. The exclusion criteria included: history of 

Axis I disorders, stroke, significant head injury, Alzheimer’s, Parkinson’s, and/or 
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Huntington’s disease. Thirty elderly individuals were included in this analysis. Their 

demographics and cognitive ability data was also acquired during recruitment. 

6.2.2 Image Acquisition 

Subjects were scanned on a 3T Siemens TIM TRIO scanner using a 12-channel Siemens 

head coil. T1-weighted images were acquired with a 1 mm slice thickness, 256x224mm 

resolution, 256x224mm field of view (FOV), 2300ms repetition time (TR), 900ms inversion 

time (TI), 3.43ms echo time (TE), and 9° flip angle in the axial plane. T2-weighted Fluid 

Attenuated Inversion Recovery (FLAIR) images were acquired with a 3 mm slice thickness, 

256x240mm resolution, 256x212mm FOV, 9160ms TR, 2500ms TI, 88ms TE, and 150° flip 

angle in the axial plane. DTI images were acquired with a 3 mm slice thickness, 

128x128mm resolution, 256x256mm FOV, 5300ms TR, 2500ms TI, 88ms TE, and 90° flip 

angle in the axial plane. Functional images were acquired using a gradient-echo-planar 

imaging sequence with a 3 mm slice thickness, 128x128mm resolution, 256x256mm FOV, 

2000ms TR, 34ms TE, integrated parallel acquisition technique = 2, and 90° flip angle in the 

axial plane. 

6.2.3 Image Processing: Feature & Expected Output Values 

6.2.3.1 T1-weighted Images 

Features extracted from the T1-weighted images include the ratio and sum total of volumes 

for each pair of region of interest (ROI)s. Together, these measures were included to 

represent the regional atrophy that may affect functional connectivity. To obtain these 
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volume measures, the T1-weighted images were first preprocessed: skull stripped using 

Medical Image Processing, Analysis, and Visualization (MIPAV) software [McAuliffe et al., 

2001] and ACPC aligned using Analysis of Functional NeuroImages (AFNI) software [Cox, 

1996]. Then, the similarly preprocessed Montreal Neurological Institute (MNI) colin 

template and its corresponding labeled regions were registered to the preprocessed T1-

weighted image. The volume measure for each ROI was calculated by dividing the number 

of voxels in the registered and thresholded ROI by the number of voxels in the whole brain. 

6.2.3.2 DTI Images 

Features extracted from the DTI images include, the average MD in each pair of ROI, the 

weighted average FA in the tracks connecting each pair of ROI, and the approximate number 

of tracks connecting each pair of ROI. Together, these measures were included to represent 

the diffusivity and integrity of the gray and white matter that may affect functional 

connectivity. To obtain these measures, FMRIB Software Library (FSL) [Jenkinson et al., 

2012] was used to perform eddy current correction, dti (diffusion tensor imaging) 

reconstruction, and tractography. In addition, the subject’s T1-weighted image and 

previously registered ROIs were registered to the subject’s DTI space using FSL. For each 

pair of registered ROIs, the resulting MD map was used to calculate the average MD, FA 

map was used to compute the weighted average FA among the tracks found during 

tractography, and the number of tracks found was also recorded. 

6.2.3.3 T2-weighted FLAIR Images 

Features extracted from the T2-weighted FLAIR images include the amount of global and 

local track-based WMHs. Together, these measures were included to represent the amount of 
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white matter lesions that may affect functional connectivity. To obtain these measures, the 

insight toolkit (ITK) [Yoo et al., 2002] was used to segment the WMHs. Then, the subject’s 

DTI and corresponding ROI masks were registered to the subject’s T2-weighted FLAIR 

image. The global and local WMH volume measure was computed by dividing the number 

of voxels part of the WMH segmentation and the number of these voxels intersecting the 

tracks connecting each pair of ROI respectively by the number of voxels in the whole brain. 

6.2.3.4 Resting State Functional Images 

Expected output values were extracted from the resting state function images and comprised 

the Fisher transformed correlation coefficient representing the functional connectivity 

between each pair of ROI. To obtain this measure, all functional images were realigned to 

the first image in the sequence and then co-registered with the subject’s structural grey 

matter. The co-registered structural MR image and all realigned functional images were 

normalized to Montreal Neurological Institute (MNI) space using the a priori grey matter 

template in Statistical Parametric Mapping 5 software (SPM5) [Friston et al., 1994]. The 

normalized functional images were smoothed with a Gaussian kernel (full width at half 

maximum (FWHM) = 10mm) to account for the greater morphologic variability in elderly 

subjects [Reuter-Lorenz PA and Lustig, 2005]. The affects of the head motion parameter 

were then regressed out of the resulting data and it was high pass filtered at a cut off of 100 

Hz to obtain the resting state brain activity at each voxel. Then, Region-of-interest 

extraction toolbox (REX) was used to get the 1st eigenvariate time series from the processed 

data for each ROI and Fisher transformed correlation coefficients were computed between 

the resulting time series for each pair of ROIs. These coefficients represent how well two 
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regions are connected functionally (greater coefficient value = greater functional 

connectivity), and serve as functional connectivity indices (FCI). 

6.2.4 Statistical Learning 

For this study, we compared results from two methods: linear regression and artificial neural 

networks. For each method, the features included—which were all scaled to a range of [0,1] 

before input—and corresponding actual/expected output variable are listed in table 3. A 

training dataset of 150 samples, validation dataset of 50 samples, and test dataset of 100 

samples was randomly selected from the larger data set. First to obtain optimal values of 

each parameter involved in the respective methods tested, the training dataset was trained 

using each method. Then, the trained weights were used to obtain prediction outputs for the 

validation dataset and obtain predicted outputs. The predictions were used to compute the 

mean squared error (MSE) for the chosen parameters. The combination of parameter values 

that resulted in the smallest MSE were selected to obtain prediction outputs for the training 

and test datasets. Lastly, to analyze the performance of each method, we did the following 

between the predicted and expected outputs of both the train and test datasets: (1) performed 

t-tests to study the significance difference of means, and (2) computed the train and test 

MSEs of the predicted outputs to study the overall difference taking into account the 

variance and bias. 
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Table 3. Feature inputs and expected output variable 

 Dataset: 
Feature Inputs Feature Type 
Constant  
Age Demographic 
Gender (F=1/M=0) Demographic 
Education Demographic 
MMSE score Cognitive Ability 
ROIs volume ratio Structural (T1) 
ROIs volume total Structural (T1) 
Global WMH volume Structural (T2 FLAIR) 
Local WMH volume Structural (T2 FLAIR) 
MD (average) Structural (DTI) 
FA (weighted) Structural (DTI) 
# of Tracks (average) Structural (DTI) 
Expected Output Output Type 
FCI Functional 

 

6.2.4.1 Linear Regression 

A gradient descent algorithm with a prior was performed to calculate the weights θs in 

equation 1 that would help predict the output y (where y is the FCI) given features xk|k = 

0,…,12 (listed in table 3) such that the MSE between the prediction and actual values of y is 

minimized. The parameters varied to obtain the optimal set of θ k|k = 0,…,12 included the prior 

factor (λ) and the step size α. For each value of α and the optimal prior, the objective 

function value was plotted as function of number of iteration (max number of iterations was 

set to 500) [Kivinen, 1997]. 

y = θ0x0 + θ1x1 + θ2x2 + θ3x3 + θ4x4 + θ5x5 + θ6x6 + θ7x7 + θ8x8 +… 

       …+ θ9x9 + θ10x10 + θ11x11 + θ12x12             [1] 
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6.2.4.2 Artificial Neural Networks 

A backpropagation algorithm was used to compute the optimal weights for a 3-layered 

artificial neural network with one hidden layer. All weights were trained using sigmoid 

functions. The algorithm iteratively trains the dataset and terminates when the MSE 

stabilizes and is less than a set error margin = 0.0001. The parameters varied to obtain the 

optimal set of weights between each layer included the learning rate, the starting value 

range of every weight, and the number of hidden layer nodes. Based on the starting value 

range, each weight was initialized to a random value within this range. The algorithm was 

run five times and the iteration where the predicted outputs of the validation set produced 

the smallest MSE was used to select optimal weights for the network [Gershenson, 2003]. 

6.3 RESULTS 

6.3.1 Linear Regression 

For the linear regression model, the following parameter values were found to be most 

optimal and resulted in the least MSE: (1) prior value of λ = 0.1, and (2) step size of α = 

0.01. The optimal weights computed by training the model on these parameter values are 

shown in table 4 along with the mean, standard deviation, t-test results, and MSE of the 

predicted outputs. The corresponding objective function is shown in figure 7. 
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6.3.2 Artificial Neural Networks 

For the ANN model, the following parameter values were found to be most optimal and 

resulted in the least MSE: (1) learning rate = 86, (2) starting value range = [0.07-0.9], and 

(3) number of hidden layer nodes = 6. The optimal weights computed by training the model 

on these parameter values are show in table 5 along with the mean, standard deviation, t-test 

results, and MSE of the predicted outputs. 

 

Table 4. Optimal weights for the linear regression model with corresponding predicted output analysis 

Feature Inputs θs  
Constant 2.499  
Age -0.683  
Gender (F=1/M=0) -0.011  
Education -0.130  
MMSE score -1.728  
ROIs volume ratio 0.178  
ROIs volume total 0.303  
Global WMH volume -0.123  
Local WMH volume -0.379  
MD (average) -0.096  
FA (weighted) 0.134  
# of Tracks (average) 1.236  
Predicted Output Train Dataset Test Dataset 
FCI Mean (STD) 0.503 (0.240) 0.481 (0.235) 
t-value (p-value) -0.052 (0.959) 0.527 (0.599) 
Mean Squared Error 0.110 0.105 
Correlation Coefficient  
(p-value) 

0.55 (<0.0001) 0.39 (<0.0001) 
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Table 5. Optimal weights (top 12x6 matrix: weights connecting input nodes to hidden layer nodes; middle 1x6 

matrix: weights connecting hidden layer nodes and output node) for the ANN model with corresponding predicted 

output analysis 

WEIGHTS Hidden 
Layer Nodes:      

Feature 
Inputs: 1 2 3 4 5 6 

Constant -2.067 -0.462 -1.829 -1.756 -2.710 -1.928 
Age -1.776 -0.528 -0.792 -1.012 -2.069 -1.480 

Gender 
(F=1/M=0) -1.646 -0.405 -1.518 -0.717 -1.210 -1.336 

Education -0.836 -0.314 -1.079 -1.180 -1.896 -0.762 
MMSE score -1.752 0.119 -1.745 -1.535 -2.360 -1.589 
ROIs volume 

ratio 0.263 0.949 0.133 0.085 0.086 -0.494 

ROIs volume 
total -0.329 0.006 -0.935 -0.881 -1.076 -0.514 

Global WMH 
volume 0.450 1.167 0.306 0.341 -1.088 -0.061 

Local WMH 
volume 0.600 0.649 0.212 0.213 -0.119 -0.012 

MD 
(average) -1.272 -0.147 -1.026 -0.609 -1.276 -1.232 

FA 
(weighted) -0.420 -0.300 -0.666 -1.196 -1.658 -0.723 

# of Tracks 
(average) 0.105 2.736 0.374 0.506 1.313 0.915 

 Hidden 
Layer Nodes:      

Output: 1 2 3 4 5 6 
FCI 0.927 1.930 0.607 0.450 1.167 1.004 

Predicted 
Output: 

Train 
Dataset 

Test 
Dataset     

FCI 
Mean (STD) 0.642 (0.057) 0.635 

(0.056)     

t-value 
(p-value) 

4.17 (4.03e-
05) 

5.20 
(4.86e-07)     

Mean 
Squared 

Error 
0.165 0.132     

Correlation 
Coefficient 
(p-value) 

0.31(<0.0001) 0.34 
(0.0005)     
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Figure 7. Objective Function plots for the various step sizes (alpha) tested at a prior value of lambda = 0.1 (Note: for 

alpha = 1 and 0.1 the values are significantly larger and are thus left out; the optimal alpha value is 0.01). 

6.4 DISCUSSION 

In terms of mean squared error, the results indicate that linear regression performed 

better than the ANN model. This may suggest that this non-linear model is overfitting the 

model studying the relationship of brain structure, demographics, and cognitive ability with 

brain function. Most notably, the ANN predicted outputs have significantly different means 

from the expected outputs based on the t-test results (p < 0.0001) unlike the linear 

regression model (p (train) = 0.959, p (test) = 0.599).  

However, when evaluating the correlation between the predicted and actual labels for 

both training and test datasets, both methods seem to be underperforming. Even though the 
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correlation coefficients are found to be highly significant (p < 0.001), the coefficients 

themselves are low (r < 0.6); this suggests discrepancies between the predicted and actual 

labels. Thus, we speculate that either (1) it cannot be assumed that the association between 

brain structure and regional connectivity is independent of the selection of regions, (2) the 

high sparsity of input feature data does not allow the learning methods to generalize a good 

prediction model, (3) there is an added bias due to using multiple regions from the same 

subject as individual training samples, (4) there is a lack of relevant features in the data set 

since most of them have a logarithmic non-Gaussian distribution, or (5) even with an ideal 

model structure is not fully predictive of function as measured by MRI markers used in this 

study. For future work, we believe either subject-wise analysis or an improved set of 

features with less sparsity may help estimate more accurate prediction models. 
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7.0  PREDICTING LATE-LIFE DEPRESSION AND TREATMENT RESPONSE 

This chapter describes an experiment that attempts to estimate prediction models for late-life 

depression and treatment response using both structural and functional imaging measures, as 

well as non-imaging measures. Also, another portion of this study is explained in “Appendix A”. 

This portion of the study is performed as follow-up to the experiment defined in the previous 

chapter. 

7.1 INTRODUCTION 

In a given year, approximately 2 million people aged 65+ suffer from late-life depression (LLD) 

not associated with normal aging [Mental Health America]. The current diagnosis and treatment 

of LLD is based on behavioral symptoms and signs. It lacks the reliability and validity that could 

accrue from biomarkers of underlying brain characteristics. To advance towards personalizing 

medicine, it is important to identify biomarkers reflecting the neural circuit abnormalities that 

characterize LLD.  

For this study, we focused on the association of brain structure and function to late-life 

depression (LLD) and its treatment response in an elderly population. The following measures 

were used: demographic characteristics, cognitive ability, brain structure, and brain function. 

Demographic and cognition measures included: age, education, gender, and Mini-Mental Score 
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Examination (MMSE). Magnetic resonance imaging (MRI) were used to extract brain structure 

and function measures. 

Past studies have evaluated the association of the diagnosis and treatment response of 

LLD with select few of the demographic [Blazer, 2012; Chang-Quan et al., 2010; Forlani et al., 

2013; Katon et al., 2010; Luppa et al., 2012; Wild et al., 2012; Wu et al., 2012], clinical 

[Andreescu et al., 2008], cognition ability [Bhalla et al., 2005; Ganguli et al., 2006; Kohler et al., 

Apr 2010; Ribeiz et al., 2013; Wilkins et al., 2009], MR structural [Alexopoulos et al., 2008; 

Aizenstein et al., 2011; Change et al., 2011; Colloby et al., 2011; Crocco et al., 2010; Disabato et 

al., 2012; Firbank et al., 2012; Gunning et al., 2009; Gunning-Dixon et al., 2010; Kohler et al., 

Feb 2010; Mettenburg et al., 2012; Sexton et al., 2013; Shimony et al., 2009; Taylor et al., 2008; 

Taylor et al., 2011; Teodorczuk et al., 2010], and/or MR functional measures [Alalade et al., 

2011; Alexopoulos et al., 2012; Andreescu et al., 2011; Andresscu et al., 2013; Bohr et al., 2012; 

Colloby et al., 2012; Liu et al., 2012; Steffens et al., 2011; Wang et al., 2008; Wu et al., 2011]. 

However, to the best of our knowledge this is the first study to explore a wide range and 

combinations of demographic, cognitive ability, MR structural, and MR functional measures in 

association to LLD diagnosis and treatment response. These measures include: (1) normalized 

total gray plus white matter volume, and average normalized regional volume to measure brain 

tissue atrophy using T1-weighted images; (2) average mean diffusivity (MD), average weighted 

fractional anisotropy (FA), and average number of tracts connecting regions of interest to 

measure white matter integrity using DTI images; (3) normalized global and average local track-

based white matter hyperintensity volume to measure white matter lesions using T2-weighted 

images; (4) age, gender and education; (5) Mini-Mental State Examination score; and (6) average 

Fisher transformed correlation coefficients to measure resting state functional connectivity using 
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fMRI images. By using a broader spectrum of features, we hope to get a more complete and 

accurate understanding of the underlying mechanisms of the brain associated with LLD. An 

international study in progress by Grieve et al., 2013 has presented some preliminary results 

showing the importance of multimodal MRI measures as potential biomarker for depression in a 

younger population. Compared with mid-life depression, LLD has a different neural signature 

including gray matter (GM) and white matter (WM) structural changes [Aizenstein et al., 2014] 

along with a more difficult treatment response [Andreescu et al., 2011]. Thus, we believe that the 

underlying circuitry associated with the diagnosis and treatment response of LLD may involve a 

combination of structural and functional biomarkers. Also, we aimed to better understand how 

the features relate to and affect one another. 

Using the unique set of measures described above, we aimed to develop a model that can 

accurately predict the diagnosis and treatment response of LLD. By creating a predictive model, 

we hope to increase our understanding of LLD and aid in the progress towards personalized 

treatment. There have been several past studies that have successfully explored predictive 

models for diagnosis [Costafreda et al., 2009; Fu et al., 2008; Hahn et al., 2011; Marquand et al., 

2008; Mwangi et al., Jan 2012; Mwangi et al., May 2012; Nouretdinov et al., 2011; Zeng et al., 

2012] and treatment response [Costafreda et al., 2009; Liu et al., 2012; Marquand et al., 2008; 

Nouretdinov et al., 2011] of depression in the younger populations. Also, most of these studies 

have focused on utilizing support vector machines as their classifier. However, to the best of our 

knowledge, there are no past studies that have attempted at establishing a predictive model for 

the elderly population by comparing multiple classification methods. Given that past studies 

have been successfully able to form predictive model for diagnosis (94.3% classification 

accuracy using fMRI by Zeng et al., 2012) and treatment response (88.9% classification accuracy 
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using structural MRI by Costafreda et al., 2009) of depression in younger populations, we also 

believe it is possible to do so for LLD. Considering the increased complexity of brain structure 

and function in the elderly population (resulting from age and disease), we studied multiple 

classification methods for predictive models including: L1-regularized Logistic Regression, 

Support Vector Machines, and Alternating Decision Trees. Additionally, we focus on resting 

state networks including the default mode network and salience network, which have been 

studied in LLD [Alalade et al., 2011; Alexopoulos et al., 2012; Andreescu et al., 2011; 

Andreescu et al., 2013; Bohr et al., 2012; Gunning et al., 2009; Steffens et al., 2011; Wu et al., 

2011]. Unlike past studies that focused on region-based approaches (e.g. regions resulting from 

voxel-wise analysis [Costafreda et al., 2009; Fu et al., 2008; Hahn et al., 2011; Marquand et al., 

2008; Liu et al., 2012; Mwangi et al., Jan 2012; Mwangi et al., May 2012; Nouretdinov et al., 

2011] or anatomical regions of interest (ROIs) [Zeng et al., 2012]), we perform a whole brain 

and network analyses using functional ROIs in order to reduce data complexity and more 

precisely represent the brain areas activated during a functional activity (e.g. resting state) of 

interest [Nieto-Castanon et al., 2003]. 

To our knowledge, this is the first study to estimate prediction models for the diagnosis 

and treatment response in late-life depression (LLD), by evaluating: (1) the potential of 

multimodal magnetic resonance imaging (MRI) measures as biomarkers; (2) combinations and 

interactions between potential imaging and non-imaging predictors; (3) multiple learning 

methods; and (4) whole brain and network analyses using functional ROIs. 
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7.2 METHODS 

7.2.1 Subject Recruitment 

Non-psychotic, unipolar LLD patients (n = 33) and elderly non-depressed (ND) (n = 35) 

individuals were recruited from the Pittsburgh’s Advanced Center for Intervention and Services 

Research for Late-Life Mood Disorders, and Alzheimer Disease Research Center’s healthy 

controls registry respectively. Each participant provided written informed consent after receiving 

a full description of the study. All participants were paid $50. Participants were evaluated using 

the Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders 4th 

edition (SCID-IV) [First et al., 1995]. Based on their SCID-IV evaluation, participants were 

excluded if they had a history of Axis I disorders other than major depressive disorder and 

anxiety disorders, stroke, significant head injury, Alzheimer’s, Parkinson’s, and/or Huntington’s 

disease.  The recruited patients were treated with duloxetine, venlafaxine, nimodipine, or 

escitalopram. Upon recruitment and after 12 weeks of treatment during a follow-up, these 

participants were assessed for LLD severity using the Hamilton Depression Rating Scale (HAM-

D).  If a participant showed an improvement in their HAM-D score of less than ten [Roose et al., 

1994], she or he was classified as a responder to treatment. If the necessary HAM-D scores were 

not available (n = 3), other depression scales (i.e. Montgomery–Åsberg Depression Rating Scale 

or Patient Health Questionnaire-9) were used in conjunction to clinician notes of patient 

progress. Any subject without sufficient response data was excluded from the treatment response 

based analyses.  

From all recruited individuals, one LLD individual was excluded from the analysis due to 

excessive functional MRI (fMRI) head motion artifacts. Two more LLD and four ND individuals 
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were excluded due to bad fMRI registration to template. Additionally, individuals were excluded 

due to incorrect ROI(s) registration to structural images (this includes three LLD and three ND 

individuals for the dorsal default mode network (dDMN) analysis; and five LLD individuals for 

the anterior salience network (aSN) analysis). For the treatment response analysis, three 

additional LLD individuals were excluded due to missing or partial treatment response. The 

demographics and cognitive ability data for each individual also were acquired during 

recruitment and are summarized in table 6. 

Table 6. Summary of Participants-Related Information 

Depression Analysis Treatment Response 
Analysis 

Network dDMN aSN Both dDMN aSN Both 

# of ND 28 31 28 n/a n/a n/a 

# of LLD 27 25 22 24 22 19 

# of Responders n/a n/a n/a 11 11 9 

# of Non-Responders n/a n/a n/a 13 11 10 

Age [avg (stdev)] years 70.20 
(7.98) 

70.00 
(7.85) 

69.78 
(7.81) 

68.83 
(7.52) 

68.36 
(6.54) 

67.37 
(6.45) 

Gender (% Female) 76.36% 78.57% 78.00 % 75.00% 81.82% 78.95% 

Education [avg (stdev)] years 14.36 
(2.45) 

14.43 
(2.51) 

14.18 
(2.40) 

14.75 
(2.75) 

14.45 
(2.69) 

14.37 
(2.75) 

MMSE [avg (stdev)] score 28.40 
(2.01) 

28.32 
(2.08) 

28.36 
(2.10) 

27.58 
(2.60) 

27.41 
(2.65) 

27.26 
(2.83) 

HAM-D at baseline(a) 
[avg (stdev)] score 

20 (4) 20 (4) 21 (4) 20 (4) 20 (4) 21 (4) 

HAM-D at 12 week follow-up(a) 
[avg (stdev)] score 

10 (5)(b) 10 (6)(b) 10 (6)(b) 10 (5) 10 (6) 10 (6) 

(Note: In the above table, “avg” is short for average and “stdev” is short for standard deviation) 
(a) Information regarding HAM-D scores is presented for LLD participants only. 
(b) HAM-D scores are missing for 3 participants and thus they were not included in the calculations. 
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7.2.2 Image Acquisition 

A 3T Siemens TIM TRIO scanner with a 12-channel Siemens head coil was used to scan the 

subjects. T1-weighted, T2-weighted, T2-weighted fluid attenuated inversion recovery (FLAIR), 

diffusion tensor imaging (DTI) and resting state fMRI (rs-fMRI) images were acquired for each 

subject. The parameters for T1-weighted images were: 1mm slice thickness, 256x224mm 

resolution, 256x224mm field of view (FOV), 2300ms repetition time (TR), 900ms inversion time 

(TI), 3.43ms echo time (TE), and 9° flip angle in the axial plane. The parameters for T2-

weighted images were: 3mm slice thickness, 256x224mm resolution, 256x224mm field of view 

(FOV), 3000ms repetition time (TR), 100ms inversion time (TI), 11/101ms echo time (TE), and 

150° flip angle in the axial plane. The parameters for T2-weighted FLAIR images were: 3mm 

slice thickness, 256x240mm resolution, 256x212mm FOV, 9160ms TR, 2500ms TI, 88ms TE, 

and 150° flip angle in the axial plane. The parameters for DTI images were: 3mm slice thickness, 

128x128mm resolution, 256x256mm FOV, 5300ms TR, 2500ms TI, 88ms TE, and 90° flip angle 

in the axial plane. The parameters for the rs-fMRI images acquired using a gradient-echo-planar 

imaging sequence were: 3mm slice thickness, 128x128mm resolution, 256x256mm FOV, 

2000ms TR, 34ms TE, integrated parallel acquisition technique = 2, and 90° flip angle in the 

axial plane. For the rs-fMRI scans, the subjects were asked to stay awake, think of nothing in 

particular and rest with eyes focused on a fixation cross. 

7.2.3 Regions of Interest (ROIs) Selection 

For this study, functional ROIs from the dorsal default mode network (dDMN) and anterior 

Salience Network (aSN) were used. All methods described below were repeated for the dDMN, 
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aSN, and both networks combined. ROIs for both networks were obtained from the FIND Lab at 

Standford University [Shirer et al., 2012]. 

7.2.4 Image Processing: T1-weighted High Resolution (Hi-Res) Image Features 

From the T1-weighted images the following 2 features were extracted: (1) normalized whole 

brain gray and white matter volume, and (2) average of normalized ROIs’ gray matter volumes. 

These measures represent the whole brain and regional atrophy respectively. To obtain these 

volume measures, the T1-weighted images were first preprocessed: aligned along the anterior 

and posterior commissure line using 3DSlicer [Pieper et al., 2004] software and skull stripped 

using ITK-SNAP software [Yushkevich et al., 2006]. Then, the skull-stripped 

Montreal Neurological Institute (MNI) colin template and the ROIs in colin space were 

registered to the preprocessed T1-weighted image. The T1-weighted images were also 

segmented into gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) using 

FMRIB Software Library (FSL) [Jenkinson et al., 2012]. Each registered ROI was then 

thresholded by the respective gray matter segmentation. Normalized volume measures were 

computed by dividing the number of voxels in each region by the number of voxels in the 

intracranial volume of the brain. 

7.2.5 Image Processing: DTI Image Features 

From the DTI images the following 3 features were extracted: (1) the average of all ROIs’ mean 

MD, (2) the average of all ROIs’ weighted average FA in the tracks connecting each pair of 

ROIs, and (3) the average of the approximate number of tracks connecting each pair of ROIs. 
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These measures represent the diffusivity, integrity, and structural connectivity respectively of the 

gray and white matter. These measures were acquired using FSL to perform eddy current 

correction, dti reconstruction, and tractography. FSL was also used to register each subject’s T1-

weighted image and ROIs in T1-weighted subject space to the subject’s DTI space. For each pair 

of ROIs in DTI space, average MD was calculated from the resulting MD map, the weighted 

average FA among the tracks found during tractography were calculated from the resulting FA 

map, and the number of tracks found during tractography was also recorded. 

7.2.6 Image Processing: T2-weighted FLAIR Image Features 

From the T2-weighted FLAIR images the following 2 features were extracted: (1) the amount of 

global WMHs, and (2) the average of the amount of local track-based WMHs between each pair 

of ROIs. These measures represent the amount of white matter lesions. For these measures, we 

first segmented the WMHs using the insight toolkit (ITK) [Yoo et al., 2002]. Next, the subject’s 

DTI image was registered to the subject’s T2-weighted FLAIR image space and the 

transformation was applied to the corresponding ROI masks using FSL. Then, we divided the 

number of voxels in the WMH segmentation and the number of these voxels intersecting the 

tracks connecting each pair of ROIs by the number of voxels in the whole brain to obtain the 

global and local WMH volume measures respectively. 

7.2.7 Image Processing: Resting State Functional Images 

From the rs-fMRI images, we extracted the average of Fisher transformed correlation 

coefficients between each pair of ROIs. For the purposes of this study, these coefficients are 
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referred to as functional connectivity indices (FCI). This measure represents the average overall 

network functional connectivity. For this measure, all functional images were processed using 

CONN [Whitfield-Gabrieli et al., 2012]. First, they were preprocessed: slice timing corrected, 

realigned to the first image in the sequence, co-registered with the subject’s T2-weighted 

structural gray matter, normalized to template space, and smoothed with a Gaussian kernel. 

Then, the head motion artifacts were regressed out and the data were band pass filtered at cut 

offs of 10 and 100 Hz to acquire the resting state brain activity at each voxel. Then, the 1st 

eigenvariate time series from the processed data for each ROI and Fisher transformed correlation 

coefficients between each pair of ROIs were computed. 

7.2.8 Feature Selection 

After acquiring all the required features (see table 7 for a summary of all features), 13 different 

sets of features selected by force (i.e. a feature(s) was explicitly chosen to be removed from the 

full set of features) were analyzed using the statistical learning methods described below. Table 8 

describes the features removed for each set. Force feature selection using these specific 13 

feature sets was performed to study the influence of (1) different MRI modalities, (2) imaging vs. 

non-imaging measures, and (3) each individual feature on the prediction of LLD diagnosis and 

treatment response. Furthermore, different feature reduction methods including principal 

component analysis (unsupervised method) and a filter technique using Kendall’s tau correlation 

coefficient (supervised method) were tested using these feature sets. However, except for support 

vector machines, these feature reduction methods did not improve results—possibly due to the 

embedded feature selection properties of alternating decision trees and L1 regularized Logistic 

Regression—and thus are not presented in this article. With the SVM methods, only the affects 
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of the filter technique are presented since it produced the best results. Lastly, we also tested a 

region-wise analysis instead of whole network analysis by including features for each region pair 

instead of the overall averages, but this also did not produce high accuracy results possibly due 

to high data sparsity, dimensionality and overfitting. So, for this study, we decided to limit the 

analysis to as few features as possible by performing whole network analysis. 

7.2.9 Statistical Learning 

For this study, we compared results between both generalized linear (L1 Regularized Logistic 

Regression (L1-LR) and Support Vector Machines with Linear Kernel (SVM-L)) and nonlinear 

(Alternating Decision Tree (ADTree) and Support Vector Machines with Radial Basis Function 

Kernel (SVM-RBF)) classification-based learning methods. A variety of both generalized linear 

and nonlinear methods were included to more precisely determine the nature of the data. 

Furthermore, SVM methods were chosen due to their popularity in the current literature 

[Costafreda et al., 2009; Fu et al., 2008; Liu et al., 2012; Marquand et al., 2008; Mwangi et al., 

May 2012; Nouretdinov et al., 2011; Zeng et al., 2012], versatility for kernel functions plus 

features’ dimensionality, and convergence speed [Cortes & Vapnik, 1995]. L1-LR and ADTree 

were chosen due to their embedded feature reduction abilities, simplicity in interpretation of 

results, and fast convergence speed [Pfahringer et al., 2001; Yuan et al., 2010].   

For all learning methods except ADTree—which is not affected by variations in 

distribution of values between the features—all the features were standardized before input. Each 

method was used to predict two expected output variables separately: depression and treatment 

response. Due to the small sample size, a leave-one-out cross validation (LOOCV) method was 

used to determine classification accuracy of each expected output variable. Additionally, optimal 
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values of each method’s varied parameter were chosen at every LOOCV iteration based on 

greatest classification accuracy from a nested-LOOCV on the train set. Both the average train 

and test set accuracy from the LOOCV were recorded for all tests performed; this includes 

combinations of 13 feature sets, 3 networks, 4 learning methods, and 2 expected output variables. 

In addition, the respective specificity, sensitivity, and ROC curve measures were also recorded. 

7.2.9.1 L1-Regularized Logistic Regression (L1-LR) 

For L1-LR, a coordinate descent method using one-dimensional Newton directions as described 

by Yuan et al., 2010 was coded and implemented in-house in Python. This learning method 

attempts to fit the data to a regularized logistic loss function f(w) by finding minimum values of 

w that best fit equation 1—where n is the total number of instances (i.e. examples of the input 

data described by feature vectors) in the data, yi represents the label of the expected output 

variable for the ith instance, xi is the ith instance of the input data, w are the weights associated 

with the input features and estimated by the learning method to obtain a best fit logistic model, 

and the constant variable C is used to balance the regularization term (||w||1) and loss term 

(Σlog(1+e-y((w^T)x))). The regularization term prevents the model from becoming too complex and 

thus reduces the risk of overfitting. The loss term helps optimize the prediction model—i.e. 

compute the optimal weights—to achieve the highest classification accuracy. For this method, 

the parameter varied was the variable C because it is essential in controlling the sparsity of the 

final model weights and consequently the features selected by the algorithm. Values tested for 

this variable include: {2-4, 2-3, 2-2, 2-1, 20, 21, 22, 23, 24}. One variation made to the algorithm 

described by Yuan et al., 2010 was an addition of an input feature of constant value equal to one 

for each ith instance. This additional feature acts as a bias or intercept term that also affects the 

regularization term. This variation improved the overall classification accuracy. 
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    [1] 

7.2.9.2 Support Vector Machines (SVM) 

The Sci-Kit Learn Python [Pedregosa et al., 2011] library was used to implement SVM with both 

a linear and nonlinear radius basis function (RBF) kernel. This learning method attempts to find 

a hyperplane and corresponding support vectors (i.e. train set samples closest to the hyperplane) 

that best divide the data by their label values. The varied parameter for this method was the 

penalty parameter of the error term because it controls for the amount of noise in the data by 

affecting the margin size between support vectors and orientation of the hyperplane. Values 

tested for this variable include: {2-4, 2-3, 2-2, 2-1, 20, 21, 22, 23, 24}. To improve the performance 

of the SVM algorithm, we also implemented a supervised feature selection, as presented by Zeng 

et al., 2012, during every iteration of the LOOCV in Python. This feature selection method is a 

filter technique that first divides the data instances into two groups by corresponding labels. 

Then, it computes the Kendall tau correlation coefficient between the groups for every feature 

and selects features with the highest correlation coefficients based on a predefined threshold. For 

our study, we set the threshold to equal half of the maximum correlation coefficient among the 

features for every LOOCV iteration. 

7.2.9.3 Alternating Decision Tree (ADTree) 

The optimized version of ADTree presented by Pfahringer et al., 2001 and provided in WEKA 

[Hall et al., 2009] was coded and implemented in-house in Python. This learning method 

combines ADA boost and decision tree methods in attempts to create a tree with multiple paths 

 123 



and optimal splitting criterion (i.e. select features and corresponding threshold values that 

determine the path taken by a given data instance) that nonlinearly classifies the data. The varied 

parameter for this method was the number of boosting iterations. Values tested for this variable 

include: {3,4,5,6,7,8,9,10}. The smallest value that gave the greatest accuracy was selected for 

every iteration of the LOOCV. This variable was varied because it determines the number of 

branches of the final tree and behaves like a post-pruning method to reduce the risk of overfitting 

(i.e. the chances of developing too complex of a prediction model such that it represents more 

noise than the underlying relationship). Since ADTree is a nonlinear method and this study uses 

a small sample size, it is important to take measures that reduce the risk of overfitting. To further 

reduce the risk of overfitting as well as increase the convergence speed, we modified the ADTree 

algorithm presented by Pfahringer et al., 2001 to produce a less complex prediction model in the 

following ways: (1) a pre-pruning restriction was applied to prevent the tree from growing more 

than 3 branches in depth, and (2) the number of splitting criterion thresholding options for each 

feature was minimized to x/2—where x is the number of unique values of a given feature in the 

training set—by using a modified version of the method described by Quinlan, 1996; the method 

described by Quinlan 1996 sets the averages of adjacent value pairs from an array of sorted 

unique values x as the splitting criterion options; we further modified this method by continuing 

to take averages of the resulting averages until only x/2 splitting criterion thresholding options 

remain. 
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Table 7. Summary of Features 

Feature Type Feature Feature Short Forms Representation 
Demographics Age Age Whether younger or older 

old adult 
Demographics Gender Gender Whether female or male 
Demographics Education Level of Education Number of years formal 

education was received 
Cognitive Ability MMSE Mini-Mental State 

Examination score 
Whether strong or poor 
cognitive ability 

Functional 
Imaging (rs-
fMRI) 

Functional 
Connectivity Index 
(FCI) 

Average of Fisher 
transformed 
correlation coefficients 
between each pair of 
ROIs 

Degree of functional 
connectivity—allowing for 
communication between 
ROIs—within network 

Structural 
Imaging (T1-
weighted Hi-Res) 

Normalized whole 
brain tissue volume 
(NWBTV) 

Normalized whole 
brain gray and white 
matter volume 

Degree of whole brain 
atrophy 

Structural 
Imaging (T1-
weighted Hi-Res) 

Normalized ROIs’ 
tissue volume 
(NRTV) 

Average of normalized 
ROIs’ gray matter 
volumes 

Degree of network-based 
regional brain atrophy 

Structural 
Imaging (DTI) 

Mean Diffusivity 
(MD) 

Average of all ROIs’ 
mean gray matter MD 

Amount of diffusivity 
within gray matter of 
network 

Structural 
Imaging (DTI) 

Number of tracks Average of the 
approximate number 
of tracks connecting 
each pair of ROIs 

Amount of structural 
connectivity—allowing for 
communication between 
ROIs—within network 

Structural 
Imaging (DTI) 

Fractional 
Anisotropy (FA) 

Average of all 
weighted mean FA 
computed along tracks 
connecting each pair 
of ROIs 

Amount of white matter 
integrity within network 

Structural 
Imaging (T2-
weighted FLAIR) 

Global White Matter 
Hyperintensities 
(WMHs) 

WMH burden in 
cerebral cortex 

Amount of global (i.e. 
whole brain) WMH burden 
or white matter lesions 

Structural 
Imaging (T2-
weighted FLAIR) 

Local WMHs Average WMH burden 
among tracks 
connecting each pair 
of ROIs 

Amount of WMH burden 
or white matter lesions 
within network 
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Table 8. Description of Feature Sets (Note: Blocks in gray indicate the features removed for each set) 

Demographics 
Cognitive 

Ability 
Measure 

fMRI 
Feature Structural MRI Features 

Feature 
Sets Age Gender Education MMSE FCI Hi-Res 

Features 
DTI 

Features 
FLAIR 
Features 

1
2
3
4
5
6
7
8
9
10 
11 
12 
13 

7.3 RESULTS 

Figure 8-10 show a summary of all the results produced using the 4 methods: L1-LR, SVM with 

a linear kernel, SVM with a nonlinear RBF kernel, and ADTree. Since their fundamentals vary in 

approaches of classification, these methods were not fully comparable in their results for each 

outcome variable, network, and feature set combination. Nevertheless, there are some striking 

patterns among the feature sets for classifying the diagnosis and treatment response of LLD. The 

4 methods are most in sync when both networks are analyzed together for both outcome 

variables. Thus, for each outcome variable, we present the results in following ways: (1) 

compare the performance of each method utilized, (2) focus our comparisons across different 

feature sets on the results obtained using features from both networks, and (3) take a closer look 

at the classification model that resulted in the best accuracy. 
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Figure 8. Feature sets’ classification accuracies for dDMN analysis 
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Figure 9. Feature sets’ classification accuracies for aSN analysis 
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Figure 10. Feature sets’ classification accuracies for both networks analysis 
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7.3.1 Comparing Methods 

In comparing the learning methods, we evaluate how well the prediction models developed by 

the method classify the data. This involves comparing the test set classification accuracies as 

well as assessing whether the prediction models overfit or underfit the data. Overfitting occurs 

when a learner develops an excessively complex prediction model that over-represents the 

training data and does not generalize well, thereby poorly predicting future test data. Overfitting 

can occur when the sample size is too small or the input training data has too many noisy and/or 

not enough relevant features. On the other hand, underfitting occurs when a learner develops an 

overly simple prediction model that under-represents the training data and thus poorly predicts 

both the training and future test data. Underfitting can happen when the learning method’s 

parameters are too relaxed or the learner is too simple (e.g. linear learners). When comparing 

learning methods by assessing overfitting and underfitting, we focus on the training and test set 

classification accuracy in feature set 1, when the input data comprises of all features. This is 

because the results from the rest of the feature sets are used to study the relevance of each type of 

feature (see “Both Networks Analysis” section).  

To assess these measures, we look at (1) the difference between the training and test set 

classification accuracy in feature set 1, and (2) the difference in classification accuracies 

(training and test) between linear and nonlinear methods, especially among the SVM methods 

since the underlying method is the same. A greater difference between the training and test set 

classification accuracies indicates a greater probability of overfitting. Also, an improvement of 

classification accuracies with nonlinear methods in comparison to the linear methods indicates a 

greater probability of underfitting by the linear methods. On the other hand, an improvement of 
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classification accuracies with linear methods in comparison to the nonlinear methods indicates a 

greater probability of overfitting by the nonlinear methods. 

7.3.1.1 LLD Diagnosis 

When comparing test set classification accuracies for the diagnosis of LLD, the L1-LR and 

ADTree method mostly outperforms the SVM methods. The ADTree produced the optimal 

prediction model with an accuracy of 87.27% (sensitivity = 88.89%, specificity = 85.71%) using 

feature set 4 in dDMN analysis (see figure 8) for predicting LLD diagnosis (see corresponding 

ROC curve in figure 11).  

Overall, the linear classification methods showed signs of less overfitting than the 

nonlinear classification methods, among which ADTree overfits less. Overfitting is observed 

most in the aSN analysis. In the dDMN analysis ADTree outperforms the linear methods, 

suggesting a possibility of underfitting among the linear models. This may also be an indicator of 

ADTree being a better learning method for predicting LLD diagnosis. 

7.3.1.2 LLD Treatment Response 

When comparing test set classification accuracies for the treatment response of LLD, all methods 

perform poorly for the dDMN analysis, the linear methods perform better for the aSN analysis 

with ADTree being a close second best, and non-SVM methods (L1-LR and ADTree) perform 

better overall for both networks analysis. Again, the ADTree produced the optimal prediction 

model with an accuracy of 89.47% (sensitivity = 88.89%, specificity = 90.00%) using feature set 

2 in both networks analysis (see figure 10) for predicting LLD treatment response (see 

corresponding ROC curve in figure 12).  
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Overall, the linear classification methods showed signs of less overfitting than the 

nonlinear classification methods, among which ADTree overfits less. Overfitting is observed 

most in the dDMN analysis. Generally, all methods show signs of greater overfitting compared 

to LLD diagnosis—possibly due to the smaller sample size. In the dDMN and aSN analysis L1-

LR outperforms the nonlinear methods, suggesting a possibility of overfitting among the 

nonlinear models. However, in the dDMN analysis all methods show signs of greater overfitting, 

and in the aSN analysis L1-LR shows signs of greater overfitting than the ADTree. Thus, based 

on this assessment, it is difficult to determine if the nonlinear methods are overfitting because of 

increased complexity of their prediction models, L1-LR is overall a better learning method for 

predicting LLD treatment response, or the problem is with the features used. Nevertheless, 

considering that the ADTree produced the best classification model when both networks were 

included, the answer maybe a lack of relevant features. 

 

 

Figure 11. ROC curves for optimal ADTree models predicting LLD diagnosis  
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Figure 12. ROC curves for optimal ADTree models predicting LLD treatment response  

 

7.3.2 Both Networks Analysis 

As mentioned earlier, all methods performed better and more consistently with the inclusion of 

features from both networks (dDMN and aSN). Below, we present common patterns across the 4 

methods in feature sets’ classification accuracy results for diagnosis and treatment response of 

LLD. When comparing the importance vs. insignificance of the feature(s) removed in a given 

feature set, we compare its classification accuracy to that of feature set 1 or the norm for this 

analysis. Feature set 1 is the norm for this study because it includes all features in the analysis, 

thus giving each feature an equal chance of affecting the classification results. In comparing with 

feature set 1, one can make four possible observations: (1) if a feature set’s training and test set 

classification accuracies are greater than or equal to feature set 1, the feature(s) removed in the 
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feature set is considered to be an unnecessary predictor/biomarker for predicting the outcome 

variable (Note: improved accuracies from the norm may suggest that the feature(s) removed was 

causing underfitting); (2) if the feature set’s training and test set classification accuracy is less 

than that of the norm, the feature(s) removed in the feature set is considered to be a potentially 

important predictor/biomarker for predicting the outcome variable (Note: worsened accuracies 

from the norm may suggest that the removal of the feature(s) is resulting in underfitting); (3) if 

the feature set’s training set classification accuracy is less than the norm while the test set 

classification accuracy is greater than or equal to the norm, the feature(s) removed in the feature 

set is considered to be an unnecessary predictor/biomarker for predicting the outcome variable 

(Note: an decrease in training accuracy and increase in test accuracy from the norm may suggest 

that the feature(s) removed was causing overfitting); and (4) if the feature set’s training set 

classification accuracy is greater than or equal to the norm while the test set classification 

accuracy is less than the norm, the feature(s) removed in the feature set is considered to be a 

potentially important predictor/biomarker for predicting the outcome variable (Note: an increase 

in training accuracy and decrease in test accuracy from the norm may suggest that the removal of 

the feature(s) is resulting in overfitting).  

In short, if the test set classification accuracy of a given feature set is less then the norm, 

then the feature(s) removed in that feature set is a potentially important predictor/biomarker for 

predicting the outcome variable; otherwise the feature(s) removed is unnecessary for predicting 

the outcome variable. Based on this method of assessing feature sets, the common patterns 

among the two outcome variables are strikingly of exactly opposite natures in terms of the 

importance of imaging vs. non-imaging features as potential biomarkers. 
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7.3.2.1 LLD Diagnosis 

One commonality among the results of 4 methods for diagnosis of LLD is the increase in the 

training and test set classification accuracies from feature set 12 to 13. This increase suggests 

that overall non-imaging features (i.e. demographics and cognitive ability measures) are more 

important biomarkers for predicting diagnosis of LLD than imaging features.  

These observations are also reflected in the results of feature sets 2-5. These feature sets 

indicate that when either of the non-imaging features is removed, the test set classification 

accuracy decreases from the norm indicating importance of these features. Also, if at least one of 

the imaging features is removed the test set classification accuracy increases from or remains 

approximately similar to that of the norm indicating insignificance of these feature(s). However, 

this observation is made only for the removal of functional imaging feature except for the 

ADTree algorithm results, which show it for both the removal of functional and structural 

imaging features. For the other methods, the removal of structural imaging feature in fact causes 

the test set classification accuracy to decrease from that of the norm. Looking, more specifically 

into the removal of the individual and combinations of the different structural imaging features, 

feature sets 6, 9 and 10 also cause the test set classification accuracy to decrease from that of the 

norm. These feature sets include the removal of at least one of the structural imaging features 

(mostly the Hi-Res T1-weighted image features and/or the FLAIR T2-weighted image features), 

indicating the importance of each of the individual structural imaging features as a potential 

biomarker. 

In summary, the potential biomarkers among the features tested in this study for the 

diagnosis of LLD include: demographics, cognitive ability, and Hi-Res T1-weighted plus FLAIR 

T2-weighted structural imaging measures. One of the least important features, as indicated by a 

 135 



consensus among all the 4 methods, appears to be the functional imaging measure. As mentioned 

earlier, the highest test set classification accuracy for the diagnosis of LLD was also achieved by 

removing only the functional imaging measure. 

7.3.2.2 LLD Treatment Response 

Contrary to the diagnosis prediction models, the commonality among the results of 4 methods for 

treatment response of LLD is the large decrease in the training and test set classification 

accuracies from feature set 12 to 13. This decrease suggests that overall imaging features are 

more important biomarkers for predicting treatment response of LLD than non-imaging features 

(i.e. demographics and cognitive ability measures).  

These observations are also reflected in the results of feature sets 2-5. These feature sets 

show that when the non-imaging demographics features are removed, the test set classification 

accuracy increases from that of the norm. Along similar lines, when the non-imaging cognitive 

ability feature is removed, the test set classification accuracy remains the same to that of the 

norm. Both these observations indicate the irrelevance of non-imaging features. On the other 

hand, feature set 5 indicates the importance of imaging features, specifically structural imaging 

features, by showing how the test set classification accuracy decreases from that of the norm 

when structural imaging features are removed. However, according to feature set 4, the 

functional imaging features does not seem to be as important since by removing it, the test set 

classification accuracy either increases from or remains the same to that of the norm. Looking, 

more specifically into the removal of the individual and combinations of the different structural 

imaging features, feature sets 7, 9 and 11 also cause the test set classification accuracy to 

decrease from that of the norm. These features all have in common the removal of the DTI image 

features, indicating its potential importance as a biomarker. 
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In summary, the potential biomarkers among the features tested in this study for the 

treatment response of LLD include imaging features, specifically the DTI structural imaging 

features. The least important features, as indicated by a consensus among all the 4 methods, 

appear to be the demographic measures. As mentioned earlier, the highest test set classification 

accuracy for the treatment response of LLD was also achieved by removing only the 

demographics measures. 

7.3.3 Optimal Prediction Models 

Now we look closer at the precise features selected by the model that produced the optimal 

classification accuracy for each outcome variable. Since the ADTree method produced the 

optimal model for both outcome variables, the models studied will be in the form of ADTrees. 

These optimal models presented below were obtained by retaining only the most frequently 

occurring branches amongst each of the ADTree models created during the LOOCV iterations. 

For interpreting these models, one must sum up the rule values associated with each attribute and 

if the total is positive, the individual is more likely to be an LLD patient or a positive responder 

to treatment for LLD depending on the outcome variable predicted by the ADTree. Also see 

table 7 to better understand what each feature represents in the optimal ADTrees and the 

interpretations provided below. 
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Figure 13. Optimal prediction models in the form of alternating decision trees for predicting late-life depression 

diagnosis [Legend: Square = Splitting Criterion; Oval = Rules] 
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Figure 14. Optimal prediction models in the form of alternating decision trees for predicting late-life depression 

treatment response [Legend: Square = Splitting Criterion; Oval = Rules] 

7.3.3.1 LLD Diagnosis 

With the ADTree method, the highest classification accuracy for the diagnosis of LLD is 

obtained by inputting the non-imaging and structural imaging features while removing the 

functional imaging feature (i.e. FCI) as mentioned earlier. The optimal ADTree model that 

produced this classification accuracy is shown in figure 13.  

The ADTree model in figure 13 indicates that a high accuracy model to predict the 

diagnosis of LLD can be created using the following features: MMSE (cognitive ability 

measure), age (demographic measure), Hi-Res normalized whole brain gray and white matter 

139 



volume (structural imaging measure), and Flair global WMH count (structural imaging measure). 

These results are in agreement in terms of features selected to those observed when analyzing the 

different feature sets in the “Both Networks Analysis” section. However, one important 

observation to be made here is that the features selected by the optimal model are not dependent 

on the network even though the optimal model was acquired during the dDMN analysis. The 

possible explanation for the results achieving a higher accuracy for the dDMN may be the even 

distribution of subjects among the depressed and non-depressed group in comparison to the other 

two analyses, and also a larger sample size plus fewer features in comparison to the both 

networks analysis. 

Based on the optimal ADTree model in figure 13, an individual who is more likely to be 

diagnosed with LLD will have one of the following attributes: (1) low cognitive ability + 

younger old adult, (2) low cognitive ability + older old adult + high global WMH burden + high 

whole brain atrophy, or (3) high cognitive ability + low global WMH burden + high whole brain 

atrophy. On the other hand, an individual who is not likely to diagnosed with LLD will have one 

of the following attributes: (1) low cognitive ability + older old adult + low global WMH burden, 

(2) low cognitive ability + older old adult + high global WMH burden + low whole brain 

atrophy, (3) high cognitive ability + low global WMH burden + low whole brain atrophy, or (4) 

high cognitive ability + high global WMH burden. 

7.3.3.2 LLD Treatment Response 

With the ADTree method, the highest classification accuracy for the treatment response of LLD 

is obtained by inputting features from both networks and removing the demographic features (i.e. 

age, gender, education) as mentioned earlier. The optimal ADTree model that produced this 

classification accuracy is shown in figure 14.  
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The ADTree model in figure 14 indicates that a high accuracy model to predict the 

treatment response of LLD can be created using the following features: average # of tracks from 

DTI images in aSN (structural imaging measure), and average FCI from rs-fMRI images in 

dDMN (structural imaging measure). These results also agree in terms of both the features and 

networks selected with the results observed when analyzing the different feature sets in the “Both 

Networks Analysis” section.  

Based on the optimal ADTree model in figure 14, an individual who is more likely to be 

a positive responder to treatment for LLD will have fewer structural connections—indicative of a 

lower WM integrity—in the aSN before treatment is administer. Additionally, an individual who 

had a lower functional connectivity in the dDMN before the administration of treatment is less 

likely to be a negative responder to treatment for LLD. 

7.4 DISCUSSION 

In this study, we showed how nonlinear combinations of imaging and/or non-imaging measures 

can be used to develop classification models that can successfully predict the diagnosis and 

treatment response of LLD outcome variables with high accuracies of 87.27% and 89.47% 

respectively. When studying the specific features selected to optimally classify each outcome 

variable, no overlap in features was found. In fact, the prediction models for each outcome 

variable was strikingly opposite in nature. While demographics—primarily age—were found to 

be one of the more important features for predicting diagnosis, they were also found to be the 

least important for predicting treatment response. On the other hand, the functional imaging 

feature was found to be the least important feature for predicting diagnosis, while it was an 
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important feature for predicting treatment response. Additionally, the diagnosis prediction model 

was network independent, while the treatment response prediction model depended on 

information from both the dDMN and aSN. Below we evaluate our findings further using past 

studies for comparison. 

7.4.1 Optimal Predictors/Biomarkers 

7.4.1.1 LLD Diagnosis vs. LLD Treatment Response 

Non-imaging (i.e. MMSE and age) and global volume-based imaging (i.e. whole brain atrophy 

and global WMH burden) measures combined were found to the optimal predictors/biomarkers 

of LLD diagnosis. Agreeing with past studies, poor cognitive ability [Ganguli et al., 2006; 

Kohler et al., Apr 2010; Wilkins et al., 2009] and greater whole brain atrophy [Chang et al., 

2011; Ribeiz et al., 2013; Sexton et al., 2013] indicated LLD. Our findings also suggest that high 

MMSE could still indicate LLD if accompanied with low global WMH burden and high whole 

brain atrophy. Possibly explaining the discrepancies between past studies, age [Forlani et al., 

2013; Luppa et al., 2012; Wild et al., 2012; Wu et al., 2012] and global WMH burden 

[Aizenstein et al., 2011; Greenwald et al., 1998; Gunning-Dixon et al., 2010; Firbank et al., 

2012; Teodorczuk et al., 2010] were fully dependent on the other measures in regards to their 

association with LLD diagnosis. We speculate that the primary role of non-imaging measures in 

predicting diagnosis suggests that the current neuroimaging methods cannot – yet – capture the 

neural complexity associated with the etiopathogenesis of LLD. The involvement of structure-

related neural biomarkers (global atrophy and WM burden) in diagnosing LLD supports past 

studies that suggest vascular and atrophic changes trigger mood disorder in late-life [Aizenstein 

et al., 2014]. 
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Optimal biomarkers of LLD treatment response included connectivity-based imaging 

measures. Specifically, lower structural connectivity—supporting the more recent of the two 

[Taylor et al., 2008] contradicting past findings [Alexopoulos et al., 2008; Taylor et al., 2008]—

and lower functional connectivity—supporting compensation theories [Stern et al., 2003]—

indicate a greater probability of treatment remission. This dependency of LLD treatment 

response on global network health (i.e. communication strength between network regions) may 

serve as a biomarker for future personalized care studies. 

  Overall, the mix of features predictive of diagnosis likely reflects that LLD is 

heterogeneous. Our observation that these particular features were not predictive of treatment 

response suggests that there may be a more proximal mediator of depression recovery, and 

perhaps the features reflecting LLD heterogeneity lead to a set of global network changes 

(indexed by rs-fMRI and DTI). It is intriguing that it is these global network biomarkers that 

were identified as most predictive of treatment response. 

7.4.1.2 Mid-Life vs. Late-Life Depression Prediction Models 

Unlike past studies of depression in younger populations involving prediction models, this is the 

first study to accurately model both diagnosis and treatment response using the same approach. 

While past studies have used a single imaging modality and region-based approach [Costafreda 

et al., 2009; Fu et al., 2008; Hahn et al., 2011; Marquand et al., 2008; Liu et al., 2012; Mwangi et 

al., Jan 2012; Mwangi et al., May 2012; Nouretdinov et al., 2011; Zeng et al., 2012], we used a 

multi-modal imaging with whole brain and network-based approach that also included non-

imaging measures. Our results may suggest that biomarkers of disease diagnosis and remission 

possibly differ on the basis of brain structure and function—i.e. the different representations of 

MRI modalities—as opposed to brain regions. It is possible that regional changes do not fully 
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reflect the underlying neural vulnerabilities associated with LLD. This is supported by recent 

studies [Ajilore et al., 2014; Tadayonnejad et al., 2013] that describe associations of global brain 

networks alterations with LLD.  

Past prediction model studies of mid-life depression diagnosis have shown accurate 

classifications can be obtained using functional [Fu et al., 2008; Hahn et al., 2011; Marquand et 

al., 2008; Nouretdinov et al., 2011; Zeng et al., 2012] or structural [Costafreda et al., 2009; 

Mwangi et al., Jan 2012; Mwangi et al., May 2012] imaging. Our study in LLD found structural 

volume-based measures in conjunction to non-imaging measures to be better predictors. We 

speculate that these differences in prediction factors may suggest that LLD diagnosis is primarily 

related to impaired structure (GM and WM), while midlife depression may stem from aberrant 

communication/activation of various brain regions. This hypothesis will require further testing. 

Past prediction model studies of mid-life depression treatment response have primarily 

utilized T1-weighted Hi-Res structural imaging measures [Costafreda et al., 2009; Liu et al., 

2012; Nouretdinov et al., 2011]. One study [Marquand et al., 2008] that attempted to use a task-

based functional imaging measure did not achieve very high accuracy. Our study in LLD found 

structural and functional connectivity measures to be better predictors. Since connectivity-related 

imaging measures have not been tested for prediction models of mid-life depression treatment 

response, it is difficult to draw any conclusions. 

7.4.2 Learning Methods 

Most of the past studies described above involving prediction models for both diagnosis and 

treatment response of depression in the younger populations have mostly used SVM as the 

learning method. Based on our findings, modified versions of decision tree and logistic 
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regression are potential alternative learning methods—to the traditionally used SVMs—that can 

accurately predict diagnosis and treatment response of depression, at least in late-life. Modified 

decision tree methods with embedded feature selection capabilities, especially, may be a useful 

tool for studying real-world nonlinear relationships in high-dimensional data. 

7.4.3 Limitations and Future Work 

Limitations to this study include: small sub-sample size for treatment response prediction 

(nevertheless the results were cross checked using four different learning methods) and higher 

percentage of women (reflecting the naturalistic gender distribution in LLD [Luppa et al., 2012]). 

Another limitation is the heterogeneous treatment. However, this may not have affected our 

results since all administered antidepressants except nimodipine (used only for one subject) are 

either selective serotonin reuptake inhibitors or serotonin-norepinephrine reuptake inhibitors, and 

the efficacy difference between the two is still a matter of debate [Papakostas et al., 2007; Taylor 

et al., 2004; Taylor et al., 2006; Thase et al., 2011]. Future work includes extensive studies 

verifying, improving as necessary, and testing the real-world applicability of the optimal 

prediction models found in our study. 
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8.0  SUMMARY AND CONCLUSIONS 

Currently, late-life depression (LLD) is diagnosed based on behavioral symptoms and signs. 

Treatment of LLD is guided by trial and error. Both the diagnosis and treatment procedures lack 

reliability and could be improved with additional knowledge of associated underlying brain 

characteristics and changes. The goal of this dissertation is to identify biomarkers reflecting the 

neural circuit abnormalities that characterize LLD and its treatment response.  

In regards to underlying brain characteristics and changes, LLD has been associated with 

neurotransmitter-specific system decline, fronto-striatal and fronto-limbic circuitry dysfunction, 

and cerebrovascular disease. Neurotransmitters involved for the LLD related neurotransmitter-

specific system decline primarily include serotonin, norepinephrine, and dopamine. Loss of these 

neurotransmitters is associated with alterations in mood, stress response, motivational control, 

etc. Fronto-striatal and fronto-limbic dysfunction respectively alter executive control and 

emotional processing. Cerebrovascular disease is thought to disrupt pathways in the brain 

associated with mood regulation. Treatment of LLD predominantly consists of antidepressants, 

which focus on controlling for the loss of neurotransmitters associated with LLD.  

In this dissertation, magnetic resonance imaging (MRI) is used to study the underlying 

brain characteristics and changes associated with LLD and its treatment. The different 

underlying brain characteristics associated with LLD are studied using different MRI modalities, 

which vary based on the MR scanning parameters and sequence used. MRI modalities include 
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both structural and functional imaging. Using different image analysis and processing methods, 

information including degree of regional atrophy in neural circuits, lesions due to 

cerebrovascular disease, integrity of the connections within the neural circuits, amount of 

dysfunction with the neural circuits, etc. is extracted from the various MRI modalities.  

The information extracted from the different MRI modalities is used to study how the 

brain structure affects brain function, as well as how both brain structure and function can help 

determine LLD diagnosis and its treatment response. Statistical analysis is used to study the 

affect of brain structure on function, and machine learning methods are used to estimate 

predictions models that can better estimate and explain all above-described relationships.  

The results of this dissertation suggest that (1) brain structure may not be directly related 

to functional connectivity in the elderly, and (2) LLD diagnosis and treatment response may be 

better predicted using a combination of multi-modal MRI measures. The results also suggest that 

the incorporation of non-imaging predictors could also help improve prediction, at least for LLD 

diagnosis. Additionally, we speculate that whole brain and network related multi-modal MRI 

measures—as opposed to region-based single modality measures—may be more appropriate for 

comparing LLD diagnosis and treatment response in terms of associated underlying brain 

changes. The high accuracy of the prediction models estimated in this dissertation may be useful 

for better diagnosing and taking preliminary steps towards establishing personalized treatment 

for late-life depression patients in the future.  
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8.1 FUTURE WORK 

Future work primarily includes studying prediction models of LLD treatment response more in 

depth with a larger sample size. Including participants for whom we do not have treatment 

response information can be one way to increase the sample size of the data. This would mean 

incorporating unlabeled data with the label data. With this new, larger data set, either semi-

supervised or unsupervised learning methods can be tested to estimate accurate prediction 

models. Different imaging modalities (e.g. task-based functional MRI, proton density, etc.) and 

imaging features (e.g. shape of regions, texture of lesions, etc.) can also be tested to improve the 

estimation and generalization of prediction models. Additionally, longitudinal studies can also be 

performed for future work. These studies would include testing the accuracy of prediction 

models over a period of time to determine how well the models can predict future treatment 

response. 
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APPENDIX A 

STUDY CONTINUED FROM CHAPTER 7 

A.1 INTRODUCTION 

This chapter describes a secondary set of machine learning analyses that were done to follow-up 

on the analyses of chapters 6. As in chapter 6 the experiments here, address the question of how 

well structural imaging features predict resting-state fMRI. But, unlike the repeated within-

subject imaging approach of chapter 6, the analyses in this chapter use a subject-wise analysis 

using features with primarily non-zero values. This study is a continuation of the study described 

in chapter 7, except now we evaluate whole networks’—networks studied include the dorsal 

default mode network and anterior salience network—functional connectivity in the elderly 

(depressed and non-depressed) as an outcome variable instead of late-life depression diagnosis or 

treatment response. 

149 



A.2 METHODS 

The same methods used in chapter 7 for diagnosis and treatment response were used to estimate 

prediction models for functional connectivity. The difference is that a median split criterion was 

used to form the two groups representing high versus low functional connectivity. Additionally, 

for the functional connectivity, the both network analysis was repeated twice; each time using 

functional connectivity measures from different networks (dDMN vs. aSN) to represent the 

outcome variable. 

A.3 RESULTS 

Figure 15-16 show a summary of all the results produced for functional connectivity as the 

outcome variables using the 4 methods: L1-LR, SVM with a linear kernel, SVM with a nonlinear 

RBF kernel, and ADTree. These results were analyzed the same way as those for LLD diagnosis 

and treatment response in chapter 7. 

A.3.1 Comparing Methods for Functional Connectivity 

See chapter 7 for details on how the results from feature set 1 were analyzed to compare the 

different learning methods. 

When comparing test set classification accuracies for the functional connectivity in the 

elderly, the SVM-L seems to perform the best, but in general all methods perform poorly 

(accuracy < 70%) for all analysis. The only one time a prediction model achieves accuracy 
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greater than 70%, is using the ADTree method in the dDMN network analysis. The ADTree 

method produces the greatest classification accuracy of 74.55% (sensitivity = 77.78%, specificity 

= 71.43%) for feature set 10 using features from only the dDMN network (see figure 17 for the 

corresponding ROC curve). 

Primarily, only SVM-L consistently shows less signs of overfitting and underfitting. 

When comparing between the linear and nonlinear methods, especially between the two SVM 

methods, primarily the nonlinear models show more signs of overfitting. Overall, SVM-L seems 

to be the best performing method. 

A.3.2 Both Networks Analysis for Functional Connectivity 

See chapter 7 for details on how the both networks analysis was used to access the results across 

the feature sets. 

There are no meaningful patterns that can be observed among the feature sets across the 

learning methods for accessing functional connectivity in the elderly. In fact, most of the results 

indicate less than 60% accuracy of the predictions models. In summary, it is very difficult to 

determine potential biomarkers from these results. 

A.3.3 Optimal Prediction Models for Functional Connectivity 

The ADTree produced the optimal model for function connectivity. Thus, the optimal model 

studied for function connectivity will be in the form of an ADTree. Detailed description of how 

the optimal ADTree was formed and how to interpret is provided in chapter 7.  
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With the ADTree method, the highest classification accuracy for functional connectivity 

is obtained by inputting the non-imaging, structural DTI, and functional imaging features from 

only dDMN. This involves removing the structural Hi-Res and FLAIR imaging features from the 

full feature set described in table 7. The optimal ADTree model that produced this classification 

accuracy is shown in figure 18.  

The ADTree model in figure 18 indicates that a high accuracy model to predict the 

functional connectivity of the dDMN in the elderly can be created using the following features: 

education, average # of tracks from DTI images in dDMN (structural imaging measure), and 

average weighted FA from DTI images in dDMN (structural imaging measure). However, these 

results are not reciprocated by the observations made when evaluating patterns across features 

sets. For example, feature set 2—in which demographics were removed—and feature set 7—in 

which DTI measures were removed—should be shown to perform poorly compared to the 

feature set 1 since the removed features are found to be essential by the optimal prediction 

model. However, these feature sets are not consistently shown to perform poorly across learning 

methods in any of the analyses. 

Based on the optimal ADTree model in figure 18, an elderly individual who is more 

likely to have high dDMN functional connectivity will have either a high level of education or a 

low level of education with greater structural integrity in the dDMN. However, an elderly 

individual with a low level of education with lesser structural integrity in the dDMN is more 

likely to have low dDMN functional connectivity. 
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Figure 15. Feature sets’ classification accuracies for individual dDMN and aSN network analyses 
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Figure 16. Feature sets’ classification accuracies for both networks analyses 
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Figure 17. ROC curves for optimal ADTree models predicting functional connectivity in the elderly 

Figure 18. Optimal prediction models in the form of alternating decision trees for predicting functional connectivity 

in the elderly [Legend: Square = Splitting Criterion; Oval = Rules] 
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A.4 DISCUSSION 

The results of this study suggest that brain functional connectivity may not be directly related to 

brain structure in the elderly. The results also suggest that functional connectivity is more related 

to structural connectivity than structural lesions or atrophy. Specifically, greater functional 

connectivity is associated with greater structural integrity in the default mode network. This 

possibility of an indirect relationship between resting state functional and structural connectivity 

has also been shown in younger populations by past studies [Deligianni et al., 2011; Honey et al., 

2009]. Based on this study, we speculate that other non-brain related external factors (e.g. 

education) might help better learn this indirect relationship in addition to imaging measures. 

Nevertheless, these results and corresponding suggestions are very preliminary, as a 

considerably high accuracy prediction model was not achieved. This may have been due to lack 

of understanding of the negative functional connectivity values, which affect how the separation 

of individuals into groups of high versus low functional connectivity. It could also be due to a 

limitation on the number and type of imaging and/or non-imaging measures used. Additionally, a 

stronger relationship may be found between structural imaging measure and task-based 

functional activation. Thus, future work could include studying a wider range of features, 

incorporating task-based functional imaging features, and/or testing other learning methods. 
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APPENDIX B 

REGULARIZATION OF REGRESSION 

The goal of linear and logistic regression is to estimate optimal weights for each input features 

such that and accurate label for the output variable can be predicted. Optimal weights are 

estimated by minimizing an objective function—which represents the sum of squared difference 

between the predicted labels and actual observed labels—for linear regression and logistic loss 

function—which is the same as maximizing the likelihood of the data given the prediction 

model—for logistic regression. Thus, both the objective and logistic loss function are convex in 

nature (see figure 19 for an example of a 3D convex shape) [Czepiel, 2002; Liu & Zhang, 2008; 

Yuan et al., 2010].  

When, the input data has a high dimensionality, a regularization or penalty term is added 

to the objective or logistic loss function to perform embedded feature reduction (see “Feature 

Reduction” section in chapter 4). The most common regularization terms are L1- and L2-norm. 

L1-norm (||w||1) is the sum of the weights, while L2-norm (||w||2) is the square root of the sum of 

weights squared. Variations of linear and logistic regression that use L1-norm include L1-

regularized Least Squares (LASSO) and L1-regularized logistic regression respectively. 

Variations of linear and logistic regression that use L2-norm include ridge regression and L2-
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regularized logistic regression respectively [Czepiel, 2002; Liu & Zhang, 2008; Yuan et al., 

2010]. 

Compared to L2-norm, L1-norm is more effective in performing feature reduction. This 

is because there is a greater chance for weights to attain a zero value based on the graphical 

nature of L1-norm (see figure 20 and 21). Thus, a greater number of weights are estimated to 

have a zero value. To further attain a greater reduction in features, L1/2-norms have also been 

used by past studies. Figure 21, illustrates how the chances of attaining zero values for weights 

increases further with a L1/2-norm regularization term; thus further increasing the number of 

weights estimated to have a zero value [Chen et al., 2013; Ng, 2004]. 

Figure 19. Example of a convex 3D function 

158 



Figure 20. Regularization with L1-norm 

   a)       b)             c) 

Figure 21. Comparison of regularization with (a) L1/2-norm, (b) L1-norm, and (c) L2-norm 
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