
ARCHITECTURE-CENTRIC TESTING FOR

SECURITY

by

SARAH AL-AZZANI

A thesis submitted to
University of Birmingham
for the degree of
DOCTOR OF PHILOSOPHY

School of Computer Science
College of Engineering and Physical Sciences
University of Birmingham
December 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Birmingham Research Archive, E-theses Repository

https://core.ac.uk/display/20535758?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.

Abstract

This thesis presents a novel architecture-centric approach, which uses Implied Scenar-

ios (IS) to detect design-vulnerabilities in the software architecture. It reviews security

testing approaches, and draws on their limitations in addressing unpredictable behaviour

in the face of evolution. The thesis introduces the concept of Security IS as unanticipated

(possibly malicious) behaviours that indicate potential insecurities in the architecture.

The IS approach uses the architecture as the appropriate level of abstraction to tackle

the complexity of testing. It provides potential for scalability to test large scale com-

plex applications. It proposes a three-phased method for security testing: (1) Detecting

design-level vulnerabilities in the architecture in an incremental manner. This is done

via investigating emergent behaviours (i.e. ISs) in the composition of functionalities as

functionalities evolve. (2) Classifying the impact of detected ISs on the security of the

architecture. (3) Using the detected ISs and their impact to guide the refinement of the

architecture. The refinement is test-driven and incremental, where refinements are tested

before they are committed. The thesis also presents SecArch, an extension to the IS ap-

proach to enhance its search-space to detect hidden race conditions. It is concerned with

predicting further valid conditions in the face of real parallelism in distributed systems

with respect to non-FIFO queues.

The thesis reports on the applications of the proposed approach and its extension to

three case studies for testing the security of distributed and cloud architectures in the

presence of uncertainty in the operating environment, unpredictability of interaction and

possible security IS. The applications demonstrate novelty in the way security testing

addresses emergent behaviour in applications which are characterised with dynamism,

heterogeneity, openness, scale and unpredictability in operation and their evolution trends.

We have drawn on these case studies to evaluate the thesis.

Acknowledgement

I owe my deepest gratitude to my supervisor, Dr. Rami Bahsoon, for his endless

support and guidance. His enthusiastic encouragement, useful critiques, and willingness

to give time so generously have been very much appreciated. Without his consistent

support this thesis would not have materialised. I am grateful to my RSMG member

Prof. Xin Yao for his constructive comments and insightful suggestions.

I wish to thank my parents for their support and encouragement throughout my study.

Special thanks to my entertaining friends Hana, Esra, Khuloud, Annie, Shen and her baby

Imad, Mahamat, Siti, Guru, Lenka, Funmi & Funmi, Ben, Jeff, Minlue and many more

that have made my journey very enjoyable.

Contents

1 Introduction 1

1.1 Background . 2

1.2 Problem Scope . 6

1.3 Towards Architecture-centric Security Testing 8

1.3.1 Research Objectives . 10

1.3.2 Thesis Contribution . 11

1.4 Thesis Publications . 13

1.5 Thesis Structure . 14

2 Literature Review 17

2.1 Security Testing: A Brief Background . 18

2.2 Architecture and Design for Security: Development & Evaluation 21

2.2.1 Security in the end . 21

2.2.2 Model-checking Techniques . 22

2.2.3 Traceability and Conformance . 24

2.2.4 Security patterns . 25

2.2.5 Threat Model Driven Approach . 25

2.3 Model-based Testing . 28

2.4 Functional Testing . 30

2.5 Penetration Testing . 34

2.6 Fault Detection in Security Testing . 37

2.6.1 Fuzz testing . 39

2.7 Discussion and Summary . 40

3 Requirements for Security Testing 47

3.1 Proactive Approach . 48

3.2 Architecture-based . 50

3.3 Design-Specific . 52

3.4 Iterative and Incremental . 54

3.5 Secure Compositions . 56

3.6 Traceable and Observable . 58

3.7 Summary . 59

4 Implied Scenarios for Security Testing 61

4.1 Overview of ISs . 62

4.1.1 Background . 62

4.1.2 Uses of ISs . 63

4.1.3 Origin of IS . 64

4.1.4 Applications of IS . 65

4.1.5 Motivating Example . 66

4.1.6 Detection of IS . 67

4.2 IS for Security Testing . 70

4.3 Architecture-Centric Testing for Security 72

4.3.1 Phases of IS approach for Security Testing 75

4.4 Summary . 79

5 SecArch: Architecture-Centric Testing for Security 81

5.1 Introduction . 82

5.1.1 Motivation . 82

5.1.1.1 Behaviour vs Structural models 83

5.1.1.2 Model Traces . 84

5.1.1.3 ISs vs Race conditions . 85

5.1.1.4 Illustrative Example . 86

5.2 SecArch: Architecture-Centric Testing for Security 89

5.2.1 Example Application of SecArch . 91

5.3 Summary . 93

6 Case Studies and Evaluation 95

6.1 Introduction . 96

6.2 Case Study Setup . 96

6.2.1 Software and Hardware . 97

6.2.2 Method Protocol & Research Questions 97

6.2.3 Summary of Applications . 101

6.3 Case Studies Applications . 102

6.3.1 Case Study 1: Web application . 102

6.3.1.1 Scenario Modelling & IS Detection 102

6.3.1.2 Classifying ISs . 104

6.3.1.3 Security ISs Results . 106

6.3.1.4 Architecture Refinement Results 109

6.3.1.5 Summarising the Findings of Case Study 1 113

6.3.1.6 Discussion . 114

6.3.2 Case Study 2: Cloud application 115

6.3.2.1 Industrial Cloud Case Study Background 116

6.3.2.2 Stage 1: Industrial-Party case study 117

6.3.2.3 Stage 2: Testing Adaptivity 119

6.3.2.4 Stage 3: SecArch Case Study 122

6.3.2.5 Summarising the Findings of Case Study 2 132

6.3.2.6 Discussion . 134

6.3.3 Case Study 3: Distributed Smart Camera 135

6.3.3.1 Introducing the Distributed Smart Camera 136

6.3.3.2 Modelling the Distributed Smart Camera 137

6.3.3.3 Classifying ISs . 140

6.3.3.4 Security ISs Results . 142

6.3.3.5 Architecture Selection . 147

6.3.3.6 Architecture Refinement 148

6.3.3.7 Summarising the Findings of Case Study 3 153

6.4 Summary . 154

7 Discussion 157

7.1 On Architecture-Centric Security Testing 158

7.1.1 Architecture-Centric . 159

7.1.2 Composition . 160

7.1.3 Proactivity . 160

7.2 On the Iteration . 161

7.3 On the Applicability . 162

7.4 On the Scalability . 164

7.5 Effectiveness . 165

7.6 Threat to Validity . 168

7.7 Limitations on the Modelling-Level . 169

7.8 Discussion of Tool Support . 170

7.8.1 Ease of Learning . 170

7.8.2 Early Payback . 172

7.8.3 Efficiency . 173

7.8.4 Integrated Use . 175

7.8.5 Incremental Gain for Incremental Effort 176

7.8.6 Evolutionary Development . 176

7.8.7 Orientation Towards Error Detection 177

7.8.8 Multiple Use . 177

7.9 Summary . 178

8 Conclusion and Future Work 179

8.1 Summary of Contribution . 180

8.2 Future Work . 182

8.3 Closing Remarks . 186

References 188

A Appendix A: Detailed results of Case Study 2 211

B Appendix B: Case Study 4: Identity Management System 219

1
Introduction

1.1. BACKGROUND CHAPTER 1. INTRODUCTION

1.1 Background

The ability to deliver reliable software systems of high quality within budget and sched-

ule continues to challenge most IT organisations. Developing and maintaining complex

software solutions in a distributed environment imposes challenges in achieving secure

software systems, whether it is due to concurrency and lack of synchronisation, varying

degrees of component trust or distribution of data. With the current growth of software,

applications are becoming too bloated to be tested effectively; true software security is

achievable only when all known aspects of the software are understood and verified to

be predictably correct. This requires verifying the correctness of the software behaviour

under a wide variety of conditions, including hostile conditions (eg, near trust bound-

aries). Many security failures occur in stressed environments, but are often neglected

during testing because of the difficulty in simulating these conditions in real time [178].

In addition, because testing is often performed under immense time pressure, minimal

time is devoted towards test-case crafting to maximise exploration of program state space

and intelligently drive a program into potential vulnerable states. Attempting to perform

testing in an ad-hoc manner does not address the fact that some components tend to be

more problematic than others; and thus the testing must be performed systematically.

Lack of security expertise amongst software engineers results in a software design with

minimal security consideration [113]. Software developers are generally not provided with

the adequate information on how to develop secure applications [191, 27]. A metric col-

lected from Microsoft Developer Research [64] stated that: ‘64% of developers are not

confident in their ability to write secure applications’. This emphasises the problem of

performing adequate security testing, because security testing is fundamentally different

to traditional functional testing. In 2011, Warren Axelrod [20] highlighted the significant

difference between functional testing for security and functional security testing (FST),

where he stated that functional testing for security ‘attempts to ensure that the func-

tionality of security matches requirements’, and FST ‘which is designed to ferret out the

malfunctioning of applications that might lead to security compromises’. He emphasised

2

CHAPTER 1. INTRODUCTION 1.1. BACKGROUND

the lack of research in the FST due to the skills, effort and cost it requires, and that the

importance of negative functional testing is not generally recognised by business manage-

ment and IT development managers. Security testing aims to uncover unspecified/hidden

behaviour within the system, whereas functional testing certifies whether or not the sys-

tem behaves as intended. This implies that, regardless of the time and cost put into

security testing, the discovery of vulnerabilities cannot be guaranteed.

Software vulnerabilities jeopardize intellectual property, consumer trust and business

operations and services. The integrity of key assets depends upon the reliability and

security of the software that controls those assets. Vulnerabilities are defects/weak-

nesses in the system that may arise at varying levels (eg, design-level, operational-level,

implementation-level), where different testing methodologies address different sets of vul-

nerabilities. For example, static-analysis tools search for implementation-level vulnera-

bilities, and penetration testing searches for operation-level vulnerabilities. Even though

these methodologies proved successful at uncovering their targeted vulnerabilities, it was

observed that there is too much focus on detecting implementation-level vulnerabilities

[170, 194], such as buffer-overruns and invalid-input, whereas very little attention is paid

to design vulnerabilities (often referred to as flaws such as transitive-trust mistakes) [194],

although design vulnerabilities cannot be addressed at later stages in the development cy-

cle, unless the system is redesigned [190]. These design vulnerabilities tend to have much

greater impact in terms of exploits and security consequences [12].

According to Hoglund et al. [76], many attacks rely on exploiting design vulnerabil-

ities. This belief is backed up by statistical evidence that indicates the importance of

creating secure software designs, as opposed to adding security features after the design

is built. For example, the SANS institute [82] reported that the number of vulnerabil-

ities being discovered in applications is far greater than the number of vulnerabilities

discovered in operating systems, totalling approximately 77% in some estimations [52].

Statistical data published by the National Institute of Standards and Technology (NIST)

[132] indicate that the number of vulnerabilities in software applications has doubled in

3

1.1. BACKGROUND CHAPTER 1. INTRODUCTION

Table 1.1: NIST statistics: Number of application-layer vulnerabilities reported per year

Year No. of Software Vulnerabilities Year No. of Software Vulnerabilities
2006 6,608 2000 1,020
2007 6,514 2001 1,677
2008 5,632 2002 2,156
2009 5,732 2003 1,527
2010 4,639 2004 2,451
2011 4,150 2005 4,931
2012 5,289

Average 38564/7 = 5509 per year Average 13762/6 = 2293 per year

the past 7 years, with an average of 5509, as compared to the initial 5 years of the 2000s,

which averaged 2293 vulnerabilities. Table 1.1 presents the number of application layer

vulnerabilities reported between 2000 and 2012. It is believed that one reason behind these

numbers is that designers often treat security as an add-on feature [163], rather than as

a fundamental aspect of software engineering. Others [76] attribute the increase to the

growing connectivity between networks and applications, making it easier for attackers to

reach the application remotely. On the other hand, Cenzic [32] saw no significant decrease

in 2011; they believe that hackers continue to find new and sophisticated ways to break

application security at a steady rate. While secure coding practices have not improved

the ability to keep vulnerability rates steady, these statistics raise the bar for emergent

attention to security software testing at the design level.

The question that needs to be raised is: Why do application security problems ex-

ist? According to Martin Borrett from IBM [27], IT security professionals mostly come

from network and infrastructure backgrounds, with very little experience in application

development; their networking security solutions (such as network scanners and firewalls)

cannot block application attacks or detect application vulnerabilities. The conclusion

according to Dunphy et al. [46] is unavoidable: ‘any notion that security is a matter of

simply protecting the network perimeter is hopelessly out of date’. Much of the work in

the area of security has come from the cryptography community [163], while other areas

of computer science (such as computer networks and theory) have also contributed to

the solution of security problems; however, software engineering is believed to have made

4

CHAPTER 1. INTRODUCTION 1.1. BACKGROUND

a smaller contribution [163]. Although a variety of security approaches have arisen in

the past decade within software engineering, research is necessary in regards to testing

functionality for hidden behaviours [20].

To address design vulnerabilities, and to draw security testing towards investigating

functional-misbehaviour, it is necessary to work at the architecture and design level.

Architecture-centric testing for security is the process of establishing confidence in the

security and dependability of the architecture. Its aim is to test the extent to which the

architecture posture (ie, structure, behaviour and composition, etc) is resilient to likely

attacks, and to ensure that it behaves as intended. The process involves: (1) detecting

malicious behaviours; and (2) using these malicious behaviours to guide the architecture

refinement process. The analogue between code-level testing and architecture-level testing

is rather similar: Instead of working at the code level, and debugging an application

and then fixing the vulnerable code, we work at the architecture level, debugging it

by searching for malicious behaviours, and then fixing it through a refinement process.

Security experts consider the architecture and design to be the single most critical phase of

the secure design life cycle [12, 163], because good decisions made during this phase yield

an approach and structure that are resilient and resistant to attacks. The architecture

provides a sufficient level of abstraction (such as message passing and interfaces) that hides

away the unnecessary details of complex code-level interactions. However, the challenge

in securing an architecture is that the architecture must not only address security issues

but it must also be flexible and resilient under constantly changing security conditions.

For example, the longer duration of data preservation means some of the security codes

and policies may change, and security requirements will have to evolve over time as user’s

requirements change. Thus, it is necessary to incrementally incorporate security testing

in the refinement processes of the architecture and design, while taking into consideration

the incomplete knowledge about the architecture in the early stages of development. As

architecture level security testing aims to reveal defects and threats at the architecture

level, this can be a key to driving the architecture refinement to build a secure architecture.

5

1.2. PROBLEM SCOPE CHAPTER 1. INTRODUCTION

1.2 Problem Scope

Because the scope of problems associated with security testing is large, this thesis is

concerned with the following problems:

1. As discussed in the previous section, one of the leading problems in security testing

is that security testing is often not integrated in the design phase of the system

development; as a result, fixing design vulnerabilities can be costly, leading to the

common choice of ‘find and patch’ in security testing. Patching is a process of hid-

ing symptoms of the problem, as opposed to fixing its root causes and correcting

the design. In many situations, patching does not offer a solution to design vulner-

abilities, and it is also difficult in practice to enumerate all symptoms in order to

prevent the vulnerability from being exploited. This emphasises the need to bring

security testing into the early design stages of development so that design vulner-

abilities can be addressed before the system is built. There is also the need for a

proactive approach to reveal unknown and unspecified behaviour within a design.

Currently, the norm is to react to threats, and to use pre-known threats to exercise

the system or test its functionality for conformance. This leaves security testers al-

ways one step behind the attackers, where we only fix what the attacker has already

exploited. A proactive approach allows us to build security into the design by, for

example, exploiting implicit assumptions made by designers about possible compo-

nent interactions. Given a set of specifications, we need to verify that all relevant

components collaborate correctly to ensure that the global security of the system is

achieved. When we put small components together, predicting the consequences of

their composition can be difficult. Thus, we need to have ways that let us model,

predict and evaluate the effects of component composition on the system’s security

as the system evolves.

2. Security testing is fundamentally different from traditional testing because it empha-

sises what an application should not do rather than what it should do. We therefore

6

CHAPTER 1. INTRODUCTION 1.2. PROBLEM SCOPE

distinguish between positive requirements such as ‘disabling user accounts after three

unsuccessful login attempts’ and negative requirements such as ‘the system should

prevent unauthorised users from accessing system resources’ [56]. Unlike functional

testing, security testing places greater emphasis on negative requirements. To apply

the standard testing approach to negative requirements, it would be necessary to

create every possible set of negative conditions that tests the requirement, which

is infeasible because it is not practical to reliably enumerate all such possibilities.

This is also challenging because it is not always possible to map a requirement to

a specific software artefact when the requirement is not implemented in a specific

place.

As a result, we are interested in a proactive architecture-level approach to allow us to

search for hidden behaviours in the architecture, so that we can anticipate their presence

before they are exploited. We need to discover what the application can do beyond the

specified behaviour, because security is about testing for hidden interactions as opposed

to known specified behaviour. In short, the approach can reveal the following benefits:

• shall support threat detection on the architecture, to allow for a proactive approach

for detecting design vulnerabilities caused by unpredictable functional compositional

behaviour;

• shall guide the refinement of the architecture incrementally; this allows us to build

security into the design, and to make informed decisions about changes in the ar-

chitecture;

• shall allow for iterative development to take into account the nature of software

development and the lack of complete knowledge during the early stages of devel-

opment;

• shall raise the level of abstraction of security testing as a way to render potential

scalability.

7

1.3. TOWARDS ARCHITECTURE-CENTRIC SECURITY TESTINGCHAPTER 1. INTRODUCTION

1.3 Towards Architecture-centric Security Testing

The design of software for concurrent systems is generally complex, with a high possibility

that subtle errors will cause erroneous behaviour [35]. Some of these errors may have

catastrophic security consequences in terms of money, time or even human life. For

example, design/architectural mismatches are potentially exploitable weaknesses. Often

these mismatches occur between a component and its operating environment; for example,

because the component makes assumptions beyond what the environment can provide.

Attackers intentionally probe for unspecified behaviours in the system [177]. They attempt

to make the application behave unexpectedly, and then determine the attacks associated

with that behaviour.

The challenge in achieving compositional security is that security is a global property;

yet the only way we know how to build big systems is by using smaller pieces. When

we put small pieces together, predicting the consequences of their composition is difficult

[194]. Many vulnerabilities are believed to arise from unexpected interactions between

different system components [144]; attackers combine several legitimate behaviours to pro-

duce emergent abusive behaviour [194]. In the real world, a designer might explicitly

specify that an application performs scenarios X, Y and Z. As these scenarios are com-

posed together, a fourth scenario, W, might arise as a consequence of their composition.

Such an unspecified scenario, namely W, might result in a security failure if exploited by

an attacker. These undocumented scenarios are known as ‘implied scenarios ’ (ISs) [14],

and may lead to design vulnerabilities. ISs indicate gaps in the specification when the

behaviour of a system is specified from a global perspective, yet it is expected to be imple-

mented component-wise, with a local view of the system. If the specified architecture does

not provide components with a rich enough local view of what is happening at a system

level, components may not be able to enforce the intended system behaviour. Effectively,

each component, from its local perspective, may believe that it is behaving correctly, yet

from a system perspective the behaviour may not be desirable.

8

CHAPTER 1. INTRODUCTION1.3. TOWARDS ARCHITECTURE-CENTRIC SECURITY TESTING

The thesis argues that architecture-centric testing for security should involve testing

for vulnerabilities that arise from unexpected interactions between components. In this

context, testing for security should test the system for behaviours not explicitly speci-

fied in the system model. It advocates a test-driven approach for security testing using

IS detection, and benefits from its ability to detect hidden assumptions and possible in-

terleavings in incomplete system models. The term incomplete system models refers to

incomplete system specifications. This often occurs because a complete knowledge about

the system may not be present at the initial stages of development, or when the system

evolves or operates in dynamic and open environments. When the system evolves, changes

such as adding or modifying a functionality, may introduce new behaviours that violate

the existing security of the architecture. The thesis supports incremental refinement of

the architecture upon changes made to the system functionality. This assists the impact

of functional requirements on the security of the architecture.

The thesis introduces the application of IS approach [5] for security testing to reveal

unexpected interactions between system components. Drawing on case studies from dif-

ferent application domains (reported in [6, 7, 155]), it shows the effectiveness of the IS

approach for security testing, to guide the refinement process of the architecture with

security in mind, and to inform the selection of more secure architectures. It explores the

concept and the foundation underlying IS, how and why they arise, and their role in secu-

rity testing. There is a general lack of research in analysing dependability with respect to

interactions across multiple views [60], the thesis exploits the connections between system

behavioural and structural models to provide extended mean to analyse and understand

the security of concurrent systems [7]. Each of these models focuses on certain aspects of

interactions; thus, integrating information gathered from multiple views (ie, multiple lev-

els of abstraction and from a variety of perspectives) provides adequate multi-dimensional

representation of the pre-developed system that features reduced design vulnerabilities.

Incorporating multiple-views for security analysis allows for understanding the possible

consequences of negative behaviour across other views.

9

1.3. TOWARDS ARCHITECTURE-CENTRIC SECURITY TESTINGCHAPTER 1. INTRODUCTION

It is necessary to complement security testing with automation support, because test-

ing is a phase during which budget and schedules are tight. Full automation of security

testing has failed thus far, except in a few cases [183]. The main reason is that hacking is a

creative process, and creativity cannot be easily automated. In addition, each application

has its own design, and each design has its own weaknesses and must therefore be tested

individually. Even though some security experts believe that architecture-level flaws can

currently be found only through human analysis [12], the nature of ISs is generally difficult

to detect manually. Thus, we show how we can benefit from semi-automation to reduce

the time needed to search for these scenarios. Unlike fully human-centric approaches,

automation is less prone to errors and the overlooking of threats.

1.3.1 Research Objectives

The goal of this thesis is to develop an architecture-centric approach that systematically

tests the security of software architecture in an incremental fashion. Incremental fashion

means adapting to continuous changes that maybe imposed on the architecture due to

changes in the functional requirement or refinements. Taking a test-driven approach for

security testing, the intention is to proactively assess the impact of incremental functional

changes on the security posture of the architecture. The thesis aims to understand the

ability of the approach to: (1) detect design vulnerabilities on the architecture, (2) guide

the refinement process of the architecture, (3) assess the impact of the incremental changes

on the overall security, (4) inform the architecture selection of more secure architectures,

(5) be used in iterative agile-like developments and to (5) provide assistance for testers

to reveal complex design vulnerabilities that may be hard to detect manually.

The thesis aims to complement existing security testing approaches such as code-level

testing, or network-level testing, and to enhance the process by aiding testers to identify

security vulnerabilities using the system’s architecture and design. The research questions

addressed in this thesis are:

10

CHAPTER 1. INTRODUCTION1.3. TOWARDS ARCHITECTURE-CENTRIC SECURITY TESTING

• Can the IS approach detect design vulnerabilities in the architecture?

• Can the IS approach provide guided systematic refinement process to build security

into the architecture?

• Can the IS approach provide early feedback on the security of decisions made in the

architecture?

• Can the search-space of IS approach be enhanced to incorporate multiple-views for

security analysis?

1.3.2 Thesis Contribution

The thesis explores the field of security testing. It probes for understanding the state-of-

art and -practice in testing software systems for security. It reviews approaches, which

practitioners and researchers have considered in security testing. The review has estab-

lished the evidence that the route for testing security software has been lacking systematic

guidance and is performed on low-level software artefact such as design and code. More-

over, existing approaches have been found to be limited in their scalability and adaptivity

to changes in functional requirements. Their use of predefined specifications and test cases

renders the meaningfulness and effectiveness of security testing ‘myopic’. This is because:

(i) the landscape of security tends to evolve with changes in the threat landscape; (ii)

many emerging behaviours, which can threaten the security posture of the systems, occur

at runtime and are therefore difficult to anticipate at design time; (iii) while code and

low-level design artefacts tend to be effective for testing programming bugs and assem-

bling components into security subsystems, many of the vulnerabilities are architectural

in nature [76]. They are anticipated to be 50% of the total number of vulnerabilities [114].

The thesis is the first effort towards an architecture-centric testing for security. It

pursues the architecture as an artefact for security testing as such is believed to (i) offer

the appropriate level of abstraction to tackle the complexity of testing, (ii) to reason about

secure composition, interaction, concurrency and emerging behaviour and (iii) to provide

11

1.3. TOWARDS ARCHITECTURE-CENTRIC SECURITY TESTINGCHAPTER 1. INTRODUCTION

the potential for scalability (ie, facilitating the testing for security in large-scale complex

applications). The thesis explores the requirements for security testing. It proposes a

novel solution, which leverages on the work of Implied Scenarios (IS) [185]. The thesis

introduces the concept of Security IS. Security ISs are IS with unanticipated (possibly

malicious) behaviours that indicate potential insecurities in the architecture. It proposes

a three-phased method for security testing: (1) Detecting design-level vulnerabilities in the

architecture in an incremental manner. This is done via investigating emergent behaviours

(ie, ISs) in the composition of functionalities as functionalities evolve. (2) Classifying the

impact of detected ISs on the security of the architecture. The steps required to perform

a systematic classification of threats are outlined. (3) Using the detected ISs and their

impact to guide the refinement of the architecture. The refinement process is test-driven

and incremental, where refinement cycles are tested before they are committed. The

method provides a proactive and early feedback on the security of the changes applied

to the architecture, such that testers are able to make informed decisions about the

refinements.

To enhance the search-space for threats, the thesis presents an extension to the IS

approach to detect hidden race conditions, allowing for testing for security with the pres-

ence of negative behaviour. The extension, called SecArch, is concerned with predicting

more valid conditions in the face of real parallelism in distributed systems with respect

to non-FIFO queues. This is done by moving from purely dynamic behaviour models

(LTS models) to structural MSC models to preserve structural properties that are used

to detect race conditions, and generate further ISs.

This thesis reports on the applications of the proposed approach and its extension to

three case studies for testing the security of distributed and cloud architectures in the

presence of uncertainty in the operating environment, the unpredictability of interactions

and possible security ISs. The applications demonstrate novelty in the way in which

security testing is used to address emergent behaviour in applications characterised by

dynamism, heterogeneity, openness, scale and unpredictability in their operational and

12

CHAPTER 1. INTRODUCTION 1.4. THESIS PUBLICATIONS

evolutionary trends. We have drawn on these case studies to evaluate the thesis. We

explored the fitness of the approach for detecting threats in the architecture and guid-

ing the architecture refinement process. We experimented with the approach’s ability to

inform the selection of a more secure architecture, and we demonstrated that security

testing can be performed even when we do not have complete knowledge about the be-

haviour of the components. We verified the claim that ISs are behaviours that can result

in security implications for the architecture, and that testing for these ISs is critical in

order to predict the compositional security of the dynamic behaviour of the architecture.

We demonstrated that the detection of ISs supports a proactive application of security

testing, in which we detect design vulnerabilities based on the architecture itself, without

relying on pre-known threats already explored by attackers. We have verified that security

testing can be performed in iterative development cycles; this allowed us to build security

into the design by making informed decisions about the impact of changes made to the

architecture. We have also reflected on the potential of the approach with respect to

criteria like ease of learning, effectiveness, scalability and applicability to further evaluate

the thesis.

1.4 Thesis Publications

The work presented in this thesis is based on and extends several papers that have been

published in the last three years in premier venues in software architecture, and security

software engineering. This thesis should be regarded as the definitive account of the work.

• Conference

1. S.Al-Azzani and R.Bahsoon, Semi-automated detection of architectural threats for

security testing, in Proceedings of the doctoral symposium for ESEC/FSE on Doctoral

symposium (ACM 2009)

2. S.Al-Azzani and R.Bahsoon, Using implied scenarios in security testing, in Pro-

ceedings of the 2010 ICSE Workshop on Software Engineering for Secure Systems, SESS

13

1.5. THESIS STRUCTURE CHAPTER 1. INTRODUCTION

2010, Cape Town, South Africa, (ACM 2010) [Selection rate: 31%]

3. S.Al-Azzani, R.Bahsoon SecArch: Architecture-level Evaluation and Testing for

Security, 2012 Joint Working IEEE/IFIP Conference on Software Architecture and Euro-

pean Conference on Software Architecture, WICSA/ECSA 2012, Helsinki, Finland (IEEE

2012) [Selection rate: 19%]

• Invited Book Chapter

1. S.Al-Azzani and R.Bahsoon, Architecture-Centric Testing for Security: An Agile

Perspective, Chapter in Agile Software Architecture: Aligning Agile Processes and Soft-

ware Architectures, edited by M. A. Babar, A. Brown, K. Koskimies and I. Mistrik,

(Elsevier 2013)

• To be submitted to the IEEE Transactions on Software Engineering

1. S.Al-Azzani and R.Bahsoon, Architecture-Centric Testing for Security in Dynamic

and Unpredictable Environment, January 2014

1.5 Thesis Structure

The rest of the thesis is structured as follows:

Chapter 2 surveys existing research in security testing. The review explores the

state-of-art and -practice in security testing and identifies gaps and need for architecture-

centric testing for security. It explores how we can potentially leverage on the state-

of-art and -practice to serve architecture level-testing for security.

Chapter 3 pursues the software architecture as the appropriate level of abstraction

for evaluating, reasoning about, managing and facilitating the change and evolution

of security testing. It advocates an architectural-based approach to testing as such

is believed to offer the potential benefits of generality, scalability, as well as tracing

and scoping the vulnerability analysis to low-level design artefacts. It recommends

requirements, which are desirable to prevail when pursuing architectural level testing

for security.

14

CHAPTER 1. INTRODUCTION 1.5. THESIS STRUCTURE

Chapter 4 describes a novel architecture-centric approach that exploits the con-

cept of Implied Scenarios (IS) [185] to test the security of system architectures. It

introduces the concept of Security ISs to deal with vulnerability analysis at the ar-

chitecture level. It describes a three-phased approach for detecting and classifying

threats, and using detected threats to guide the refinement of the architecture.

Chapter 5 introduce SecArch, an enhancement version of the IS approach with

improved search-space. It uses detected race conditions to test for security with

the presence of negative behaviour. It begins by drawing on comparison between

complete vs incomplete models, and explores the benefit of merging both views to

detect further emergent behaviour.

Chapter 6 introduces three applications and evaluation of IS approach and its ex-

tension, and reflects on the fitness of the approach to meet the requirements stated

in Chapter 3. It evaluates the approach’s applicability, scalability and effectiveness

at detecting design-vulnerabilities.

Chapter 7 summarises the contribution and future work

15

1.5. THESIS STRUCTURE CHAPTER 1. INTRODUCTION

16

2
Literature Review

2.1. SECURITY TESTING: A BRIEF BACKGROUNDCHAPTER 2. LITERATURE REVIEW

Here, we review the landscape of security testing. The review explores the state-

of-the-art and the state-of–practice in security testing, and identifies gaps and the need

of architecture-centric testing for security. The review explores how we can potentially

leverage the state-of-the-art and the state-of-practice to serve architecture-level security

testing. One of the objectives we have is to share common understanding among security

testing practitioners so that we can push the state-of-practice forward to build secure

systems. Observations from the review confirm that current security testing trends are

limited when addressing design-level vulnerabilities; in order to address these critical vul-

nerabilities, we need to shift focus onto the architecture/design levels to allow for detection

of these vulnerabilities and prevention of their manifestation into the implementation. Ef-

forts aimed at security testing at a high level of abstraction have been limited and lacked

focus. Many of the identified works were scattered, with no unifying theme.

Parts of this Chapter are published in [6] and [155].

2.1 Security Testing: A Brief Background

Security testing is a process for determining whether a system contains vulnerabilities

that can be exploited, and whether the software behaves and interacts securely with its

users, other applications and its execution environment. The overall goal of the process is

to reduce the number of vulnerabilities within the software system [118]. A vulnerability

is a weakness in the system, which allows an attacker to violate the integrity of the

system [153]. It may: (a) deny access to assets for authorized people or processes; (b)

allow for privileged access to assets to unauthorized people or processes; or (c) allow

unauthorized people or processes to hide assets [74]. The ways in which a vulnerability

may be violated are collectively referred to as a threat scenario. A threat scenario is an

undesirable behaviour of the system that, if executed, will result in an attack. An attack

occurs when an attacker with a reason to strike takes advantage of a vulnerability in order

to threaten an asset [153]. When an attack is successful, the security of a system is said

18

CHAPTER 2. LITERATURE REVIEW2.1. SECURITY TESTING: A BRIEF BACKGROUND

to be compromised. Compromising the system violates the security properties in effect,

such as:

• violating confidentiality of data by preserving authorized restrictions on information

access and disclosure, including means for protecting personal privacy and propri-

etary information [98].

• violating integrity of the data and the system; data integrity is defined as ‘the prop-

erty that data meet on a priori expectation of quality’ [98]. This covers data in

storage, during processing and while in transit, whereas system integrity is ‘the

quality that a system has when it performs its intended function in an unimpaired

manner, free from deliberate or inadvertent unauthorised manipulation of the sys-

tem’ [98].

• violating availability; loss of availability may be caused by attacks (eg, abusing

known system vulnerabilities) or instabilities of the system and its components

[148].

Security Testing can be integrated during all stages of the development life cycle; it is

performed using different methods at each stage to target different sets of vulnerabilities

(eg, operating-level or design-level vulnerabilities). In the past, a great deal of attention

was focused on implementation-level vulnerabilities, such as buffer overflows and invalid

inputs, and general code level testing, while very little attention was given to design

vulnerabilities [112]. This was the result of delaying the process of security testing to the

later stages of development; many of the security vulnerabilities are architecture/design in

nature [76], and thus code-level testing often fails to reveal them. When security testing

is performed at later stages, significant changes to the design will often not be considered

(due to timing constraints or financial costs [43]). Therefore, it is desirable to consider

security early in the system life cycle while taking into account the partial knowledge of

how and where the system will be deployed.

19

2.1. SECURITY TESTING: A BRIEF BACKGROUNDCHAPTER 2. LITERATURE REVIEW

To allow for comparison between different testing methods, we focus on the following

criteria:

1. Automation: the extent to which the methods support automation.

2. Vulnerability level: the vulnerability type the methods detect (ie, configuration,

design or implementation level).

3. Support for observability: the extent to which they support observability. Observ-

ability in our context refers to how much of the internal behaviour we are able to

observe from an external viewpoint.

4. Application Stage: at what stage is the method used (ie, design or implementation

levels)?

5. The ability of the methods to support compositional security.

6. The level of expertise required for using the method.

7. Adaptivity to changes in development. It is understandable that anticipating all of

the requirements of all users can be challenging. The ability to adapt to changing

conditions is an important aspect of testing, which allows for ongoing verification

that the system continuously meets its requirements and satisfies security issues.

These criteria are explained in the body of each method in details and how they are

satisfied/achieved, as well in section 2.7 for direct comparison with the other methods. We

summarise the current state of security testing to motivate the need for further research

to address its limitations. Current security testing approaches can be summarised under

six main headings, which shall be enumerated in the following section.

20

CHAPTER 2. LITERATURE REVIEW

2.2. ARCHITECTURE AND DESIGN FOR SECURITY: DEVELOPMENT &

EVALUATION

2.2 Architecture and Design for Security: Develop-

ment & Evaluation

In this section, we review common approaches in developing and designing secure software

systems.

2.2.1 Security in the end

In these approaches, security evaluation takes place after the design is built to determine

potential problems in the design, either to refine or to derive test cases. This process is

often done manually as in [125] and [48]. Mouratidis et al. [125] proposed a scenario-

based testing approach that is geared towards testing a system at the time of the design.

Their aim is to identify the goals and intentions of attackers in order to derive a set of

possible scenarios for attacks on the system, and then test the system with these attacks

to see how it responds. For the threat detection phase, their approach is best suited during

detailed design. Another example is [148], where they use general security policies of an

organisation to create a consistent security model that is used to derive generic security

mechanisms. The main problem with this style is that system designs continue to evolve

and, as the system evolves, security concerns need to be re-analysed in order to evaluate

the impact of changes on the system [182]. This process of evaluating changes is believed

to be challenging due to the ad-hoc way in which such approaches handle changes. To

address this, an incremental approach is required to design security that is naturally

adaptive to changes. That is, instead of having a specialised security phase for which

security is evaluated, the goal is to integrate the security phase into the design choices so

that it becomes an integral part of the design, which tends to incrementally change and

evolve. Any changes considered are examined from a security point of view before they

are enacted.

21

2.2. ARCHITECTURE AND DESIGN FOR SECURITY: DEVELOPMENT &

EVALUATION CHAPTER 2. LITERATURE REVIEW

2.2.2 Model-checking Techniques

Modelling a system allows for simulation and analyses during the software development

process, which can help developers better understand, manage and optimize the design

[50]. Model checking creates a restricted model of the program that is expressed in some

form of temporal logic to allow verification of correctness. Model checking is often used

to detect inconsistency in the syntax and semantics of the system model. Examples of

this testing for security include: 1) Jinhua et al. [86], who also integrate the concept of

security properties and UML designs in order to model-check whether the design achieves

the security properties or violates them; 2) At a higher level, Lodderstedt et al. proposed

SecureUML [108], an extension of the UML language to specify security policies for role-

based access control (RBAC). SecureUML is limited to describing RBAC policies, and thus

addresses specific types of vulnerabilities. The same restriction was found in the works

presented in [4] and [145], which also refer to RBAC policies; 3) A wider application of

security UML models was proposed by Júrjens who presented UMLsec [89], a UML profile

for modelling and evaluating security characteristics in order to guarantee basic principles

in the whole system. The focus of this research is on building secure systems to guarantee

a correct and secure behaviour, as opposed to detecting threats.

A subcategory to this is the executable architecture model, which represents the desired

functionality of the system as a finite state model, while also modelling misuse cases to

verify the presence of bad behaviour in the architecture. The importance of executable

architecture is that it can reveal all possible communications [2]. Its advantage over other

approaches is that it offers dynamic analysis to verify whether the set of allowable execu-

tions can divert from its intended behaviour, or whether it allows additional behaviours.

Consider the following threat: A bank system that deals with two clients differently de-

pending on the amount of money each client owns might reveal confidential information

about an actor. In an executable or interactive model, this behaviour can be modelled

as a branch, and is thus easier to identify than other various static models. An example

of this approach, which was presented by Whittle et al. [192], used scenario-based spec-

22

CHAPTER 2. LITERATURE REVIEW

2.2. ARCHITECTURE AND DESIGN FOR SECURITY: DEVELOPMENT &

EVALUATION

ification language and extended interaction diagrams to model both desired and attack

scenarios, where a synthesis algorithm transforms these scenarios into executable-state

machines. Mitigation scenarios are then designed as aspect scenarios and woven into the

core behaviour to prevent against the execution of the attack scenarios. Because they

are added on top of the core design, they can be easily replaced or reused for different

parts of the system. The core focus is on modelling threats and detecting whether or

not they exist on the model, rather than using a model to search for potential behaviour

beyond what is specified. In 2008, He et al. presented a similar scenario-based approach

[71], with both an executable system and threat model. The process relies on software

Inspections [151] (a manual process) for detection and validation of threats, and the focus

of this work is on the use of data flow and trust boundaries (the degree of trust about a

portion of the system) to detect violations of confidentiality, where secure data flows into

untrusted areas within the system. Variations to state-based models were presented to

enhance the test-case generation process, such as [197, 99, 11]. One important limitation

in the application of this field for security is that it focuses on building the architecture

model to be used as a means to verify whether a known threat is feasible in the archi-

tecture (where these threats are previously identified through other means such as threat

modelling; see Section 2.2.5). This approach: (1) places an implicit trust on the behaviour

of the architecture model; and (2) only checks what had previously been identified as a

threat. However, as we will see in this thesis, security can benefit from executable archi-

tectures in a much more critical aspect of security testing, namely, detecting emergent

behaviour in the architecture that is not initially anticipated by the desired specification.

Using architecture models to extract counterexamples offers a very good level of observ-

ability, as these counterexamples can reflect complete internal/external behaviour. The

counterexamples may correspond to the steps that an attacker can use to exploit the sys-

tem vulnerability. A tester can then study the sequence of traces to analyse the security

impact of any execution in the model.

23

2.2. ARCHITECTURE AND DESIGN FOR SECURITY: DEVELOPMENT &

EVALUATION CHAPTER 2. LITERATURE REVIEW

2.2.3 Traceability and Conformance

Research including [137, 162], looks into ensuring that security requirements specified dur-

ing the requirement phase are maintained in the architecture, such that the best-fitting

architecture is selected with respect to the security requirements. In [137], Pauli et al. em-

ploys use cases/misuse cases to systematically identify potential malicious behaviours in

the architecture. However, like many use case/misuse case-based approaches, the compo-

sition of functionality and its impact on security is rarely addressed at this level; instead,

a component-based approach is considered in which each component is checked to ensure

that it fulfils its role in achieving a security property (eg, privacy of data). We believe

the reason for that is because the traceability of security requirements is often the focus

of the transition phase. On the other hand, Shin et al. [162] limit this view slightly

by associating components with the functionality of an application, and their connectors

with security and communication between components, in which case components are not

directly associated with ensuring their own security. The work of Oladimeji et al. [133]

took a similar approach by adding tagged values to their architecture that model security

details (such as SSH connection type); their focus is on determining whether or not a given

software architecture model realizes a set of security policies; but like many of the surveyed

works, they failed to address the requirement for architecture models to be amenable to

changes in order to reflect new requirements and threats. The work of Antoun et al. [2]

went further to support reasoning about security at both the architecture and code level.

It requires intensive annotations of the code to build a hierarchical view of the system, as

well as continuous refinement for the annotations. Along with the annotation overhead

required to apply this approach, the focus is on ensuring conformance and traceability

between the code and the architecture, where the code and the two architectures (one

derived from the code, and one designed separately for comparison) are present in order

for the evaluation to occur. Their security analysis is also property-based, where security

properties such as ‘well-formedness’ (eg, two DataStores cannot be connected directly)

are automatically verified.

24

CHAPTER 2. LITERATURE REVIEW

2.2. ARCHITECTURE AND DESIGN FOR SECURITY: DEVELOPMENT &

EVALUATION

2.2.4 Security patterns

The use of security patterns in designing secure architecture has received considerable

research attention [75, 117, 103, 126, 156, 200, 195], after being originally coined by

Christopher Alexander [8]. A security pattern is a well-understood solution to a recurring

information security problem [146], such as a pattern that ensures secure authorisation

or flow of data. It encourages effective reuse for building in robustness. Security patterns

solve recurring problems in security [117]. Given a good pattern, it should be obvious to

determine if the pattern is applicable to a particular situation or not, and how the actual

instantiation of the pattern should be done. A pattern should clearly and specifically

describe how it achieves the desirable solution, so that a designer can choose the right

pattern and know what to do with it, and will understand the consequences of implement-

ing the pattern. However, in practice, it is believed that these patterns are ignored in

the industry [75], even though they are thought to be able to bridge the gap between the

design phase and secure code. The reason for that belief is because a pattern should pre-

cisely describe its architectural design and how it can be achieved at an implementation

level, possibly by using code snippets. If utilised correctly, they can be used to automate

code generation.

2.2.5 Threat Model Driven Approach

Security threats are potential threats (ie, misuse and anomalies) that violate security poli-

cies or goals [76]. Threat modelling [192, 73, 172, 157] is a methodical review of a system

design or architecture to discover and correct design-level security threats; the review

determines an adversary’s most likely course of action in order to develop appropriate

mitigations [133]. This requires a clear understanding of the assets that are to be pro-

tected, the threat’s objectives and any factors in the environment that could influence the

threat’s capability or decisions [80]. This process results in a threat model that describes

the potential attacks on the system, which can be used to understand how attacks can

25

2.2. ARCHITECTURE AND DESIGN FOR SECURITY: DEVELOPMENT &

EVALUATION CHAPTER 2. LITERATURE REVIEW

manifest themselves, and to evaluate critical decisions that will affect the security posture

of the system [172].

Threat modelling is a sound approach for addressing software flaws at the design level

[76]. Tondel et al. [180] showed that threat modelling is often considered an impor-

tant part of the requirement phase as well as an iterative process, continuously revisited

throughout the software lifecycle, while Microsoft had reported a 50% reduction in security

vulnerabilities detected after incorporating threat analysis into the software development

life cycle [64]. It is believed [166] that identifying threats assists in developing efficient and

realistic security requirements for systems, where these requirements help to best identify

countermeasures that defend against attacks. Others have taken another approach [148],

where security requirements are initially specified and then used to determine mitigation

methods or threats violating these requirements.

A common modelling specification for security threats is attack trees [157]. Attack

trees precisely model the steps required to achieve a malicious goal in general, regardless

of whether the application allows one or more of the steps [146, 109]. The root of the tree

describes the target goal of the attack, whereas the sequence generated from a complete

trace (from the root to a leaf) represents a unique attack that an attacker can follow.

Attack trees have been implemented in a number of tools, such as SeaMonster [72], which

was implemented by the SHIELDS project [159], and Suraksha [176]. They have also

been researched intensively, and examples can be found in [179, 190, 109, 106, 99] where

reusability of attack models has been considered. Other forms of modelling threats in-

clude activity diagrams, sequence diagrams [196], Petri-nets [195] and attack graphs [139].

Attack trees have also been extended to include more information useful for security [106],

so that analysis and evaluation can be performed at the design stage for web applications.

Threat modelling has also been extended to fill the gap between threat-driven security

requirements and high-level architecture design [196, 67]. Xu et al [196] extend misuses

to allow variations of known attacks and exploits. UML sequence diagrams are used to

describe the sequence of actions the attackers need to take to compromise the system;

26

CHAPTER 2. LITERATURE REVIEW

2.2. ARCHITECTURE AND DESIGN FOR SECURITY: DEVELOPMENT &

EVALUATION

these threats are identified through the use of the STRIDE threat model [73]. Then they

derive the creation of architecture from the requirements such that they can assess whether

or not the architecture is vulnerable to the identified threats before it is committed.

Threat modelling was further advanced to integrate attack trees with state charts in

order to model lower-level dynamic behaviour [16]. This approach introduces systematic

transformation rules and integration steps for mapping attack tree representations into

lower level dynamic behaviour, and then integrates this behaviour into state chart-based

functional models. Through the focus on both the functional and threat behaviour, soft-

ware engineers can introduce, clearly define and understand security concerns as software

is designed. The advantage of this work is that it takes threat modelling from purely

threats into automated threat detection. Another interesting application [190] brought

threat modelling into the implementation level to detect undesirable threat behaviour at

runtime. Given the threat model in UML sequence diagram form that stimulates a threat

scenario, one can track the runtime behaviour to see if it matches the traces of the threat

sequence diagram model. If a threat is matched when exercising the code with random

data, then the threat is believed to exist. This approach contains many weaknesses: The

use of random data is not sufficient to prove that the system is free from the threats that

are being tested, and the random test data may not successfully exercise the required

threat sequence of the messages. It is labour-intensive testing because it requires the

tester to keep modifying the code being tested to insert test statements that will be used

to match traces. Another approach [157] uses the combination of attack trees and priority

lists of assets [85] to show the scenario of the attacks in a visual manner that highlights

which code, or part of the system, may come under attack.

Threat modelling has also been used as the basis for test case generation [109, 67].

In [109], the authors have proposed a threat model-based security testing approach that

automatically generates security test sequences from threat trees and transforms them into

executable tests. The security testing approach they consider consists of three general

activities: building threat models with threat trees; generating security test sequences

27

2.3. MODEL-BASED TESTING CHAPTER 2. LITERATURE REVIEW

from threat trees; and creating executable test cases by considering valid and invalid

inputs. This approach uses the STRIDE threats produced by Microsoft to model and

detect code-level threats. In [67], the authors use the architecture model for security

testing, and in coupling security requirements with threat modelling for generating both

security functional test cases and malicious test cases.

A capable modeller can think of various ways in which a threat can manifest into the

system, thus the drawback in threat modelling is that it is entirely based on modeller’s

level of experience [190]. This process, which is the core body of threat modelling, is

also not automated; thus, a change made to the design requires reanalysis of the system’s

security status and hence, incremental design changes –or even parallelism– are not gen-

erally supported [99]. Threat modelling addresses the design of a secure system, but not

the methods for the testing phase, although the list of potential vulnerabilities may still

be used as test cases. Additionally, if we utilize attack trees as an example for modelling

threats, we discover that they lack semantic information about threats, and that they do

not contain enough information about carrying out the attack [106]. On the other hand,

observability of threats is a bonus in this approach. A tester can use threat scenarios to

replicate behaviour precisely and understand the security consequence of its execution.

2.3 Model-based Testing

In section 2.2, we examined model checking at the architecture/design levels. In this

section we look at the application of model-checking at the implementation level, where

the difference is mainly based on the level of abstraction and the artefacts used for the

analysis. Model-based testing is a variant of testing that relies on explicit behaviour

models that encode the intended behaviour of a system and, possibly, the behaviour of its

environment [141]. It consists of generating test cases based on the partial representation

of the system under test, which also includes the specification of elements to be tested

[140]. The advantage of model-based testing is that it allows for early test case generation

28

CHAPTER 2. LITERATURE REVIEW 2.3. MODEL-BASED TESTING

on abstract models [55]. It is also believed to support systematic security testing and

reduces the level of expertise required for security testing, because its abstraction provides

designers with a better understanding of the software under test. The complexity in

building correct behaviour models is thought to be the reason behind its small use in

practice, like in testing access control policies [55] such as [87, 142]. This belief is thought

to be caused by the complexity of building correct behaviour models [185]. Once the

behaviour model is built, verifying its correctness can be done via automated tools such

as SPIN [156]. We briefly cover some of the existing work in this field as it relates to

security testing.

In [124], the authors proposed a model-driven approach for specifying, deploying and

testing security policies in Java applications. In their approach, security experts build a

security model of the system under test using a security domain-specific modelling lan-

guage; the security model captures access control policies defined in the requirements of

the system. This model is verified and transformed into a policy decision point (PDP),

where policy decisions are made. These decision points are inserted into the application

code using: 1) aspect-oriented programming (AOP) and 2) mutation testing [39]. This

approach is not only low-level code-based, but also depends heavily on security exper-

tise, and addresses only testing access control policies. In [136], the authors present a

model-based framework for security vulnerabilities testing. In their approach, they use

three main models: one to describe the desired behaviour of the system, one relating

to the behaviour of the various relevant components of the implementation and one for

the attacker. These models are then combined together to generate test cases using a

constraint solver. A similar work to this was presented by [138], except that they use

stereotypes inserted into the original model without the need for generating an attack

scenario model. Other approaches exist that uses MTB to test the application’s security

such as [104]. Model-based testing had also been used for testing cryptographic protocols

[149, 37, 28].

29

2.4. FUNCTIONAL TESTING CHAPTER 2. LITERATURE REVIEW

2.4 Functional Testing

Traditional functional testing aims to verify that the system meets its functional re-

quirements. A test case is successful if the functional behaviour exists and satisfies the

requirements. Applications are tested to ensure that they behave as intended and do not

allow harmful functional responses [20]. This is done on behalf of a legitimate user of the

product who is attempting to use the application in the way it was intended to be used,

and for its intended purpose. Functional testing is referred to as ‘positive testing’. This

concept is coined from the application’s ability to alternately show or not show errors as

appropriate. Positive testing corresponds directly to requirements and would dictate, for

example, that ‘user accounts are disabled after three unsuccessful login attempts’. On

the other hand, ‘negative testing’ is focused on ensuring that the application does not do

more than it is required to do; and so the requirement would be stated as ‘unauthorized

users should not be able to access data’. Such a requirement poses a lot of challenges for

testers because, in many situations, the requirements cannot be mapped directly to spe-

cific software artefacts, and thus they are untestable in a traditional software development

setting. For example, one cannot reliably enumerate the ways in which an attacker might

obtain control of a software system. This shift in emphasis from positive to negative test-

ing affects the way testing is performed. To determine success criteria for positive testing,

one can enumerate the conditions under which the requirement being tested holds true,

and verify that the requirement is really satisfied by the software. For negative testing,

however, it is necessary to create every possible set of conditions, which are infinite in

principle [55].

Security testing places greater emphasis on negative requirements, where the focus is

on how a system is supposed to be, in contrast to what a system is supposed to do. Thus,

it is important to test for situations that are not covered in the specifications to attest to

the security posture of the system. This is because security, unlike functionality, is not

an ‘externally observable property’ [163], and hence, one cannot easily predict its results

or consequences. For software security, we aim to test situations that should not happen

30

CHAPTER 2. LITERATURE REVIEW 2.4. FUNCTIONAL TESTING

(undesirable behaviour), and the functional testing may not be broad enough to address

all possible ranges of malicious input. When security is addressed at the level of functional

positive testing, focus is placed on verifying the behaviour of security mechanisms (such

as authorisation checkpoints). This has two major pitfalls:

1. (Example 1: Firewall) Protecting an application using a software application such as

a firewall proved insufficient, partly because: (a) the firewall may contain vulnera-

bilities such as buffer overflows, leaving the client better off without the firewall; and

(b) if the protected application contains a vulnerability such as an SQL injection,

then a standard firewall may not detect and prevent the attack.

2. (Example 2: Authentication) Testing for a requirement that states ‘a login page

must only accept correct passwords’ may be tested with an incorrect password to

increase confidence that the authorisation mechanism behaves as expected; however,

this type of testing is insufficient on its own because it does not guarantee that an

attacker cannot simply employ brute force to log in to the system. Verifying the

correct behaviour of the system does not guarantee the absence of undocumented

behaviours; it only verifies that the system behaves according to the specification.

The common types of functional testing for security are:

• Requirements-based testing [122], where test cases are associated directly with re-

quirements to ensure that all requirements are satisfied. In security testing, the

requirements are associated with the security properties of the system such as con-

fidentiality and integrity of data. One of the most common methods for performing

requirement-based testing involves use and misuse cases [164, 42, 40, 9]. Use cases

define the requirements the system intends to achieve, whereas misuse cases define

how the system can be misused based on the specified use cases; that is, they are the

opposite of the use cases and represent the way in which that requirement can be

misused. Security requirements are closely associated with misuse cases, and thus

31

2.4. FUNCTIONAL TESTING CHAPTER 2. LITERATURE REVIEW

these misuses help document the types of non-functional requirements [9]. For secu-

rity testing, misuse cases have been used to model security threats and requirements,

as well as exceptions and failure modes. Their advantage is that they help testers

think past the positive aspects of the system. Our interest in misuse cases is not

in their modelling capability but rather in their ability to support threat detection

for test case generation. As their applications developed from modelling to detec-

tion, some research [134, 40] compared misuse cases to attack trees [157] (another

modelling technique) to evaluate the ability of both approaches to guide the threat

detection process. Other researchers [123] looked at using these requirement-level

modelling techniques to derive injection test scenarios in order to test the security

properties of the protocol under evaluation. Tondel et al. [179] looked into linking

misuse cases and attack trees to obtain a high-level view of the threats towards a

system through misuse case diagrams, and established a more detailed view on each

threat through the employment of attack trees. The work produced by Karpati

et al. [93] and [137] took the application of misuse cases further by integrating

security threats into the architecture, supporting the transition from requirement

specifications to high-level design, and vice versa. The drawback in [93] is that it

requires creating a detailed map of the vulnerability. Misuse cases are also useful

for trade-off analysis [10], the goal of which is to enable stakeholders to make an

informal and correctly based judgement in a potentially complex situation. Hybrid

techniques have also been introduced to complement the limitations in both misuse

and attack trees for the elicitation of security requirements [63].

• Specification-based testing [169, 193, 1, 31], in which test cases are derived from

specifications such as interfaces. An example of this is the method produced by

Blackburn et al. [26] for testing database systems, which automates security func-

tional testing, given that all variables, data-types and security functional require-

ments of the system under test are modelled in an algorithmic language. Another

widely-applied specification-based testing is that used by the access-control policy

32

CHAPTER 2. LITERATURE REVIEW 2.4. FUNCTIONAL TESTING

community to generate test cases for security policies (SP), such as [181]. Traon

et al. determine their security policy from requirements. Once the policy is de-

termined, they propose different strategies to generate test cases from a security

policy model, with the purpose of obtaining evidence that the SP implementation

is correct to the requirement. Another similar work presented by Scott et al. [158],

where they abstracted security policies from large web applications to verify the

correctness of firewall policies. Similarly, Bracher et al. [29] attempt to test the

security of protocols by generating test cases from an ‘intermediary model’, which

is a less abstract model of the protocol as compared to [158].

• Another widely accepted approach for functional testing is state-based testing. This

field is relatively large as it incorporates property-based testing. Examples of this

are those proposed using UML state-charts such as [99, 11, 129, 97, 156], where

the purpose is to model the functionality using state-charts, after which constraints

are created to verify whether the security properties are violated. An example of

a security property could be that ‘unauthorised access leads to the activation of

countermeasure’ (ie, reaches prohibited state in the state-chart). This method is

slightly more advanced in that it exposes potential design flaws between security

controls and functional behaviour (eg, operations with no permitted access).

In summary, the main disadvantage with functional testing for security is in the focus

and goal of the testing process. Verifying correct behaviour of security mechanisms is not

the main focus of security testing, as discussed in Section 2.1. There is also a general

limitation in that there is an unfortunate separation between the requirements reflected

in the test cases [91], which may contradict in some situations, leading to gaps in the

detection of design errors and inconsistencies. Verification of the compositional security

status is often overlooked in these types of approaches, because it requires looking beyond

the specifications. It is not only enough to ensure that function A and B work, but it

must be understood how function A and B work when composed together with respect

to potential race conditions or any additional behaviours that may arise.

33

2.5. PENETRATION TESTING CHAPTER 2. LITERATURE REVIEW

As we have broadly seen, the variations of functional testing allow it to be integrated

into different stages of the development cycle; for example, state-based testing can be

used at both the design and implementation levels, and thus supports the detection of

vulnerabilities at both levels. Moreover, automation seems to be the way functional testing

is performed, often at a unit and integration testing level during the implementation phase.

Achieving full automation when checking the correctness of behaviour is possible since

conditions can be checked against, but this is not always possible for security; for example,

performing brute-force testing on an authentication mechanism using test suite 1 may not

give the same result as test suite 2. The challenge for functional security testers becomes

focused on ‘what conditions can we test to verify correctness?’, which is by far easier

than ‘what possible behaviours can break this mechanism?’ because the answer to the

latter can be infinite. This is where observability can be a problem because, for security

in general, observation of the entire internal state can be a serious challenge, even for

small systems. At the level of adaptivity, functional testing tends to be relatively simple,

because the focus is on changing requirements that are directly reflected by test cases.

In other words, adding new functionality, will only require adding new test cases, and

removing functionality will require removing related test cases.

2.5 Penetration Testing

Penetration testing is the process of exercising an existing application using predefined

test cases that simulate an adversary’s attempt to achieve a malicious goal [190]. It is the

traditional security approach that aims to verify that the system is protected against the

penetration test cases. Institutions such as the Institute for Security and Open Method-

ologies (ISECOM) published an Open Source Security Testing Methodology Manual [74]

that describes in detail how to perform thorough penetration testing. It targets vulnera-

bilities within the environment/configuration on which the system is running, and often

takes the form of black-box testing of the system, using a predefined set of test cases that

34

CHAPTER 2. LITERATURE REVIEW 2.5. PENETRATION TESTING

represent known exploits. It is performed using either existing tools [173, 17] for full au-

tomation, or as an ad-hoc and exploratory testing [83, 44] in slightly informed greyed-box

settings, whereas test cases are derived based on the tester’s skill and experience with

similar programs. The kinds of activities involved in penetration testing range from host

address spoofing and network sniffing [143], OS finger printing [175] and brute force and

vulnerability scanning/analysis [139, 165, 100]. Penetration testing also varies between

external testing, where the system is penetrated from outside the organisation both with

and without disclosure of the system, and informal testing strategies where penetration

is performed from within the organisation to determine what an insider might to do the

system [198].

Penetration testing comes into play in the final stage of development when the applica-

tion is fully implemented, and although redesigning a system is possible, the cost of doing

so sometimes outweighs the advantages gained in the eyes of the developers; patching a

system is often cheaper and is likely to be considered before redesign. Patching is closely

associated with penetration, in which the system is first penetrated for problems, and

then patched for correction. This step attempts to hide the symptoms of the problem

as opposed to fixing it, which may bring many issues into the system, such as writing

a vulnerable patch or discovering new symptoms of the problem. This also means that,

if we detect a serious design flaw that requires redesign, testing of the changes will only

occur after the system is implemented, which greatly hinders the adaptivity to changes

associated with this type of testing. Although this approach is attractive, its main prob-

lem is that it is only effective when performed by trained or experienced testers to design

special tests not captured in more formal techniques [118]; it is also not design-specific

testing, since testers often run the same set of test cases on different systems, relying on

the fact that developers often make similar mistakes and repeat them. Passing a given set

of tests does not imply that the system is secure, nor does it imply that the system will

pass any given security test. In addition, the penetration test suite needs to be continually

managed and updated to render effective testing for security. For example, as network

35

2.5. PENETRATION TESTING CHAPTER 2. LITERATURE REVIEW

technologies develop, new test cases will need to be added to reflect new threats, and

old test cases may become obsolete. This management of test suites requires augmenta-

tion, omission and the checking of the quality of the test cases in achieving the required

coverage.

Security tools used in penetration testing such as ISS Scanners [173] and Cybercop [17],

are generally limited in scope [45]. They mainly address network security attacks, and are

not flexible enough to allow testers to write custom attacks. Another problem with the

existing tools is that they can only be used after the system is built. In addition, most

tools address IP networks, and so a company wishing to test a different type of networks

is required to purchase different tools as required. Although these ‘badness-omiters’ [111]

are useful in displaying the negative state of the system, especially when the system

configurations are well understood, they are not useful in non-standard applications, and

hence, should not be the only method for testing an application. Other form of security

tools are static analysis tools that address code vulnerabilities such as buffer-overflow.

They are very limited in scope since dynamic testing is also important, and they have

high false-positive error rates. A survey was conducted to test various security tools [45]

concluded that tool are not adequate without manual testing and human judgement.

In addition, penetration testing, whether done by hiring a red-team or using network

vulnerability scanning tools, addresses known attacks without a hope of finding new ones,

and determined attackers often look for novel ways to trigger unspecified behaviours in

the system. The response of the system to such attacks is observed and any inappropriate

behaviour is noted. Observability is a serious problem here, because testers observe a

response from a black/grey box, which means that, unless the system displays an error or

gives some form of response, the internal state is not fully investigated, and thus malicious

states can be easily overlooked. This process requires the knowledge of both the desired

behaviour and certain implementation details that are the source of vulnerabilities [136].

36

CHAPTER 2. LITERATURE REVIEW2.6. FAULT DETECTION IN SECURITY TESTING

To summarise the problem with this common approach [114]:

• Only known problems can be fixed. Attackers do not report vulnerabilities to de-

velopers.

• Because it occurs late in the development cycle, significant changes to the design

will generally not be considered; thus, patches only fix symptoms of a problem and

fail to fully address the causes, especially if the problem is a design defect [68].

• By the time a vulnerability is discovered and a patch is made available, attackers

would have enough time to compromise the system, leaving system administrators

one step behind the attackers.

• The current ad-hoc manner in which vulnerabilities are patched ensures that many

Internet sites will remain vulnerable.

• The patch may introduce new vulnerabilities because it is often programmed under

intense pressure and is not adequately tested.

• Patched code often does not make it into a subsequent version of the software,

resulting in the reappearance of the same vulnerability in future releases.

2.6 Fault Detection in Security Testing

In security, a fault corresponds to an inconsistency between what is desired to be achieved,

and what is actually achieved during runtime [181]. This inconsistency may cause a

reduction in, or loss of, the capability of a functional unit to perform a required behaviour

[19]. As opposed to traditional testing, fault detection focuses on the unexpected [38].

In the field of fault detection and tolerance, a common approach to fault detection is

performing ‘information redundancy’ checks, where two operations run in parallel, and

when the results are compared and found to be different, then a fault is reported. Not only

is this type of testing exhaustive to resources, as errors might not arise until very late in the

37

2.6. FAULT DETECTION IN SECURITY TESTINGCHAPTER 2. LITERATURE REVIEW

process, but there is also an assumption that the original process is correct by definition,

which is not useful for security testing, as the original process might be vulnerable, and

so trusting its outcome is questionable. In addition, process-based testing is limited, and

further research on compositional problems across processes is required.

Fault detection in security often takes an attack-driven approach. One method is

to modify the system model to introduce errors that can be exploited by attacks [55].

Such changes to the system model are referred to as mutations, and are used to simulate

attack scenarios in order to provide observable responses to the attacks. During the

simulation, a tester executes a test case that corresponds to an attack against the system

model, and makes a note of the observed response; this observed response is later used

to confirm whether the test case executed against the actual system model triggered a

similar response. If the system behaves as the modified vulnerable system model suggests,

then a vulnerability is found. Test cases are generated that focus on the introduced errors

[39, 89]. This approach is significantly important in that it supports observability of

the problem, which is thought to be difficult to achieve in other tests, such as functional

testing. The challenge here is caused by the fact that we may not always receive a response

(eg, error or wrong input) to the test case. However, the difficulty in such testing is that

prior full knowledge of attacks and their likely trigger points is required, and the set

of possible attacks on the system must be understood. This type of testing is heavily

utilised in testing the implementation of cryptographic protocols [25, 18, 13, 127, 54],

networking [77] and in access control testing [181], in which the mutation of policies can

be easily identified; for example, a test case used to request access to secure data, where

the success of the data access represented a failure of the access control [54]. At the code

level, MUSIC [160] and MUTEC [161] tools have been developed for mutation testing to

detect XSS- and SQL-injection attacks against web applications.

38

CHAPTER 2. LITERATURE REVIEW2.6. FAULT DETECTION IN SECURITY TESTING

2.6.1 Fuzz testing

Fuzz testing is another technique for performing fault detection [119]. As opposed to

muting the system model, the very basic idea behind a ‘fuzzer’ is to test a protocol

implementation for possible security flaws arising from the improper handling of malicious

inputs [55]. Fuzzing complements traditional testing to enable the discovery of untested

combinations of code and data by combining the power of randomness, protocol knowledge

and attack heuristics [38]. Fuzz testing can take the form of black-box testing, in which a

random mutation is performed on input data that is used to exercise the system. Empirical

studies [88] have proven its effectiveness in revealing vulnerabilities of software systems.

According to Takanen [174] and Yang et al. [197], it is believed to have created a quick,

automatic and cost-effective method for finding critical security bugs in large applications.

It also covers a significant portion of security negative test cases without forcing the tester

to deal with each specific test case for a given boundary condition [131]. If, for example, we

have an input that should be between 1 and 10, a boundary fuzz testing would generate

the test cases that include 0, 1, 11 and 12 as input test data. However, the current

effectiveness of fuzz testing is limited when testing applications with highly structured

input (eg, checksum); randomly testing applications usually provides low code coverage.

These limitations mean that potentially critical security bugs may be overlooked.

On the other hand, the performance of fuzz testing under white-box conditions re-

quires detailed implementation knowledge about the system under test. These fuzzers

are referred to as intelligent fuzzers because they are able to dig deeply into the code to

perform targeted testing. This addresses limitations in traditional fuzzers, which suffer

from randomness, by providing a structural approach to fuzzing (eg, (1) Yang et al. [197]

presented an approach for combining the idea of fuzzing with the concept of model-based

testing, to allow for systematic and automated testing of software applications, (2) Sodiya

et al. [166] presented an approach for the fuzzification of input variables that is based

on the six major categories of threats (STRIDE) [73], rule evaluation and aggregation of

the rule output). The negative aspect to this is that fuzz-testing tools must be built (or

39

2.7. DISCUSSION AND SUMMARY CHAPTER 2. LITERATURE REVIEW

at least configured) for each file format and/or network protocol that is to be mutated,

in order to create to create a semi-valid format [38]. If we take encryption as an exam-

ple, the fuzzer must be able to decrypt data before it mutates and then re-encrypts. To

address some of these limitations, Dai et al. [38] presented a configuration-based fuzzing

approach. Instead of generating random inputs that may be semantically invalid, con-

figuration fuzzing mutates the application configuration in a way that helps valid inputs

exercise the deeper components of the program under test, and checks for violations of

security requirements, such as ‘a user should never gain access to files that do not belong

to him’ or ‘critical data should never be transmitted over the Internet’.

The literature we surveyed on security fault detection seems to be drawn on the

implementation level, with a focus on implementation level vulnerabilities. As a result, the

approach tends not to be very adaptive to changes as changes to the model (eg, changing

a cryptographic protocol), which require a possible redesign of the fuzzer. However, there

have been attempts made to employ fault detection at the modelling level [109, 90], though

additional work is needed to bring the field to maturity.

2.7 Discussion and Summary

In this chapter, we have seen and reviewed a number of existing methods for security

testing. We have discussed these methods with respect to our comparison criteria, which

are highlighted in Section 2.1. Table 2.1 gives a relatively generalised comparison of the

majority of papers we have reviewed in the compilation of this literature review. These

methods address security at different: 1) stages of development; 2) sets of vulnerabilities;

3) levels of required expertise; 4) levels of automation; 5) observability support levels,

and finally 6) they demonstrate how adaptive this method is to changes that occur during

software development. We have taken care to state when the generalised comparison does

not apply to over 70-80% of the reviewed paper. In this situation we have used the term

‘often’ in the table to reflect that difference.

40

CHAPTER 2. LITERATURE REVIEW 2.7. DISCUSSION AND SUMMARY

As discussed in previous sections, we argue that architecture-level testing for security

shall satisfy the following criteria (see Section 2.1 for criteria). Below we discuss the

limitations of existing work in relation to these criteria.

1. (Adaptivity = high): The reality of the development cycle is that requirements are

changeable. Whether new requirements are added or deleted, the approach must

respond to changes incrementally and iteratively to reduce processing power with

respect to re-analysis, and to avoid ad-hoc approaches in responding to changes (eg,

manually identifying areas that need to be reviewed after changes occur). There

are two important aspects as to why adaptivity is required: (1) security testing is

a process that is likely to introduce changes into the design in order to make it

secure; (2) as requirements change, security vulnerabilities may be introduced into

the system. As a result, an approach is needed that would allow us to adapt to

changes as they occur, as well as to examine these changes to ensure that we do not

introduce new vulnerabilities into a secured design.

2. (Automation = medium): Full automation in the use of security evaluation tools (as

discussed in Section 2.7) seems to have failed, except in a few cases [183, 45], either

due to the number of false-negatives/positives, or due to their limited scope. On

the other hand, manual tasks put a lot of constraints on security testers especially

for moderate sized applications. It is thus necessary to devise a semi-automated

approach that can balance between the necessary automation (to reduce time and

cost) and human judgement, because hacking is a creative process, and creativity

cannot be easily automated. In order to get the most out of security testing, mini-

mize costs, and work more efficiently, we need to bridge the gaps that exist between

automated testing and manual testing. This is arguably the most important step

in making big changes to the security testing approaches.

3. (Level of Expertise = medium): According to Microsoft [64], 64% of developers are

not confident about their security skills; thus, providing approaches that rely entirely

41

2.7. DISCUSSION AND SUMMARY CHAPTER 2. LITERATURE REVIEW

on the expertise of security testers may fail in practice if testers are unqualified for

their use. Since performing security testing is believed to be relatively difficult [177],

it is therefore important to invent new approaches that provide a level of support for

security testers (eg, providing some form of clues to where threats may be located,

and suggesting which areas are likely to be more problematic).

4. (Observability = high): In this chapter, we have discussed that black-box settings

allow the observation only of responsive functions (eg, error messages, wrong out-

puts, etc), but security is not an externally observable property; thus, even if the

correct error message is displayed, other behaviours inside the black box might not

be observed. A supportive feature in testing approaches involves exposing the nec-

essary internal behaviour that could aid the tester in determining security breaches.

In large applications, exposing the large internal state is relatively difficult, if not

impossible. Abstraction is vital to achieve a reasonable set of observable behaviours

that is related to the set of behaviour under test. This allows us to study what

further behaviour can occur beyond that which we can perceive externally.

5. (Stage of development = early): The stage of development for which an approach

is used is closely related to the adaptivity of the approach. When an approach is

introduced at late stages (maintenance and testing), responding to recommended

design changes could be costly. This is one of the reasons why a ‘penetrate and patch’

testing approach is widely adapted in the industry. Late stages are also prone to

tight schedules leaving a small amount of time to be dedicated to thorough testing;

additionally, the amount of details present at late stages can be over-whelming,

creating a desire for abstraction, where attention is focused on the most critical

parts of development. Because we believe that abstraction plays a major role in

efficient testing (because it captures only those details about an object that are

relevant to the current perspective), the architecture-centric approach provides the

necessary level of abstraction to assure both a decent level of adaptivity as well as

42

CHAPTER 2. LITERATURE REVIEW 2.7. DISCUSSION AND SUMMARY

the support required for design-level vulnerability detection.

6. (Vulnerability level = design): In section 2.1 we have looked at and discussed the

need to invent new approaches that targets design vulnerabilities, and that the

current approaches seem to draw more focus on implementation level vulnerabilities.

We have highlighted that design vulnerabilities are more critical because they often

cannot be solved at later stages of development without serious cost in system re-

design, and that they tend to have much greater impact in terms of exploits and

security consequences [12].

Throughout the discussion for each category, we have explored the strengths and

limitations of security testing; none of these methods seem to precisely fit the requirements

stated above. The closest approach is high-level testing. Despite its ability to offer a good

design-specific approach, changes to the design can be adaptable, and so these methods

still do not meet the desired requirements. Either they require a high expertise level

to support design-vulnerability prediction (and so feature low automation), or where

the expertise level is low, with thigh automation levels and a focus on the detection

of code-level vulnerabilities. The reason for this is because design-level vulnerabilities

are thought to be hard for automated tools to detect. This emphasizes the need for

an architecture approach that offers a medium level of automation to support a speedy

process, while maintaining a medium level of expertise to balance the workload for an

efficient testing process. The literature we have surveyed on high-level processes indicated

that the focus is often on code level vulnerabilities such as XSS and SQL-injection attacks

which in practice require detailed designs (eg, flow of data). Additionally, this field is

immature with respect to compositional security and the ways in which interconnected

functionality can cause unexpected behaviours; we find that testing for security in this

field model requires individual functionality and related aspects to that functionality. This

limits the observability behaviour in that we can only observe internal cohesive behaviour,

as opposed to observing the functionality, with respect to the ongoing environment of

composed behaviour. Furthermore, iterative approaches are generally lacking for security,

43

2.7. DISCUSSION AND SUMMARY CHAPTER 2. LITERATURE REVIEW

because security is often handled at a higher level as one phase of the process rather than

as a continuous and evolving property. In Chapter 3, we will discuss in greater detail the

importance of this with respect to security.

44

C
H
A
P
T
E
R

2
.

L
IT

E
R
A
T
U
R
E
R
E
V
IE

W
2
.7
.

D
IS
C
U
S
S
IO

N
A
N
D

S
U
M
M
A
R
Y

Table 2.1: Comparison of different approaches used in security testing. The comparison uses (1) adaptivity to design changes, (2) its
support to automation, (3) the expertise-level required to carry-out the approach, (4) the extent to which the approach is observable,
(5) at what stage the approach can be used, (6) vulnerability types detectable, as comparison criteria between the approaches.

Testing (1) Adaptation To (2) (3) Level of Expertise (4) Observability (5) Stage (6) Vulnerability-level focus

Methodology changes in design Automation of Application

FT of Security Low due to its late application High Low: Simplified because the Low: Often performed in Often: Maintenance Code-level

 desired functionality is known black/grey box setting

* Req-based High low low N/A Early-stage high-level

* Model-based High High Medium high Early to Maintenance Design and code level

Penetration Low due to its late application Low: Often performed in Testing phase Configuration level

Testing black/grey box setting

* Tool-based High Low

* Expert red team Low High

Threat Modelling Medium: May suffer from Low High High: Has the advantage of focusing Often: Design Stage Design and code level

ad-hoc changing process the study on the consequence of an but is also found at

attack over the whole system later stages

Fault testing Often: Maintenance Often: Code-Level

* Attack-driven Medium: May suffer from Low High: Requires knowledge High: Internal behaviour is observed Often: Code-Level (Can find design

ad-hoc changing process on where to insert errors level errors if performed at early stage)

* Fuzzers Low: Requires re-design of High High: Requires design of fuzzers Low: Often performed in

fuzzers to respond to changes black/grey box setting

High-level High Often: Design stages Often: code level, but is capable of

finding vulnerability

* Exe-Architecture High Low: Tools are often used to High: Exposes internal state

 generate executable architecture of behaviour

* Separation of Low to High N/A

 Concern Medium

45

2.7. DISCUSSION AND SUMMARY CHAPTER 2. LITERATURE REVIEW

46

3
Requirements for Security Testing

3.1. PROACTIVE APPROACHCHAPTER 3. REQUIREMENTS FOR SECURITY TESTING

In Chapter 2, we examined approaches for post-implementation testing for security.

We discussed the negative implications of their late usage for security testing. Further-

more, many of the approaches appear to be ad-hoc and lack discipline when dealing with

large amount of code and configurations. We pursue the software architecture as the ap-

propriate level of abstraction for managing and facilitating the testing process for security

and for refining and evolving secure software systems. We advocate an architecture-based

approach to testing as this is believed to offer the potential benefits of generality (ie,

the underlying concepts and principles are applicable to a wide range of application do-

mains); an appropriate level of abstraction to tackle the complexity of the problem (ie,

software architecture can provide the appropriate level of abstraction to allow for the

consideration of secure composition and interaction); the potential for scalability (ie, fa-

cilitating the testing for security in large-scale complex applications); the opportunity to

facilitate automated analyses; and the potential for tracing and scoping the vulnerability

analysis to include low-level design artefacts. Guiding the testing for security through

architectural and design artefacts stems from the belief that most vulnerabilities tend to

be architecture- and design-based in nature. In the coming sections, we will look at the

main requirements for bringing security testers ahead of attackers when developing and

continuously refining architectures of software systems.

3.1 Proactive Approach

Proactivity is defined as ‘having an orientation to the future, anticipating problems and

taking affirmative steps to deal positively with them rather than reacting after a situation

has already occurred’ [61]. In the state of practice, there is a belief that we are often

(at least) one step behind of the attackers [3, 201, 184], and so we focus on fixing what

had already been exploited (eg, reviewing Cert’s advisories and taking the appropriate

actions); even in research we find that focus is given to defence mechanisms that target

newly created attacks [58]. This reactive approach is simply learning from the past,

48

CHAPTER 3. REQUIREMENTS FOR SECURITY TESTING3.1. PROACTIVE APPROACH

which is far easier than predicting the future. But with the increasing number of computer

security incidents reported daily, and the speed at which they are exploited, it is no longer

sufficient to be reactive; a reaction to an attack might be too late where serious damage has

already taken place (eg, theft of bank data), or where addressing the problem might be too

costly if a redesign of the system is required. In addition, while attackers have all the time

to choose when and where to launch an attack (which minimises their cost), security testers

must respond fast and within narrow time constraints. This cycle of chain provides an

advantage to the attackers; thus, testers must break this cycle by anticipating the moves of

the attackers, and by attempting to remain one step ahead of them by identifying emerging

vulnerabilities. Because the landscape of threats is constantly evolving, security testers

must learn to think like attackers, following clues to insecure behaviour and exploring

potential vulnerabilities, because attackers intentionally probe unspecified behaviours in

the system; therefore, testers must take a proactive approach to detecting weaknesses and

predicting their possible occurrence. Proactivity calls for taking the lead in preventing

the occurrence of vulnerabilities, and when they occur, fixing potential vulnerable states

in the system by means of redesign, where we build security into the application to

minimise the need for reactivity. This provides the opportunity to assess risks of potential

vulnerabilities and potential design mitigation tactics prior to the implementation and

deployment of software.

If we consider the process of code reviewing (where code is assessed for implementa-

tion vulnerabilities before deployment), we discover that it offers a level of proactivity

because testers assume the attacker’s position in searching for problematic lines of code.

However, they are primarily focused on known threats (what we have learned from the

past), excluding yet-unknown vulnerabilities from assessment, and therefore the associ-

ated risks remain unmitigated and unpatched. This becomes more problematic when the

problem is design-specific, and thus may not benefit from other application weaknesses.

It then becomes the tester’s responsibility to violate these assumptions in an attempt to

uncover vulnerabilities. Security testers must consider actions that are outside the range

49

3.2. ARCHITECTURE-BASEDCHAPTER 3. REQUIREMENTS FOR SECURITY TESTING

of normal activity - tests which might not even be regarded as legitimate under other

circumstances. We thus argue that new approaches must explore potential weaknesses

that are design-specific and offer a decent level of predictability with respect to possible

behaviours of the system. In Section 3.3 we will look at the importance of design- specific

approaches in more detail. We conclude that proactivity plays a major role in designing

and implementing secure systems, and is therefore a requirement for an efficient security

testing process. We need to devise an approach that helps testers in the determination

of potential vulnerabilities, and assesses their impact if successfully executed; in other

words, an approach that identifies the possible negative operational effects associated

with a successful attack.

With reference to the definition of proactivity, we consider the architecture as the

appropriate level of abstraction at which proactivity can be fulfilled, where it: 1) enables

design defects to be discovered early so they can be mitigated in a cost-effective and timely

manner before the attacker exploits them; 2) enables building security into the system

during its core design decisions; and 3) provides the knowledge base that paves the way

for predicting the security impact of proposed design changes and future plans to evolve

the system [23].

3.2 Architecture-based

In Chapter 2, we examined many post-implementation-level testing approaches, and we

have explored their weaknesses in terms of late application to the testing process, and

owing to the fact that many approaches appear to be ad-hoc-based because of the large

amount of code and configuration that had to be dealt with in a short, constrained time.

To address many of the issues associated with late application of security testing, it is be-

lieved that software architecture can play a vital role in the development of secure systems

[163], because it supports the view of the system as a whole, and visualises all possible

entrances/exits to the system resources and components. This addresses the scalability

50

CHAPTER 3. REQUIREMENTS FOR SECURITY TESTING3.2. ARCHITECTURE-BASED

and complexity of systems, enabling us to omit parts that are not necessarily important

for security testing, thus focusing the attention on interactions that are particularly vul-

nerable. Object oriented systems, for example, are thought to be complex and tedious

[101], especially for large applications. A contributing factor may be that testers become

overwhelmed by the information such that understanding the intended behaviour of the

system under test may not be guaranteed. Developers build a certain mental view of the

software, and that mental view is limited because the software is too complex for the

human mind to completely picture. Abstracting the information offers better opportuni-

ties for efficient testing, especially in terms of predicting undesirable behaviours, which is

what is required to remain one step ahead of attackers.

Additionally, the architecture plays an important role in realising the use of third-

party components. Since it may not be viable to modify the source of such components

(either because the code was shipped in binary form or because the license agreement

is prohibitive), it is not obvious how security vulnerabilities could be detected at the

coding level. But, if we are able to observe its behaviour externally through its commu-

nication with other components, we are able to detect undesirable behaviour and it is

here where executable architecture models can make a significant difference in observing

and predicting the behaviour of components. The purpose of modelling the architecture

is to enable the prediction of the system behaviour. To accomplish this, we need ways

to study the effects of interconnected components on the preservation of the global se-

curity behaviour. It is useful to replay component behaviours in order to visualise the

dynamics and consequences of desirable behaviours, so that if the model deviates from

the intended behaviour, the design of the system can be modified early at a minimal

cost. Dynamic architecture analysis is concerned with demonstrating software-predicted

runtime behaviour. It is a necessary part of testing as it supports analysis with respect

to operation environment variables. Not only will this permit predictability of malicious

behaviour, and help testers understand the desirable behaviour of the system, but it also

supports test case planning and generation at early stages of the software development

51

3.3. DESIGN-SPECIFICCHAPTER 3. REQUIREMENTS FOR SECURITY TESTING

life cycle, supporting the processes of coding and testing in parallel to address the prob-

lem of testing being performed under immense time pressure. Test cases can be derived

from requirements regardless of the programming language or technology utilised, which

allows for the testing of existing systems. Testing a live application to achieve this result

at the code-level is very expensive and time-consuming. Thus, we find that modelling

the system at the architectural level is a cost-effective approach, which permits testing of

the security behaviour of the system, reduces the cost of testing and turns it into a more

mature and considered process.

In the rest of this chapter, we will reflect on why the architecture helps in achieving

the rest of the requirements.

3.3 Design-Specific

In software engineering, security by design means that the software has been designed

from the ground up to be secure and to minimise the impact of system breaches when a

security vulnerability is discovered. In order to achieve security by design, it is necessary

to take into account the individual design of the software under test. Current methods

use pre-determined vulnerability databases to discover known vulnerabilities in a system.

However, each application has its own design, and each design has its own weaknesses;

therefore, each application, and its design, is unique and must be tested individually.

This is motivated by the fact that programmers often make the same mistakes. But the

assumption that we can run a set of known and common test cases to provide sufficient se-

curity testing is relatively unrealistic, because security testing is motivated by addressing

undocumented assumptions and areas of particular complexity to determine how soft-

ware can be compromised [80]. Existing techniques fail to address implicit assumptions,

mainly because testers rely on the system specification and code [118]. An example of this

is design mismatches in which a component makes assumptions beyond what the environ-

ment can provide, and attackers intentionally probe unspecified behaviours in the system

52

CHAPTER 3. REQUIREMENTS FOR SECURITY TESTING3.3. DESIGN-SPECIFIC

[177]. They attempt to make the application behave unexpectedly, and then determine

the attacks associated with that behaviour.

Design vulnerabilities are a subtype of vulnerabilities that are associated with design

defects and implicit assumptions, which cause security violations; an attacker can compro-

mise the system if he is able to interact with the system in ways that were not anticipated

by its designer. Avoiding design-level vulnerabilities is one of the most important chal-

lenges facing today’s software developers [146, 194]. The fundamental importance lies in

the fact that even the most secure implementation cannot guard against defective design.

An example of a design vulnerability from a recent case study [53] allowed ciphered text

to be accessible to the user to provide a sense of data security. This was identified to be

a major design vulnerability, as it permits the user to cryptanalyse the ciphered text to

identify the cryptographic key used during encryption. These design vulnerabilities can-

not be easily identified using implementation- level testing methods; detection requires a

design-specific testing methodology. In addition, they cannot be addressed at later stages

in the development cycle unless the system is redesigned [190]. These design vulnerabili-

ties tend to have much greater impact in terms of exploits and security consequences [12],

as revealed by the statistical data cited in Chapter 1. In fact, one of the leading problems

in security testing is that security testing is often not integrated in the design phase of the

system development; as a result, fixing design vulnerabilities can be costly, which leads

to the common choice of ‘find and patch’ in security testing. Patching is a process of

hiding symptoms of the problem, as opposed to fixing its root causes and correcting the

design. In many situations, patching does not offer a solution to design vulnerabilities;

additionally, it is also difficult to enumerate all symptoms in practice in order to prevent

the vulnerability from being exploited. This emphasises the need to bring security testing

into the early design stages of development so that design vulnerability can be addressed

before the system is built.

53

3.4. ITERATIVE AND INCREMENTALCHAPTER 3. REQUIREMENTS FOR SECURITY TESTING

To address design vulnerabilities, it is necessary to work at the architecture and design

levels to minimise the impact of design defects. A design defect introduced by incorrect,

inconsistent or incomplete architecture design decisions will propagate throughout the

refinement of the design, and is therefore likely to have a deteriorating impact on the

complete development process. From a security perspective, experts consider architecture

and design to be the single most critical phase of the secure design life cycle [12, 163],

because good decisions made during this phase yield an approach and structure that

are resilient and resistant to attacks. Unfortunately, the importance of architecture-level

testing for security has only been recognised recently [113] for defending against design

vulnerabilities, which are believed to be the hardest type to find and correct, and are also

the most critical to address.

3.4 Iterative and Incremental

Despite the existing security development life cycles (such as Microsoft’s SDL [79]), which

aim at integrating security into development, the focus is mostly on enforcing certain check

points (such as risk analysis or threat modelling) after certain phases of the development

have been accomplished, rather than on devising a test-driven approach to guide the

design choices incrementally as they are made. For example, a pre-defined design to

perform threat modelling would require revisits to a set of design choices that may not be

easily modifiable at the time without refactoring the design (eg, if we made subsequent

design choices based on them), and even when these changes are performed, a re-evaluation

would repeat this process as new changes occur. Continuous refinement, as the design is

built, is more efficient than performing one stage of refinement process at the end of each

design phase, because this ensures that the design is built with security in mind, rather

than being evaluated for its security after the choices have been made and adopted.

54

CHAPTER 3. REQUIREMENTS FOR SECURITY TESTING3.4. ITERATIVE AND INCREMENTAL

Given that the nature of software development is incremental and iterative, it is impor-

tant to devise a testing approach that is adaptive in nature to support software evolution.

When changes occur (such as changes in requirements), new vulnerabilities may be intro-

duced. For example, adding a new functionality in an update may require an elaboration

of user access rights, which in turn may lead to new security measures and use cases (eg,

keeping a log of who used the functionality). This process of making changes and contin-

ually revising the design to ensure it remains secure, is relatively challenging to achieve.

It would be desirable to assess the potential consequence of changes (and whether the

changes are advisable) before they are committed into the design. This would allow the

testers and designers to make informed decisions about the security of the evolving system,

and as a result, maintain/enforce a secure design.

The ability to watch the evolution of requirements means addressing ambiguity in

requirements. This is because requirements often come from different stakeholders, who

may have different understandings of the desired behaviour, and thus offer the opportunity

for stakeholders to periodically see the progress and make adjustments to the requirements

as needed. This early feedback provides knowledge on the resilience of the software to

predict security threats so that changes are made before the system is built, and also

responds to changes in user and behaviour requirements, which could impact the security

of software. The nature of architecture offers a high potential for incremental and iterative

development, given that it offers an abstract view of the system and is used at early stages

of development. However, the challenge in securing an architecture is that the architecture

must not only address security issues but also be flexible and resilient under constantly

changing security conditions. For example, the longer duration of data preservation means

some of the security codes and policies may change, and security requirements will have

to evolve over time as user requirements change. Thus, it is necessary to incrementally

incorporate security testing into the refinement processes of the architecture and design,

while taking into consideration the incomplete knowledge of the architecture in the early

stages of development.

55

3.5. SECURE COMPOSITIONSCHAPTER 3. REQUIREMENTS FOR SECURITY TESTING

In addition, the chance that a design vulnerability will be exploitable is very small,

because testers will be constantly revising the results for any potential problems. Thus,

even if the vulnerability passes undetected in the first iteration, the chance of its detection

after several refinement rounds is high. This concept of iteration verifies that the system

architecture adheres to requirements and stakeholder needs and, most importantly, to

software security. This cyclic process is dependent on time and budget constraints. In

certain circumstances the cost of continued testing does not justify the cost to the project,

such as when: (1) the process may not reveal any new critical information (ie, the risk

had been minimised); or (2) previously identified information is continuously repeated (ie,

there is no apparent variation in the behaviour of the program), or there may not be any

further emergent behaviour detected.

3.5 Secure Compositions

A general ability to build composite high-assurance systems presupposes a general theory

of system composition [115]. Such a theory provides insight into why certain security

properties are preserved/not preserved by certain forms of compositions. In other words,

if functionality F1 satisfies confidentiality, and functionality F2 satisfies confidentiality,

will the composition of F1 and F2 preserve the confidentiality property? This uncertainty

might be triggered by changes in the functional requirements for which new compositions

are needed, or by changes in the environment in which the application will be running.

In the 1980s, McCullough defined a secure system based on the compositional factor of

development as ‘A system is secure if it is deducibility secure and if, when it is hooked up

with a second secure system, the result is a hook-up secure composite system’ [110]. The

challenge in achieving compositional security is that security is a global property, yet many

big systems are built using smaller components gathered from different sources. Given a

set of specifications, we need to verify that all relevant components collaborate to ensure

that global security of the system is achieved. Unfortunately, most vulnerabilities arise

56

CHAPTER 3. REQUIREMENTS FOR SECURITY TESTING3.5. SECURE COMPOSITIONS

from unexpected interactions between different system components [144]. This means

that if we study the behaviour of every individual functionality to ensure that it operates

as intended and is secure, this will often still not guarantee that the composition will

lead to a secure overall behaviour. Thus, given valid functionality traces T1 and T2,

the interleaving trace product of their composition T3 (if any) must satisfy the overall

global security. For example, if member A is allowed to read a secure data, and A is

also allowed to attach data to an email, the composition of the two functionalities might

indicate that A is able to leak the secure data to untrusted sources. Components that

satisfy one security property (eg, integrity) may be composed in such a way that the

resulting system might not satisfy the property. In a situation like this, further security

functionality/requirements will need to be added, such as logging all emails or merely

preventing email clients from accessing the data. This example is a design vulnerability,

in which the attack occurs by composing legitimate behaviours to produce an emergent

abusive behaviour.

In order for the whole system to be secure, all relevant components must collaborate.

When we put components together, predicting the consequences of their composition is

difficult [194]. In the real world, a designer might explicitly specify that an application

performs functions X, Y and Z. As these scenarios are composed together, a fourth sce-

nario, W, might arise. Such an unspecified scenario, namely W, might result in a security

failure if exploited by an attacker. Thus, it is important to discover all possible behaviours

of the system, and to decide whether or not the behaviour is legitimate. It becomes more

critical when we wish to support adaptivity and incremental development with respect to

newly introduced functionalities, and the way in which these additions affect the overall

composition of security. Thus, we need to have ways that allow us to incrementally and

iteratively model, predict and evaluate the effects of composing behaviours together on

overall system security. Executable architecture models support developers in exercising

the integration of system components before they are built, in order to iteratively refine

ambiguous requirements, search for hidden behaviour caused by the composition of func-

57

3.6. TRACEABLE AND OBSERVABLECHAPTER 3. REQUIREMENTS FOR SECURITY TESTING

tionalities and generate test cases at early stages. These models also address implicit

assumptions made by designers regarding the behaviour of system components. For ex-

ample, a designer might assume that a particular piece of information is always present

to the component; but in reality that information might not be present, which may lead

to different behaviour of the component than originally intended.

When composed, requirements can contradict; thus, the role of the architecture mani-

fests itself such that as requirements are elicited, it is possible to execute their composition

and search for incompatibilities between requirements. A more holistic view of concurrent

behaviour would be obtained by the merging of the partial views/representations in the

behaviour, and would enable: (1) a better understanding of interactions across the com-

posed design views; and (2) analyses of interactions to identify conflicts and undesirable

emergent behaviours. If we are able to achieve this, then we would have the ability to

create a composite trustworthy system using components as a heterogeneous collection of

existing products.

3.6 Traceable and Observable

Previously, we have mentioned that security is not an ‘externally observable property’

[163]. Observability is defined as ‘a measure for how well internal states of a system can

be inferred by knowledge of its external outputs’ [92]. This means that when we exercise

the system under test, it is challenging to predict the internal security consequence by

only observing the output (eg, error messages), because the output may only represent

one of many behaviours that took place. In order to simplify the challenge, rather than

attempting to observe the security property (eg, as in functional testing, see Section 2.4),

we can instead observe the behaviour of the architecture under test as a composite arte-

fact of the desired functionality. The need for security testing that supports observability

is twofold: (1) either we refine the architecture to introduce new changes and we need

to verify (retest) that the new changes did not violate any security requirement; and/or

58

CHAPTER 3. REQUIREMENTS FOR SECURITY TESTING 3.7. SUMMARY

(2) we need to verify that the overall architecture is secure and free of malicious and

unintended behaviour. If the testing process is observable, we would be able to observe

the extent of changes, and when they occur, in order to test their security implication on

the architecture. As a result, we can verify that the overall architecture remains secure

despite the changes that take place. In a situation where the security was compromised,

having an observable security testing process would allow us to observe the internal state

of the architecture to fully determine the security impact of the change and detect emer-

gent behaviours. One way to achieve this goal is through observation of the dynamic

composition behaviour of the architecture. Dynamic analysis of the architecture exposes

the communication and control flow of the components, as it provides the set of possible

traces of behaviour. Being at the trace level means that any changes would be visualised

as either: (1) a newly emergent behaviour trace; (2) the absence of a behaviour trace;

or (3) a change in the trace, and in return, we can focus the retesting process on the

affected traces in the architecture. Not only will this provide observable changes, but we

can also observe whether the desired functionalities (represented as traces of execution)

are fulfilled by the architecture. This would allow us to trace back and forth between the

requirement functionality and the architecture and to use these behaviour traces to con-

firm whether the implementation conforms to the architecture. In conclusion, the security

testing process calls for continuous refinement, and refinement requires retesting because

it may introduce vulnerabilities. As a result, the approach for security testing should be

observable to provide assurance that changes triggered by refinement or modification of

functionality can be identified and retested to maintain secure architecture.

3.7 Summary

We have highlighted the requirements for architecture-centric testing for security. The

requirements motivate the need for an approach that is proactive in detecting design vul-

nerabilities at the architecture level. These vulnerabilities are design-specific; they arise

59

3.7. SUMMARY CHAPTER 3. REQUIREMENTS FOR SECURITY TESTING

due to the insecure functional composition of the components constituting the architec-

ture. These requirements call for an approach that supports incremental development and

evolution for security. This is because the attacks landscape tends to change over time.

Consequently, the architecture’s security ‘defensive’ mechanisms shall be adaptable to the

change. The requirements call for an approach that supports observability of changes that

impact the security of the architecture, and promotes architecture refinements for security.

The next chapter proposes an implied scenario approach for realising these requirements.

60

4
Implied Scenarios for Security Testing

4.1. OVERVIEW OF ISSCHAPTER 4. IMPLIED SCENARIOS FOR SECURITY TESTING

In Chapter 3, we have highlighted the requirements for testing security at the software

architecture-level. In this chapter, we pursue a test-driven architecture-centric approach

to address these requirements. We describe a novel approach that exploits the concept

of Implied Scenarios (ISs) [185] to test the security of system architectures. It introduces

the concept of Security ISs to deal with vulnerability analysis at the architecture-level.

The approach aims at: (1) predicting the security behaviour of the architecture, its

constituent interacting components and its relation to the operating environment, (2) sys-

tematically identifying areas of the system with potential vulnerabilities and consequently

focusing the testing process on those areas, and (3) supporting the refinement process of

the architecture for security in the presence of uncertainty and incomplete knowledge.

These requirements aim to raise the level of abstraction at which security software test-

ing is performed through leveraging on the architecture as a key artefact for promoting

scalability and systematic guidance in the testing process.

The approach builds on Uchitel et al.’s (2003) IS detection for elaborating early re-

quirements using scenario-based specification and behaviour models. We explore the

fitness and effectiveness of IS in discovering vulnerable security states. Throughout this

thesis, we show how ISs provide a basis for searching for insecure behaviour when testing

the security of the software architecture so that it facilitates the building of security into

the design.

Parts of this Chapter are published in [5] and [6].

4.1 Overview of ISs

4.1.1 Background

Scenarios define a temporal ordered sequence of events. The scenario-based design ap-

proach has been a popular technique for capturing the functional requirements of the user

at the level of interactions between components [164, 105, 171]. This method provides a

62

CHAPTER 4. IMPLIED SCENARIOS FOR SECURITY TESTING4.1. OVERVIEW OF ISS

concise yet simple tool for ‘painting a picture’ [59] of how actors, components and mes-

sages are composed together to complete one or more system goals. The messages and

the sequences that pass between components in a process can be described using a mes-

sage sequence chart (MSC) [84] or sequence diagrams in the unified modelling language

(UML) [66]. In software architecture (SA), scenarios have been employed in modelling

architectural properties [121, 167] and in identifying component interactions [121, 167].

Each scenario in an architecture models a partial description of desirable behaviour. Be-

cause these scenarios are partial, they cover most common system behaviours and the

main exceptions. Expecting stakeholders to produce a set of scenarios that cover all pos-

sible system traces at once is unrealistic and impractical. For this reason, in the real

world, we often encounter undesirable behaviours when partial behaviour scenarios are

composed together. These undocumented behaviours (known as implied scenarios (ISs)

[14]) may arise when the desired global behaviour is implemented component-wise; thus,

components in concurrent systems only have local views of the execution where the order

of scenarios is not explicitly enforced. They are ‘implied’ because they are not described

in the specification.

4.1.2 Uses of ISs

An IS may be: (1) an acceptable (positive) scenario that has been overlooked and the

scenario specification needs to be completed (eg, a new requirement may be identified);

or, alternatively, may represent (2) an unacceptable (negative) behaviour in the system.

Our interest in IS detection lies in that it searches beyond the specifications for behaviours

that are not directly perceivable to testers (ie, unknown); thus, its presence indicates that

we are not fully aware of the entirety of possible behaviours that may be exhibited. They

allow us to capture uncertainties regarding communication amongst components. To claim

that an application is secure, it is necessary to attain knowledge about the system’s precise

behaviour, and to confirm that all its behaviours are secure. Classic problems in software

engineering, such as unexpected interactions between different system components, race

63

4.1. OVERVIEW OF ISSCHAPTER 4. IMPLIED SCENARIOS FOR SECURITY TESTING

conditions and violations of hidden assumptions, are difficult to detect, even for expert

testers. These vulnerabilities can be introduced by the functionality of the system that

is not normally associated with the security requirements of the system. And since most

of the attacks are a result of improper or unexpected interaction with the system [144],

negative ISs help in identifying vulnerabilities that arise from unexpected interactions

between (apparently correct) system behaviours and allow us to use this information to

investigate the security status of the system.

4.1.3 Origin of IS

The notion of ISs was first introduced in [14] for a restricted scenario language. Their

work is limited to a set of MSCs that specify a finite set of system behaviours. It was

later extended by Uchitel et al. [186] to provide a more expressive scenario language that

allows for an infinite number of system behaviours. The extension introduced an algorithm

that analyses scenarios modelled in MSC specification, with a directed high-level MSC

graph (hMSC) that defines the possible continuations and loops between scenarios (see

Figure 4.0e). The hMSC provides the means for composing MSCs, where each node in

the hMSC is a start symbol, an end symbol or a rectangle enclosing a reference to a MSC

or another hMSC. Components are not shown in an hMSC since they have no meaning

to the high-level sequence. The hMSC, with the mapping of nodes to MSCs, shows how

the system can evolve from one scenario to another. MSCs are visual aids to design

system specifications, yet their combined behaviour is still difficult to analyse through

human observation. A behaviour model is a precise abstract description of the intended

behaviour of a system in the form of a labelled transition system (LTS) [94]. It provides

a view of how components interact. It structures systems as autonomous, concurrent

entities and describes how they interact. These models often exist in complex systems

because engineers construct them before building the software itself, as a cost-effective

approach to correcting software design errors.

64

CHAPTER 4. IMPLIED SCENARIOS FOR SECURITY TESTING4.1. OVERVIEW OF ISS

4.1.4 Applications of IS

We have done exhaustive research on the application of ISs in the literature, and have

found that the main fields that have benefited from ISs are requirement elaboration [186],

verification of web services [59] and reliability analysis [147]. In the field of requirement

elaboration, ISs served in incrementally searching for new requirements. As an IS is de-

tected, the stakeholder decides whether that behaviour is desirable or should be removed.

In regards to reliability analysis, Rodrigues et al. [147] presented an automated approach

for predicting software system reliability. They looked into the probability of compo-

nent failure and scenario transition probabilities derived from an operational profile of

the system. They also showed how ISs induced by the component structure and system

behaviour described in the scenarios can be used to evolve the reliability prediction. On

the other hand, Foster et al. [59] proposed an approach for verifying web service compo-

sition interactions for a coordinated service-oriented architecture in distributed systems.

ISs allowed them to perform early verification of service implementations against design

specifications, and to ensure compatible interfaces with respect to acceptable composi-

tions. We have also seen the detection of IS at the execution level [167]. It gives insights

as to how the application’s intended behaviour is realised in terms of its implemented

operations.

We have found that the concept of ISs as gaps in the specification fits very closely

with the security testing purpose of finding hidden behaviour in the system. We have

also found that the application of IS had not been used for security testing or for security

analysis in general. As a result, we intend to use IS to benefit from its ability to predict

design flaws/vulnerabilities in the architecture caused by improper compositions of func-

tionality, and to promote architecture refinement to evolve into a more secure design. Our

application of IS focuses on testing the resilience of architectures with respect to security.

65

4.1. OVERVIEW OF ISSCHAPTER 4. IMPLIED SCENARIOS FOR SECURITY TESTING

Figure 4.1 An illustrative example of hMSC and MSCs of specified (a,b) and unspecified
(c,d) scenarios.
(a) First specified scenario Sc1. (b) Second specified scenario Sc2.

(c) First detected unspecified Scenario. (d) Second detected unspecified Scenario.

(e) hMSC for illustrative example.

4.1.5 Motivating Example

Suppose we have four communicating components in a system, for which we know that

two scenarios are allowed to take place (as shown in Figures 4.0a and 4.0b); the execution

of MSC scenarios Sc1 and Sc2 determines two possible and valid traces: 〈m1,m2〉 and

〈m4,m3〉. Each of these traces has a causal order, for which we know that (eg, in Sc1)

message m1 should occur before m2. When the two scenarios are composed together

(to model the occurrence of both behaviours at the same time), the interaction of these

messages may not be anticipated, because the causal relation between the events of both

scenarios is not specified. The example in Figures 4.0c and 4.0d reveals two additional

possible executions outside the specified valid range. This is not surprising as the messages

involve different components; and because there are no explicit synchronisation mecha-

nisms to enforce particular ordering of these messages, any interleaving can occur. The

66

CHAPTER 4. IMPLIED SCENARIOS FOR SECURITY TESTING4.1. OVERVIEW OF ISS

importance of this for security testing is significant because the understanding and approv-

ing all possible behaviours provides assurance that the system cannot be misused to act

beyond the specified behaviour. This example demonstrates that changes in the scenarios

will reflect directly on the ISs detected. In other words, different architecture models will

yield different ISs, because the analysis is design-specific and, hence, the security status of

each architecture model will be different. Notice that studying the specified scenarios (ie,

the specifications) is not enough, and that exploration of the possible behaviours beyond

the specifications is generally difficult for humans to perceive [188].

4.1.6 Detection of IS

We have briefly looked at what ISs are, and we have concluded that they arise because

of lack of complete synchronisation across components. The extension provided in [186]

introduced an algorithm that analyses scenarios modelled in MSC specifications. We have

seen that these scenario MSCs constitute of message events sent and received between

components, which are linked through a directed hMSC graph. The process of synthe-

sising these MSC scenarios into Labelled Transition Systems (LTS) provides a way to

computationally and mechanically analyse these scenarios to determine whether the be-

haviour specified is desirable given a complete system behaviour model. The LTS has

been widely used for specifying and analysing distributed systems [34, 65]. The authors

of the LTSA-MSC use a LTS to model each component of a MSC specification and use

transition labels to model the message components send and receive. This allows for cor-

recting, elaborating and refining scenario-based specifications through experimenting and

the replaying of them [186]. They build a safety property that accepts traces that behave

correctly according to the MSC and hMSC specifications, and checks that the synthesised

LTS model satisfies such property using LTSA. If all component behaviour models are

composed in parallel, it can be shown that the resulting system architecture can exhibit

all the traces specified in the MSC. If a trace violates the safety property, then the trace

is detected as IS. A formal syntax and semantics for MSCs is described in [186, 185].

67

4.1. OVERVIEW OF ISSCHAPTER 4. IMPLIED SCENARIOS FOR SECURITY TESTING

Giving the hMSC graph with the scenarios in the example in Figure 4.1, the algorithm

performs the following steps:-

1. Breaks down the continuation/loops of scenarios into several individual LTSs for

each component. One component model is synthesised at a time, representing its be-

haviour across all scenarios. This is accomplished by (a) collecting the component be-

haviour in all MSCs, and (b) linking all its behaviour according to the hMSC. Each

component behaviour model is synthesised to interact with its environment using only

the messages that are allowed on its interface. For component C, we will have the LTS

model shown in Figure 4.2, where messages m3 and m4 come from MSC Sc2, and m2

comes from MSC Sc1, and the component will either start executing message m2 or m4

in order to move to the next state. The sequence 〈m4,m3, endAction〉 is called a trace.

A trace of a LTS is a sequence of observable labels that can be produced by executing

the LTS.

Figure 4.2 LTS model for component C

2. When all LTS models of the four components A,B,C and, D are individually syn-

thesised, they are composed in parallel to one another in order to create the architecture

LTS model of the system by (a) mapping nodes to behaviour and to their adjacent nodes,

and (b) then connecting nodes according to the hMSC. This architecture model takes into

account the behaviour described by the MSC scenarios (thus preserving the component

structures and interfaces) and the global behaviour described by the hMSC. The joint be-

haviour is the result of all LTSs executing and sharing messages synchronously. Thus, the

LTS can perform a transition independently of the other LTSs, as long as the transition

label (ie, message) is not shared with the other LTSs [186]. Shared labels have to be per-

formed simultaneously, thus components’ LTSs that share a message will need to wait for

each other to move simultaneously to the next state. Because non-shared transitions can

68

CHAPTER 4. IMPLIED SCENARIOS FOR SECURITY TESTING4.1. OVERVIEW OF ISS

be performed independently across different LTSs, the notion of the architecture is weak

because it allows for additional unspecified behaviours to emerge that are valid paths in

the hMSC, and which exhibit all traces specified by the MSCs. The architecture model

produced in this synthesis provides a complete view of the system design, allowing for the

concise inspection of all possible paths and behaviours of the composition. The complete

architecture model of our example is depicted in Figure 4.3.

Figure 4.3 Architecture model for the illustrative example presented in Figure 4.1

3. Builds a new trace model that captures the exact set of traces defined by the MSC

semantics (ie, the required behaviour) to compare it to the behaviour of the architecture

model. Any additional traces in the architecture model that are not specified in the trace

model correspond to ISs. This trace model (as shown in Figure 4.4) is built using a

coordinator component that is responsible for allowing/disallowing components to move

from one MSC to another. This way, components can be guaranteed to not follow different

sequences of MSCs.

Figure 4.4 Trace model shows the precise desired behaviour of the illustrative example
in Figure 4.1

4. Compares whether the architecture model exhibits more traces than the trace

model. This is done by (a) defining the trace model as a safety property that accepts

traces that behave correctly according to the MSC and hMSC specifications; and (b)

69

4.2. IS FOR SECURITY TESTINGCHAPTER 4. IMPLIED SCENARIOS FOR SECURITY TESTING

checking whether the architecture violates the property. Violations are then reported as

IS MSCs. When we compare the architecture model in Figure 4.3 to the trace model in

Figure 4.4, we can see that the architecture model exhibits two additional traces that are

not specified in the trace model. These two traces are depicted in Figures 4.0c and 4.0d

A formal definition of ISs is available in [186].

4.2 IS for Security Testing

In the previous sections, we have stressed the importance of understanding the system

behaviour beyond the specification. Emergent behaviour may have serious security conse-

quences on the system, and their detection is important to ensure that the system always

behaves as intended. As many early requirements cannot be recognised at once, IS sets

the path for evolution opportunities to build secure systems, because future changes are

generally unanticipated [21]. In the past, we have learned that:

• Attackers intentionally probe unspecified behaviours in the system. They attempt

to make the application behave in an unanticipated manner, and then determine

the attacks associated with that behaviour (see Section 3.3).

• Security testing is motivated by addressing undocumented behaviour and areas of

particular complexity to determine how a program can be broken [80] (see Sec-

tion 2.1).

We have reviewed the requirements that need to be realised when addressing security

testing at the early phases of development in Chapter 3. In this section, we will reference

these requirements and explain why the concept of ISs serves to achieve them.

1. The existence of ISs indicates unexpected, yet possible, system behaviour. They

are precisely what the application can do beyond the specification. It gives clues to

70

CHAPTER 4. IMPLIED SCENARIOS FOR SECURITY TESTING4.2. IS FOR SECURITY TESTING

insecure behaviour that is outside the range of the legitimate usage. Its predictabil-

ity of potential vulnerabilities allows us to proactively and systematically discover

weaknesses in the architectural decisions we are about to make. Correcting these

problems at early stages prevents them from manifesting into the design and imple-

mentation of the system and, consequently, we are no longer in a reactive/defensive

position. We are now able to predict/anticipate attack moves and secure a design

before vulnerabilities are exploited. This is important because testers are required

to think like attackers and search for ways to abuse the system to make it behave

incorrectly.

2. ISs are behaviours that arise from the design itself (ie, they are design-specific arte-

facts). The discovery of ISs is a means to exploit weaknesses in the design without

attempting to re-run predefined test cases of other applications (which serves very

little in securing the design). The concept of ISs builds on the incremental and iter-

ative nature of development. It permits a systematic approach for handling changes

to enhance the security of the software. When a refinement is necessary (eg, a new

requirement is added), we are able to observe the consequence of the addition to

the rest of the system before we commit to the refinement. This is done by observ-

ing the appearance of new ISs after the refinements are made. If security related

ISs are detected, the testers can determine if a refinement is advisable to maintain

the security of the architecture. This test-driven approach enforces the concept of

Security By Design, because every step taken contributes to the overall security of

the design. It also offers a systematic approach for handling changes.

3. ISs are the consequence of functional composition. They serve predicting the dy-

namic behaviour components at an abstract level. Given a set of specifications, we

are able to verify that all relevant components collaborate to ensure that the desired

global security is achieved. They allow us to study the security level of compositions

at the control-flow level, after which we can determine whether or not security is

71

4.3. ARCHITECTURE-CENTRIC TESTING FOR SECURITYCHAPTER 4. IMPLIED SCENARIOS FOR SECURITY TESTING

preserved under certain compositions. It is a powerful mean for addressing the un-

certainty of compositions, especially when many big systems are built using smaller

components gathered from different sources. Given an IS execution trace, testers

can visualise how these scenarios can be triggered by attackers, and how the ex-

ecution of these scenarios can effect the security of the system. Furthermore, ISs

drive the focus of security testing on the vulnerable component interactions, thus

enabling the assessment of third-party-components by observation, even when the

code is not present. Understanding the control-flow of communication increases the

likelihood that the design transferred to production will translate into a trusted

implementation to reflect the refined architecture. Consequently, we can confirm

whether the trusted architecture design is implemented in practice when the appli-

cation is developed, as one can verify using a set of test cases, whether the traces

are implemented in the system as desired.

4. Functional scenarios used to model the architecture represent desired requirements.

As a result, detecting positive ISs can be used to verify whether the architecture

continuous to meet the desired functionality as the architecture evolves.

5. Even though some security experts believe that architecture-centric flaws can cur-

rently be found only through human analysis [12], the nature of ISs leads to difficul-

ties in manual detection. We thus benefit from semi-automation, which reduces the

time required to search for these scenarios. Unlike fully human-centric approaches,

automation is less prone to errors and the overlooking of threats.

4.3 Architecture-Centric Testing for Security

We advocate an architecture-centric approach for security testing using IS detection. We

adopt a testing approach that provides predictability with respect to likely composition

behaviours as changes continue to evolve. We aim to testify the security of composition

72

CHAPTER 4. IMPLIED SCENARIOS FOR SECURITY TESTING4.3. ARCHITECTURE-CENTRIC TESTING FOR SECURITY

with respect to breaches of confidentiality, integrity and availability (CIA) properties.

This provides an insight into the security status of the architecture. The questions we

explore in this thesis are: (1) How important is the detection of ISs for security? (2)

What consequences can ISs have on the security of the system? and (3) How do we

benefit from this information to build secure systems? To begin with, this thesis builds

on the following assumptions:

• The specified functional behaviours will naturally be legitimate and desirable (ie,

secure) as they are the direct result of carefully considered requirement and archi-

tecture phases.

• We can evolve a secure-by-design architecture as changes are applied to the archi-

tecture by advocating a test-driven process to verify the security of the architecture.

• The software architecture is secure if and only if, it behaves as intended by the

specification.

The architecture models guide the comprehensive development of security. To build

a complex system, it is difficult for one to account for every aspect of the system design.

The state-of-the-art approach to managing complex systems is to adopt architecture mod-

els [47] for systems to simplify the description and provide a holistic system view. Such

high-level modelling enables designers to locate potential vulnerabilities and install ap-

propriate countermeasures early in the development. The system architecture we use in

our approach consists of the following information:

1. The component structure: which consists of a list of all the components that appear

in the modelled scenarios. These represent the computational elements and data

stores of a system, and communicate with each other through message passing.

2. The component interface: which is the means of interactions among components;

given a component C of some scenario, the interface of C is determined by the set

of messages that are sent and received by this component.

73

4.3. ARCHITECTURE-CENTRIC TESTING FOR SECURITYCHAPTER 4. IMPLIED SCENARIOS FOR SECURITY TESTING

3. The configurations : which represent the topology arrangement of components that

sets the rules for composing components together.

Security experts consider the architecture and design to be the single most critical

phase of the secure design life cycle [12, 163, 113], because good decisions made during

this phase yield an approach and structure that are resilient and resistant to attacks.

The architecture provides sufficient levels of abstraction (such as message passing and

interfaces) that hide the unnecessary details of complex code-level interactions. We recall

that security testing is the process of identifying vulnerable behaviours that affect the

CIA properties of any parts of the system (Section 2.1). At the architecture level, secu-

rity testing is the process of detecting emergent behaviour that diverts from the intended

behaviour and affects the CIA properties [6]. Our objective is to test whether the archi-

tecture remains secure as we compose new information. This testing process involves: (1)

identifying malicious behaviours; and (2) identifying their security implications on the

architecture (ie, the negative result of their correct execution, such as breach of confi-

dentiality). ISs are precisely these behaviours that must be detected and tested for their

security conformance/implications.

ISs have been used as a way to elaborate requirements in an incremental fashion. We

extend the definition of IS to contribute to the field of security testing by viewing ISs as

unanticipated (possibly malicious) behaviours that indicate potential insecurities in the

architecture. Our approach adopts ISs as a mean to reveal security vulnerabilities that

guide the process of architecture refinement. These ISs are indicative measures of how

secure the architecture is and how many potential weaknesses need to be evaluated in the

specification. They can be used to predict the security of architecture refinement. If, for

example, a change is insignificant with respect to functionality, but can result in new ISs

that impacts the security, then we can determine whether a change is advisable or should

be withdrawn. The fewer hidden IS behaviours, the better security we have, because this

provides assurance that the architecture behaves as intended. Furthermore, the testing

process involves assessing the security of the architecture with respect to presence of

74

CHAPTER 4. IMPLIED SCENARIOS FOR SECURITY TESTING4.3. ARCHITECTURE-CENTRIC TESTING FOR SECURITY

unwanted (possibly malicious) behaviours. This means, if a refinement is expensive to be

adopted, one would still want to analyse the extent to which that malicious behaviour

can impact the architecture (eg, what resulting behaviour may branch from it). As such,

it maybe possible to prevent some of its subsequent consequences. Eg, we maybe able to

synchronise two components to prevent an unauthorised access.

4.3.1 Phases of IS approach for Security Testing

Figure 4.5 IS Approach: Takes in the MSC scenarios with the hMSC graph, then builds
the architecture model to search for ISs. All ISs that lead to security breaches are classi-
fied, and are used to refine the architecture.

We propose an architecture-centric approach for security testing consisting of three-

phases for security testing (as shown in Figure 4.5): (1) Detecting design-level vulnerabil-

ities in the architecture in an incremental manner. (2) Classifying the impact of detected

ISs on the security of the architecture. (3) Use the detected ISs and their impact to guide

the refinement of the architecture. The refinement process is test-driven and incremental,

75

4.3. ARCHITECTURE-CENTRIC TESTING FOR SECURITYCHAPTER 4. IMPLIED SCENARIOS FOR SECURITY TESTING

where refinement cycles are tested before they are committed. The method provides a

proactive and early feedback on the security of the changes applied to the architecture,

such that testers are able to make informed decisions about the refinements. Below we

describe these stages in details:

Stage 1: IS Detection

Inputs: System specification in MSC specification + hMSC graph (see Figure 4.1).

Outputs: Detected ISs.

We assume that the system specification is presented in a scenario-based specification

language describing the required functional behaviour, as well as the desired loop/contin-

uation graph between the scenarios. These scenarios may reflect the desired specification

model, or the implementation details of the code. The distinctions between the two

models include:

• the specification model is likely to be present during the development, and thus

no extra effort is needed to apply our approach, but it may not truly reflect the

implemented system; hence, generated ISs may be false positives.

• the implementation may require waiting until the system is built, which delays the

testing process. However, ISs from the implementation model are likely to reflect

real vulnerabilities in the system.

The flexibility of the approach in adopting both situations is beneficial, because it can

be used to test systems in their initial design, or to test previously built systems. Once

the scenario specifications and the hMSC are present, we synthesise the scenarios using

the LTSA-MSC tool to create the architecture model. We collect all the detected ISs that

maybe: (1) design vulnerabilities, which are used to guide the architecture refinement,

or (2) positive ISs that have been overlooked, which can be used to complete the design.

76

CHAPTER 4. IMPLIED SCENARIOS FOR SECURITY TESTING4.3. ARCHITECTURE-CENTRIC TESTING FOR SECURITY

These positive scenarios can also be used to check the conformance of the architecture

with the requirements.

Stage 2: Review of detected ISs

Inputs: Detected ISs.

Outputs: Classification of detected vulnerabilities.

The focus of this step is investigating the potential security consequences of the de-

tected ISs. An IS may cause several threats to the system, or maybe exploited in several

ways. We use a widely used classification scheme [78] to realise the impact of ISs on the

security. The classification scheme [78] as shown in Figure 4.6 looks at the types of at-

tackers, their objective, actions, target and the unauthorised results of the threat. Given

an IS trace, the testers will need to answer the following questions:

1. What negative security impact can the IS behaviour cause? Eg, Can detected IS

cause ‘information corruption’ if triggered by an attacker?

2. Which of the listed attackers may have interest in executing the IS?

3. What would be the attacker’s target resource behind the threat?

4. What would be the attacker’s objective behind the threat?

The outcome of this process is a classification of the ISs containing: (1) the type of attacker

that may launch the threat, (2) the description of the actions required to launch the threat,

(3) the security breach results and (4) the objective of the threat. The classification is

used to support testers in identifying the various ways in which a threat may manifest

itself into the system, and the range of attackers who may have interest in exploiting the

IS. It provides a checklist-based approach whereby testers can have reasonable confidence

that all potential attack actions and results have been considered. Using the taxonomy,

we can identify the types of threats detectable using ISs, and which architectures are more

prone to certain threats.

77

4.3. ARCHITECTURE-CENTRIC TESTING FOR SECURITYCHAPTER 4. IMPLIED SCENARIOS FOR SECURITY TESTING

Figure 4.6 Computer and Network Incident Taxonomy [78]

Stage 3: Refining the Architecture

Inputs: Current architecture.

Outputs: Refined architecture for security.

The aim of the refinement process is to correct the architecture model with respect

to the Security ISs detected in Stage 2. The refinement may involve adding/removing

functionality, or modifying an existing functionality to prevent the appearance of the

Security IS. These changes to the architecture may lead to new ISs. The testers have a

choice to deal with new ISs: either they roll back to the original architecture and consider

other options, or they commit to the refinement and address the arising ISs individually.

We say individually, because it allows us to identify the cause of the new IS, such that

if we choose to withdraw we know precisely which refinement we need to roll back. This

early feedback on the refinement informs the testers about the security of the refinements

they intend to pursue.

78

CHAPTER 4. IMPLIED SCENARIOS FOR SECURITY TESTING 4.4. SUMMARY

The refinement decisions are design-specific, and rely on human expertise. Human

involvement is needed primarily to evaluate the security of the detected ISs and to perform

the refinement. The process of detecting ISs is relegated to a mechanical procedure in

Stage 1, because it is difficult for humans to reason about interactions among system

components. Although it may be possible to define security properties to fully automate

the approach, we believe that such a step is likely to neglect important threats that do

not violate the defined security properties. We have previously reviewed in Chapter 2

that fully automated tools suffer to address design-vulnerabilities.

4.4 Summary

We have presented an architectural-centric testing for security. We proposed the concept

of Security IS, which is an unanticipated (possibly malicious) behaviours that indicates

potential insecurities in the architecture. We proposed a three-phased method for security

testing: (1) Detecting design-level vulnerabilities in the architecture in an incremental

manner. (2) Classifying the impact of detected ISs on the security of the architecture. (3)

Refine the architecture by using the detected ISs as a guide. The refinement process is

test-driven and incremental, where refinement cycles are tested before they are committed.

In Chapter 6, we will demonstrate the applicability and effectiveness of the approach

using three case studies. The application demonstrates novelty in exploiting the approach

for security testing in dynamic and unpredictable environment such as cloud, distributed

smart cameras and web applications. Drawing on these cases, the Chapter will report on

the evaluation of the approach.

79

4.4. SUMMARY CHAPTER 4. IMPLIED SCENARIOS FOR SECURITY TESTING

80

5
SecArch: Architecture-Centric Testing for

Security

5.1. INTRODUCTIONCHAPTER 5. SECARCH: ARCHITECTURE-CENTRIC TESTING FOR SECURITY

5.1 Introduction

In Chapter 4, we discussed the importance of ISs in detecting security vulnerabilities; we

discussed the negative effects of inconsistencies and hidden interactions in regards to the

security of software from a single dynamic behaviour view. In this chapter, we present

SecArch, an enhancement to the IS approach to improve its search-space for threats. The

extension is concerned with predicting more valid conditions in the face of real parallelism

in distributed systems with respect to non-FIFO queues. It uses detected race conditions

to test for security of the architecture with the presence of negative behaviour.

We begin by drawing a comparison between complete and incomplete models using

two existing researches, one for detecting ISs [185] using behaviour models, and one for

detecting race conditions using scenario diagrams [15]. We then explore the benefits of

merging both views to detect ISs as well as race conditions. We propose moving from

purely dynamic behaviour models (LTS models) to structural MSC models to preserve

structural properties that are used to detect race conditions. The work reported in this

Chapter has been published in [7].

5.1.1 Motivation

Research in analysing dependability with respect to interactions across multiple views has

been limited/lacking [60]. Incorporating multiple views for security analysis allows for the

understanding of possible consequences of negative behaviour across other views. In re-

turn, this can serve in detecting multi-step attacks, accurately estimating the associated

risks with it or in making informed architecture refinements with respect to potential dam-

age caused by the negative behaviour. Connections between behavioural and structural

models provide extended means to analyse the security of concurrent systems. Incremen-

tal behaviour models target the incompleteness of scenarios by searching for gaps in the

specifications and incrementally adding missing scenarios. These gaps might be due to an

inconsistency of scenarios in which additional scenarios might be introduced, or legitimate

82

CHAPTER 5. SECARCH: ARCHITECTURE-CENTRIC TESTING FOR SECURITY5.1. INTRODUCTION

scenarios being overlooked during the requirement/design phases.

In this section, we investigate (1) the difference between structural and behavioural

models and why we need both; (2) the importance of detecting race conditions from

behaviour traces (rather than structural traces).

5.1.1.1 Behaviour vs Structural models

Behaviour models are successful in uncovering the subtle errors that can appear when

designing concurrent and distributed systems [187]. They provide feedback on the ac-

curacy of models. Certain types of dynamic behaviour models, such as LTSs and state

charts, focus on the collaborating entities and study the different sequences of exhibited

interactions. An example of an inconsistency could be an IS [14]; these scenarios arise

due to limitations in the local view of each component involved in the interactions and

do not require the syntactic checking of scenarios. Dynamic architecture-based analysis

is concerned with demonstrating software-predicted run-time behaviour. Early analysis

allows for the early detection of defects before the system is built. It is a necessary part of

testing as it supports analysis with respect to operation environment variables. However,

dynamic analysis on its own is insufficient to verify all architecture-concurrent defects,

which require a thorough analysis of executions. Behaviour models can be rich on their

own if: 1) the initial scenarios are close to completion; or 2) the synthesis algorithm is

not constrained by a set of semantics that reduces its search space.

On the other hand, whenever concurrency is present, race conditions are possible.

Checking for race conditions requires the preservation of the precise ordering of messages

across all scenarios, which may not be preserved by the behaviour model. Sequence

diagrams focus on the order in which messages are sent, and the procedural flow through

components. This is done by individually checking the syntactic correctness of scenarios.

However, syntactic correctness is not enough when dealing with concurrency, because

analysing each sequence diagram for race conditions may result in: (1) only sub-traces

being addressed rather than overall maximal execution; (2) the inspection of previously-

83

5.1. INTRODUCTIONCHAPTER 5. SECARCH: ARCHITECTURE-CENTRIC TESTING FOR SECURITY

handled race conditions that are repeated in several interaction models; and (3) what

might be reported as a race condition might be acceptable in another scenario in the

specification.

Both behaviour models and interaction models are especially important in under-

standing the run-time behaviour of components. Generated behaviour models allow the

tester to examine the dynamic behaviour from a different angle as compared to inter-

action diagrams. Each of these models focuses on certain aspects of interactions; thus,

integrating information gathered from multiple views provides a multi-dimensional repre-

sentation of the pre-developed system that features fewer design inconsistencies that may

impact the dependability of the system. While interaction diagrams show the interaction

between several objects, behaviour models show the total behaviour of all components in

the system over time. Behaviour models can be used to rigorously analyse how a set of

components, which comply with the architecture described in the scenario-based specifi-

cation, behave when working together. In particular, we can analyse to see if they exhibit

any traces that have not been explicitly specified in the scenario-based specification.

We summarise that concurrent systems require an analysis of both semantics impli-

cations and structural information of specifications. These representations are crucial to

offset the limitations in both [41, 185]. We can also obtain a more holistic view of concur-

rent behaviour by merging the partial scenarios in the behaviour models and interaction

models. Without incorporating multiple views, a false sense of completeness might result

in a system deployed with untested hidden behaviours. In particular, we emphasized

the need for incremental models when dealing with scenario-based specifications, as they

take into account the nature of the development cycle and the continuous requirement for

elicitation.

5.1.1.2 Model Traces

A trace of an LTS is a sequence of observable labels that can be produced through execu-

tion of the LTS. It models all possible executions of components from a global view of the

84

CHAPTER 5. SECARCH: ARCHITECTURE-CENTRIC TESTING FOR SECURITY5.1. INTRODUCTION

system (ie, the composition of scenarios). The traces we are interested in are maximal

traces; these are the executions that cannot be extended any further. The architecture

model in [185] (also in LTS form) features infinite execution traces of all possible be-

haviours of the components. On the other hand, we have the traces extracted from each

individual MSC scenario specification, which represent the causal order of messages in

that scenario. Fundamentally, LTS traces differ from the sub-traces extracted from each

individual MSC scenario because they do not model the scenarios individually; instead

they model: (1) the composition of scenarios from multiple component views; (2) the

possible continuations of a scenario; and (3) hidden ISs. However, as the LTS model

is a set of reachable states that describes how a system corresponds to events, it is not

possible to use the LTS model to search for race conditions unless further annotations of

message ordering and component names are preserved. Instead, scenario-based specifica-

tions, such as [84], focus on the procedural flow through components. Their structural

properties play a vital role in detecting race conditions in concurrent systems.

5.1.1.3 ISs vs Race conditions

ISs are different in nature to race conditions, even though both are emergent behaviours.

Race conditions are among the most common form of inconsistencies [128, 57, 49, 15].

Essentially, a race condition asserts that a particular order of events will occur as a

consequence of the causal ordering (ie, visual order), when in practise this order cannot

be guaranteed to occur due to limited control of the speed of the message propagation in

practice. A race condition exists when two events appear in one (visual) order in the MSC,

but can be shown to occur in the opposite order during an actual system execution [15].

Race conditions occur when different processes access shared resource without explicit

synchronization [130]. There is often no way to ensure that two messages from different

processes arrive in the same order. This means that the visual order may provide more

ordering over events than is achievable in practice. Figure 5.1 shows three classes of race

conditions in an MSC scenario [49] where the order of receiving messages A,B and C may

85

5.1. INTRODUCTIONCHAPTER 5. SECARCH: ARCHITECTURE-CENTRIC TESTING FOR SECURITY

not be maintained. These classes of races are limited to the trace being investigated (i.e.

lack of order of a specified scenario trace). It is very easy to inadvertently introduce race

conditions into a scenario, because causal orders semantics places almost no constraint on

how the causal order is constructed [120]. On the other hand, we have seen that ISs arise

due to lack of information in the component view, and that their occurrence is outside

the specified set of traces due to dynamic compositional fault. The commonality between

both race conditions are ISs is in the lack of synchronisation between components. We

cannot use a detection algorithm dedicated to finding ISs in order to find race conditions,

and vice versa.

Figure 5.1 Three basic types of race condition [120]

5.1.1.4 Illustrative Example

We have mentioned previously that the IS detection algorithm [185] uses hMSC graphs

to determine the right path to traverse the scenarios. A shortcoming in this detection

algorithm is that when there is a branch in an hMSC node (ie, two parallel scenarios), the

synthesis algorithm combines the two branches/scenarios using an ‘OR’ logical operator

rather than an ‘AND’ logical operator, though it synchronises on shared messages. This

allows a race condition to be bypassed when two components in both branches are trying

to access a shared resource. Their event semantics are built on strong assumptions about

the ordering of events, such as only supporting single-queues (ie, enforcing visual order).

86

CHAPTER 5. SECARCH: ARCHITECTURE-CENTRIC TESTING FOR SECURITY5.1. INTRODUCTION

For a race condition to be detected, only causal orders should be preserved. Restrictions on

queues make for unrealistic assumptions about the components involved in the concurrent

system. Alur et al. [14] have presented an analysis tool that can perform automatic checks

on message sequence charts with respect to timing constraints of the message-queuing

structure (such as FIFO) and possible semantic interpretations, and can detect conflicts

such as causality cycles and race conditions. We use Alur’s algorithm because it allows

us to check for race conditions based on several queue structures, filling the gap in IS

detection algorithm.

Suppose we have a scenario in which two users (client and admin) are trying to access

the same server; an admin can enable/disable the server, while the client is using the

server. Both users can perform operations on the server at the same time. However,

when we compose the individual LTS models of each component using an ‘OR’ logical

operator, then we are assuming that the component has a single-FIFO queue, and can

only deal with one request at a time. This does not reflect true parallelism. The traces

associated with each individual scenarios (see Figure 5.2) are as follows:

1: enableServer

2: disableServer

3: login > successful > AllItems > selectItems > returnItems> buy > logout

Searching for race conditions on each of the above traces does not detect race condi-

tions. On the other hand, a behaviour model (see Figure 5.3) would allow us to merge

the occurrence of all these scenarios/traces with respect to the hMSC. Using traces in

such models to generate scenarios reveals another side of the communication unperceived

in the initial scenarios. The traces from the behaviour model are as follows:

87

5.1. INTRODUCTIONCHAPTER 5. SECARCH: ARCHITECTURE-CENTRIC TESTING FOR SECURITY

1: enableServer > disableServer

2: enableServer > login > successful > AllItems

> selectItems > returnItems> buy > logout

> disableServer

Figure 5.2 Three Client/server scenarios with their HMSC

Figure 5.3 Behaviour model for the Client/server example presented in Section 5.1.1.4

However, the real number of possible interleavings exceeds the above two traces. There

are 10 more possible traces that can be exhibited by the above scenarios (examples can be

seen in Figure 5.4). This is due to the assumption of single FIFO queues in a synchronous

communication, which leads to the isolation of the scenarios from the server’s view (ie, the

server contains a single queue that deals with one request at a time). But in a realistic

setting, concurrent systems are likely to have non-FIFO queues, or FIFO queues with

asynchronous communication. We will revisit this example in Section 5.2.1.

88

CHAPTER 5. SECARCH: ARCHITECTURE-CENTRIC TESTING FOR SECURITY5.2. SECARCH: ARCHITECTURE-CENTRIC TESTING FOR SECURITY

Figure 5.4 Detected Race Conditions found in the client/server example

5.2 SecArch: Architecture-Centric Testing for Secu-

rity

To examine the potential benefits of combining IS detection with race condition detection

to reveal insecure behaviour, we introduce the use of Alur’s algorithm [15] for detecting

race conditions, in conjunction with the IS detection we presented in Chapter 4. Our

SecArch is intended to complement the limitations in both algorithms in order to detect

further insecure behaviours by preserving the dynamic and structural aspects of both

algorithms. Table 5.1 shows the feature-comparisons of both algorithms as well as our

SecArch proposal.

Table 5.1: Attribute comparison between Uchitel’s algorithm [185], and Alur’s [15], and
SecArch

Criterion Uchitel Alur SecArch

Assumes complete knowledge of environment
Assumes incomplete knowledge of environment
Produces all possible executions of modelled system
Multi-scenario analysis (i.e. produces maximal traces)
Single scenario analysis (i.e. produces sub-traces)
Searches for specification gaps (i.e. ISs)
Searches for race conditions
Supports High-level MSC to infinite traces
Finite traces (i.e. bounded MSCs)
Syntactic analysis
Semantics analysis
Models timing

89

5.2. SECARCH: ARCHITECTURE-CENTRIC TESTING FOR SECURITYCHAPTER 5. SECARCH: ARCHITECTURE-CENTRIC TESTING FOR SECURITY

To address the limitation discussed in Section 5.1.1, we propose an additional stage

to stages 1 and 2 introduced in Chapter 4 (section 4.3.1), in which we take behaviour

model traces for structural analysis using Alur’s algorithm for detecting race conditions.

Once negative race conditions are detected, we reimburse Uchitel’s algorithm with the new

traces iteratively, and repeat the process until no more ISs or race conditions are detected.

This incremental search for race conditions ensures that complex race conditions are found

with every newly added functionality. Figure 5.5 presents all the steps required in SecArch

approach.

Figure 5.5 SecArch: takes in MSC diagrams, then builds a behaviour model to search for
ISs, and finally degenerates MSC diagrams from the behaviour model traces to evaluate
for race conditions, and replays dangerous race conditions back into the model for further
ISs evaluation.

���������	�
��

���	����������	���

���������	�
��

���	 ����	�� �������

���	���
�
�������

�������
�
���	����		�	
���	 ����	�� �������

���	���
�
�������

�������
�
���	����		�	

���	 ����	�� �������

���	���
�
�������

�������
�
���	����		�	

���
����
��������	�

����������	�
��
���������

���� ����

���

���!

�����"�����

� � � � ��

��	#�	� ��
��$�%�

��
��$�%& ���&
���� ��
��$���'&

	��(�

����)��(�

�����

&��(����
��������

���#�����

���	�

&���$�
��
�������������������)���
���	��������

	������
��
�������	����������
���	����
�(����*'�

����������������	�
��
���������

90

CHAPTER 5. SECARCH: ARCHITECTURE-CENTRIC TESTING FOR SECURITY5.2. SECARCH: ARCHITECTURE-CENTRIC TESTING FOR SECURITY

Stage 3: Race condition detection

Inputs: Architecture traces.

Outputs: Refined architecture for security.

To perform this step we need the list of traces in the architecture. To extract the

traces, we used a built-in simulator in the LTSA-MSC. These traces are modelled in MSC

to check their structure for race conditions. We use the UBET [102] tool to search for race

conditions which implements the Alur’s algorithm. When a race condition is found, we

review its security impact using Stage 2 of the IS approach. If negative race conditions are

found, we feed them back into the LTSA-MSC tool as positive IS and update the HMSC,

then we repeat the process. Our use of ISs in this proposal is different in comparison with

the literature discussed in section 4.1.4; we do not classify bad scenarios as ‘negative’ to

constrain the model. Instead, we accept all ISs as positive scenarios to examine how the

system reacts in the presence of bad behaviour. This step is crucial for two reasons: 1) for

security testing, two-step attacks rely on the presence of a weakness in the design (that

might not necessarily cause a problem on its own) to launch a more sophisticated attack;

and 2) it is often expensive to redesign a system once it is built; thus, an approach is

necessary that adapts to the presence of weaknesses and provides insight into how such

weaknesses can affect the system.

5.2.1 Example Application of SecArch

Referring back to the example we introduced in Section 5.1.1.4, applying SecArch leads

to the following race conditions (see Figure 5.4) with respect to security testing:

Race Condition 1: Disabling the server during authentication. The interest is in

realising how the system behaves when an admin interrupts the authentication service.

Does it return user data back in the error message (which can lead to a reflected XSS

attack) [189]? Does it dispose of credentials securely or does the data remain floating in

the server’s memory? Does it return a stack-trace or code back to the user that reveals

91

5.2. SECARCH: ARCHITECTURE-CENTRIC TESTING FOR SECURITYCHAPTER 5. SECARCH: ARCHITECTURE-CENTRIC TESTING FOR SECURITY

a great deal of information about the server structure and implementation? The answers

to these questions may reveal further critical threats.

Race Condition 2: The user commits to buying an item while the admin is disabling the

server. We are mainly concerned with the application’s protection of the confidentiality of

the data during the termination. For example, the payment might be rejected gracefully

or disrupted during processing. Consequences can range from money withdrawals from

a bank account without being recorded in the database, or bank details and private

information remaining in the server’s memory without secure disposal or possibly, a double

processing of purchases.

Race Condition 3: Disabling the server while the user is logging off. Will the user

remain logged in once the server is enabled? This would pose an impersonation problem

if someone else uses the account.

All the above conditions may lead to problems in the deployment time –depending on

how the server operates– if not tested properly and carefully, either in terms of sessions,

error handling or memory garbage collection. At the architecture-level, the testers may

introduce new functionalities that deals with each specific case. For example, the dis-

able function maybe designed to confirm that there is no critical process running before

terminating. This guided systematic testing helps to highlight potentially vulnerable ar-

eas, to reduce the possibility of overlooking vulnerabilities and to reduce searching time

when manually debugging. As is clearly shown, both Alur’s and Uchite’s approaches in-

dividually failed to detect these scenarios, but the combination of both complements the

limitations and proves to be useful when considering potential problems in a systematic

fashion. Although SecArch assumes incomplete specifications to support the partial na-

ture of the scenarios, we are benefiting from Alur’s assumption of complete specification

to reimburse the specifications with further hidden behaviours. The evaluation continues

to run in cycles until no more ISs or race conditions are found.

92

CHAPTER 5. SECARCH: ARCHITECTURE-CENTRIC TESTING FOR SECURITY5.3. SUMMARY

5.3 Summary

In this chapter, we presented SecArch, an incremental architecture testing method that

merges behaviour models with structural analysis for improving the search-space for

threats and the detection of inconsistencies. We merged the concept of IS [185] detection

with race condition detection [15] to complement the limitations in both, and discussed

how the integration of the two approaches is more effective in guiding testers to detect

potential security threats than either would be individually.

In Chapter 6, we will look at novel applications of SecArch for security testing in

dynamic and unpredictable environment such as cloud, distributed smart cameras and

web applications. We will evaluate its efficiency, its scalability and applicability.

93

5.3. SUMMARYCHAPTER 5. SECARCH: ARCHITECTURE-CENTRIC TESTING FOR SECURITY

94

6
Case Studies and Evaluation

6.1. INTRODUCTION CHAPTER 6. CASE STUDIES AND EVALUATION

6.1 Introduction

In this chapter, we will evaluate the approach through reflection on its ability to meet the

requirements discussed in Chapter 3. We will study its applications to address timely and

challenging cases characterised with distribution, parallelism, dynamism, unpredictability

of operation and openness. Though the primary goal has been to explore the fitness of the

approach for targeting security testing at the architecture level, these applications shows

novel perspective in how IS and SecArch can be deployed to address problems in emerging

domains such as the cloud. We argue that our approach is suitable for security testing as

it enables testers to look beyond the specifications for hidden and malicious behaviours,

and to use that information to systematically guide the architecture refinement process.

Evaluation of the thesis aims at extending the confidence in the following claims:

• ISs are design-specific behaviours that emerge unexpectedly from functional com-

position. We want to verify their security impact and to increase confidence in the

ability of the system to withstand these breaches.

• Our approach has the ability to systematically identify critical deviations from the

intended behaviour.

• IS approach can guide the architecture refinement process to reach a secure architec-

ture. The refinement can revisit the architecture design decisions and incorporate

architecture mechanisms/tactics, which can prevent the likely impact of IS emerging

behaviours.

The evaluation aims to testify these claims through illustrative examples drawn from the

case studies. We reflect on the strengths and weaknesses of the approach.

6.2 Case Study Setup

In this section, we look at the tools used, the method’s protocol, research questions,

propositions, and data collection.

96

CHAPTER 6. CASE STUDIES AND EVALUATION 6.2. CASE STUDY SETUP

6.2.1 Software and Hardware

The approach makes a novel use of a number of sound tools to assist the process of IS

detection, classification and architecture refinement for architecture-centric testing for se-

curity. The architecture is realised through composition of functional scenarios (which

reflect the desired functional requirements) using the LTSA-MSC tool [185]. This tool

is also used to generate ISs. It takes the scenarios in MSC specification and the hMSC

graph that models the continuous flow of the scenarios (ie, how the scenarios are com-

posed together) as an input. Another tool is used to detect race conditions, UBET [102],

implements Alur’s algorithm to detect race conditions [15]. These tools have been used in

a number of publications (eg, LTSA-MSC was used in [187, 147, 59], UBET was used in

[150, 22, 24]). However, they were not previously used to exploit the benefit of Security

IS detection and architecture refinement. All case studies were run using the Windows

XP operating system with an Intel Core 2 Duo CPU 2.20 GHz, with 2 GB of RAM.

6.2.2 Method Protocol & Research Questions

The aim of the thesis is to find a security testing approach capable of detecting malicious

behaviours during the early stages of development and continuously assesses the security

posture of the system’s architecture while undergoing refinements. We have based our

case study approach on the method defined by Yin Robert [199]. The object of study is

the IS approach, which will be examined to measure its ability to detect malicious be-

haviours in the architecture and assess refinements to avoid breaking the existing security

posture. We used single-case studies to observe representative systems for: (1) a web

application, to ensure the approach’s fitness for testing multi-threaded web fronts; (2) a

cloud architecture, to test the approach with respect to uncertainties in the cloud; and (3)

a distributed smart camera network with high dynamism. These case studies were chosen

to allow us to observe the effectiveness of the introduction of IS at the architecture level

as a unit of analysis for testing the security of architectures in dynamic and unpredictable

97

6.2. CASE STUDY SETUP CHAPTER 6. CASE STUDIES AND EVALUATION

environments, in which emerging scenarios are probable due to unpredictable modes of

execution. These types of applications are known to be challenging to test, compared to

centralised applications, due to ‘the problems inherent in deploying, controlling and mon-

itoring many nodes simultaneously’ [81]. The selection of applications varied, since we

wanted to learn where the approach might perform better regarding threat detection or

guidance of the refinement. These case studies were conducted by a group of two members

to maintain the consistency of applications across different cases and ensure the correct

application of method. One is a tester with security background, and one is an architect

with testing background. The variables of interest are the total number of ISs, the number

of ISs after refinements, which are program-generated, and the number of Security ISs,

which are identified through a classification process (explained below) performed by the

testers from the total set of ISs. The duration of the case studies averaged 4–6 months.

The questions we pose are:

1. Will the introduction of the IS approach aid the detection of security threats?

2. Will the introduction of the IS approach guide the refinement process to increase

confidence in the architecture’s resilience to threats?

3. Will the SecArch enhancement be superior to the IS approach in regards to exploring

the search-space to find more threats?

4. Will the introduction of the IS approach guide the selection of architecture alterna-

tives and candidates with respect to security?

The propositions we make are as follows:

• Introducing the IS approach will allow for the detection of threats in the architecture.

This proposition will be measured by the number of Security ISs detected. If the case

studies indicate that all the detected ISs do not affect security, then this proposition

will not be satisfied.

98

CHAPTER 6. CASE STUDIES AND EVALUATION 6.2. CASE STUDY SETUP

• Introducing the IS approach will guide the refinement to produce a more secure

architecture. This will be measured by the number of Security ISs detected before

and after the refinement. The range of possible outcomes includes: (1) If no threats

are detected after the refinement, then the refinement secured the design; (2) If the

number of threats detected after the refinement is less than the number detected

initially, then the IS approach produced a more secure architecture; and (3) If the

number of threats remains the same or increases, then the IS refinements failed to

address the security problems.

• Introducing SecArch as an enhancement version to the IS approach will improve

the search-space of threats, and it will result in the number of threats detected using

SecArch being greater than the number of those detected using the IS approach. This

will be measured by the total number of threats detected in the architecture using

both approaches.

• Introducing the IS approach will guide the selection of architecture alternatives and

candidates with respect to security. This will be measured by the number of

Security ISs detected in all architectures undergoing tests. If the architecture is

found to have a lower number of Security ISs, then that architecture is considered

to be less vulnerable to threats, and it has less potential for allowing unforeseen

threats due to concurrent problems.

For the source of the scenarios, as a prerequisite of the approach to be used, either a

list of specifications is available to model the required behaviour or the partial/prototype-

/complete implementation of the application undergoing tests. In our case studies, the

availabilities of the specifications and implementation varied. This allowed us to study

different settings of the prerequisite information and determine a pragmatic use for the

approach and its supporting tools. In situations where the specifications were available,

we listed the scenarios required to fulfil the listed behaviours. In situations in which the

implementation was present, we derived the scenarios from the code using the Visual-

99

6.2. CASE STUDY SETUP CHAPTER 6. CASE STUDIES AND EVALUATION

Paradigm [135] tool to reduce the possibility of errors during the modelling process. This

tool has won five major awards and is widely used in the industry (eg, Adobe, NASA) for

UML modelling. All the derived scenarios were modelled using MSC specifications [84].

Once the system is modelled, the LTSA-MSC tool is used to search for ISs. When ISs

are identified, they are collected and stored. They are then subjected to a classification

process to identify which ISs have security implications. The classification process uses

a taxonomy [70] that defines potential attackers, the impact of the threat, the objective

of the threat and which resource is being targeted. Given the IS, the tester’s role in the

classification includes answering the following questions: (1) From the taxonomy’s defined

list of potential impacts (that is: increased access to resources, disclosure of information,

corruption of information, denial of service and theft of resources), which of these may

be achieved if the IS is executed? (2) Which of the listed attackers may have an interest

in executing the IS? (3) Which resources would the attackers target? (4) What would be

the attackers’ objective? This information is stored in a septuple database along with the

ISs’ IDs, which highlight where the threat is found with graphical representation in an

MSC form. When an IS does not have security implications, it is classified as a positive

scenario, with no additional information. Testers use these positive scenarios to confirm

the correct system behaviours.

The refinement process follows a systematic approach in which each threat is addressed

in an order determined by the testers (eg, based on the severity of threats, due to timing

constraints). When each threat is reviewed, a tester’s role is to devise a refinement that

prevents the occurrence of the threat. The prevention is confirmed when the IS does

not appear in the following testing cycle. Each refinement is followed immediately by a

testing process, allowing the testers to identify which refinements successfully prevented

the IS and which caused the appearance of new ISs. A refinement may be retracted if

it causes new ISs or, if necessary, it may be committed. When a refinement results in

new ISs, these ISs are classified and further refinements are performed until either no

additional ISs are identified or all ISs are positive. The data we collect in this stage are:

100

CHAPTER 6. CASE STUDIES AND EVALUATION 6.2. CASE STUDY SETUP

(1) the associated refinement (addition/removal/revision of functionality and changes to

the hMSC graph); (2) the number of times refinements were made; and (3) the number

of scenarios that arise (0 or more) for each refinement and how they are classified.

6.2.3 Summary of Applications

In the conducted case studies, we focused on using varieties of cases to test the effective

use of the IS approach for security testing, such as the different types of applications, and

different development processes. Table 6.1 discusses the case studies and their purpose in

more detail, including the publication venues for each one.

Table 6.1: List of case studies carried out in this thesis.

Case Type Purpose Impact & Research Questions
Study
1 Web Studies the feasibility of using IS approach for Published in ICSE-SESS’10.

application security testing, and its application on web applications. We presented to the software
The question we have answered in this case study is: security community a novel IS
how do we determine insecure behaviour in the system, approach for detecting
while still maintaining observability of the problems compositional threats at the
associated with the behaviour, and also target implicit architecture-centric. We provided
assumptions related to the design of the system? How evidence in the study results.
well can IS approach guide the architecture refinement? Answers questions 1 & 2.

2 Cloud This case study presented the contributions of our work Published in WICSA’12.
in extending the IS approach (SecArch) to detect We presented SecArch to the
hidden race conditions, allowing for evaluation of architecture community, and
security with the presence of negative behaviour, and demonstrated its ability to provide
improving the system’s security posture by refining the a more holistic view of the
architecture to guard against potential hidden provide a holistic view of the
vulnerabilities. We demonstrated how an architecture- architecture. We provided
centric testing can assist in developing secure agile evidence in the approach’s ability
systems. We answered: Can we combine the IS to detect security emergent
approach with the agile development, such that both behaviour that is used to guide
support each other to reduce conflicts? the refinement process to
How can IS approach be aligned with agile practices develop secure systems.
to architect secure software systems? Answers questions 1, 2 & 3.

3 Distributed The case study addresses the application of the IS approach Provides a novel application of
System on a distributed system. The aim of the case study is to the IS approach for distributed

test the fitness of the IS approach at guiding the selection systems, where we test the
of secure architectures. We have also studied the fitness of the IS approach to guide
approach’s architecture refinement support with presence the selection of secure
of trade-offs between security and utility. architectures.

Answers questions 1, 2 & 4.
4 Identity This case study is conducted twice by two masters Book Chapter by Elsevier.

Management students. The aim of the study is to extend the We presented the iterative and
confidence in the IS approach, as well as examine how incremental features of the IS

(Appendix B) the IS approach maybe used in practice, in terms of approach to the test-driven
flexibility and ease of use. The question of the study community, and demonstrated
was to examine which of the two identity management its ability to guide the the
architectures should be chosen in terms of security. development of agile systems.

Answers questions 1, 2 & 4.

101

6.3. CASE STUDIES APPLICATIONSCHAPTER 6. CASE STUDIES AND EVALUATION

6.3 Case Studies Applications

In this Section we will cover three case studies. These studies show new modalities of

applications. We have also included Case Study 4 in Appendix B to further illustrate

applicability, potential replication of the steps, etc. The case study method is described

in Section 6.2.2.

6.3.1 Case Study 1: Web application

In this case study, we proposition that the introduction of the IS approach will (1) allow

for the detection of threats in the architecture, and (2) guide the refinement to produce

a more secure architecture. The case study application [33] attempts to simplify the

process of editing HTML pages as done in Wiki or blog software (eg, uploading a figure,

editing a page, log in and out, etc). We have chosen this case study for the purpose of: (1)

testing the approach’s applicability to concurrent web applications where there is a shared

resource; and (2) studying the approach when the scenarios are not present upfront (ie,

only the implementation). This allows us to realise the limitations of the approach when

applied to a realistic environment. The number of testers who carried out the study is

two. The method protocol we used in this case study is described in section 6.2.2.

6.3.1.1 Scenario Modelling & IS Detection

In Chapter 4 we explained the approach in details. In order to detect ISs, we need the set

of specified scenarios representing desirable functional behaviours, and the graph (hMSC)

representing the continuation of the scenarios (ie, how these scenarios combine together

to fulfil the overall system behaviour). Because we only had the implementation and the

list of functionalities provided by the application, we extracted the scenario behaviours

from the code. The set of scenario names and descriptions are presented in Table 6.2. The

scenarios presented allow a user to login, edit a webpage if the page is unlocked and request

a lock on the page if he is an administrator. The desired behaviour ensures that access

102

CHAPTER 6. CASE STUDIES AND EVALUATION6.3. CASE STUDIES APPLICATIONS

Figure 6.1 An acceptable scenario of various possible scenarios in the web application.
The web application receives a request to edit a webpage, where it checks if the user is
authorised. Once the user commits any changes to the webpage, the application creates
a history backup, a version number, and updates the webpage.

control is maintained on all web pages. We modelled the scenarios in MSC specification

(eg, Figure 6.1), and their directed graph (hMSC) that shows possible continuations of the

scenarios to illustrate the desired global behaviour of the system. The scenarios and the

hMSC models were fed into the LTSA-MSC tool to search for and detect ISs. Figure 6.2

shows the hMSC model, which shows the continuation of scenarios that have two main

behaviour branches:

1. Users to edit the displayed web page after checking that the web page is not locked,

and

2. Administrators to set a lock on the web page to prevent users from editing the page.

When we composed the scenarios together, we detected sixteen emergent behaviours

(ie, ISs) in the architecture. Each of these scenarios was given an ID and collected in a

database file as a graphical MSC.

103

6.3. CASE STUDIES APPLICATIONSCHAPTER 6. CASE STUDIES AND EVALUATION

Figure 6.2 The hMSC graph for the scenarios in Case Study 1 web application. It shows
how scenarios are integrated together to make up the overall desired behaviour.

Table 6.2: Scenarios elicited for Case Study 1: Web application.

Scenario Name Scenario description

1 UserLogin Allows users to login

2 RequestEdit Records edit request

3 Update Commits changes to pages

4 LockPage Sets pages locked

5 RequestLock Records requests for editing

6 Logout Allows users to logout

7 LockCheck Checks the lock status of the page

8 Authenticate Checks users authority to edit pages

9 CalculateVersion Determines the version number of the next edited page

6.3.1.2 Classifying ISs

The classification process was carried out by two testers as explained in Section 6.2.2.

Given the detected sixteen ISs, we found six of which were Security ISs. The classification

results are depicted in Table 6.3. Given each IS trace in the form of an MSC scenario

(eg is shown in Figure 6.3), we are presented with the precise behaviour of the system

that was not anticipated before the scenarios were composed. The classification task was

to understand how this behaviour can be abused to launch an attack on the application.

We use the classification scheme [78] presented in Chapter 4 to explore various ways in

which that trace can be misused. The classification scheme [78] states that there are

104

CHAPTER 6. CASE STUDIES AND EVALUATION6.3. CASE STUDIES APPLICATIONS

Figure 6.3 IS detected in Case Study 1 web application. Happens when the Admin
requests that the page is locked after the system had checked that the user is authorised
to edit the page, which subsequently allows the user to continue to edit the page.

five unauthorised security results of attacks: increased access to resources, disclosure

of information, corruption of information, denial of service and theft of resources. We

used this information to consider the ways in which the execution of that trace could

result in loss of data or cause denial of service, and what resources may be targeted.

The classification scheme also lists the types of attackers that may execute the trace.

Reflecting on the taxonomy, the types of attackers we found who may attempt to break

into the web application are:

• hackers - attack computers for the challenge, the status or the thrill of obtaining

access.

• vandals - attack computers to cause damage.

• voyeur - attack computers for the thrill of obtaining sensitive information.

• spies - attack computers for information to be used for political gain.

• corporate raiders - employees (attackers) who attack competitor’s computers for

financial gain.

105

6.3. CASE STUDIES APPLICATIONSCHAPTER 6. CASE STUDIES AND EVALUATION

Table 6.3: Detected Potential Attacks found in the Case study 1 web application

Attack Name Attack Category Target Hacker type Objective
resource

1 Unauthorised edit Increased Access to resources Pages voyeur, hacker adds/removes sensitive data
after a page lock & Corruption of Information vandals, adds false/misleading

corporate raiders information
2 Overwriting previous Corruption of Information Pages hacker, vandals, hides data for personal/

edit corporate raiders political gain
3 Sensitive data loss due Corruption of Information Pages hacker, vandals, Causing intentional loss

to malicious page locks & Disclosure of Information corporate raiders of data
4 Unauthorised edit after Increased Access to resources Pages voyeur, hacker adds/removes sensitive data

a role is revoked & Corruption of Information vandals, adds false/misleading
corporate raiders information

5 Re-saving deleted page Disclosure of Information Pages hacker, vandals, either reloading hidden data
corporate raiders to reveal sensitive data,

or cause inconsistency
6 Overwriting history Corruption of Information History hacker, vandals, hides data for personal/

files files corporate raiders political gain

The results of threat detection by this classification are presented in Table 6.3. A

general observation of the taxonomy for categorisation of attackers is that the names

reflect on the objective of the attack. It opens up options as to what the application

might be used for (for example, the pages might be used for political purposes); thus,

allowing us to think of a broader range of misuses of the application, which may be

unknown in advance (who will use the general-purpose applications?). In the above case,

the pages can be used for many different purposes: from personal purposes to writing

version information about software to political usage. We can also see that the pages

may be edited by different roles with different access rights. The realisation of different

objectives behind the attack, and the roles involved, gave clues to abusive behaviour.

6.3.1.3 Security ISs Results

In this section, we will breakdown the results of the detected ISs in details, their destruc-

tive execution outcome, who may initiate the attack, and how it is accomplished.

• IS 1 (unauthorised edit) occurs because although the administrator has requested

a lock on the page, the user still successfully edits the page. This violation occurs

because as far as each individual process can locally tell, the scenarios are proceeding

according to the given specifications (namely, scenarios 2-3 and 4-5). That is: (1)

the user is checked for authority and it is ensured that the page was not locked when

106

CHAPTER 6. CASE STUDIES AND EVALUATION6.3. CASE STUDIES APPLICATIONS

the user edited the page; and (2) the administrator locked the page. As these two

scenarios interleave, the result is not as expected when each is executed on its own.

This IS (shown in Figure 6.3) models a vulnerability in the system that permits: (1)

an access control violation since the user gets access to modify the web page even

after the administrator has requested a lock on it due to timing conflicts; and (2)

data integrity violation since the state of the data would have been modified after

the administrator had requested the lock on the page.

• IS 2 (overwriting previous edit) occurs when two users attempt to perform an edit

operation at the same time. The application attempts to handle concurrency by:

(1) creating a backup file of the web page; then (2) writes the results back to the

history file with the appropriate version number; and (3) displays the last version

of the page. Such an operation fails to perform as expected because the application

generates the version number from the last version number created in the file. The

IS detected presents a possibility of the same version number being issued in both

processes if each requests the version instantly. Thus, when two users request a

version number, the application checks the last backup file to determine the next

incremental version number, and mistakenly sends it to both users. Eventually, one

of the users overwrites the results of the other because his submission contains the

same page number and version. The security consequence in the system is a loss of

data, which might be intentional, seeking to cause a denial of service attack in the

system or to hide data that holds evidence against one of the users.

• IS 3 (sensitive data loss due to malicious page locks) occurs when a user submits

sensitive data, and because a page had been locked by the admin, data transported

over the network is lost and an error is returned. An administrator may lock pages

on a temporary basis; for example, during maintenance of the pages, a malicious

administrator may intentionally lock pages to cause loss to the company. This priv-

ilege overpowers the admin and it violates the security’s ‘principle of least privilege’

107

6.3. CASE STUDIES APPLICATIONSCHAPTER 6. CASE STUDIES AND EVALUATION

[154], where every process or user should operate using the least amount of privi-

leges necessary to complete the task. In addition, errors are a common source of

disclosure of sensitive information, where the system fails to terminate correctly,

leaving data unhandled in the memory.

• IS 4 (unauthorised edit after a role is revoked) is similar to IS 1; both IS threats

model the behaviour of a user attempting to modify a web page. In IS 1, the

system administrator changes the state of the web page to make it locked (hence,

uneditable), and in IS 4 the administrator changes the access rights assigned to the

user. IS 4 occurs because the application does not mediate access to the resources

during checks and during usage. This breaks the security principle of ‘complete

mediation’ [154], in which every access to an object must be checked for authority

just before its use. The security consequence in the system is that users gains more

privilege than is authorised, which results in the violation of data integrity and loss

of data.

• IS 5 occurs when a user edits a page that is concurrently being deleted by the

administrator, which is then saved by the user. Because the user holds a temporary

copy of the original file, the temporary file is then written back into the system,

though the administrator deleted the original copy. This behaviour could allow

disclosure of information if the deleted page contains secret information.

• IS 6 (overwriting history files) is a variation of IS 2 but with more impact. When the

user can mistakenly overwrite a previous edit due to an incorrect version number

system, then a malicious user can submit maliciously formed pages (with a forged

name and version number) to overwrite previous history files. This is not a straight-

forward attack; for it to be successful, the attacker would need to know the version

numbers of all pages he intends to corrupt. Note that the pages will not be deleted,

because the user does not have the authority to delete.

108

CHAPTER 6. CASE STUDIES AND EVALUATION6.3. CASE STUDIES APPLICATIONS

Table 6.4: Refinement summary for Case Study 1

Refinement IS detected
IS 1 Added function: checkLockStatusAndLock 3 positive IS

and modified the architecture flow.
IS 2 and 6 Removed function: calculateVersion 0
IS 3 Added internal method to store user data N/A

in data Sessions or alternatives
IS 4 Added function: authenticate 1 positive IS
IS 5 First refinement: Added function: checkOriginalPage 1 Security IS

Second refinement: modified architecture flow to 0
temporarily lock the original file to be edited.

These attacks are similar in the sense that they occur because each process is unaware

of the global behaviour of other components, and instead depends on local information.

The approach was able to detect four types of threats out of five presented in the classi-

fication scheme [78].

6.3.1.4 Architecture Refinement Results

To perform a systematic refinement process over the detected threats, we will revise each

threat one at a time; and as we modify the architecture model, we will retest the archi-

tecture to ensure that the refinement did not introduce new, unknown behaviours. We

store every detail about the refinement (eg, revisions, additions) This step will prevent

the breaking of the security of the system as new refinements are performed. It is pos-

sible to refine several related vulnerabilities in one step if the refinement will address all

vulnerabilities using one fix (as we did with ISs 2 and 6 in this case study) to speed up

the process; however, it is not recommended to apply all changes at once, nor unrelated

vulnerabilities, because this will make it harder for testers to identify the source of the

problem. The refinement summary is presented in Table 6.4.

1. (Addressing IS 1): In order to prevent an unauthorised edit after a page lock is

executed, the locking mechanism needs to be refined to address its fundamental

design limitation. Rather than performing the authorisation of an edit in one place

(during the edit request), we can instead check the authority just before the edit

109

6.3. CASE STUDIES APPLICATIONSCHAPTER 6. CASE STUDIES AND EVALUATION

is committed so that, if an administrator locks the page after an edit is requested,

the system can double-check the authority at the second time for final confirmation,

and write-lock it until we finish writing the file. To refine the architecture, we

needed to insert the second check into the model, and add a modified version of the

checkLockStatus to perform a temporary write-lock when an update is committed.

We then retested the architecture for new ISs. The IS approach detected three new

positive ISs that do not impact the system. Thus, we committed the refinement of

this phase.

2. (Addressing ISs 2 and 6): Rather than determining the next version number with

respect to the last edited file, a version can be provided on the fly based on the date

and time the server machine recorded while committing the edit requests. This

can be calculated as the last step in committing new changes to the pages. This

synchronised operation will guard against multiple-versioning and will prevent the

overwriting of files because each version will depend on a specific moment in time

of the server machine. The refinement of this IS involved removing the calculat-

eVersion method from the interleaving scenarios, instead making an internal call in

the application to calculate the version based on its date and time. Unfortunately,

the internal call cannot be modelled using the IS approach, because ISs are not

concerned with internal behaviour; they are instead concerned with the observable

communication between components (ie, message sharing). Thus, the limitations do

not effect the IS’s detection ability. The refinement result is successful; it prevented

the ISs detected in the original architecture model, and no new IS appeared as a

result.

3. (Addressing IS 3): To prevent sensitive data loss, if the user editing a page is

authorised, we need to include a functionality allowing for temporary storage of

user data before the data is transmitted over the network. In situations where an

error takes place, the user will be able to restore his data and attempt another

110

CHAPTER 6. CASE STUDIES AND EVALUATION6.3. CASE STUDIES APPLICATIONS

submission. This can be done by storing the user data in temporary data structures

(such as sessions) that can be retrieved in situations where an error takes place.

This refinement cannot be modelled because it is an internal call within the web

application.

4. (Addressing IS 4): To prevent a user from editing a file after being revoked, we have

applied the same principle as the first refinement except that the check takes place

for the user as well. This means that the user is checked for authority twice before

he can make a change to the page. To refine the architecture, we needed to insert

the second check on the user-that is, to ‘authenticate’ him- to perform a user status

check before the file is temporarily locked when an update is committed. We then

retested the architecture for new ISs. The IS approach detected one positive IS that

did not impact the system. Thus, we achieved the refinement of this phase.

5. (Addressing IS 5): To guard against the user rewriting a deleted page, we need to

commit new versions of pages only in the condition that the original page exists.

This means that we need to add another functionality that checks the existence of

the original file being edited. However, this refinement caused another IS where

it was possible between the check operation and the rewriting of the file, and the

original file was deleted. The second refinement involved performing a temporary

write-lock on the original file until it is rewritten, and then releasing the lock.

This will guard against two problems: (1) rewriting deleted pages; and (2) a race

condition between the check and the writing of the new version. Retesting for ISs

did not detect emergent behaviour.

To summarise, from the original architecture model and the six ISs detected, through

refinement, we were able to move to a more secure architecture that only exhibited pos-

itive behaviour. Figure 6.4 represents the new hMSC model of the architecture. As the

refinement continued, we were able to confirm that the changes were acceptable before we

committed to the refinement change. We found that the original refinement to address IS

111

6.3. CASE STUDIES APPLICATIONSCHAPTER 6. CASE STUDIES AND EVALUATION

Figure 6.4 Moving from less secure architecture, to a more secure refined architecture
for case study1 after the changes in Table 6.4 are applied.

Figure 6.5 Security Impact of the IS approach for Case Study 1. The x-axis values are
gathered from the classification results presented in Table 6.3.

5 was not secure, and we considered another change before we accepted the final archi-

tecture. We have also seen that this process is systematic and guided by the approach.

It is possible to first prioritise the threats based on the security impact of each one using

the classification scheme presented in Section 6.3.1.2 to overcome any time (budgets do

not help). More importantly, the refinement was done incrementally, and the approach

responded to refinement changes by searching for additional behaviours that may have

appeared as a result of the change.

112

CHAPTER 6. CASE STUDIES AND EVALUATION6.3. CASE STUDIES APPLICATIONS

6.3.1.5 Summarising the Findings of Case Study 1

In this study, we propositioned that the introduction of the IS approach will (1) allow for

the detection of threats in the architecture, and (2) guide the refinement to produce a

more secure architecture. We have mentioned in section 6.2.2 that the satisfaction of the

first proposition is measured by the number of Security ISs detected.

• In this case study, we detected sixteen ISs, of which six pose threat behaviours

that the attackers may perform to violate the security of the application. The

graph presented in Figure 6.5 shows the security impact with and without the IS

approach. We can read from the graph that the approach detected more sources

for information corruption due to the nature of the application domain. The other

10 positive ISs were used to check the architecture’s conformance with the desired

functional requirements. These positive traces provide an extended view of the

functional requirements because we are no longer limited to viewing the functional

requirements as single, individual scenarios; instead, we are now viewing the runtime

behaviour of functional requirements to verify that the functionality is used correctly.

Our inspection of the 10 traces confirmed the correct usage of scenarios. The six

Security IS traces were reviewed in details Section 6.3.1.3.

• We have also mentioned in section 6.2.2 that the satisfaction of the second propo-

sition is measured by the number of Security ISs detected before and after the

refinement. We have seen in Table 6.4 that the refinements were either solving the

security threat for which no new Security IS arise (as in the refinements of ISs 1, 2,

3, 4, and 6), or that less than the initial six threats we started the refinement (as

in IS 5).

The conclusion we make is that, the propositions we have set in the initial case study

have both been satisfied, and that from these preliminary results provided us with very

useful insight into the security posture of the application and, in particular, that the IS

approach seemed to be well-suited for the detection of potentially corrupt information.

113

6.3. CASE STUDIES APPLICATIONSCHAPTER 6. CASE STUDIES AND EVALUATION

6.3.1.6 Discussion

We can observe that the use of the IS approach detection in security testing is beneficial

to complement the limitations in the existing security testing approaches (as discussed

in Chapter 2). The reason as to why existing techniques are unlikely to detect these

threats is that existing approaches execute scenarios in a sequential order. In contrast,

the IS approach takes into account the concurrency nature of multi-threaded applications,

and studies the occurrence of unexpected interactions between components. This case

study demonstrates the ability of the IS approach to detect emergent behaviour that

affects the security posture of the application. Incorporating the IS approach in the

security testing process will help testers to automate the process of detecting threats on

the architecture, which might be overlooked manually [185, 5]. We can also observe the

advantage of the IS approach that allows testers to think outside of the specifications. Such

knowledge is very important for security, since attackers target implicit assumptions made

by designers. Because the achievement of software security will only happen if security

testers detect threats before attackers exploit them, the results in this case study indicate

that this approach is proactive in detecting malicious behaviours in a given architecture,

and will allow us to protect the software before attackers exploit its weaknesses. The case

study validates the threat-detection capabilities of the IS approach and its application for

security testing.

Another angle of interest deals with the concept of scenarios used in the IS approach

that allow us to move back and forth between the functional requirements and the ar-

chitecture. The architecture modelled the composition of the requirements presented in

Figure 6.2, and its traces represented the message ordering of the scenarios in a composite

manner. This means that each trace models one execution of the architecture from start to

finish. A trace example is: login > loginRequest > lockPage > forwardLockRequest >

checkLockStatus > setPageLocked. These sequences of traces allowed us to verify the

conformance of the architecture with the initial set of scenarios (with respect to the overall

desired behaviour when the requirements were composed). The IS approach goes through

114

CHAPTER 6. CASE STUDIES AND EVALUATION6.3. CASE STUDIES APPLICATIONS

all possible traces in the architecture (the desired traces, and the detected ISs).

The advantage of an IS is that it allows us to replicate dynamic behaviours to detect

concurrent faults that happen at very specific moments in time. Attempting to find con-

current faults in live systems can be technically challenging, because there is no guarantee

as to how long the application must be run before an emergent behaviour is detected. For

example, when we test the usage of 100 users at the same time, the testing process may

not reveal the condition where two users commit a simultaneous action. These conditions

are hard to identify using random live executions unless they are specifically tested for.

On the other hand, IS allowed us to systematically identify the condition to prevent the

possibility of overlooking critical conditions.

6.3.2 Case Study 2: Cloud application

In this case study, we make three propositions about the introduction of the IS approach:

(1) it allow for the detection of threats in the architecture, (2) it will adapt to changes in

agile-like developments, and (3) introducing SecArch as an enhancement version to the

IS approach will improve the search-space of threats, and it will result in the number of

threats detected using SecArch being greater than the number of those detected using

the IS approach. The case study aimed at testing the potential of the approach for

testing the security of architecture interfacing with the cloud, a dynamic and unpredictable

environment where emerging scenarios are probable due to an unpredictable mode of

execution. This case study was conducted in three stages. The first stage was aimed at

testing the potential of the approach and its applicability to an industrial setting. The

application also aimed at soliciting an unbiased view of the approach’s potential when

applied by a industrial-party architecture team (comprised of two senior architects, an

MSC student and 2 developers). The results of this stage were published in [53]. We

built on the results of the first stage to evaluate the adaptivity of an IS approach in

which we added more functionality. We observed that the IS approach adopted the new

functionalities and revealed new ISs. In the third stage, we applied SecArch (an extended

115

6.3. CASE STUDIES APPLICATIONSCHAPTER 6. CASE STUDIES AND EVALUATION

approach to the IS as described in Chapter 5) to the outcome of Stage 2 in order to

test its effectiveness in detecting additional ISs. The application revealed further ISs as

documented in Section 6.3.2.4. For all these stages, we followed our method protocol

described in Section 6.2.2.

In the following Sections, we will: (1) introduce the case study; (2) briefly discuss the

method and results of the industrial case study as a background to our case study; and

(3) compare the outcome of both case studies with respect to the IS approach. We will

then show (4) the application of SecArch to the rest of our case study.

6.3.2.1 Industrial Cloud Case Study Background

The case study was provided by Xactium Limited1. The purpose of the case study was to

develop a secure architecture that interfaced between a bank and the cloud environment

as a means of provisioning risk management services related to the bank’s business [53].

The bank had a proposal for adopting the prominent SaaS cloud provider, Force.com,

to process their risk data. The design of the architecture had undergone many changes,

and due to privacy concerns, this case study was performed on the initial design of the

architecture only. The case study consists of 36 files with total number of 2739 lines of

code. The desired functionality as identified by the industrial-party form 11 functional

scenarios that need to be handled securely by the architecture as shown in Table 6.7:

(1) synchronising data across local databases and the cloud; (2) registering new users to

the secure architecture; (3) subscribing users to cloud applications; (4-5) refining private

fields and decrypting/encrypting of new fields; (6) user withdrawals; (7-8) viewing secure

and non-secure data (including decryption); (9) revoking compromised keys; and finally

(10-11) submitting secure and non-secure data (including encryption). The architecture

consists of seven components with two types of users: registered users and administrators.

1http://www.xactium.com

116

CHAPTER 6. CASE STUDIES AND EVALUATION6.3. CASE STUDIES APPLICATIONS

6.3.2.2 Stage 1: Industrial-Party case study

The case study was conducted on an industrial case study with the involvement of archi-

tects from Xactium and Salesforce.com. The case comprises an activity to evaluate the

architecture of a bank application for security when deployed in the cloud. The industrial-

party where provided with the necessary details to use the tool correctly, where we held 30

minutes session explaining the tool. We also introduced them to the method protocol, the

data collection plan, and how to evaluate the outcome of the results, which we included

in Section 6.2.2. The case study began after the tool was thought to be simple to use by

the group. The scenarios of this case study and the desired hMSC were designed by the

industrial-party. We have then held monitoring sessions to observe their usage to ensure

it remains correct, and that the data is collected consistently. The outcome of their case

study demonstrated the new modalities of IS applicability to industrial setting. They

presented an architecture evaluation approach suitable for the dynamic unpredictable en-

vironments [53], such as the cloud. They have combined the benefits of ATAM and IS for

evaluating the security quality attributes of architectures in this domain, where they have

addressed weaknesses in the static analysis architecture evaluation method (ATAM) by

enriching it with innovative ideas from a dynamic analysis method (IS approach) to gener-

ate subtle scenarios which may lead to security attacks on the architecture if undetected.

Their results indicated that their combined approach found additional security scenarios

beyond the plain ATAM, resulting in new risks and trade-off points. In particular, they

concluded that the IS approach was able to detect critical security scenarios that were

not captured with the use of static analysis ATAM alone.

Settings and Results of Industrial-Party case study Their study covered scenar-

ios: (4-5) viewing secure and non-secure data (including decryption); and (7-8) submitting

secure and non-secure data (including encryption) to the cloud. The first ISs detected

corresponded to the case in which the client makes a web service call to encrypt a sensitive

field value but an attacker is able to manipulate the web service to perform a decryption

117

6.3. CASE STUDIES APPLICATIONSCHAPTER 6. CASE STUDIES AND EVALUATION

Figure 6.6 IS attack reported by Funmilade et al [53].

• Bank staff member sets out to encrypt a sensitive data field (eg, Net Loss value).

• Web service queries Security Manager for sensitive status of this data field.

• Web service passes the request to the Security Manager.

• Security Manager returns result indicating that the data field is sensitive.

• Instead of calling the encryption component, the malicious web service consumer calls the
decryption component and passes the pre-recorded ciphertext to it as parameter value.

• The web service returns the actual value of the Net Loss in plaintext.

Table 6.5: Industrial-Party case study results. Results indicate a detection of 2 ISs of
which one affects the security status.

Scenario No. IS detected Positive Security IS

Scen4 Scen7 Scen5 Scen8 2 1 1

operation instead. Such a vulnerability could be exploited to perform a key replay attack

on sensitive fields. This attack could be achieved by first requesting an encryption of a

sensitive field value, and then subsequently requesting a decryption with some previously

compromised key. The detected IS is not trivial, as this represents a security risk that

could lead to further security scenarios when examined from a technical/business per-

spective; hence, it was classified as high-risk. Their description of the attack is presented

in Figure 6.6. The IS detected in the first phase of the evaluation was added to the top

scenario list of the ATAM and the architecture was subsequently revised to address it.

Table 6.5 presents the results of the industrial findings.

Discussion The observation we gain from this case study is that the IS approach

was used to complement a manual evaluation process (ATAM), which did not detect

the Security IS threat reported by our approach. This shows how the IS approach can

provide better insights when evaluating dynamic and unpredictable environments, because

it focuses on the dynamic behaviour that may not be visible at the static level of the

communication (that is used in ATAM).

118

CHAPTER 6. CASE STUDIES AND EVALUATION6.3. CASE STUDIES APPLICATIONS

6.3.2.3 Stage 2: Testing Adaptivity

Software is made to evolve in response to changes in its context and requirements. Changes

may be needed to reflect business needs, new regulations, faults or corrections. As the

system evolves, security concerns need to be analysed in order to evaluate the impact

of changes in the system [182]. Changes in functionality may introduce security-related

vulnerabilities that need to be re-analysed to investigate the impact of the change in the

system. The issue with maintaining security while introducing change is thought to be

challenging due to the ad-hoc nature in which changes are handled [182].

In this part of the case study, we proposition that the IS approach will respond to

changes in the functionality of the architecture to allow testing agile-like architectures.

We test the satisfaction of this proposition by studying the ability of the approach to

(1) testing the addition/removal of new sets of functionalities to an existing iteration

(possibly created by another team), and (2) combine two completed iterations together.

We consider adaptivity with respect to agile software development [95] because agile

development is an iterative, incremental approach to developing and releasing software.

Agile principles include commitment to timely and ongoing software deliveries, changing

requirements, simplicity in approach and sustainable development iterations. Its practices

include frequent releases, ongoing testing and stakeholder participation throughout the

development process. We thus proposition that the application of the IS approach at the

architecture level supports the principles of agile development [96]. We aim to show that

the timeliness of the approach supports modern/current development processes.

In Section 6.3.2.1, we looked at the set of desired functionalities in the form of scenarios

of the case study, and we have seen that the industrial-party case study has tested the

composition of four of the core functionalities. We consider this case study to be the first

iteration of agile development, and choose to continue with the second iteration, which

involves adding the seven additional functionalities to the existing set. The case objective

is to exemplify how IS can support agility when the teams developing and testing the

iterations are different.

119

6.3. CASE STUDIES APPLICATIONSCHAPTER 6. CASE STUDIES AND EVALUATION

Composing Scenarios Due to limitations in the scalability of the LTSA-MSC tool,

composing all scenarios together caused state explosion. To solve this, we have separated

the scenarios (shown in Table 6.7) into groups as shown in Table 6.6. Grouping of scenarios

took into account that:

• Determined attackers rely on probing an unexpected sequence of actions [177]; thus,

inspecting different compositions of scenarios gives better coverage to account for

possibly unpredictable modes of use; and that

• Testers’ assumptions about the system usage may be subjective and may not rep-

resent the real usage.

To balance the above two considerations, we have chosen certain compositions of sce-

narios that convey meaningful paths of possible interactions that may potentially cause

problematic compositions, such as the simultaneous accessing of a shared resource like a

user key or a local database. For example, Scenario 2’s ‘User registration’ and 3’s ‘Sub-

scribe’ are sequential processes that occur at the start of the user’s processes, and prevent

the user from performing any other operations until both are completed. Furthermore,

Scenario 9’s ‘key revoke’ is only relevant when we are dealing with encryption-related

scenarios (such as Scenario 4). We also wanted to test rare compositions of scenarios

that may be triggered by attackers, such as an administrator interfering in the user’s

behaviours. Our two-dimensional approach supports a balanced test coverage with min-

imised subjectivity that is tailored to suit security-testing requirements.

Initial Results of Adaptivity Once the scenarios were readily composed, the search

for ISs yielded a total number of 22 ISs, of which 7 of these were classified as Security

ISs as shown in Table 6.6. The table reflects a successful integration between the first

iteration conducted by the industrial-party case study (shown in Table 6.6 as Combo6),

and the rest of scenario combinations 1-7. These results indicate two aspects of testing:

• We were able to test the system without direct interaction with the first agile itera-

tion (Combo6), as shown in the scenarios of Combo1 in Table 6.6. This would allow

120

CHAPTER 6. CASE STUDIES AND EVALUATION6.3. CASE STUDIES APPLICATIONS

the testing of a coherent set of functionalities that may not interact with other sets

of scenarios.

• We have also tested different levels of interactions with the first iteration (as in

combinations 3 and 4) in order to study the results of adding new functionalities

into the system, and to investigate how the additions can break the security of the

first tested iteration.

Thus, the approach reflected flexibility in testing either the development of a new

iteration or the integration of existing iterations together. Therefore, the IS approach

satisfies the proposition that the IS approach will respond to changes in the functionality

of the architecture to allow testing agile-like architectures (as we stated in Section 6.3.2.3).

This is of particular importance for the component-based development industry, where

different companies might create components at different times; thus, testing components

individually as well as their integration with other components is an essential part of

testing. It also shows how the approach is test-driven and focuses on reusing and testing

the integration of components built iteratively, and ensuring that when components are

created, a correct overall behaviour can be maintained.

We can also read from Table 6.6 that the testing of new functionalities triggered new

emergent behaviour that needs to be analysed before the system is developed further.

The last column in Table 6.6 presents the number of Security ISs detected on different

scenario combinations. We can see that scenario combinations 2 and 3 (with a total of 6

and 4 ISs), have more gaps in their specifications than combinations 1 and 6 (with a total

of 1 and 2 ISs). This indicates that when scenarios are closely related but do not have

strong synchronisation between processes, different behaviours might result. For example,

if we consider scenarios in Combo3, where we have a user manipulating sensitive data and

changing the security settings of fields, which motivates an administrator to revoke that

user, then the results can vary; for example, either the user still manages to corrupt data,

or important data might be lost due to the clash between the two actions.

121

6.3. CASE STUDIES APPLICATIONSCHAPTER 6. CASE STUDIES AND EVALUATION

Table 6.6: Application of the IS approach in the second development iteration of Case
Study 2. The results show the detected ISs in the combination of scenarios. These results
indicate that the seven additional functionalities were adapted into the existing set (as
studied by the industrial-party shown in Section 6.3.2.2), and that we were able to reveal
new ISs from different compositions of scenarios.

Scenario No. IS Security
Approach IS

Combo1 Scen10 Scen9 Scen1 Scen2 1 0
Combo2 Scen3 Scen6 Scen5 Scen1 6 1
Combo3 Scen5 Scen4 Scen6 Scen10 4 1
Combo4 Scen1 Scen11 Scen10 Scen6 2 0
Combo5 Scen3 Scen11 Scen6 Scen5 3 1
Combo6 Scen4 Scen7 Scen5 Scen8 2 1
Combo7 Scen9 Scen1 Scen10 Scen11 4 3

Totals 22 7

Due to the size of the results, the details of the 7 Security ISs can be found in Appendix

A. Given the nature of the application and its clients, we found that the types of potential

attackers on the software are:

• corporate raiders - employees (attackers) who attack competitors’ computers for

financial gain.

• vandals - attack computers to cause damage.

• voyeur - attack computers for the thrill of obtaining sensitive information.

• professional criminals - attack computers for personal financial gain.

6.3.2.4 Stage 3: SecArch Case Study

In Chapter 4, we discussed the conceptual importance of the IS approach in detecting

security vulnerabilities, and we discussed the negative effects of inconsistencies and hidden

interactions on the security of software from a single behaviour-view. In Chapter 5, we

presented an incremental architecture-centric approach for security testing (SecArch),

which merges the IS approach and race condition analysis techniques to systematically

guide testers in detecting vulnerabilities and evaluating the architecture’s security posture.

122

CHAPTER 6. CASE STUDIES AND EVALUATION6.3. CASE STUDIES APPLICATIONS

This method extends the IS approach to enhance its search space such that we can discover

more emergent behaviours. We have found [6] that even though we detected all possible

ISs in the behaviour model (ie, reached the assumption of completeness), we were not

able to detect the scenarios we aimed to discover.

For this part of the case study, we propositioned that the introduction of SecArch

as an enhancement version to the IS approach will improve the search-space of threats,

and it will result in the number of threats detected using SecArch being greater than the

number of those detected using the IS approach. This proposition stems from the belief

that incorporating structural and behavioural views of the architecture can enrich the

search space to allow us to detect further malicious and emergent behaviours. Smaller

search spaces may imply false senses of security in which a tester believes the system

is free of emergent behaviour, when in fact the search space itself was too limited to

find more behaviours. We have demonstrated in Chapter 5 Section5.1.1.4 that the IS

detection algorithm builds on strong assumptions about the ordering of events, such as

only supporting single-queues (ie, enforcing visual order). Restrictions on queues make

for unrealistic assumptions regarding the components involved in the concurrent system.

To address this limitation, we have proposed the integration of another algorithm (which

we refer to as the Alur’s algorithm [14])), that addresses the detection of race conditions

with respect to the timing constraints of the message, the queuing structure (such as

FIFO), any possible semantic interpretations and can detect conflicts such as causality

cycles and race conditions. We use Alur’s algorithm because it allows us to check for race

conditions based on several queue structures, filling the gap in the IS approach (this is

discussed in greater detail in Chapter 5).

Initialising the Case Study By initialising the case study before we started testing

the integration of the IS approach with Alur’s algorithm, we wanted to test if any of the

scenarios had inherent design flaws. This allowed us to realise what was detectable by

either the IS approach or Alur’s algorithm, and what was detectable only by the SecArch

123

6.3. CASE STUDIES APPLICATIONSCHAPTER 6. CASE STUDIES AND EVALUATION

Table 6.7: System scenarios tested using IS approach [185], and Alur’s algorithm [15].
Results indicate no ISs detected on each individual scenario, and 1 race condition found
in scenario 9.

Alur’s algorithm IS approach

Scen1: Synchronise 0 0
Scen2: User Registration 0 0
Scen3: Subscribe 0 0
Scen4: Set Fields Encrypted 0 0
Scen5: Set Fields Decrypted 0 0
Scen6: Revoke user 0 0
Scen7: View Regulated Data 0 0
Scen8: View Plain Data 0 0
Scen9: Revoke Key 1 0
Scen10: Save Regulated Data 0 0
Scen11: Save Plain Data 0 0

enhancement. Checking each scenario independently could reveal whether the component

had a limited view and needed to be synchronised with other components in that scenario.

Table 6.5 presents the results of testing all of the scenarios individually for IS and race

conditions. Only the ‘Revoke Key’ scenario contained a potential race condition. In

the coming Sections, we will see that providing an incremental approach when searching

for race conditions ensures that hard-to-detect race conditions are dealt with before the

system is built.

Table 6.8: Classifying Race conditions and ISs detected in Case Study 2.

Threat Attacker Objective Results Target Resource
1 RC1 vandals, corporate

raiders
Using wrong key to
encrypt

Corruption of
information

User Sensitive data

2 RC2 vandals, corporate
raiders

Overwrite sensitive
data

Corruption of
information

User Sensitive data

3 IS1 vandals, corporate
raiders

Corrupting sensi-
tive data

Corruption of
information

User Sensitive data

4 IS2 Vandals Damage Corruption of
information
(inconsistency)

Local database and
cloud

5 IS3 voyeur, hacker,
professional crimi-
nals

Gain access to sen-
sitive data

Denial of Ser-
vice, Disclosure
of Information

Webservice

Demonstrating Results Table 6.9 shows that a total of 21 Security ISs were detected,

14 of which were only detectable by SecArch and the other seven we detected using

124

CHAPTER 6. CASE STUDIES AND EVALUATION6.3. CASE STUDIES APPLICATIONS

the IS approach as shown in Stage 2 of the case study in Section 6.3.2.3. To come to

the conclusion that these ISs are security threats, we have classified the test results,

including the potential damage and the objectives behind the attacks (for readability we

provide a summary of Combo1 threats in Table 6.8, full details of which can be found

in Appendix A). Even though the classification scheme allowed variations of attackers

and objectives, which helped us to envision threats, we have experienced two limitations

in its classification. We recall that the classification of unauthorised results was limited

to ‘Increased Access, Disclosure of information, Corruption of information, Denial of

service, and Theft of resources’. There were situations in which a description of the

results of the threat using these terms was not sufficient; for example, the situation that

arose when we needed to describe an inconsistent situation that did not disclose or corrupt

information. We also experienced two instances of damage that could occur without direct

intervention from an attacker. We wanted to model an insider that was not necessarily

from a corporate company. Thus, we have extended the meaning of ‘professional criminal’

to include both outsiders and insiders.

Table 6.9: Results from Case Study 2 for the composition of sets of scenarios using the
SecArch. Scenario names are listed in Figure 6.7. The ‘Maximal Traces’ column repre-
sents the number of traces in the architecture model. These traces are inspected for race
conditions. The ‘Positive Scenarios’ column represents the number of acceptable scenar-
ios detected, and finally the ‘Security IS’ represents the possibly malicious behaviours
detected. The term ‘unique’ represents the security threats that were not found in the IS
approach (i.e. unique to the SecArch approach).

SecArch
Scenario No. Maximal TotalRace Total Positive Security

Traces Conditions ISs Scenarios IS
Combo1 Scen10 Scen9 Scen1 Scen2 9 2 4 1 5
Combo2 Scen3 Scen6 Scen5 Scen1 13 22 4 22 2 (1 unique)
Combo3 Scen5 Scen4 Scen6 Scen10 9 4 3 2 3 (2 unique)
Combo4 Scen1 Scen11 Scen10 Scen6 16 17 9 20 4
Combo5 Scen3 Scen11 Scen6 Scen5 11 7 2 5 2 (1 unique)
Combo6 Scen4 Scen7 Scen5 Scen8 4 0 N/A 0 1 (0 unique)
Combo7 Scen9 Scen1 Scen10 Scen11 10 1 4 4 2 (1 unique)

Totals 72 51 26 54 21 (14 unique)

For demonstration purposes, we will look at the results of scenarios in Combo1 (see

Table 6.9). We have taken four scenarios and composted them together to generate the

125

6.3. CASE STUDIES APPLICATIONSCHAPTER 6. CASE STUDIES AND EVALUATION

architecture behaviour model of these scenarios. Initially, we had one positive IS (see

Figure 6.7), and a total of nine traces of possible behaviours in the architecture behaviour

model (these are the traces checked incrementally for race conditions). All traces were

translated into an MSC form and evaluated individually for race conditions using Alur’s

algorithm. The results from the race condition checks from a security-testing perspective

are as follows:

Figure 6.7 A Positive IS found due to the composition of scenarios ‘User Registration’
and ‘Revoke Key’.

• Race Condition 1: A potential resource race condition in non-FIFO multi-queues

when the administrator fires the two requests ‘deActivateK’ and ‘setNewKActive’.

When a new key is set as active, the compromised key remains active for the user to

continue to use. Consequently, a user could read data from the cloud and attempt

to re-encrypt it using the old key, and any new data re-written by the administrator

(using the new key) will be overwritten by the new data submitted by the user. A

subsequent functional problem to this is that when the user attempts to re-read the

data, it will be decrypted using the active (new) key even though it was written using

the old key, in which case the data would appear unreadable until the administrator

was notified to decrypt it using the old, inactive key. This scenario is modelled in

Figure 6.8. As the figure shows, traces derived from behaviour models represent a

single global behaviour with respect to all scenarios involved in the interaction (ie,

a composition of different scenarios taking place at the same time).

• Race Condition 2: The administrator is able to overwrite newly written data by the

user. This could happen when the ‘writeAllData’ command arrives after ‘sendTo-

Cloud’, resulting in data loss. This could be a common behaviour because encrypting

126

CHAPTER 6. CASE STUDIES AND EVALUATION6.3. CASE STUDIES APPLICATIONS

Figure 6.8 The composition of scenarios ‘Revoke Key’ and ‘Save Regulated Data’ in-
dicates the presence of negative race conditions when the message ‘setNewKeyActive’
arrives after ‘deActivateKey’.

and decrypting large amount of data could take a long time to complete. At the time

of detecting this problem, there was no locking mechanism implemented to prevent

such a problem since the architecture was not initially designed for multi-user access

to the same data.

In order to investigate the negative consequences of these two race conditions, we have

added these race conditions as possible scenarios and tested to see if their presence in the

architecture would reveal another IS. The incremental test cycle detected four new ISs,

described below:

• IS 1: Derived from the interleaving of scen2: User registration and Race Condition

2 causing corruption of user data:

1: fetched data + invalid key + user saves first = corruption of user data

2: new data + invalid key + user saves first = corruption of user data

127

6.3. CASE STUDIES APPLICATIONSCHAPTER 6. CASE STUDIES AND EVALUATION

• IS 2:When the user has sent a request to the web service to save data, the data is

stored in a local database, and the encrypted version is returned back to the user

as a confirmation of data security. Then it is the user’s responsibility to update

the cloud. The IS shows that the last two forwarded messages of data may not be

executed; that is, the user may decide not to send the new data to the cloud even

though they have already been stored in the localDB database. This results in data

inconsistencies between the localDB database and the cloud.

• IS 3: The web service halts in operation after all data is returned back from the

cloud. Depending on how the system is implemented, this data may remain in

the memory if no secure error handling mechanism is in place. An attacker could

intentionally abuse the system to cause denial of service to the web service and to

inspect the memory for resources left open (eg, data memory buffers).

• IS 4: A positive scenario that models an alternative behaviour overlooked in the

design (see Figures 6.9). These scenarios were used to elaborate the behaviour

model.

It is now possible to either continuously increment the search for race conditions

since no more ISs are detected, or stop the search. The stopping criteria are left for

the tester to decide upon based on timing or budget constraints. In this case study, we

have only performed a single incremental cycle to explore the benefit of re-feeding race

conditions into the LTSA-MSC for further IS testing. The same process took place for

each combination of the five sets of scenarios, and results are presented in Table 6.9. We

will summarise the results in the next Section.

Architecture Refinement We want to reflect on how the SecArch approach was able

to identify key weaknesses that require refinement. These weaknesses are identified by

the list of threats enumerated in Appendix A. We will look at three types of refinement

triggered by SecArch to correct the current design:

128

CHAPTER 6. CASE STUDIES AND EVALUATION6.3. CASE STUDIES APPLICATIONS

Figure 6.9 A positive IS that models a valid composition of scenarios ‘Revoke Key’ and
‘Save Regulated Data’

• Preventing undesirable behaviours : As scenarios reflected potential threats in their

sequential form, the process of identifying which of the messages should not be

allowed to execute in that threat scenario was a relatively a straightforward process.

For example, deactivating a key and generating a new one should occur in a single

transaction, where adding a new key should be sufficient to set the new key as

the default (IS 1). Another oversight problem was that the administrator did not

receive any acknowledgement of successful user revocations, which means that in

some situations (eg, synchronisation), the database would not be available to accept

the change (IS 13).

• Adding new functionalities : Other situations allowed us to identify new functional-

ities. For example, in the situation where synchronisation of the database and the

cloud occurs, attempts to modify the database will fail. This would result in the

information loss of any data or requests sent to the database. We need to implement

a buffer that would execute as soon as the database becomes ready to receive data

129

6.3. CASE STUDIES APPLICATIONSCHAPTER 6. CASE STUDIES AND EVALUATION

(IS 21). In addition, an inconsistency between the database and the cloud seems

possible in a number of situations, partially because the transaction for adding data

to the local database does not require encryption for sensitive data, unlike the cloud,

where a user is prompted with ciphertext to be committed to the database (ISs 4,

10, 12 and 18). Another important requirement is the security of the communica-

tion between the cloud and the web service; an eavesdropper is able to intercept

communication that is sent in plaintext (IS 20).

• Revising the access control model : There is an implicit trust in the administrator in-

house, where sensitive data is stored in plaintext in the database and all active and

inactive keys are accessible (which can be dealt with by using third-parties to store

keys). This violates the security ‘principle of least privilege’ [154], in which every

process or user should operate using the fewest number of privileges necessary to

complete the task. In our case, the administrator does not require access to user data

to perform his designated tasks. The use of the SecArch approach detected a number

of situations where an insider might violate confidentiality of the database (ISs 2, 9

and 19). There is also the possibility of a user maliciously changing sensitive fields

to allow data transfer in plaintext (IS 20). In general, this calls for revision of user

access roles and trust levels. We can observe that SecArch is capable of identifying

situations that abuse the principle of least privilege because SecArch explores the

potential interactions among privileged users/processes, so that improper uses of

privileges are identified. A similar situation was identified in Case Study 1. In

addition, it provided a rationale as to how and where we can refine the system by

providing the testers with a precise description of the threat and its location.

Some of the above refinements were discussed with the developers [53], and the justi-

fications we received were: (1) the original plan of the architecture was not designed for

multi-user purpose, which meant weaknesses in the user access roles, as well as lack of

thread-testing and synchronisation. (2) The exposure of ciphertext to users was for the

130

CHAPTER 6. CASE STUDIES AND EVALUATION6.3. CASE STUDIES APPLICATIONS

purpose of usability and sense of security assurance that the data is secured before being

forwarded to the cloud.

Automation and Tool Support As Table 6.9 reflects, the number of race conditions

detected were relatively large compared to security threats detected, which could mean

that the effort required to check these conditions would be laborious. The reason behind

the large number is that we needed to split the scenarios into multiple compositions,

which meant that the race conditions were appearing repeatedly across the scenarios.

This is avoidable using automation in parts of the SecArch process. As we have discussed

in Chapter 3, security testing requires semi-automation, rather than full automation.

Human involvement is needed to counteract the creative nature of hacking. Thus, some

automation is required to reduce labour tasks, such as the avoidance of false positives and

repeated scenarios that were previously detected, or tasks that require high computations,

such as the detection of ISs.

To achieve semi-automation, the following steps can be used to reduce laborious work:

1. Alur’s algorithm provides the detected traces of an MSC diagram in a textual form

(eg, Race 3 (type 2) deActivateKey < − > requestDecKey, which means that the

order of the two messages may alternate). The message semantics of the IS ap-

proach require that messages are unique in their functionality (ie, no two messages

can have the same name with different functionalities), which allows the approach

to synchronise on shared messages (with the same name). Thus, from all MSC dia-

grams, we can compose a list of unique race conditions that are not repeated across

MSCs. This will omit inspections of previously tested traces.

2. Automate the translation of scenarios backward and forward from the LTSA-MSC

(XML) used to detect ISs into UBET (MS common console document), which is used

to detect race conditions. The translation requires a textual comparison between

the two file formats.

131

6.3. CASE STUDIES APPLICATIONSCHAPTER 6. CASE STUDIES AND EVALUATION

6.3.2.5 Summarising the Findings of Case Study 2

In the beginning of the case study, we have stated three propositions where we mentioned

that introducing the IS approach will (1) allow for the detection of threats in the archi-

tecture, and will (2) adapt to changes in agile-like developments. (3) Introducing SecArch

as an enhancement version to the IS approach will improve the search-space of threats,

and it will result in the number of threats detected using SecArch being greater than the

number of those detected using the IS approach. In this section we will summarise the

results of our findings with respect to these propositions:

• In all the stages we covered in this case study, we were able to detect security threats

using the IS approach. In the first stage, the industrial-party reported one critical

threat; in stage 2 we reported seven of 22 ISs that poses security threats, and in

stage 3 we detected additional 21 threats.

• To satisfy proposition two, for an approach to be consistent with agile principles, it

must be able to adapt to changes incrementally as new requirements become avail-

able. We have seen demonstrations of this in the refinement in Section 6.3.2.4, where

we made changes, added/removed functionality and the testing process continued.

In this case study, we showed that we were able to reconstruct the architecture as

the new agile iteration was invoked to add new functionalities. The results of the

compositions presented in Table 6.6 show that we have detected a total of 22 IS sce-

narios, of which seven constitute Security IS threats. The table reflects a successful

integration between the first iteration conducted by the industrial-party case study

(shown in Table 6.6 as Combo6), and the rest of scenario combinations 1-7. These

results indicate two aspects of testing:

1. We were able to test the system without direct interaction with the first agile

iteration (Combo6), as shown in the scenarios of Combo1 in Table 6.6. This

would allow the testing of a coherent set of functionalities that may not interact

with other sets of scenarios.

132

CHAPTER 6. CASE STUDIES AND EVALUATION6.3. CASE STUDIES APPLICATIONS

2. We have also tested different levels of interactions with the first iteration (as in

combinations 3 and 4) in order to study the results of adding new functionalities

into the system, and to investigate how the additions can break the security of

the first tested iteration.

• In order to test the third proposition, we need to compare the SecArch results with

the original IS approach. Tables 6.6 and 6.9 show that in the original approach, we

were able to detect seven potential threats in the architecture model; whereas, using

the SecArch approach, we were able to detect 21 threats in the architecture model

(of which 14 threats where unique to the SecArch approach and were not detected

before using the IS approach). The enhancement allowed us to explore various

conditions that might occur due to a multi-queuing structure, such as the finding

of race conditions in resources processes. With the presence of this information,

we were able to study to see if the presence of race conditions would result in

additional ISs. The demonstration in Section 6.3.2.4 showed an example of this:

from two race conditions, we were able to identify four additional ISs. The same

re-occurred for the other scenario combinations. The security testing implication of

this is important as it allows us to study the effect of presence of malicious behaviour

in the system, and how it can branch further to cause more damage. This is needed

for situations in which refinement is not feasible. Without this enhancement, the

additional 14 threats would have passed undetected. The graph in Figure 6.10

presents a comparison of the impact of the threats detected using the IS approach

and the impact of those detected using the SecArch approach. The results indicates

that: (1) the testing of SecArch is more significant than the IS approach in security

violation impacts and, thus, that its incorporation into the original IS approach

enhances the search space for the IS approach; and (2) that a combination of both

approaches is better at detecting data-related threats (ie, corruption of information,

disclosure of information).

133

6.3. CASE STUDIES APPLICATIONSCHAPTER 6. CASE STUDIES AND EVALUATION

Figure 6.10 Presents the impact of detected threats on the cloud architecture presented
in Case Study 2 using the SecArch approach, and the IS approach. The graph shows that
SecArch was able to detect more situations that were overlooked by the IS approach. The
x-axis values come from the table presented in Appendix A.

6.3.2.6 Discussion

The SecArch approach allowed us to detect the 14 additional security threats, which were

design-specific behaviours to the architecture, in a systematic manner. expert judgement

alone would have suffered from three weaknesses: (1) the fact that it is based on experi-

ence, which makes the results slightly biased, because the testers may be driven towards

what they have previously encountered; (2) ISs are very difficult for humans to detect

because they reflect what each component can visualise during runtime, and how that

visualisation is composed with other components’ limited vision; and (3) the detection

of diverted and interleaving behaviours by humans is likely to be ad-hoc and prone to

errors. SecArch addresses these limitations by drawing the focus onto the architecture’s

design-specific weaknesses that need to be addressed in order to build a trusted, secure

architecture that will behave as intended. This automates the process of detecting ISs

so that we can focus the testing process on what is inherently weak in the design, rather

than basing the testing process on random estimations or trial and error. Following a sys-

tematic approach guarantees the detection of all possible and yet unforeseen behaviours

(from a static view) that could affect the security of the system.

134

CHAPTER 6. CASE STUDIES AND EVALUATION6.3. CASE STUDIES APPLICATIONS

Figure 6.11 illustrates how the iterative process of our approach maps to SCRUM

to produce a working increment of the developed software. The process starts with the

collection of related requirements to be implemented, followed by the prioritisation of

these requirements and then the composition of them incrementally (as done in the first

agile iteration developed by the industrial-party) to produce the first working increment.

The second iteration involved the addition of new requirements as the system evolved to

produce the second working increment of the software. As we demonstrated, the testing

process involved testing the iterations both individually and when integrated with each

other in one increment. Notice that the type of documentation required is light-weight,

and is essential to enumerate the requirements in scaled projects.

Figure 6.11 Mapping between the IS detection approach with SCRUM. This mapping
shows how the steps of the IS approach satisfies the agile principles by promoting continues
evolution.

6.3.3 Case Study 3: Distributed Smart Camera

In this case study, we proposition that the introduction of the IS approach not only will it

(1) allow for the detection of threats in the architecture, and (2) guide the refinement to

produce a more secure architecture, but it will also (3) guide the selection of architecture

alternatives and candidates with respect to the number of malicious behaviours detected

on each candidate architecture. The presence of ISs indicates potential vulnerabilities that

135

6.3. CASE STUDIES APPLICATIONSCHAPTER 6. CASE STUDIES AND EVALUATION

act as a back door for architecture abuse; thus, we base the selection of architecture on the

smallest number of threats detected. The method protocol, data collection and questions

are discussed in Section 6.2.2. We will first introduce the architectures of the Smart

Camera case study. We have chosen this case study for the purpose of: (1) testing the

approach’s applicability in high-dynamic situations with an increased level of uncertainty,

where we have unpredictable and continuous change in topology and data structures;

and (2) studying the approach when the scenarios were not present upfront (ie, only the

implementation). This allows us to compare the approach’s resilience in regards to dealing

with various situations and any potential difficulties that may need to be addressed to

enhance the approach. Two members have tested the architecture, one with security

testing background, and one with architecture and testing background.

6.3.3.1 Introducing the Distributed Smart Camera

This case study is for a smart camera network developed by the EPICS research project

[51]. The network consists of wireless sensor cameras working in a distributed configura-

tion. Their aim of the project is to manage the tracking of objects with respect to the

available camera resources. It consists of twenty-one Java files with 7695 total number of

lines. The cameras start with limited knowledge about the network, such as the number

of cameras, and improve their knowledge through message exchanges. This addresses the

adaptivity of distributed system overtime as opposed to the acquisition of full knowledge

about the cameras upfront. The communication between the cameras uses a passive mul-

ticast approach by sending advertisement messages of their objects to cameras only when

an object is about to leave the field of view (FOV) of its current owner, and sending

messages only to neighbouring cameras. In choosing this case study, we wanted to study

with the following: (1) the dynamic and unpredictable environment, where modes of in-

teraction cannot be predicted (ie, highly dynamic mode/composition), because the static

approaches are unfit to evaluate the possible threats caused by the dynamic composition;

(2) the timeliness and applicability of the IS approach in regards to a real life scenario;

136

CHAPTER 6. CASE STUDIES AND EVALUATION6.3. CASE STUDIES APPLICATIONS

Figure 6.12 Two architecture configurations for Distributed Smart Camera Case Study
3. The green circles represent the positions of four cameras in each of the architectures,
the triangles dispersing from the cameras are the FOVs and the black dots are the moving
objects.

and (3) the scale and dynamic trade-offs in which security is the primary concern.

The two architecture configurations we have tested are shown in Figure 6.12. The

green circles represent the camera position in the view graph, the triangles dispersing

from the cameras are the fields of view (FOVs) and the black dots are the moving objects.

These architectures were modelled using the EPICS simulation package to allow us to

check the accuracy of camera behaviours. We created ten simulation files, five for each

architecture configuration, to represent the position and directional movement of the

tracked objects, as shown by the red dotted arrows in Figure 6.13. The neighbouring

relationships between the cameras in both architectures are shown in Table 6.10. Note

that there is no relationship between Architecture1 and Architecture2.

Table 6.10: Neighbouring relationship between cameras

Cameras Architecture1 Architecture2

1 2 2,3

2 1 1,4

3 4 1

4 3 2

6.3.3.2 Modelling the Distributed Smart Camera

The number of scenarios in the architectures presented in Table 6.11 are extracted using

automated Visual Paradigm tool [135]. We have experienced a number of limitations when

137

6.3. CASE STUDIES APPLICATIONSCHAPTER 6. CASE STUDIES AND EVALUATION

Figure 6.13 Five scenarios to be tested on two architecture configurations for Case Study 3.

(a) Scenario1: Object1 moving from left to right (following the red dotted arrow), crossing the views of all four cameras
in Architecture1 and Architecture2.

(b) Scenario2: Object1 moving from right to left, crossing the views of cameras Cam1 and Cam2 in Architecture1, and
cameras Cam1, Cam2, and Cam4 in Architecture2.

(c) Scenario3: Object1 moving from left to right, crossing the views of cameras Cam3 and Cam4 in Architecture1, and
cameras Cam2, Cam3, and Cam4 in Architecture2.

(d) Scenario4: Object1 moving from left downwards, crossing the views of cameras Cam1 and Cam3 in Architecture1 and
Architecture2.

(e) Scenario5: Object1 moving from top to bottom, crossing the views of all cameras in Architecture1, and crossing
cameras Cam1, Cam2, and Cam3 in Architecture2.

138

CHAPTER 6. CASE STUDIES AND EVALUATION6.3. CASE STUDIES APPLICATIONS

modelling the scenarios using the IS approach, these limitations were directly associated

with the LTSA-MSC tool for detecting ISs in the architecture models:

Table 6.11: Scenarios elicited for Case Study 3: Distributed Smart Camera

Scenario Description

1 Ask For Confidence Confidence value represents how much of the object can
be seen by the camera. The higher it is the stronger the view.

2 Start Tracking Of Object Indicates that the camera acquired possession over the object

3 Start Search cameras send messages to neighbours to find an object

4 Stop Search cameras can send messages to neighbours when an object is found
to stop them from searching and exhausting resources

5 Losing Object Indicates that the object is about to lose the FOV of the camera

6 Ask For Confidence Cameras ask neighbouring cameras about their view of the object

7 Camera Start Tracking Cameras pass possession of objects to other cameras

8 Object Found Indicates that objects have entered the FOV of some camera

9 Remove Tracking Internal camera call to remove an object when when the camera
stops tracking it

• Many camera moves relied on the internal state of its data structures, such as the

list of neighbours and the list of advertisedTo cameras (to whom the object was

advertised), which meant that we needed to determine the sequence of the message

calls based on our awareness of the neighbouring tables and the position of the

object. The difficulty was in interpreting the state of the camera in order to make

the correct move, or at least to see potential alternatives in the data structure.

• There were difficulties in modelling when the camera made a decision based on a

value returned (eg, best confidence value). Consider the following scenario in Figure

6.15 (the behaviour is modelled in Figure 6.14): when Object1 enters the view of

a camera, the FOV turns yellow (ie, for both Camera1 and 3), and the camera

tracking the object is linked with the object in green (ie, Camera1). As the object

is leaving the view of both Camera1 and Camera3 with the same confidence levels,

Object1 should not have been granted to Camera3 (notice the red link between

Camera1 and Camera3 indicating the pass of object), because its confidence level is

not better. It means there is unnecessary message exchange and passage of Object1

because Camera3 immediately lost track of Object1 the moment it received it.

139

6.3. CASE STUDIES APPLICATIONSCHAPTER 6. CASE STUDIES AND EVALUATION

Figure 6.14 Simulation movement of Object1 (black circle) in the FOV (yellow triangle)
of cameras Cam1 and Cam3. In figure (a), the object is seen by both cameras, but it
is tracked by Cam1 (represented by a green connector). In figure (b), the Cam3 starts
tracking the object as the objects moves further, and the neighbouring knowledge between
Cam1 and Cam3 is acknowledges in a red connector. In figure (c), the object leaves the
view of both cameras and neither keeps tracking the objects, however, the awareness of
neighbouring relationship remains valid.

• Because objects move, we cannot simulate the position of the objects, so we would

be unable to detect if a camera is falsely claiming a view of an object automatically.

• We could not model timing duration (ie, if an action takes place in a certain period

of time). If we wanted to model a camera that issued a message or made a move after

10 seconds, we would not be able to do so using the limited LTSA-MSC interface.

The above limitations open up future research into how we can further enhance the

search space of ISs to include data structures, internal behaviour and modelling time-

related behaviour. For example, an IS might occur if the component did not advertise to

all its advertisedTo cameras, or it may accept the release of an object to a message that

was initiated outside of its neighbouring relationship.

6.3.3.3 Classifying ISs

Using the LTSA-MSC tool, the total number of ISs detected in Architecture1 are 16, and

36 in Architecture2. The classification process for identifying Security ISs was carried out

by two testers. The method protocol for the classification process is explained in Section

6.2.2. From the total number of ISs in Architecture1, we found two Security ISs with five

140

CHAPTER 6. CASE STUDIES AND EVALUATION6.3. CASE STUDIES APPLICATIONS

Figure 6.15 A scenario modelling the message communication between cameras Cam1
and Cam3. As Cam1 loses the view of Object1, it communicates with its neighbouring
cameras (namely Cam3) to start searching for Object1. Because Cam3 acknowledges that
it can see Object1, Cam1 passes the tracking of Object1 to Cam3.

potential threats, and we found four Security ISs in Architecture2 with eight potential

threats. These Security ISs with their threats are explained in Table 6.12. Reflecting on

the taxonomy [70], the types of attackers likely to attempt breaking into the system are:

• professional criminals - attack computers for personal financial gain.

• hackers - attack computers for the challenge, the status or the thrill of obtaining

access.

• vandals - attack computers to cause damage.

• voyeurs - attack computers for the thrill of obtaining sensitive information.

• spies - attack computers for information to be used for political gain.

• corporate raiders - employees (attackers) who attack competitors’ computers for

financial gain.

The results of the classification are presented in Table 6.12. Identifying the source of

the attackers helped in visualising the different ways in which the system can be abused.

However, situations such as IS3 –and one threat in IS4– were caused by incorrect be-

haviour, and so were not necessarily initiated by an attacker. Having explored how each

141

6.3. CASE STUDIES APPLICATIONSCHAPTER 6. CASE STUDIES AND EVALUATION

attacker might want to attack the system, it was not clear how an attacker might benefit;

for example, from two cameras tracking a single object. This does affect the availability

of the cameras and thus might lead to denial of service when the cameras fail, but the

attackers did not initiate such a process. This backs up the motivation of this research

where we stated that security could be violated by functional composition; thus, focus

on composition should be explored further in the research community. Another limita-

tion we found in classifying the results (ie, ‘Increased Access, Disclosure of information,

Corruption of information, Denial of service, and Theft of resources’) of IS4, in which

the problem was related to one camera giving up ownership of an object, believing it had

successfully passed the track to another camera. The closest option is ‘Denial of Service’

because the cameras cannot perform as expected, though in the security community this

term is often used when an attacker causes such denial of service, and we have said that

the threat in IS4 was not caused by an attacker.

6.3.3.4 Security ISs Results

Consider the following IS (shown in Figure 6.16) that occurs in Architecture2 between

Camera1 and Camera3. The IS composition indicates that Camera3 grants itself posses-

sion over Object1 before it receives responses from other cameras. This would be a valid

move in a situation in which time had expired or a camera had run out of power. However,

because we are not modelling this possibility, the detection is not desirable. This has a

number of security impacts on the architecture:

1. Malicious cameras could grant themselves access over objects to block other cam-

eras from tracking them. This can be achieved by the cameras claiming very high

confidence values. A behaviour of this type can be abused in many ways depending

on the type of system that implements the configurations; for example, a malicious

user may leave unattended luggage in an airport and prevent other cameras from

tracking to see if the luggage is picked up afterwards.

142

CHAPTER 6. CASE STUDIES AND EVALUATION6.3. CASE STUDIES APPLICATIONS

Table 6.12: Classification results of detected ISs case study 3

IS Attacker Target Results Security Outcome
Arch2 IS1 Professional Objects Increased Access, Malicious cameras can grant themselves access

criminal, voyers, Denial of Service, over certain objects to block other cameras from
vandals, hackers, Corruption of Information watching over the objects being tracked, this can
corporate raiders be done by claiming very high confidence values.
Spy, hacker, Network Increased Access, A malicious camera can also intercept the network
voyers, topology Disclosure of Information and reveal everything about the communication
corporate raiders and topology configuration
Professional Cameras Corruption of Information Sends false information to disrupt the cameras
criminal, voyers, Denial of Service, or waste their energy
vandals, hackers,
corporate raiders
Professional Cameras Denial of Service, Camera1 might go offline maliciously, possibly
criminal, vandals, Theft of resource by forced removal, or physical damage.

IS4 N/A Object Denial of Service Camera2 gave up observation of object1 on the
believe that Camera1 started tracking the object,
thus object1 is no longer trackable (until another
camera finds it).

Professional Cameras Corruption of Information Camera4 did not respond, it could have been brought
criminal, vandals, Denial of service down by removal or damage, or the message might
corporate raiders have gotten lost due to intentional inference. An

attacker can set up an antenna near by the camera
to distract the signal strength.

IS5 Professional Camera Corruption of Information Two neighbouring cameras may track the same
criminal, vandals, Denial of Service and exhaust the network. When Camera2 received
corporate raiders object tracking of Object1, Camera1 had already

begun tracking it, thus the stop search is not expected
at this stage. This is caused by delay in Camera4’s
response to Camera2’s confidence value. Message
latency could also be caused by malicious inferance
caused by wireless signal jammers since wireless
cameras transmitters use one of three standard ranges
for transmission: 900MHz, 1.2GHz, and 2.4GHz.

IS6 Professional Camera Increased Access Indicates that Camera3 is claiming to see Object1
criminal, voyers, Denial of Service, when it is outside of its view. It is possible for
vandals, hackers, Corruption of Information malicious cameras to claim they can see an object and
corporate raiders are tracking it even if the information is not valid.

Arch1 IS2 Professional Cameras Corruption of Information Allows a malicious object to exhaust the cameras
criminal, voyers, Denial of Service, by continuously asking cameras to check their
vandals, hackers, confidence, not only will this cause denial of
corporate raiders service, it can bring the camera down due to

exhaustive computations of the confidence value.
Professional Objects Increased Access, Malicious cameras can grant themselves access
criminal, voyers, Denial of Service, over certain objects to block other cameras from
vandals, hackers, Corruption of Information watching over the objects being tracked, this can
corporate raiders be done by claiming very high confidence values.
Spy, hacker, Network Increased Access, A malicious camera can also intercept the network
voyers, topology Disclosure of Information and reveal everything about the communication
corporate raiders and topology configuration
Professional Cameras Denial of Service, Camera2 might go offline maliciously, possibly
criminal, vandals, Theft of resource by forced removal, or physical damage.

IS3 N/A Cameras Denial of Service, Two non-neighbouring cameras tracking the same
object

143

6.3. CASE STUDIES APPLICATIONSCHAPTER 6. CASE STUDIES AND EVALUATION

Figure 6.16 IS detected in Architecture2 indicating possible misbehaviour in Camera3,
where Camera3 tracks Object1 without waiting to receive the confidence value from its
neighbouring cameras.

2. A malicious camera could intercept the network and reveal information about the

communication and topology configuration. This can reveal confidential footage,

how a company operates, who is being tracked, etc. The code given in this study

did not include encryption and, according to the developers, the system was not

designed with security in mind.

3. A malicious camera could send false information to disrupt the cameras or to waste

their energy; for example, asking continuously for the computation of confidence.

There is no guard against such attacks in the code and no authentication of cameras

joining the field. The assumption is that all cameras in the field are trustworthy.

4. In this IS, Camera1 might have maliciously gone offline, possibly by forced removal

or damage that prevented it from responding back to Camera3.

The results of the other 5 ISs detected are as follows:

• Architecture2 IS4: Camera1 received a tracking token even though it lost view of

the object. Camera4 did not respond although it had a better view of the object.

144

CHAPTER 6. CASE STUDIES AND EVALUATION6.3. CASE STUDIES APPLICATIONS

This IS has two implications: (1) Camera2 gave up ownership of the object based

on the belief that Camera1 started tracking the object, and thus Object1 is no

longer trackable (until another camera finds it); and (2) Camera4 did not respond.

It could be out of reach, have run out of power, have been brought down by removal

or damage or the message could have been lost. In the latter situation, the problem

could be related to reliability –or it could be interference related– where an attacker

sets up an antenna near the camera to distract the signal strength.

• Architecture2 IS5: Two neighbouring cameras may track the same object. When

Camera2 received tracking of Object1, Camera1 had already begun tracking it; thus,

the ‘Stop Search’ command is not expected at this stage. Observing the situation,

Camera4 did not respond in a timely manner to Camera2’s confidence value. Thus,

Camera1 had enough time to track the object. Message latency is common in

distributed networks; however, it could also be caused by malicious interferences

caused by wireless signal jammers since wireless camera transmitters use one of

three standard ranges for transmission: 900MHz, 1.2GHz and 2.4GHz.

• Architecture2 IS6: Indicates that Camera3 is claiming to see Object1 when it is

outside of its view. If we consult the configuration of Architecture2, we see that

if Camera1 had passed the object to Camera 2, Camera3 could not possibly see

Object1 because Object1 would be moving towards Camera4 and, thus, is far from

Camera3. It is possible for a malicious camera to claim that it can see an object

and that it is tracking the object even if this information is incorrect. The damage

from this may not be limited to a single object; it can propagate to prevent other

cameras from tracking any trackable object in the field.

• Architecture1 IS2: In the situation in which the object was moving from Camera1

and Camera2 continuously, both cameras kept alternately finding and losing the

object. The problem occurred when Camera1 lost track of the object and, when

it found the object again, tracked it immediately. The correct behaviour requires

145

6.3. CASE STUDIES APPLICATIONSCHAPTER 6. CASE STUDIES AND EVALUATION

that Camera1 ask for confidence first, and if other cameras have less confidence

in their views of the object, only then can Camera1 track the object. This threat

is similar to the IS1 found in Architecture2, but both threats occur for different

cameras with different neighbouring relationships. This configuration also allows a

malicious camera to exhaust the other cameras by continuously asking components

to check their confidence. Not only will this cause denial of service, but it can also

bring the camera down due to exhaustive computations of the confidence value.

• Architecture1 IS3: Both Camera1 and Camera3 started tracking Object1 because

they are not neighbouring cameras in their visual graph. The awareness of neigh-

bouring cameras can improve over time, but with the current limitations, IS de-

tection does not take internal states into account, which means this IS will likely

occur in the beginning of the configuration runs before the cameras recognise all of

their neighbours. However, this may not be the case if the cameras are distant from

each other. This will present an interesting trade-off between levels of security and

utility, whereby security specialists may require the high visibility of an object (eg,

to capture someone’s facial features on more than one camera), and thus accept the

IS as positive, or care more for the availability of the cameras for a longer period of

time since wireless networks suffer from power management issues. This trade-off

happens between integrity and availability as part of the CIA security properties

and can only be determined by the type of critical security level required. A related

trade-off will take place at the level of the network-learning algorithm, which may

be optimised more for utility than security. In such a case, the IS will be nega-

tive because it exhausts the energy of two cameras. In future research projects, it

will be interesting to see how security can guide the network-learning algorithm for

optimised security and utility.

In total, there were 14 positive scenarios detected in Architecture2, and 32 in Architec-

ture1. These positive scenarios were used to confirm the accuracy of cameras’ behaviours

across the architectures. We believe that Architecture1 has more ISs (including posi-

146

CHAPTER 6. CASE STUDIES AND EVALUATION6.3. CASE STUDIES APPLICATIONS

tive ISs) because the number of interactions across its cameras is less than Architecture2

due to the cameras’ neighbourhood configurations. The less knowledge the cameras have

about their surroundings, the more likely it is that the specifications will contain gaps,

and will require higher synchronisation between components.

6.3.3.5 Architecture Selection

One of the propositions we have set for this case study is that the IS approach will guide

the selection of architecture alternatives and candidates with respect to security. We have

also stated that the number of security threats found in each architecture determines which

of the candidate architectures is more secure than the others. From the detected negative

scenarios, we found eight potential threats in Architecture2, and five in Architecture1.

The difference in the number of threats detected is not significant. However, in terms

of the potential impact of these threats, the difference is relatively visible, as illustrated

in Figure 6.17. For example, Architecture2 is almost twice as likely to experience Denial

of Service attack, and has over 70% chance of Corruption of information, compared with

28% chance of Corruption of information in Architecture1. It also has thrice as likely

to experience Increased access. Both architectures have equal chance of Disclosure of

Information and Theft of resources. As a results, Architecture1 is selected as the least

vulnerable architecture.

General Observation: Consider the visual configurations in Architecture1 and Archi-

tecture2 shown in Figure 6.12. The visual configuration indicates that Architecture2 offers

better coverage in terms of tracking possibly malicious objects. However, the conclusion

we have arrived at with respect to the IS detected is that Architecture1 is likely to ex-

perience less security-related threats. This observation indicates the limitations in using

expert judgement alone when testing distributed systems or multi-threaded systems. This

is because expert judgement is likely to make judgements regarding the visual configu-

rations/scenarios that are observable at the static level, as opposed to the real dynamic

behaviour (which is harder to visualise from the top-level view) that is likely to be the

147

6.3. CASE STUDIES APPLICATIONSCHAPTER 6. CASE STUDIES AND EVALUATION

Figure 6.17 Graph showing the difference between the number of detected threats in
architectures Arch1 and Arch2. The results indicate that the threats found in Arch2 are
more significant than those found in Arch1. These numbers are collected from Table 6.12
column ‘Results’

source of security problems. However, human judgement can be used to elaborate the

results further, such as by taking into account the fact that the cameras might be blocked

by a physical barrier, which is one threat that the IS approach cannot detect because it

requires the modelling of foreign objects outside of the functional scenarios. We involve

expert judgement only on detected ISs, and how that specific trace could lead to threats.

We have chosen to only include threats that are detectable by the IS approach to test

the IS approach’s ability to detect threats, and to strengthen the confidence in its fitness

regarding the detection of security threats.

6.3.3.6 Architecture Refinement

We have propositioned that the introduction of IS approach will guide the refinement to

produce a more secure architecture. We have also highlighted a number of conditions to

measure the satisfaction of this proposition in Section 6.2.2. In this section we will review

the introduced refinements to address the detected threats presented in Section 6.3.3.4.

148

CHAPTER 6. CASE STUDIES AND EVALUATION6.3. CASE STUDIES APPLICATIONS

• Architecture1 IS2: The cause of this threat is that cameras can take ownership

of objects when other cameras do not respond. This situation is acceptable when

cameras die or are removed from the network, but in other circumstances it could

be malicious. To address this problem partially, it could be required that cameras

should always reply when they cannot see an object by sending ‘0’ confidence.

However, this will add a communication overhead and will not target the catching

of malicious cameras. Let us explore how we can target each threat:

1. Malicious cameras can grant themselves access to certain objects to block other

cameras from watching the objects being tracked. This can be done by claiming

very high confidence values. The refinement should include a trusted compo-

nent that keeps a list of authorised cameras such that when cameras join the

network, they register themselves, possibly by presenting a valid cryptographic

signature. The registered keeper can announce the new camera by assigning

an identifier to it, which will be used for any future communication with other

cameras. This would guard against malicious cameras sending signals to au-

thorised cameras. However, this may not guard against a trusted camera that

was hacked by a malicious attacker. In practice, problems of this nature are

addressed using intrusion detection by monitoring the behaviour of all of the

cameras and determining abnormal behaviours.

2. A malicious camera can also intercept the network and reveal information about

the communication and topology configuration. All communication should be

done via encrypted channels.

3. Sends false information to disrupt the cameras or to waste their energy. The

above refinements should prevent this threat from occurring.

4. Camera1 might go offline maliciously, possibly by forced removal, or by physical

damage. This would require physical protection.

149

6.3. CASE STUDIES APPLICATIONSCHAPTER 6. CASE STUDIES AND EVALUATION

• Architecture1 IS3: Two non-neighbouring cameras may track the same object and

exhaust the network. This could be handled by requiring that objects send an

announcement of every object they start tracking to the entire network to ensure

that all cameras are aware of which is tracking what. Although this exhausts the

network, the cost of two cameras (or more) tracking the same object is greater

(power-wise). A refinement of this type is architecture-configuration-dependant,

and would require statistically calculating the likelihood of two cameras tracking the

same object against the cost of continuous broadcasting of messages. This raises

the trade-off problem discussed earlier, where we either increase communication

to enhance utility and security as a whole, or reduce communication to enhance

availability (recall that availability is a security property).

• Architecture2 IS1: Refinement options for threats 1-4 have been addressed in Ar-

chitecture2 IS2, as they are of a similar nature.

• Architecture2 IS4:

1. Camera2 gave up observation of Object1 based on the belief that Camera1

started tracking the object; thus, Object1 is no longer trackable (until another

camera finds it). An acknowledgement should be sent to confirm the successful

migration of ownership. When trading-off between communication and utility,

this message may be dropped in favour of more utility over communication.

However, in practice this will not offer more utility because cameras will lose

track of objects (ie, waste of utility). At the security level, the impact of losing

track of objects is more costly than utilising power to send an acknowledgement

message upon every swap of ownership.

2. An attacker can set up an antenna near the camera to distract the signal

strength. This would require physical protection.

• Architecture2 IS5: Two neighbouring cameras may track the same object and ex-

haust the network. This could be handled by requiring that objects send announce-

150

CHAPTER 6. CASE STUDIES AND EVALUATION6.3. CASE STUDIES APPLICATIONS

ments about every object they start tracking to their neighbours. However, this

would not guard against IS3 detected in Architecture1. Thus, we adopt the solution

presented for IS3 to solve both neighbouring and non-neighbouring conflicts.

• Architecture2 IS6: Indicates that Camera3 is claiming to see Object1 when it is

outside of its view. This is very difficult to detect, and requires intrusion detection

by monitoring the behaviour of all cameras to determine its occurrence.

Refinements such as encryption channels are difficult to model using the IS approach.

However, we have studied the refinements for IS 3, 4(1) and 5 to confirm the security

status of the architectures after the refinement. The results are as follows:

For Architecture2 with the Higher Security Impact:

• For four cameras with five scenarios, 31 message overheads were added for refine-

ment. These were distributed across the five scenarios. The behaviour of Scenario

3 had been modified to reflect the new behaviour of the cameras with the new

information provided to them.

• The number of ISs found in Architecture2 dropped significantly, from 14 to 6. The

number of Security ISs compared to the overall total of eight threats, is one, as

shown in Figure 6.18. This IS indicates that Camera2 can send acknowledgement

only to cameras 1 and 3. This may happen if the camera is removed or stopped,

the message is lost or corrupted, or Camera4 is under attack through the use of

antennas or signal jammers to distract signals from reaching the cameras. A future

refinement will be needed to deal with potential message losses, whether intentional

or unintentional. This satisfies one of the measurements of the proposition, where

we highlighted that: ‘If the number of threats detected after the refinement is less

than the number detected initially, then the IS approach produced a more secure

architecture’.

151

6.3. CASE STUDIES APPLICATIONSCHAPTER 6. CASE STUDIES AND EVALUATION

Figure 6.18 Detected negative scenario found in the refined version of Architecture2.
The scenario indicates that camera Cam2 did not inform its neighbouring camera Cam4
about its process of tracking Object1.

For Architecture1

• For four cameras with five scenarios, 32 message overheads were added for refine-

ment.

• The number of ISs found in Architecture1 had dropped from 32 to 21. We found

two Security ISs: (1) Requesting that cameras announce their tracking of objects

did not always protect against two cameras tracking the same object, because when

two cameras see the same object at the same time, by the time they make the

announcements, they have already begun tracking it. This is hard to guard against

because each camera is allowed to make its own judgement given the information it

has. However, a future refinement should involve the adding of a new requirement

in which these two objects negotiate which should own the object (based on the

confidence value). (2) If we only send an announcement when a camera owns an

object, and if we do not send an announcement that the object is about to be lost

to all cameras, then once the cameras find the lost object they will assume that it is

still owned by the camera that sent the announcement. Thus, further refinements

are needed to send an announcement to all cameras when an object is losing its

view of an object. To summarise, in total we had five potential threats in this

architecture, we now only have two threats; this satisfies one of the measurements

of the proposition, where we highlighted that: ‘If the number of threats detected

152

CHAPTER 6. CASE STUDIES AND EVALUATION6.3. CASE STUDIES APPLICATIONS

after the refinement is less than the number detected initially, then the IS approach

produced a more secure architecture’.

6.3.3.7 Summarising the Findings of Case Study 3

In this study, we made three propositions that the introduction of the IS approach will (1)

allow for the detection of threats in the architecture, (2) guide the refinement to produce

a more secure architecture, and will (3) guide the selection of candidate architectures that

is less vulnerable to threats. To briefly summarise the results:

• We have detected 16 total number of ISs in Architecture1, and 36 in Architecture2.

Of the 16 ISs found in Architecture1, two are classified as Security ISs for which five

threats stem from these behaviours. Of the 36 ISs found in Architecture2, we found

four Security ISs for which eight threats stem from these behaviours. Figure 6.17

shows a graph demonstrating the security impact of these threats in comparison.

• We have mentioned in section 6.2.2 that the satisfaction of the second proposition

is measured by the number of Security ISs detected before and after the refinement.

For Architecture1, we had initially found 5 threats before the refinements, and found

2 threats after the refinements. For Architecture2, we had found eight threats before

the refinements, and 1 threat after the refinement. This concludes that we have

satisfied one of the criteria of the proposition: ‘If the number of threats detected

after the refinement is less than the number detected initially, then the IS approach

produced a more secure architecture’.

• From the above results, we have concluded that Architecture1 is more secure than

Architecture2 because it is less vulnerable to threats, with lower security impact.

The conclusion we make is that, the propositions we have set in the initial case study

have all been satisfied, and that from these preliminary results provided us with very useful

insight into the security posture of the application and, in particular, that the IS approach

153

6.4. SUMMARY CHAPTER 6. CASE STUDIES AND EVALUATION

seemed to be well-suited for the detection of potentially corrupt information. The case

demonstrated a novel application of the IS approach in distributed smart camera system;

we saw how the IS approach was used to detect malicious cases of utility manipulation in

which a camera was able to prevent objects from being handed over to other cameras and,

as a result, prevented other cameras from tracking objects. These malicious behaviours

significantly impact the utility of the camera system. We studied the refinement of the

architectures based on securing the detected IS threats, and found that the IS approach

detected a number of trade-offs that were used in the refinement decision process. We

also found situations in which the refinements were anticipated to be secure but, with

further studying, the results did not improve the security posture; additional refinements

are needed to secure the architecture.

6.4 Summary

Testing for security vulnerabilities is complicated due to the fact that they often exist

in hard-to-reach states and appear in unusual circumstances. The analogy that the IS

approach makes with ISs is simple, yet powerful enough to provide a basis for the analy-

sation of the architecture’s security posture. We have used this analogy to address the

detection of any hidden behaviours in the architectures. The IS approach builds on a

sound approach for identifying ISs [185]. The IS approach’s security detection abilities

have been confirmed through different case studies, as was presented in Section 6.3. The

conclusions we made from these case studies are that: (1) The approach is capable of de-

tecting security threats, even in non-closed environments such as the cloud. The approach

takes into account the incompleteness of the architecture model to present a realistic rep-

resentation of multi-threaded systems. (2) The approach is adaptive to changes that

might take place in the architecture, which allows us to retest the architecture’s security

posture as changes develop. This provided insight into whether or not changes should be

committed. To further confirm these claims and extend the confidence of the approach, we

154

CHAPTER 6. CASE STUDIES AND EVALUATION 6.4. SUMMARY

asked three students to conduct case studies on the IS approach to assess the approach’s

ability to detect vulnerabilities while remaining flexible to refinement. The study demon-

strated the promise for future replication. The representative cases provided evidence

that the approach was effective in architecture-centric testing for security. Nevertheless,

the generalisation of the observations is subject to future work and extensive empirical

studies.

The evaluation has explored the fitness of the approach in addressing the detection

of hidden design vulnerabilities in the architecture model. In the first case, we took a

web application’s architecture and examined its security posture to ensure that it did not

exhibit any unknown behaviours. We showed how the IS approach could be used to assess

the security implications of any detected behaviour vulnerabilities. The importance of this

case study is not in the architecture itself, but in how we used the concept of ‘implied

scenarios’ as a way to detect hidden and malicious behaviours in the architecture. We

verified the claim that the IS approach can affect the security posture of the system, and

needs to be tested and addressed through refinement. In the second case study, we showed

how the detection of ISs could provide insight into ways of assisting the architects to make

informed refinements to secure the architecture. We also verified that the IS approach

is adaptive, and thus is capable of responding to functional requirement changes and

assessing how these changes can impact the security of the architecture. This case study

involved the demonstration of how the IS approach could be used to test for security as

the architecture evolves in an agile-driven development. We have also verified that the

IS approach could be used to guide the selection process of candidate architectures with

respect to the number of vulnerable behaviours each contains. We showed that the more

hidden behaviours are identified, the more likely the architecture is to be abused, causing

behaviours outside of the secure range.

The overall results show that the IS approach is capable of detecting security de-

sign vulnerabilities that can be exploited by attackers. We also studied its ability to

systematically guide the architecture refinement process to address the threats detected.

155

6.4. SUMMARY CHAPTER 6. CASE STUDIES AND EVALUATION

We advanced our understanding of the security of architectures when addressed with an

evolution-driven approach. We saw how the IS approach helped in understanding how

refinements can break the security of the system, and how we can use the IS approach to

assess the security of these changes. This issue of maintaining security while introducing

change is thought to be challenging due to the ad-hoc nature of the way in which changes

are handled [182]. The results also demonstrated that the approach was incremental and

iterative, and the addition of new functionalities and the changing of the architecture was

well-adapted. The applications of SecArch have drawn some preliminary observations

regarding the approach’s ability to be merged with existing approaches. We also learned

that the search space of an IS can be enhanced to improve its ability to detect design

vulnerabilities. Even though we looked at how the IS approach can be used to guide the

selection of a secure architecture, research regarding which architecture is more secure

than another is still required.

156

7
Discussion

7.1. ON ARCHITECTURE-CENTRIC SECURITY TESTINGCHAPTER 7. DISCUSSION

In this Chapter, we will provide an evaluation of the approach described in this thesis

and from the case studies in Section 6.3. Using the results and feedback gathered from

the case study, and through our experience of conducting the studies, we will evaluate

the steps and their results. The evaluation of the approach is split between theory and

practical usage.

7.1 On Architecture-Centric Security Testing

The first aspect we discuss is the way in which the process we present in this thesis

facilitates the security testing process at the architecture level. By architecture-centric

security testing, we refer to the detection of emergent behaviours in the architecture model

so that we can test whether the architecture behaves as intended. The testing process

consists of the detection of malicious behaviours, which are scenarios that have security

implications in regards to the architecture and the refinement of the architecture to guard

against the occurrence of the behaviours. The goal is to reach a secure architecture that

behaves as intended. The analogue between regular testing and architecture testing is

the same; rather than working at the code level, debugging an application then fixing the

code, we work on the architecture, debugging it by searching for malicious behaviours,

then fixing it through refinement.

In Chapter 4, we discussed that the presence of ISs indicates limitations in the view of

components about the desired global behaviour, and we saw that detecting ISs manually

is a challenging task due to the computation demand it requires. Such demand is char-

acterised by the concurrent nature of the software, where we need to realise the global

behaviour of the system and all individual behaviours of the components/subsystems, as

well as their composition together, in order to visualise the dynamic behaviour of the com-

munication. In Chapter 3, we discussed the importance of understanding and checking

the compositional security status of the architecture, and we highlighted that attackers

intentionally probe unexpected interactions to make the system behave abnormally [177],

158

CHAPTER 7. DISCUSSION7.1. ON ARCHITECTURE-CENTRIC SECURITY TESTING

and that these unexpected interactions are design vulnerabilities [144] that need to be

tested for. We then summarised that security testing aims to test for behaviours that are

not explicitly specified. We used the concept of ISs as a means to the achievement of this

goal.

7.1.1 Architecture-Centric

We saw that the IS approach, as architecture-centric testing, enabled us to abstract away

unnecessary details where the focus is on the core functionality. We have demonstrated

how security testing can begin at early stages of development, and that this is essential in

order to detect design vulnerabilities (ie, design defects that result from incorrect design

choices). The IS approach focused on testing the architecture design for abnormal and

diverted behaviour. This design-specific approach allowed us to investigate the security

of the design, and provided a systematic guide for testers to address the detected threats.

Our experience with the case studies was that some of the refinements we made success-

fully addressed the threats, while other refinements introduced additional threats. Thus,

we were able to keep track of the security status of the architecture and make informed

decisions regarding the architecture. We saw through case studies that working at the

architecture level helped in the minimisation of the impact of detected threats because

we detected threats early, and refined the architecture before the threats manifested into

the implementation. We used the threats detected to: (1) drive the refinement process to

help us make informed decisions regarding the refinement while avoiding the breakage of

the security of the architecture, as done in Case Study 1 and Case Study 3; and (2) guide

the architecture selection process based on the level of the security threat detected in each

architecture, as done in Case Study 3 (and Case Study 4 in Appendix B). We demon-

strated that the IS approach provided a guided and incremental process for refinement

without the need for architecture refactoring.

159

7.1. ON ARCHITECTURE-CENTRIC SECURITY TESTINGCHAPTER 7. DISCUSSION

7.1.2 Composition

Throughout the applications we viewed in this Chapter, we studied various complications

that arose from the functional composition of the specified behaviours, and we discussed

the security impact of their presence on the architecture. Compositional security requires

that components collaborate to ensure that global security is achieved. The IS approach

took into account that not all compositions will be perfectly secure, and that searching for

unexpected interactions between different components can reveal design vulnerabilities.

The IS approach took the compositional level one step further as it allowed us to achieve

adaptivity and incremental development as functionalities were composed. The outcomes

of the case studies proved that ISs provided valuable information in the understanding of

unforeseen behaviours, and in the detection of vulnerable compositions.

7.1.3 Proactivity

We used the IS approach as a means to proactively anticipate threats and take affirmative

steps to deal with them positively by means of architecture refinement. We saw through

case studies from different domains how starting the testing process at the architecture

level provided early feedback in the prediction of the dynamic compositions of concurrent

applications. The IS approach allowed us to take the lead in finding design vulnerabilities

and addressing the threats before they manifested within the system. It allowed us to carry

refinement by means of redesign to build security into the architecture. The additional

advantage we gained in the application of the IS approach is that we did not rely on known

threats; and since attackers use creative methods to attack the system, predetermined

test cases are not effective in the detection of design vulnerabilities. Instead, we used the

detection of emergent behaviour as the method for discovering threats based on the actual

architecture design. This advantage of the IS approach is a significant advancement in

security testing, where prediction is specific to the weaknesses in the architecture design.

We were able to consider threats that were outside the range of normal use, and we

160

CHAPTER 7. DISCUSSION 7.2. ON THE ITERATION

observed how the IS approach can find threats that we did not foresee. We saw in the

refinements of Sections 6.3.1.4 and 6.3.3.6 that the IS approach allowed us to predict the

security consequences of proposed refinements before they were committed.

7.2 On the Iteration

The principle of our approach is to provide a way to perform security testing at the

architecture level in an iterative manner. This reflects a more realistic development of

applications in which systems undergo many refinements before the system is built. In

addition, this allowed us to test the security of the refinements before they were commit-

ted, as it is expected that changes will break the security of the existing architecture. We

also took into account that, at the architecture level, information is often not provided as

a whole upfront, especially in early stages of development. Reasons for that are varied,

including the fact that designers and stakeholders might still be at the level of drawing

out the requirements. Stakeholders may change their minds about the requirements, or

there may be contradictions in the requirements. The level of changes in the requirements

we have studied were twofold:

1. We studied (in Section 6.3.2) agile development to see how well our iterative and

incremental approach could fit the purpose. This was done through the performance

of two iterative cycles using different sets of requirements, where we modelled the

addition of new requirements that requires integration with the existing iteration.

The process begins by collecting related requirements that are to be implemented,

then prioritising the requirements and then composing them incrementally (as done

in the first agile iterative developed by the Industrial-Party) to produce the first

working increment. The second iteration involved the addition of new requirements

as the system evolved to produce the second working increment of the software.

As we demonstrated, the testing process involved testing the increments both in-

dividually and when integrated with each other. The initial results presented very

161

7.3. ON THE APPLICABILITY CHAPTER 7. DISCUSSION

promising insights into the approach’s adaptivity to changes. Further testing may

need to be conducted in this regard to enhance understanding and confidence in the

approach.

2. We studied the refinement of the architecture through the addition and removal of

existing functionalities in Case Studies 1 and 2.

The approach adapted to the changes and continued to evolve as propositioned. We

feel that the approach has clear boundaries in terms of inputs required and outputs

gained, which assists in the repetition. These inputs and outputs were described in detail

in Chapter 4. For example, given the set of ISs detected from stage 1, these sets undergo

analysis (stage 2) and architecture refinement (stage 3) as they are addressed. If stage 3

results in new ISs, then the next iteration will start once all ISs are addressed. We saw in

the case studies in Sections 6.3.1.4 and 6.3.3.6 that continuous refinement as the design

is built is more efficient than a single stage of refinement, which is processed at the end

of each design phase. Thus, this allowed us to ensure that the architecture is refined with

security in mind, rather than being evaluated for its security after the choices have been

made and adopted, as well as to confirm with the requirements to check if the behaviour

detected is required or not.

7.3 On the Applicability

A notable, desirable feature of the IS approach is its flexibility in application. It does not

restrict the user to one security taxonomy for analysis, for example, nor does it prevent

future extensions from being integrated into it. We have seen in Case Study 2 that the

approach is flexible in incorporating additional techniques (ie, race condition analysis)

into the approach to enhance the search space. We have specifically chosen to work on

the architecture of the system because it offers an adequate level of generality. We have

seen the approach’s application in web applications [6], as presented in Section 6.3.1, on

162

CHAPTER 7. DISCUSSION 7.3. ON THE APPLICABILITY

the cloud [7], as presented in Section 6.3.2, and on a distributed smart camera system, as

presented in Section 6.3.3. The applicability was discussed in the relevant Sections of the

above case studies.

To further extend the confidence of the applicability claim, Appendix B documents

two case studies on an identity management system [155]. In this application, the students

used different approaches to classify the threats. We have seen that because many systems

can be modelled in terms of communicating components, we were able to study various

applications successfully. Our approach is suitable for architectures of systems deployed

in unpredictable environments such as the cloud, where changes are unpredictable, and

for distributed systems, where dynamic concurrent communication can be unpredictable.

These systems share a common multi-threaded infrastructure that is subject to emergent

behaviours –and which shares types of synchronous and asynchronous communications– in

addition to the varying levels of synchronisation between components. Our approach is not

suitable for centralised systems where one component centralises the communication with

other components because these types of applications are highly synchronised. Moreover,

most of these applications can be modelled in scenario-based specifications, which have

been widely used in the industry for their flexibility and ease of use. Thus, we do not

require additional training for testers. The students who performed some of the replica

case studies did not need training to design the scenarios.

We use the architecture artefact because it is flexible enough to be used at different de-

velopment stages (eg, maintenance) once the architecture is known. We saw that through

the use of Case Studies 1 [6] and 3, we were able to extract scenarios from the code and

construct the architecture from the scenarios to perform the case study. This indicates

that the approach is flexible enough to test existing architectures and to construct archi-

tectures directly from requirements. For Case Study 2 [7] , we studied the two situations,

where the first cycle of the iteration had the code present and the second iteration had

only the requirements present. The identity management system in Appendix 4 also relied

on the requirements to construct the architecture [155]. This illustrates the flexibility of

163

7.4. ON THE SCALABILITY CHAPTER 7. DISCUSSION

Table 7.1: Comparison between the number of messages used to model the case studies,
and their number of files.

Case Study No. of Messages No of classes Lines of code

1 23 9 class files 1533

2 (for first cycle only) 51 36 class files 2739

3 114 21 class files 7695

the approach to be used as either the code or the specification to extract the scenarios for

forming the architecture. However, because the testing phase is usually time-constrained,

our approach is designed to promote early application of and testing for security. This

supports early planning, which allows more time to be devoted to improving the quality

of the security testing process in the testing phase.

7.4 On the Scalability

The scalability benefit cannot be overlooked. Table 7.1 shows the number of messages

used in the testing of each case study against the number of classes we would have tested

if we had used an implementation-level approach. We abstracted method bodies by using

method signatures to represent the behaviours, and we also abstracted internal behaviours

to model observable behaviours between components. Our use of architecture in the IS

approach allowed us to omit unnecessary details and focus on the desired behaviours to

ensure that the design achieves its functional requirements. We believe this is a cost-

effective method for the prediction of runtime behaviour, without the need to perform

live testing after the system is built.

On the LTSA-MSC tool level, we did not experience scalability issues in small-scale

applications, such as the web application case study in Section 6.3.1 (and the Identity

Management Case study B). However, in the cloud and distributed smart camera case

study, the LTSA-MSC tool experienced a state-explosion problem when several scenarios

were synthesised together. To address this problem, we broke down the hMSC model into

smaller subsets of scenarios that have been broken down into smaller sets for analysis.

164

CHAPTER 7. DISCUSSION 7.5. EFFECTIVENESS

These sets require comprehensive combination to ensure that no IS is overlooked when

a certain combination is omitted. This was found to be a time-demanding process due

to the repetition of scenarios in different sets. Fortunately, although we have focused on

using LTSA-MSC and UBET, our approach does not depend on their usage. In fact,

any tool that is capable of composing scenarios and searching for hidden ISs can be

adapted. These tools were used as a proof of concept to verify the theory of using an

incremental approach for security testing at the architecture level. However, this problem

has the benefit of supporting the breakdown of the system into groups of requirements,

either to perform detailed dynamic analysis for certain groups of functionalities (eg, areas

of particular vulnerability), or to evolve the requirements for a specific functionality or

subsystem. Once a group of functionalities is determined, our approach supports the

composition of these functionalities incrementally to reach a larger subsystem.

In regards to the scalability of SecArch, we discovered that in practice, because we

are relying on architecture traces, the trace-set can grow exponentially with respect to

the size of the input model [107]. We have seen in Case Study 2 (Figure 6.9) that 72

traces needed to be inspected, which is a very time-consuming manual process. This

applied equally to the repetitive detection of some race conditions across similar scenario

compositions. However, both issues can be significantly addressed through automation.

We will need further case studies to inspect how much reduction will be made with regards

to the number of trace testers using automation.

7.5 Effectiveness

The proposed IS approach is geared towards detecting threats at the architecture level

that arise due to a functional composition behaviour. We saw in the case studies that

the complexity of integrating a functionality can lead to an unforeseen behaviour that

affects the overall security of the system. Using the IS approach, we have tested a large

number of possible interactions between collaborating components to ensure that the

165

7.5. EFFECTIVENESS CHAPTER 7. DISCUSSION

overall desired behaviour is secure. Thus, the testing of each component independently is

not sufficient for finding IS threats, which is where the IS approach plays an essential role

in detecting composition-related threats. In this Section, we will review the effectiveness

of the approach in the detection and refinement levels:

• At the detection level, throughout the application of the IS approach, we found that

it detected critical situations with respect to the application domain. We reviewed

the ISs detected for all the studies in Section 6.3 in detail. We found 6 ISs out of 16

total ISs in Case Study 1; 21 ISs out of 54 total ISs in Case Study 2; and 13 ISs out of

46 total ISs in Case Study 3. If we consider Case Study 3, even though the number

of false positives is larger than the detected threats, the types of threats we found

were significantly more important for the smart camera domain. Threats ranged

from the performance of malicious exhaustive computations designed to waste a

camera’s energy, the malicious claiming ownership of objects, the sending of false

information to other cameras and the interception of the network. The impact of

such threats reveals the importance of investigating compositional security, because

it relates directly to the design of the functionality. We saw in the case studies that

the IS approach can be proactive in finding design vulnerabilities without requiring

the use of vulnerability databases or similar tools that rely on past knowledge.

We have previously discussed that learning from the past only leaves us behind

attackers, whereas what is needed, considering the rapid development of attacks,

is the development of approaches that are naturally proactive in their search for

threats. The advantages gained at the compositional and at the design level may

justify the effort required, depending on the criticality of the system under test.

• At the refinement level, we saw in Sections 6.3.1.4 and 6.3.3.6 how IS drove the

refinement process to help us make informed decisions about the refinement, while

taking into account that we must avoid breaking the security of the architecture.

We demonstrated that each detected IS was used to guide the refinement process

to ensure that the IS did not occur. We subjected each refinement cycle to further

166

CHAPTER 7. DISCUSSION 7.5. EFFECTIVENESS

testing to ensure that: (1) the IS is no longer possible; and (2) that the refinement

does not result in new ISs. We have seen in Case Study 1 in Table 6.4 that the

refinements were carried out to address each of the ISs detected, and we experienced

a new Security IS for one of the refinements and made another refinement to address

it. For Case Study 3 in Section 6.3.3.6, we witnessed a drop in the number of

positive ISs, which indicates that the number of gaps in the specification had also

dropped. This provides assurance in the refinements made to achieve a better

set of specifications for the system. However, we experienced three Security ISs

in response to the refinements. For example, we found that we needed another

functionality to perform negotiations between two cameras that were tracking the

same object. We also found that our refined mechanism for broadcasting messages

to all cameras, when a camera owns an object, introduced another problem whereby

an object may be lost and detected by a camera that does not track it because it

believes that the object is still tracked by the camera that sent the announcement.

These examples demonstrate how the systematic refinement brought insight into

the security of the decisions made regarding the refinement. This test-driven and

incremental refinement allowed us to perform informed refinements without the need

for major architecture refactoring.

However, evaluating approaches similar to the IS approach is rather difficult, as their

effectiveness is dependent on the way in which practitioners apply them. In particular,

security can be subjective to the application and highly dependent on the environment

[156]. The type of application determines the types of IS threats detected because the

threats detectable using the IS approach are design-specific; for example, the threats

detected in a cloud setting, where the environment is unknown, are more complicated

than in the testing of closed systems where environment variables are known, as in the

first case study on web applications. The change of domain also reflected significantly on

the types of threats detected. We found that in Case Study 1 (web application) and Case

Study 2 (cloud application), where we dealt with data, corruption of information was the

167

7.6. THREAT TO VALIDITY CHAPTER 7. DISCUSSION

leading threat; whereas in Case Study 3 (distributed smart camera system), the leading

threat was denial of service. As a result, the effectiveness of its application is subject to

the context in which the IS approach is applied. The IS approach is also open; it can be

easily integrated to complement existing security testing approaches with the objective

of detecting design-level vulnerabilities, while the existing approaches (cited in Chapter

2) can be used to detect different levels of vulnerabilities. This integration is likely to

provide a comprehensive prediction of the security of the under-test architecture.

7.6 Threat to Validity

Humans provide more subtle checks and fewer false positives and negatives [2] as compared

to automated tools. The IS approach relies on a balanced use of human involvement

and automation. We use automation to detect emergent behaviours so that the humans

involved are not driven by their experience when searching for threats. In addition, the

detection of ISs requires high-level computations that make human detection of ISs a

challenging, error-prone process. On the other hand, security experts cannot be replaced

by automated tools [45], because attackers work in artistically different manners [148].

The security experts use creative and novel approaches to find emergent behaviours in

the system [62], and so security flaws cannot be easily generalised. Thus, to counteract

such creativity we require human involvement that can defend against the attackers’

creativity through creative means. Some attackers try to learn about the system’s assets

by understanding how the system functions [148]. This behaviour is often launched by

insiders who happen to have more access to knowledge and information than typical

outsiders. They often aim to trigger unexpected paths in the system [116], which is

precisely what the IS detection approach aimed to achieve in order to ease the process for

testers. The IS approach depicts the search-type approach for attacks, for which we find

vulnerabilities and then seek to understand their impact. In the applications of the IS

approach, we presented the testers with a set of emergent behaviours that can take place

168

CHAPTER 7. DISCUSSION 7.7. LIMITATIONS ON THE MODELLING-LEVEL

in the under-test architectures, and used that information to project how an attacker

could abuse the system through that weakness. We then used that information to guard

against the occurrence of weaknesses. That way, we provided testers with the necessary

information required to protect the system from attackers. The interpretation of results

is thus enhanced by using the concept of the ISs as opposed to relying solely on the

experience of the testers.

Tools used in the application process may be inaccurate. We have taken care to select

established tools that have been publically accessible and used for long period of time.

These tools have been used in a number of publications (Eg, LTSA-MSC was used in

[187, 147, 59], UBET was used in [150, 22, 24]).

7.7 Limitations on the Modelling-Level

Our present approach is limited in its use of MSC specifications due to limitations in

the LTSA-MSC tool. We have seen in Sections 6.3.1.4 and 6.3.3.6 that we were not able

to model the internal behaviour of components. We have mentioned previously that IS

detection is not concerned with internal behaviour, and that it deals with how compo-

nents interact with each other (ie, external communication). However, this hinders the

modelling of the refinement process, which means we will need to find other means to

document the changes so that testers do not overlook the refinement. This also hin-

ders the race condition detection, because the internal behaviour will not be taken into

consideration when checking for race conditions. On the modelling level, we were also

unable to represent data dependencies between components, which therefore constrains

interaction descriptions as a type of message rather than as a value of the message being

passed between partners. In compositional design this is not highly detrimental to the

conciseness of interactions, because we were able to change the message name to represent

its difference in content. These limitations are not inherent to our approach, because the

LTSA-MSC tool can be replaced with any other tool that is capable of detecting ISs.

169

7.8. DISCUSSION OF TOOL SUPPORT CHAPTER 7. DISCUSSION

Another limitation is that the set of MSCs used to model the system can become

complex to manage, especially with the detection of ISs. This complexity is exhibited

when a high number of alternative scenarios evolve for describing and sequencing. For

example, if a concurrent set of five interactions is permissible in a section of a composition,

then the designer must describe each alternative case for invocation and reply to each.

This was particularly apparent in the distributed smart camera case study in Section

6.3.3, in which we had a number of valid responses returned by each camera.

7.8 Discussion of Tool Support

As discussed in Section 6.2 of the thesis, the approach makes a novel use of a number of

sound tools to assist the process of IS detection, classification and architecture refinement

for architecture-level testing for security. Nevertheless, these tools were not previously

exploited to the benefit of Security IS detection and architecture refinement. The follow-

ing subsection evaluates the extent to which these tools can support the automation of

our approach and we reflect on its strengths and limitation. We appropriately split the

discussion into a series of criteria for evaluation taken from the work in [36]. These crite-

ria consider support from several view-points including: ease of learning, early payback,

efficiency of developers time, increase in benefits, error detection, integrated development

environment enabled, focus on analysis and support for evolutionary development.

7.8.1 Ease of Learning

’Notations and tools should provide a starting point for writing formal specifications for

developers who would not otherwise write them. The knowledge of formal specifications

needed to start realizing benefits should be minimal’ [36].

Our approach aims at providing the following criteria for its ease of learning and

carrying out the security testing process:

170

CHAPTER 7. DISCUSSION 7.8. DISCUSSION OF TOOL SUPPORT

Stage 1: IS detection

• The design specifications are based on the scenario elicitation approach, and the use

of bMSC and hMSC sequence charts is widely used and understood in industry. A

graphical interface is used so that the user does not have to learn new notations.

• The LTSA-MSC tool performs the detection of IS, and the detected ISs are returned

in the MSC specification. Users of the tool do not need to learn how ISs are detected

and synthesised. We have observed that from a brief explanation (approximately 30

minutes) regarding the usage of the LTSA-MSC tool, the students who conducted

the case study in Appendix B were independently able to move into the security

evaluation and refinement.

• By identifying vulnerabilities through the detection of ISs, we are able to explicitly

link the IS to the requirements and assets that introduce them into the system.

Testers can visualise the vulnerable components of the system through the studying

of the ISs detected, examine how its occurrence impacts the system, trace security

breaches back to the source vulnerability and relate vulnerabilities to the attackers

that can launch the threat. The IS approach has the advantage of visualising the

locations of vulnerabilities to aid in the: (1) understanding the emergence of vul-

nerabilities; (2) understanding how threats can be compromised; and (3) allowing

for the application of countermeasures during the design [69].

Stage 2: Classifying IS This process is simplified in two ways: (1) The testers have a

scenario model of the emergent behaviour, and their role is to answer: If the IS behaviour

executes, what security implication will it cause on the system assets? Can the IS be

misused to cause a security breach? Comparatively, this is easier than asking testers

to search for threats manually, and then attempt to understand how compositions can

cause insecure behaviours. We have simplified this further by: (2) using an intuitive

classification taxonomy [70] that allows testers to address this phase systematically and

171

7.8. DISCUSSION OF TOOL SUPPORT CHAPTER 7. DISCUSSION

attach a malicious story behind the scenario. This taxonomy allows testers to think of

various ways in which an attack may be launched, as it provides insight into possible

combinations of threat attackers, in addition to possible outcomes of a successful attack.

SecArch Enhancement The use of SecArch is optional, and is provided to enhance

the search-space of the IS approach. First, the SecArch requires architecture traces to

be extracted, and the LTSA-MSC tool has a built in animated label transition system

interface to extract these traces. The second part requires testing for race conditions, and

we use a graphical tool called UBET that takes in MSC charts and reports back on the

detected race conditions graphically. These steps can be fully automated to speed up the

process. Malicious race conditions undergo the same process as that of Stage 2.

Stage 3: Architecture Refinement The refinement process is drawn from an under-

standing of how the threats occur. With the available classification of the IS, the testers

need to answer: How do we prevent the occurrence of the IS? We saw in the case studies

in Section 6.3 that this process is systematic and is guided by the allowance of testers

to study the refinements, then to test the security of the refinement by re-assessing the

architecture. This provided insights into: (1) how secure that change had been, and

whether it had been able to address previously detected ISs; and (2) whether that new

change had broken a previously corrected problem.

7.8.2 Early Payback

’Methods and tools should provide significant benefits almost as soon as people begin to

use them’ [36].

Early payback is a key objective of the approach. As we discussed in Chapters 1 and

3, in terms of motivation for this work, our aim is to support the detection of malicious

behaviours during the early stages of development so that testers can address design

vulnerabilities before the system is built. We chose to work at the architecture-centric

172

CHAPTER 7. DISCUSSION 7.8. DISCUSSION OF TOOL SUPPORT

level because early feedback provides assurance that the changes that took place in the

architecture (the addition new functionalities or the removal of them) can be verified.

An example of this is demonstrated in Case Study 1 in Section 6.3.1.4, in which every

refinement considered was assessed for the potential emergence of ISs, and when ISs

occurred, they were either: (1) positive and required no further refinement; or (2) negative

Security ISs that required further refinements until no further emergent behaviours arose.

This allowed us to receive instant security feedback on the changes in the architecture.

We also experienced early feedback when testers were able to study with the presence

of negative scenarios in the system, to validate the architecture’s resilience to attacks. We

have seen in Case Study 2 in Section 6.3.2.4 that the replay of detected race conditions

into the architecture allowed us to detect the further emergence of ISs. This early feedback

supports testers in those situations in which refinement cannot take place, possibly due

to restrictions on time and budgets. As a result, testers can continue to investigate how

that unwanted behaviour could impact the system, and possibly find other measures to

protect the system (such as implementation level patches, if applicable).

7.8.3 Efficiency

’Tools should make efficient use of a developer’s time. Turnaround time with an interactive

tool should be comparable to that of normal compilation. Developers are likely to be more

patient, however, with completely automatic tools that perform more extensive analysis’

[36].

There are currently three points of interests in regards to efficiency:

• On the efficiency related to the speed of feedback. (We discussed this in Section

7.8.2).

• On the engineering part of the approach. On the engineering part of the approach.

We have not given an in-depth analysis on the efficiency of our approach in this

regard because, as was discussed in Section 6.3.2.4, there are a number of processes

173

7.8. DISCUSSION OF TOOL SUPPORT CHAPTER 7. DISCUSSION

that can be automated to enhance efficiency and overcome their current limita-

tions. These were not implemented due to timing constraints of the PhD research.

Examples of these are: (1) The translation of scenarios back and forth, from the

LTSA-MSC (XML) used to detect ISs, into UBET (MS common console docu-

ment). Currently, we have created all race condition traces manually. (2) The

re-assessments of previously assessed race conditions in other scenarios. Our ex-

perience with the approach showed that each stage is simple in its requirements

and executions, and that the manual stages (2 and 3) require human involvement

because the process requires accurate interpretations and architecture refinement.

Further refinements/improvements are expected to be carried in order to automate

the manual processes stated above. Clearly, our approach relies heavily on and is

limited by the efficiency of the underlying model-checking technology.

• On the false positives. In our case studies, we experienced a number of false posi-

tives. We used these positive ISs to confirm the accuracy of the required behaviour

and that the overall behaviour satisfied the functional requirements. In Case Study

1 in Section 6.2.2, we detected 10 false positives; in Case Study 2 in Section 6.2.2,

we detected 31; and in Case Study 3 in Section 6.2.3, we detected 33. These false

positives relied primarily on the level of synchronisation between components. In

Case Study 1, we had a higher level of synchronisation between the communicat-

ing components; whereas in the second case study the environment of the cloud

was unpredictable, and thus the synchronisation level between the components was

low. The third case study represented the distributed smart cameras, and the syn-

chronisation level between components was also low. Synchronisation allows the

components to be aware of their position in the execution trace. When compo-

nents are aware of each other’s movements, an IS can be prevented because the

components will not divert their behaviour. However, high synchronisation may not

be desirable due to energy requirements, as we have seen in the distributed smart

camera case study in Section 6.2.3.

174

CHAPTER 7. DISCUSSION 7.8. DISCUSSION OF TOOL SUPPORT

7.8.4 Integrated Use

’Methods and tools should work in conjunction with each other and with common program-

ming languages and techniques. Developers should not have to buy into a new method-

ology completely to begin receiving benefits. The use of tools for formal methods should

be integrated with that of tools for traditional software development. Eg, compilers and

simulators’ [36].

When we designed our approach, we took into account the following: (1) the approach

should be easily integrated with other approaches. We have seen in Case Study 2 that

we were able to integrate our approach with Alur’s algorithm to enhance our approach’s

search space. This provided insight into the extendibility of the approach. In Appendix

B, the students chose to use their own taxonomies to conduct the IS classification. This

provided an insight into the approach’s ability to integrate with the existing classifications

of organisations. We also saw –for example, in Case Study 1– that the refinement process

was flexible and allowed a prioritisation process to proceed before the refinement stage

began, so that the order of refinements could change depending on the importance of the

refinement; and (2) we have chosen to work with the scenario-based specification language

because it is widely used in the industry to promote communication between developers

and the stakeholders, and can thus be integrated with many of the existing evaluation

techniques that utilize scenario-based specifications.

Our approach is not intended to replace existing security testing techniques that focus

on testing the security of an information system after the system is implemented. We

were unable to detect or consider attacks related to specific implementations at the time

of the design. On the contrary, our process aims to complement such implementation-

related testing techniques and provide a guided approach that enables developers to: (1)

identify important security vulnerabilities related to the design models of the system at

an early stage in the developmental process; and (2) provide insight into the refinement

of the system in order to overcome identified security vulnerabilities, and to ensure that

the design of the system enforces the necessary security requirements.

175

7.8. DISCUSSION OF TOOL SUPPORT CHAPTER 7. DISCUSSION

On the technical level, the LTSA-MSC tool can be used on different IDE development

frameworks, such as Eclipse and Netbeans IDEs. Thus, these various editors are supported

and can be used as long as they conform with the MSC specifications.

7.8.5 Incremental Gain for Incremental Effort

’Benefits should increase as developers get more adept or put more effort into writing

specifications or using tools’ [36].

The general incremental and elaboration support of the approach allows incremental

benefits of the approach. The most apparent example of this is the SecArch, in which

we have gained significant benefits to the incorporation of race conditions to search for

further ISs. We discovered that we were able to detect 14 more ISs in addition to the 7 we

detected without incorporating race conditions. The results supported by the other two

case studies show that: (1) the more input we provide to the approach, the more likely we

are to detect more ISs; and (2) the process can lead to no IS detection if the refinement

process effectively addresses the causes of IS; consequently, the benefit is measured by the

assurance it provides to the testers in regards to the behaviour of the architecture; and

finally (3) we will gain a better understanding of the system’s dynamic behaviour.

7.8.6 Evolutionary Development

’Methods and tools should support evolutionary system development by allowing partial

specification and analysis of selected aspects of a system’ [36].

Due to the nature of IS compositions, they may represent only one part of the ar-

chitecture. As we discussed in Section 7.2, it is clear that our approach provides an

incremental, elaborative approach to building compositions and realising the effects of

changes on security as they are introduced. We saw in the case studies that we were able

to assess the entire architecture when the tool scaled, as in Case Study 1, and we saw

when it was necessary to break down the system into smaller sub-Sections in order to

176

CHAPTER 7. DISCUSSION 7.8. DISCUSSION OF TOOL SUPPORT

evaluate the parts individually, as was done in Case Study 2. In Case Study 2, we saw

the way in which we broke the system into iteration 1 and iteration 2, as is done in agile

developments to support partial specification and analysis. This gives an insight into the

approach’s ability to assess systems as a whole, and systems that are made of smaller

sub-systems, as was done in Case Study 3.

7.8.7 Orientation Towards Error Detection

’Methods and tools should be optimised for finding errors, not for certifying correctness.

They should support generating counterexamples as a means of debugging’ [36].

The approach is geared towards vulnerability detection. ISs are emergent behaviours

that are possible in the dynamic view of concurrent systems, but are not perceived from

a static view of the specifications. Thus, the essence of the approach is the highlight-

ing of inconsistencies between the desired global behaviour and the local behaviour of

components. Such inconsistencies cause faults and vulnerabilities to arise during the

composition of local component views. Our use of IS supports the concept of ‘debugging’

as counterexamples in the detection of ISs, and in using them to systematically refine the

architecture.

7.8.8 Multiple Use

’It should be possible to amortize the cost of a method or tool over many uses. For

example, it should be possible to derive benefits from a single specification at several points

in a program’s life cycle: in design analysis, code optimisation, test case generation, and

regression testing’ [36]

Our use of IS focuses on the design vulnerability detection caused by unperceived

diversions of system behaviour. We showed in the case studies that the IS approach

is proactive in finding design vulnerabilities for three situations: (1) the discovery of

ISs during the general security testing of the architecture; (2) the assessment that the

177

7.9. SUMMARY CHAPTER 7. DISCUSSION

refinement process does not introduce new design vulnerabilities; and (3) the selection

of the most secure architecture based on the number of design vulnerabilities detected

in each. Even though we have not tried to construct test cases that result from the IS

traces, approaches exist that can construct test cases automatically from scenarios, such

as [9, 152].

7.9 Summary

Our discussion in this chapter explored the satisfaction of the requirements set in Chapter3

and how the IS approach ensured that each requirement is satisfied. We looked at the

threat to validity, its potential to scale, limitations in the modelling, and we took the

discussion further to the approach’s ease of use, its potential for multiple usage, and its

efficiency. In the next Chapter, we wrap up the thesis and highlight future work.

178

8
Conclusion and Future Work

8.1. SUMMARY OF CONTRIBUTIONCHAPTER 8. CONCLUSION AND FUTURE WORK

In this chapter, we reflect on the contribution of this thesis, and highlight future

directions for the use of IS approach.

8.1 Summary of Contribution

This thesis presents a novel architecture-centric testing approach for security, which uses

implied scenarios (ISs) [185] to detect design vulnerabilities in the software architecture.

It explores the field of security testing to probe for greater understanding of the state-of-

the-art practices in the testing of software systems for security. Further, it reviews the

approaches that practitioners and researchers have considered in security testing. The

review has established the evidence that the field of security software testing has lacked

systematic guidance, and has only been performed on low-level software artefacts such as

design and code. The approaches have been found to be limited in their scalability and

adaptivity to changes in functional requirements. Their use of predefined specifications

and test cases renders the meaningfulness and effectiveness of security testing ‘myopic’.

This is because: (i) the landscape of security tends to evolve with changes in the threat

landscape; (ii) many emerging behaviours, which can threaten the security posture of the

systems, occur at runtime and are therefore difficult to anticipate at design time; (iii)

while code and low-level design artefacts tend to be effective for testing programming

bugs and assembling components into security subsystems, many of the vulnerabilities

are architectural in nature [76, 114].

The thesis explores the requirements for architecture-centric security testing. It in-

troduces a novel solution for the detection of hidden behaviours within the architecture.

Moreover, the thesis introduces the concept of security ISs as unanticipated (possibly

malicious) behaviours that indicate potential insecurities in the architecture. It utilises

the architecture as the appropriate level of abstraction in order to tackle the complexity

of testing and to provide the potential for scalability, which in turn allows for the testing

of large-scale, complex applications. Further, this use of architecture supports the critical

180

CHAPTER 8. CONCLUSION AND FUTURE WORK8.1. SUMMARY OF CONTRIBUTION

consideration of secure composition, interaction, concurrency and emerging behaviour. A

three-phased method for security testing is proposed: (1) as the detection of design-level

vulnerabilities in the architecture in an incremental manner, it is done via investigating

emergent behaviours (ie, ISs) in the composition of evolving functionalities; (2) by clas-

sifying the impact of detected ISs on the security of the architecture; (3) utilising the

detected ISs and their impacts to guide the refinement of the architecture. The approach

takes into account that refinements might introduce new emergent behaviours. Conse-

quently, the refinement process is test-driven and incremental, such that refinements are

tested before they are committed. This method provides proactive and early feedback

on the security of any changes applied to the architecture, which allows testers to make

informed decisions about the refinements.

The thesis also presents SecArch, an extension to the IS approach, to enhance its search

space to detect hidden race conditions. SecArch is focused on the prediction of further

valid conditions, in the face of real parallelism in distributed systems, with respect to non-

FIFO queues. The enhancement proposes moving from purely dynamic LTS behaviour

models to structural MSC models in order to preserve the structural properties that are

used to detect race conditions. These race conditions are used to investigate the impact

of the presence of malicious behaviours within the application. This can be measured by

observing the number of additional ISs that arise as a result of the addition of malicious

race conditions to the architecture.

This thesis reports on the applications of the proposed approach and its extension to

three case studies for testing the security of distributed and cloud architectures in the

presence of uncertainty in the operating environment, the unpredictability of interactions

and possible security ISs. The applications demonstrate novelty in the way in which

security testing is used to address emergent behaviour in applications characterised by

dynamism, heterogeneity, openness, scale and unpredictability in their operational and

evolutionary trends. We have drawn on these case studies to evaluate the thesis. We ex-

plored the fitness of the approach for detecting threats in the architecture and guiding the

181

8.2. FUTURE WORK CHAPTER 8. CONCLUSION AND FUTURE WORK

architecture refinement process. We experimented with the approach’s ability to inform

the selection of a more secure architecture, and we demonstrated that security testing

can be performed even when we do not have complete knowledge about the behaviour

of the components. We verified the claim that ISs are behaviours that can result in se-

curity implications for the architecture, and that testing for these ISs is critical in order

to predict the compositional security of the dynamic behaviour of the architecture. We

demonstrated that the detection ISs supports a proactive application of security testing,

in which we detect design vulnerabilities based on the architecture itself, without relying

on pre-known threats already explored by attackers. We have verified that security test-

ing can be performed in iterative development cycles; this allowed us to build security

into the design by making informed decisions about the impact of changes made to the

architecture. We have also reflected on the potential of the approach with respect to

criteria like ease of learning, effectiveness, scalability and applicability to further evaluate

the thesis.

8.2 Future Work

1. Our current approach has considered ISs that are caused by control flow rather

than data flow. A component may decide its action based on the value of some

input. For example, it is necessary to take into account: (a) single input, single

output structure; (b) single input, multiple output structure; and (c) multiple input,

multiple output structure. Each of these structures may have different implications

on the ISs detected. Consider the example presented in Figure 8.1. The figure

illustrates two alternative conditions in which a component might receive an input

of some value and, based on the value, decide which action to take. The illustration

models an incident featuring single input with single output, and single input with

multiple outputs. Using current semantics, we cannot model alternative conditions

based on the input value.

182

CHAPTER 8. CONCLUSION AND FUTURE WORK 8.2. FUTURE WORK

Figure 8.1 Demonstrating example of alternative scenarios based on the value of some
input.

2. In the case studies, we found that we were not able to test the internal data struc-

ture of cameras automatically. This information is essential in order to predict the

correct behaviours of the cameras and the internal choices available to them. We

found that understanding the impact of internal data structures was needed to re-

flect realistic system behaviours. Consider the example presented in Figure 8.2. The

figure illustrates four communicating cameras where Camera 1 sends a message to

Camera 2, and Camera 2 forwards the message to its neighbours. The modelling

of this scenario required that we know the identity of the neighbouring cameras.

Consequently: (1) when we detected ISs, we had to ensure that the IS did not vio-

late the neighbouring relationship (ie, a camera does not communicate with another

camera outside its list of neighbours); and (2) every scenario had to be modelled

individually to reflect the neighbouring relationships, which can be a cumbersome

and error-prone process. It would be desirable to create one abstract scenario, from

which the rest could be generated with respect to different possible neighbouring

relationships, and search for subsequent ISs. Furthermore, we mentioned in the dis-

tributed camera case study that the cameras learn about their neighbouring cameras

as the network evolves. The ability to check internal data structures supports the

performance of ISs in parallel with the learning process of neighbouring cameras.

183

8.2. FUTURE WORK CHAPTER 8. CONCLUSION AND FUTURE WORK

Figure 8.2 Demonstrating example of internal structure of cameras to enhance the mod-
elling scope.

3. Further research can be done with respect to the dynamics of moving objects (ie,

change in the state of objects). This could imply that an unpredictable movement of

objects might cause components to act outside of their normal uses. The IS approach

might be enhanced through the observation of the various ways in which an object

could move, as well as the detection of ISs when a component acts abnormally.

4. Currently, we are dealing with a fixed set of components, which may or may not

interact depending on the scenario. One very interesting application of the IS ap-

proach within the cloud would be the analysis of the impact of the dynamic com-

position of different services into a cloud-based architecture. Dynamic composition

entails changing components in the architecture (adding/removing) at the runtime.

It is necessary to analyse how such changes might impact the system; for example,

by detecting an emergent behaviour that arose due to some dynamic change. This

opens up opportunities for making decisions regarding which service should be se-

lected with the least number of emergent behaviours. An example of this may relate

to the privacy-aware composition of cloud services, for which we may be able to bet-

ter decide which of the services will provide the level of privacy we are seeking (eg,

service providers such as Google and Yahoo may advertise services for a login service

or certificate-authentication-based component). Because all of these services have

different privacy agreements, the selection of one will determine the overall privacy

we can achieve. An IS could be used to inform the selection/composition decision

184

CHAPTER 8. CONCLUSION AND FUTURE WORK 8.2. FUTURE WORK

so that if security ISs are detected, then the choice should be geared towards a more

secure component.

5. We can use probabilistic measures to state the likelihood of an IS trace’s execution.

This can be used in a number of situations:

• We have seen that the number of positive ISs can be large. To address this, we

can use probabilistic measures to determine the probability of the IS execution,

and use that probability to prioritise the ISs. That way, the likely ISs can be

examined first.

• If, for example, we know that a component has an 80% security level, then we

can say that using this component’s composition will increase the chance of an

attack occurring. This would allow us to choose which component is less likely

to result in the execution of an attack.

• In the selection of the architecture, the probability of execution can tell us a lot

about the security of the architecture. For example, an architecture may have

fewer threats, but a higher likelihood of attack execution. From a business

perspective, this architecture might be worse than an architecture with more

threats that are highly unlikely to execute.

• It will also give us an indication as to whether the refinement is worth pursuing.

If the threat is unlikely to execute, it probably is not worth the refinement.

6. We observed the ability of the IS approach to highlight potential trade-offs between

non-functional requirements (eg, between security and usability as in Case Study

1, and between security and utility as in Case Study 3). We examined the way in

which the IS approach can guide the refinement process with respect to security,

and we acknowledged that we had to compromise between ensuring security and

usability/utility. We are working on strengthening our understanding in this field

by performing multi-objective trade-off analyses of non-functional requirements, in

order to investigate the ability of ISs to inform the trade-off process.

185

8.3. CLOSING REMARKS CHAPTER 8. CONCLUSION AND FUTURE WORK

7. The concept of an IS can be applied in game theory. In a game, we might have the

option to decide which move to pursue next, and the ability to question whether

a particular move would allow us to gain more information beneficial for winning

the game. ISs could be used to explore the search space so that we can determine

the outcome of making a particular move. If we will detect ISs, then we are able

to learn more about the game state. For example, this can be used to determine

whether there is a more beneficial move available and whether that move could be

used to increase some utility in the game. We have used the concept of ISs with

respect to negative behaviours, but in the case of game theory it can be used in its

positive meaning to reflect new, desirable information. Thus, the presence of ISs

can indicate possible cheats/hints available in the game.

8. Possible future work could focus on the automatic refinement of the model. That

is, when a behaviour diverts, we know that the local component is missing some in-

formation about the global communication (ie, it may need to be synchronised with

other components). It might be possible to devise an algorithm that synchronises

components automatically to prevent this diversion from occurring and provide a

suggested refinement to the testers, who could either accept or reject it.

8.3 Closing Remarks

This thesis makes a novel and timely contribution to the field of security software engi-

neering by presenting the first architecture-centric testing approach for security –in the

absence of closely related work. This thesis demonstrates that architecture-centric test-

ing provides a proactive means for the detection of design vulnerabilities by guiding the

refinement of architectures when building security into their designs. The application of

the approach on various case studies demonstrates novelty, timeliness and potential in the

way testing is addressed in emerging domains (eg, cloud, distributed cameras), which are

characterized by dynamism, heterogeneity, openness, scale and unpredictability in their

186

CHAPTER 8. CONCLUSION AND FUTURE WORK 8.3. CLOSING REMARKS

operational and evolutionary trends. This contribution has the following implications: (i)

advancement of the understanding of the potential of using the architecture as an arte-

fact for performing security testing due to the benefits described in the earlier chapters;

and (ii) stimulation and motivation of future research in the area of architecture-centric

testing for security, threat detection and application of security ISs in emerging domains.

187

8.3. CLOSING REMARKS CHAPTER 8. CONCLUSION AND FUTURE WORK

188

Bibliography

[1] A. Abdurazik and J. Offutt. Using uml collaboration diagrams for static checking
and test generation. In Proceedings of the 3rd international conference on The
unified modeling language: advancing the standard, UML’00, pages 383–395, Berlin,
Heidelberg, 2000. Springer-Verlag.

[2] M. Abi-Antoun and J. M. Barnes. Analyzing security architectures. In Proceedings of
the IEEE/ACM international conference on Automated software engineering, ASE
’10, pages 3–12, New York, NY, USA, 2010. ACM.

[3] C. R. Aguayo González and J. H. Reed. Power fingerprinting in sdr integrity assess-
ment for security and regulatory compliance. Analog Integrated Circuits and Signal
Processing, 69(2-3):307–327, December 2011.

[4] G.-J. Ahn and M. E. Shin. Role-based authorization constraints specification using
object constraint language. In Proceedings of the 10th IEEE International Work-
shops on Enabling Technologies: Infrastructure for Collaborative Enterprises, WET-
ICE ’01, pages 157–162, Washington, DC, USA, 2001. IEEE Computer Society.

[5] S. Al-Azzani and R. Bahsoon. Semi-automated detection of architectural threats
for security testing. In Proceedings of the Doctoral Symposium for ESEC/FSE on
Doctoral Symposium, ESEC/FSE Doctoral Symposium ’09, pages 25–26, New York,
NY, USA, 2009. ACM.

[6] S. Al-Azzani and R. Bahsoon. Using implied scenarios in security testing. In Pro-
ceedings of the 2010 ICSE Workshop on Software Engineering for Secure Systems,
SESS ’10, pages 15–21, New York, NY, USA, 2010. ACM.

[7] S. Al-Azzani and R. Bahsoon. Secarch: Architecture-level evaluation and testing
for security. In Proceedings of the 2012 Joint Working IEEE/IFIP Conference on
Software Architecture and European Conference on Software Architecture, WICSA-
ECSA ’12, pages 51–60, Washington, DC, USA, 2012. IEEE Computer Society.

BIBLIOGRAPHY BIBLIOGRAPHY

[8] C. Alexander, S. Ishikawa, and M. Silverstein. A Pattern Language: Towns, Build-
ings, Construction. Center for Environmental Structure Berkeley, Calif: Center for
Environmental Structure series. Oxford University Press, 1977.

[9] I. Alexander. Misuse cases: Use cases with hostile intent. IEEE Software, 20(1):58–
66, January 2003.

[10] I. F. Alexander. Initial industrial experience of misuse cases in trade-off analysis. In
Proceedings of the 10th Anniversary IEEE Joint International Conference on Re-
quirements Engineering, pages 61–70, Washington, DC, USA, 2002. IEEE Computer
Society.

[11] S. Ali, L. C. Briand, M. J.-u. Rehman, H. Asghar, M. Z. Z. Iqbal, and A. Nadeem.
A state-based approach to integration testing based on uml models. Information
and Software Technology, 49:1087–1106, November 2007.

[12] J. H. Allen, S. Barnum, R. J. Ellison, G. McGraw, and N. R. Mead. Software
Security Engineering: A Guide for Project Managers (The SEI Series in Software
Engineering). Addison-Wesley Professional, 1 edition, 2008.

[13] W. Allen, C. Dou, and G. Marin. A model-based approach to the security testing
of network protocol implementations. In Proceedings 2006 31st IEEE Conference
on Local Computer Networks, pages 1008–1015, Tampa, FL, 2006. IEEE.

[14] R. Alur, K. Etessami, and M. Yannakakis. Inference of message sequence charts. In
Proceedings of the 22Nd International Conference on Software Engineering, ICSE
’00, pages 304–313, New York, NY, USA, 2000. ACM.

[15] R. Alur, G. J. Holzmann, and D. Peled. An analyser for mesage sequence charts.
In Proceedings of the Second International Workshop on Tools and Algorithms for
Construction and Analysis of Systems, TACAs ’96, pages 35–48, London, UK, UK,
1996. Springer-Verlag.

[16] O. E. Ariss, J. Wu, and D. Xu. Towards an enhanced design level security: Inte-
grating attack trees with statecharts. In Proceedings of the 2011 Fifth International
Conference on Secure Software Integration and Reliability Improvement, SSIRI ’11,
pages 1–10, Washington, DC, USA, 2011. IEEE Computer Society.

[17] N. Associates. Cybercop scanner. www.iss.net/security_center/reference/

vuln/CyberCop_Scanner.htm.

190

BIBLIOGRAPHY BIBLIOGRAPHY

[18] C. Aumüller, P. Bier, W. Fischer, P. Hofreiter, and J.-P. Seifert. Fault attacks on rsa
with crt: Concrete results and practical countermeasures. In Revised Papers from
the 4th International Workshop on Cryptographic Hardware and Embedded Systems,
CHES ’02, pages 260–275, London, UK, UK, 2003. Springer-Verlag.

[19] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts and taxon-
omy of dependable and secure computing. IEEE Transactions on Dependable and
Secure Computing, 1(1):11–33, January 2004.

[20] C. W. Axelrod. The need for functional security testing. The Journal of Defense
Software Engineering, 24(2):17–21, March 2011.

[21] R. Bahsoon and W. Emmerich. Evaluating architectural stability with real options
theory. In Proceedings of the 2004 IEEE International Conference on Software
Maintenance, pages 443–447. IEEE Computer Society, 2004.

[22] P. Baker, P. Bristow, C. Jervis, D. King, and B. Mitchell. Automatic generation of
conformance tests from message sequence charts. In Proceedings of the 3rd Interna-
tional Conference on Telecommunications and Beyond: The Broader Applicability of
SDL and MSC, SAM’02, pages 170–198, Berlin, Heidelberg, 2003. Springer-Verlag.

[23] J. Bergey. A Proactive Means for Incorporating a Software Architecture Evaluation
in a DoD System Acquisition. Technical note. Carnegie Mellon University, Software
Engineering Institute, 2009.

[24] A. Bertolino, E. Marchetti, and H. Muccini. Introducing a reasonably complete
and coherent approach for model-based testing. Electronic Notes in Theoretical
Computer Science, 116:85–97, January 2005.

[25] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, and V. Piuri. Error analysis and
detection procedures for a hardware implementation of the advanced encryption
standard. IEEE Transactions on Computers, 52(4):492–505, April 2003.

[26] M. Blackburn, R. Busser, A. Nauman, and R. Chandramouli. Model-based approach
to security test automation. In Proceeding of Quality Week. The National Institute
of Standards and Technology, 2001.

[27] M. Borrett. Web application security qa. ftp://ftp.software.ibm.com/

software/ae/events/doc/rational_appscan.pdf, 2007.

191

BIBLIOGRAPHY BIBLIOGRAPHY

[28] J. Botella, F. Bouquet, J.-F. Capuron, F. Lebeau, B. Legeard, and F. Schadle.
Model-based testing of cryptographic components – lessons learned from experi-
ence. In Proceedings of the 2013 IEEE Sixth International Conference on Software
Testing, Verification and Validation, ICST ’13, pages 192–201, Washington, DC,
USA, 2013. IEEE Computer Society.

[29] S. Bracher and P. Krishnan. Enabling security testing from specification to code.
In Proceedings of the 5th International Conference on Integrated Formal Methods,
IFM’05, pages 150–166, Berlin, Heidelberg, 2005. Springer-Verlag.

[30] L. Briand, Y. Labiche, and Y. Liu. Combining uml sequence and state machine
diagrams for data-flow based integration testing. In A. Vallecillo, J.-P. Tolvanen,
E. Kindler, H. Strrle, and D. Kolovos, editors, Modelling Foundations and Appli-
cations, volume 7349 of Lecture Notes in Computer Science, pages 74–89. Springer
Berlin Heidelberg, 2012.

[31] L. C. Briand and Y. Labiche. A uml-based approach to system testing. In Pro-
ceedings of the 4th International Conference on The Unified Modeling Language,
Modeling Languages, Concepts, and Tools, «UML» ’01, pages 194–208,
London, UK, UK, 2001. Springer-Verlag.

[32] CENZIC. Application security trends report q1 2008. https://info.cenzic.com/
rs/cenzic/images/Cenzic-white-paper-Cenzic-Vulnerability-Report.pdf,
2012.

[33] S. A. Christopher Allen, Kalle and D. Holmberg. Edit this page. http://

sourceforge.net/projects/editthispagephp/.

[34] E. Clarke, D. Long, and K. McMillan. Compositional model checking. In Proceedings
of the Fourth Annual Symposium on Logic in computer science, pages 353–362,
Piscataway, USA, 1989. IEEE Press.

[35] E. M. Clarke and J. M. Wing. Formal methods: State of the art and future direc-
tions. ACM Comput. Surv., 28(4):626–643, December 1996.

[36] R. Cleaveland and S. A. Smolka. Strategic directions in concurrency research. ACM
Computing Surveys, 28(4):607–625, 1996.

[37] F. Dadeau, P.-C. Héam, and R. Kheddam. Mutation-based test generation from
security protocols in hlpsl. In Proceedings of the 2011 Fourth IEEE International

192

BIBLIOGRAPHY BIBLIOGRAPHY

Conference on Software Testing, Verification and Validation, ICST ’11, pages 240–
248, Washington, DC, USA, 2011. IEEE Computer Society.

[38] H. Dai, C. Murphy, and G. Kaiser. Confu: Configuration fuzzing testing frame-
work for software vulnerability detection. International Journal of Secure Software
Engineering, 1(3):41–55, July 2010.

[39] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data selection: Help
for the practicing programmer. Computer, 11(4):34–41, April 1978.

[40] M. H. Diallo, J. Romero-mariona, S. E. Sim, T. A. Alspaugh, and D. J. Richardson.
A comparative evaluation of three approaches to specifying security requirements.
In Proceedings of the Twelfth Working Conference on Requirements Engineering:
Foundation for Software Quality. Elsevier, 2006.

[41] M. S. Dias and M. E. R. Vieira. Software architecture analysis based on statechart
semantics. In Proceedings of the 10th International Workshop on Software Speci-
fication and Design, IWSSD ’00, pages 133–, Washington, DC, USA, 2000. IEEE
Computer Society.

[42] T. Dimitrakos, B. Ritchie, D. Raptis, J. O. Aagedal, F. d. Braber, K. Stølen, and
S. H. Houmb. Integrating model-based security risk management into ebusiness
systems development: The coras approach. In Proceedings of the IFIP Conference
on Towards The Knowledge Society: E-Commerce, E-Business, E-Government, I3E
’02, pages 159–175, Deventer, The Netherlands, The Netherlands, 2002. Kluwer,
B.V.

[43] A. Drappa and J. Ludewig. Simulation in software engineering training. In Pro-
ceedings of the 22Nd International Conference on Software Engineering, ICSE ’00,
pages 199–208, New York, NY, USA, 2000. ACM.

[44] P. Duffy. Exploratory testing and analysis of full ceramic ball bearings. SAE Trans-
actions, 33(5):267, 1991.

[45] L. Dukes, X. Yuan, and F. Akowuah. A case study on web application security
testing with tools and manual testing. In Proceedings of the IEEE Southeastcon,
pages 1–6, Jacksonville, FL, 2013.

[46] B. Dunphy. Key considerations for outsourcing security. http://trygstad.rice.
iit.edu:8000/Articles/KeyConsiderationsForOutsourcingSecurity-HNS.

pdf, May 2004.

193

BIBLIOGRAPHY BIBLIOGRAPHY

[47] M. Ekstedt and T. Sommestad. Enterprise architecture models for cyber security
analysis. In Proceedings of the 2009 IEEE Power Systems Conference and Exposi-
tion, pages 1 –6, Seattle, WA, march 2009. IEEE Power and Energy Society.

[48] G. Elahi and E. Yu. A goal oriented approach for modeling and analyzing secu-
rity trade-offs. In Proceedings of the 26th international conference on Conceptual
modeling, ER’07, pages 375–390, Berlin, Heidelberg, 2007. Springer-Verlag.

[49] E. Elkind, B. Genest, and D. Peled. Detecting races in ensembles of message se-
quence charts. In Proceedings of the 13th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, TACAS’07, pages 420–
434, Berlin, Heidelberg, 2007. Springer-Verlag.

[50] M. Essafi, L. Labed, and H. B. Ghezala. S2d-prom: A strategy oriented process
model for secure software development. In Proceedings of the International Con-
ference on Software Engineering Advances, ICSEA ’07, pages 24–30, Cap Esterel,
2007. IEEE Computer Society.

[51] L. Esterle, P. Lewis, M. Bogdanski, B. Rinner, and X. Yao. A socio-economic
approach to online vision graph generation and handover in distributed smart cam-
era networks. In Proceedings of the 5th ACM/IEEE International Conference on
Distributed Smart Cameras, pages 1–6, Ghent, 2011. IEEE.

[52] D. T. et al. Symantec internet security threat report. http://eval.symantec.com/
mktginfo/enterprise/white_papers/ent-whitepaper_internet_security_

threat_report_xi_03_2007.en-us.pdf, Volume XI, Published March 2007.

[53] F. Faniyi, R. Bahsoon, A. Evans, and R. Kazman. Evaluating security properties of
architectures in unpredictable environments: A case for cloud. Working IEEE/IFIP
Conference on Software Architecture, 1:127–136, 2011.

[54] F. Farahmand, S. B. Navathe, G. P. Sharp, and P. H. Enslow. A management per-
spective on risk of security threats to information systems. Information Technology
and Management, 6(2-3):203–225, April 2005.

[55] M. Felderer, B. Agreiter, P. Zech, and R. Breu. A classification for model-based
security testing. In Proceedings of the 3rd International Conference on Advances in
System Testing and Validation Lifecycle, pages 109–114. Xpert Publishing Services,
2011.

194

BIBLIOGRAPHY BIBLIOGRAPHY

[56] G. Fink and M. Bishop. Property-based testing: a new approach to testing for
assurance. ACM SIGSOFT Software Engineering Notes, 22(4):74–80, July 1997.

[57] C. Flanagan and S. N. Freund. Detecting race conditions in large programs. In
Proceedings of the 2001 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools and Engineering, PASTE ’01, pages 90–96, New York, NY, USA,
2001. ACM.

[58] A. Flo and A. Josang. Consequences of botnets spreading to mobile devices. In
Proceedings of the 14th Nordic Conference on Secure IT Systems, pages 37–43,
Berlin, Heidelberg, 2009. Springer-Verlag.

[59] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Ws-engineer: A model-based
approach to engineering web service compositions and choreography. In L. Baresi
and E. Nitto, editors, Test and Analysis of Web Services, pages 87–119. Springer
Berlin Heidelberg, 2007.

[60] R. France and B. Rumpe. Model-driven development of complex software: A re-
search roadmap. In Proceedings of the 2007 IEEE Future of Software Engineering,
FOSE ’07, pages 37–54, Washington, DC, USA, 2007. IEEE Computer Society.

[61] J. Friedman. Dictionary of Business and Economic Terms. Barron’s Educational
Series, 5th edition, 2012.

[62] V. Gandotra, A. Archana Singhal, and P. Bedi. Layered security architecture for
threat management using multi-agent system. ACM SIGSOFT Software Engineer-
ing Notes, 36(5):1–11, September 2011.

[63] V. Gandotra, A. Singhal, and P. Bedi. Identifying security requirements hybrid
technique. In Proceedings of the 2009 Fourth International Conference on Software
Engineering Advances, ICSEA ’09, pages 407–412, Washington, DC, USA, 2009.
IEEE Computer Society.

[64] B. Gates. Gates highlights progress on security, outlines next steps for con-
tinued innovation. http://www.microsoft.com/en-us/news/press/2005/feb05/
02-15rsa05keynotepr.aspx, 2005.

[65] C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals of software engineering.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1991.

195

BIBLIOGRAPHY BIBLIOGRAPHY

[66] O. M. Group. Unified modeling language (uml), version 2.2. http://www.omg.org/
technology/documents/formal/uml.htm.

[67] N. Guelfi and A. Saidane. Seter: Towards architecture-model based security en-
gineering. International Journal of Secure Software Engineering, 3(3):23–49, July
2012.

[68] R. Gula. Broadening the scope of penetration-testing techniques. www.

forum-intrusion.com/archive/ENTRASYS.pdf, 1999.

[69] M. A. Hadavi, H. Shirazi, H. M. Sangchi, and V. S. Hamishagi. Software security;
a vulnerability activity revisit. In Proceedings of the 2008 Third International Con-
ference on Availability, Reliability and Security, ARES ’08, pages 866–872, Wash-
ington, DC, USA, 2008. IEEE Computer Society.

[70] S. Hansman and R. Hunt. A taxonomy of network and computer attacks. Computers
& Security, 24(1):31–43, 2005.

[71] K. He, Z. Feng, and X. Li. An attack scenario based approach for software security
testing at design stage. In Proceedings of the 2008 International Symposium on
Computer Science and Computational Technology, volume 1 of ISCSCT ’08, pages
782–787, Washington, DC, USA, 2008. IEEE Computer Society.

[72] M. J. Heavner, D. R. Fatland, E. Hood, and C. Connor. Seamonster: A demonstra-
tion sensor web operating in virtual globes. Comput. Geosci., 37(1):93–99, January
2011.

[73] S. Hernan, S. Lambert, T. Ostwald, and A. Shostack. Threat modeling: Uncover se-
curity design flaws using the stride approach. The Microsoft Journal for Developers
MSDN Magazine, 1:6, November 2006.

[74] P. Herzog. Open source security testing methodology manual (osstmm). http:

//www.isecom.org/mirror/OSSTMM.3.pdf, December 2010.

[75] T. Heyman, K. Yskout, R. Scandariato, and W. Joosen. An analysis of the security
patterns landscape. In Proceedings of the Third International Workshop on Software
Engineering for Secure Systems, SESS ’07, pages 3–10, Washington, DC, USA, 2007.
IEEE Computer Society.

196

BIBLIOGRAPHY BIBLIOGRAPHY

[76] G. Hoglund and G. McGraw. Exploiting Software: How to Break Code. Addison-
Wesley Software Security Series, 2004.

[77] T. Hoppe, S. Kiltz, and J. Dittmann. Security threats to automotive can networks
- practical examples and selected short-term countermeasures. Reliability Engi-
neering & System Safety, 96(1):11–25, 2011. ¡ce:title¿Special Issue on Safecomp
2008¡/ce:title¿.

[78] J. Howard and T. Longstaff. A Common Language for Computer Security Incidents.
Sandia National Laboratories, 1998.

[79] M. Howard. A look inside the security development lifecycle at microsoft. http:

//msdn.microsoft.com/en-us/magazine/cc163705.aspx, 2005.

[80] M. Howard and D. C. LeBlanc. Writing Secure Code. Microsoft Press, Redmond,
WA, 2002.

[81] D. Hughes, P. Greenwood, and G. Coulson. A framework for testing distributed
systems. In Proceedings of the Fourth International Conference on Peer-to-Peer
Computing, P2P ’04, pages 262–263, Washington, DC, USA, 2004. IEEE Computer
Society.

[82] S. Institute. Critical controls for effective cyber defense. http://www.sans.org/

critical-security-controls/cag4.pdf.

[83] J. Itkonen and K. Rautiainen. Exploratory testing: a multiple case study. In
Proceedings of the 2005 IEEE International Symposium on Empirical Software En-
gineering, pages 84–93, Noosa Heads, Australia, November 2005. IEEE.

[84] ITU. Message sequence charts. Technical report, International Telecommunications
Union. Telecommunication Standardisation Sector., 1996.

[85] M. G. Jaatun and I. A. Tøndel. Covering your assets in software engineering. In
Proceedings of the 2008 Third International Conference on Availability, Reliability
and Security, ARES ’08, pages 1172–1179, Washington, DC, USA, 2008. IEEE
Computer Society.

[86] L. Jinhua and L. Jing. Model checking security vulnerabilities in software design. In
6th International Conference on Wireless Communications Networking and Mobile
Computing, pages 1–4, 2010.

197

BIBLIOGRAPHY BIBLIOGRAPHY

[87] J. Julliand, P.-A. Masson, and R. Tissot. Generating security tests in addition to
functional tests. In Proceedings of the 3rd international workshop on Automation
of software test, AST ’08, pages 41–44, New York, NY, USA, 2008. ACM.

[88] L. Jurani. Using fuzzing to detect security vulnerabilities. Technical report, IN-
FIGO, 2006.

[89] J. Jürjens. Umlsec: Extending uml for secure systems development. In Proceedings
of the 5th International Conference on The Unified Modeling Language, UML ’02,
pages 412–425, London, UK, UK, 2002. Springer-Verlag.

[90] J. Jürjens. Model-based security testing using umlsec. Electron. Notes Theor.
Comput. Sci., 220(1):93–104, December 2008.

[91] H. M. K. Goertzel, T. Winograd and P. Holley. B. hamilton, security in the software
lifecycle. Technical report, Department of Homeland Security, August, Version 1.2
2006.

[92] R. Kalman. On the general theory of control systems. IRE Transactions on Auto-
matic Control, 4(3):110–110, 1959.

[93] P. Karpati, A. L. Opdahl, and G. Sindre. Experimental comparison of misuse
case maps with misuse cases and system architecture diagrams for eliciting security
vulnerabilities and mitigations. In Proceedings of the 2011 Sixth International Con-
ference on Availability, Reliability and Security, ARES ’11, pages 507–514, Wash-
ington, DC, USA, 2011. IEEE Computer Society.

[94] R. M. Keller. Formal verification of parallel programs. Communications of the
ACM, 19(7):371–384, July 1976.

[95] e. a. Kent Beck, Mike Beedle. Manifesto for agile software development. http:

//agilemanifesto.org/, 2001.

[96] e. a. Kent Beck, Mike Beedle. Principles behind the agile manifesto. http://

agilemanifesto.org/principles.html, 2001.

[97] Y. G. Kim, H. S. Hong, D. H. Bae, and S. D. Cha. Test cases generation from uml
state diagrams. IEEE Proceedings Software Engineering, 146(4):187–192, August
1999.

198

BIBLIOGRAPHY BIBLIOGRAPHY

[98] R. Kissel. Glossary of key information security terms. http://csrc.nist.

gov/publications/nistir/ir7298-rev1/nistir-7298-revision1.pdf, Febru-
ary 2011.

[99] J. Kong and D. Xu. A uml-based framework for design and analysis of dependable
software. In Proceedings of the 2008 32Nd Annual IEEE International Computer
Software and Applications Conference, COMPSAC ’08, pages 28–31, Washington,
DC, USA, 2008. IEEE Computer Society.

[100] H. kuk Kim, Y. seo Choi, and D. il Seo. Design of attack generation test-suite based
scenario for security solutions testing. In Proceedings of the 7th International Con-
ference on Advanced Communication Technology, volume 1, pages 676–679, Phoenix
Park, 2005.

[101] D. Kundu and D. Samanta. A novel approach to generate test cases from uml
activity diagrams. Journal Of Object Technologies, 8(3):65–83, May 2009.

[102] B. Labs. Ubet. http://cm.bell-labs.com/cm/cs/what/ubet/.

[103] M.-A. Laverdiere, A. Mourad, A. Hanna, and M. Debbabi. Security design patterns:
Survey and evaluation. In Proceedings of the 2009 IEEE Canadian Conference on
Electrical and Computer Engineering, pages 1605–1608, Ottawa, Ont, 2006. IEEE
Computer Society.

[104] F. Lebeau, B. Legeard, F. Peureux, and A. Vernotte. Model-based vulnerability
testing for web applications. In Proceedings of the Sixth IEEE International Con-
ference on Software Testing, Verification and Validation Workshops, pages 445–452,
Luxembourg, March 2013.

[105] E. Letier, J. Kramer, J. Magee, and S. Uchitel. Monitoring and control in scenario-
based requirements analysis. In Proceedings of the 27th International Conference on
Software Engineering, ICSE ’05, pages 382–391, New York, NY, USA, 2005. ACM.

[106] X. Li and K. He. A unified threat model for assessing threat in web applications.
In Proceedings of the 2008 International Conference on Information Security and
Assurance, ISA ’08, pages 142–145, Washington, DC, USA, 2008. IEEE Computer
Society.

[107] B. Lindstrom, P. Pettersson, and J. Offutt. Generating trace-sets for model-based
testing. In Proceedings of the 18th IEEE International Symposium on Software
Reliability., pages 171–180, Nov 2007.

199

BIBLIOGRAPHY BIBLIOGRAPHY

[108] T. Lodderstedt, D. A. Basin, and J. Doser. Secureuml: A uml-based modeling lan-
guage for model-driven security. In Proceedings of the 5th International Conference
on The Unified Modeling Language, UML ’02, pages 426–441, London, UK, UK,
2002. Springer-Verlag.

[109] A. Marback, H. Do, K. He, S. Kondamarri, and D. Xu. A threat model-based
approach to security testing. Software: Practice and Experience, 43(2):241–258,
2013.

[110] D. McCullough. Specifications for multi-level security and a hook-up property. In
Proceedings of the 1987 IEEE Symposium on Security and Privacy, volume 0, pages
161–166, Los Alamitos, CA, USA, 1987. IEEE Computer Society.

[111] G. McGraw. Software Security: Building Security In... Addison-Wesley Profes-
sional, 2006.

[112] G. McGraw. Software security. Datenschutz und Datensicherheit - DuD, 36(9):662–
665, 2012.

[113] G. McGraw and B. Potter. Software security testing. IEEE Security and Privacy,
2(5):81–85, September 2004.

[114] G. McGraw and J. Viega. Building Secure Software: How to Avoid Security Prob-
lems the Right Way. Addison-Wesley Professional, 2001.

[115] J. McLean. A general theory of composition for trace sets closed under selective
interleaving functions. In Proceedings of the 1994 IEEE Symposium on Security
and Privacy, SP ’94, pages 79–85, Washington, DC, USA, 1994. IEEE Computer
Society.

[116] P. McMinn. Search-based software test data generation: A survey: Research articles.
Software Testing, Verification & Reliability, 14(2):105–156, June 2004.

[117] P. H. Meland and J. Jensen. Secure software design in practice. In Proceedings of
the 2008 Third International Conference on Availability, Reliability and Security,
ARES ’08, pages 1164–1171, Washington, DC, USA, 2008. IEEE Computer Society.

[118] W. Michael, C. & Radosevich. Risk-based and functional security testing. Technical
report, Build Security In., 2005.

200

BIBLIOGRAPHY BIBLIOGRAPHY

[119] B. P. Miller, L. Fredriksen, and B. So. An empirical study of the reliability of unix
utilities. Communications of the ACM, 33(12):32–44, December 1990.

[120] B. Mitchell. Inherent causal orderings of partial order scenarios. In Proceedings of
the First International Conference on Theoretical Aspects of Computing, ICTAC’04,
pages 113–127, Berlin, Heidelberg, 2005. Springer-Verlag.

[121] B. Mitchell. Resolving race conditions in asynchronous partial order scenarios. IEEE
Transactions on Software Engineering, 31(9):767–784, 2005.

[122] G. Mogyorodi. Requirements-based testing: An overview. In Proceedings of the 39th
International Conference and Exhibition on Technology of Object-Oriented Lan-
guages and Systems, TOOLS ’01, pages 286–295, Washington, DC, USA, 2001.
IEEE Computer Society.

[123] A. Morais, E. Martins, A. Cavalli, and W. Jimenez. Security protocol testing using
attack trees. In Proceedings of the 2009 International Conference on Computational
Science and Engineering, volume 2 of CSE ’09, pages 690–697, Washington, DC,
USA, 2009. IEEE Computer Society.

[124] T. Mouelhi, F. Fleurey, B. Baudry, and Y. Traon. A model-based framework for
security policy specification, deployment and testing. In Proceedings of the 11th
International Conference on Model Driven Engineering Languages and Systems,
MoDELS ’08, pages 537–552, Berlin, Heidelberg, 2008. Springer-Verlag.

[125] H. Mouratidis and P. Giorgini. Security attack testing (sat)-testing the security of
information systems at design time. Information Systems, 32:1166 –1183, 2007.

[126] H. Mouratidis, M. Weiss, and P. Giorgini. Modeling secure systems using an agent-
oriented approach and security patterns. International Journal of Software Engi-
neering and Knowledge Engineering, 16(3):471, 2006.

[127] M. Mozaffari-Kermani and A. Reyhani-Masoleh. Concurrent structure-independent
fault detection schemes for the advanced encryption standard. IEEE Transactions
on Computers, 59(5):608–622, May 2010.

[128] H. Muccini. Detecting implied scenarios analyzing non-local branching choices.
In Proceedings of the 6th International Conference on Fundamental Approaches to
Software Engineering, FASE’03, pages 372–386, Berlin, Heidelberg, 2003. Springer-
Verlag.

201

BIBLIOGRAPHY BIBLIOGRAPHY

[129] P. V. Murthy, P. C. Anitha, M. Mahesh, and R. Subramanyan. Test ready uml
statechart models. In Proceedings of the 2006 International Workshop on Scenarios
and State Machines: Models, Algorithms, and Tools, SCESM ’06, pages 75–82, New
York, NY, USA, 2006. ACM.

[130] R. H. B. Netzer and B. P. Miller. What are race conditions?: Some issues and
formalizations. ACM Lett. Program. Lang. Syst., 1(1):74–88, Mar. 1992.

[131] P. Oehlert. Violating assumptions with fuzzing. IEEE Security and Privacy,
3(2):58–62, May 2005.

[132] N. I. of Standards and T. (NIST). Cve and cce statistics query page. http://web.
nvd.nist.gov/view/vuln/statistics.

[133] E. A. Oladimeji, S. Supakkul, and L. Chung. Security threat modeling and analysis:
A goal-oriented approach. In Proceedings of the 10 th IASTED International Con-
ference on Software Engineering and Applications. Acta Press Inc,# 80, 4500-16
Avenue N. W, Calgary, AB, T 3 B 0 M 6, Canada,, 2006.

[134] A. L. Opdahl and G. Sindre. Experimental comparison of attack trees and mis-
use cases for security threat identification. Information and Software Technology,
51(5):916–932, May 2009.

[135] V. Paradigm. Visual paradigm for uml. http://www.visual-paradigm.com/

aboutus/award/.

[136] P. A. Pari Salas, P. Krishnan, and K. J. Ross. Model-based security vulnerability
testing. In Proceedings of the 2007 Australian Software Engineering Conference,
ASWEC ’07, pages 284–296, Washington, DC, USA, 2007. IEEE Computer Society.

[137] J. J. Pauli and D. Xu. Misuse case-based design and analysis of secure software archi-
tecture. In Proceedings of the International Conference on Information Technology:
Coding and Computing, volume 1-2 of ITCC ’05, pages 398–403, Washington, DC,
USA, 2005. IEEE Computer Society.

[138] K. P. Peralta, A. M. Orozco, and A. F. Z. F. M. Oliveira. Specifying security aspects
in uml models, 2008.

[139] C. Phillips and L. P. Swiler. A graph-based system for network-vulnerability anal-
ysis. In Proceedings of the 1998 workshop on New security paradigms, NSPW ’98,
pages 71–79, New York, NY, USA, 1998. ACM.

202

BIBLIOGRAPHY BIBLIOGRAPHY

[140] M. Popovic and I. Velikic. A generic model-based test case generator. In Proceed-
ings of the 12th IEEE International Conference and Workshops on Engineering of
Computer-Based Systems, ECBS ’05, pages 221–228, Washington, DC, USA, 2005.
IEEE Computer Society.

[141] W. Prenninger and A. Pretschner. Abstractions for model-based testing. Electron.
Notes Theor. Comput. Sci., 116:59–71, Jan. 2005.

[142] A. Pretschner, T. Mouelhi, and Y. L. Traon. Model-based tests for access control
policies. In Proceedings of the 2008 International Conference on Software Testing,
Verification, and Validation, ICST ’08, pages 338–347, Washington, DC, USA, 2008.
IEEE Computer Society.

[143] M. A. Qadeer, A. Iqbal, M. Zahid, and M. R. Siddiqui. Network traffic analysis
and intrusion detection using packet sniffer. In Proceedings of the 2010 Second
International Conference on Communication Software and Networks, ICCSN ’10,
pages 313–317, Washington, DC, USA, 2010. IEEE Computer Society.

[144] C. R. Ramakrishnan and R. Sekar. Model-based analysis of configuration vulnera-
bilities. Journal of Computer Security, 10(1-2):189–209, July 2002.

[145] I. Ray, N. Li, R. France, and D.-K. Kim. Using uml to visualize role-based access
control constraints. In Proceedings of the Ninth ACM Symposium on Access Control
Models and Technologies, SACMAT ’04, pages 115–124, New York, NY, USA, 2004.
ACM.

[146] S. Rehman and K. Mustafa. Research on software design level security vulnerabili-
ties. ACM SIGSOFT Software Engineering Notes, 34(6):1–5, December 2009.

[147] G. Rodrigues, D. Rosenblum, and S. Uchitel. Using scenarios to predict the re-
liability of concurrent component-based software systems. In M. Cerioli, editor,
Fundamental Approaches to Software Engineering, volume 3442 of Lecture Notes in
Computer Science, pages 111–126. Springer Berlin Heidelberg, 2005.

[148] S. Rohrig and S. S. Ag. Using process models to analyze health care security
requirements, 2002.

[149] D. Rosenzweig, D. Runje, and W. Schulte. Model-based testing of cryptographic
protocols. In R. Nicola and D. Sangiorgi, editors, Trustworthy Global Computing,
volume 3705 of Lecture Notes in Computer Science, pages 33–60. Springer Berlin
Heidelberg, 2005.

203

BIBLIOGRAPHY BIBLIOGRAPHY

[150] A. Roychoudhury, A. Goel, and B. Sengupta. Symbolic message sequence charts.
ACM Transactions on Software Engineering and Methodology, 21(2):12:1–12:44,
March 2012.

[151] I. Rus, F. Shull, and P. Donzelli. Decision support for using software inspections.
In Proceedings of the 28th Annual NASA Goddard Software Engineering Workshop,
pages 3–11, Greenbelt, Maryland, December 2003. IEEE Computer Society.

[152] J. RYSER and M. GLINZ. Scent: A method employing scenarios to systematically
derive testcases for system test. Technical report, University of Zurich, 2000.

[153] M. Sahinoglu. Security meter: A practical decision-tree model to quantify risk.
IEEE Security and Privacy, 3(3):18–24, May 2005.

[154] J. H. Saltzer and M. D. Schroeder. The protection of information in computer
systems. Proceedings of the IEEE, 63(9):1278–1308, 1975.

[155] A. N. Sarah Al-Azzani and R. Bahsoon. Architecture-centric testing for security:
An agile perspective. In M. A. Babar, A. W. Brown, K. Koskimies, and I. Mis-
trik, editors, Agile Software Architecture: Aligning Agile Processes and Software
Architectures. Elsevier, 1st edition, 2013.

[156] L. A. C. Sascha Konrad, Betty H.C. Cheng and R. Wassermann. Using security
patterns to model and analyze security requirements. In Proceedings in the 2003
IEEE Workshop on Requirements for High Assurance Systems, pages 13–22. IEEE
Computer Society, 2003.

[157] B. Schneier. Attack trees - modeling security threats. Dr. Dobbs journal of Software
Tools, 24(12):21–29, 1999.

[158] D. Scott and R. Sharp. Abstracting application-level web security. In Proceedings of
the 11th International Conference on World Wide Web, WWW ’02, pages 396–407,
New York, NY, USA, 2002. ACM.

[159] N. Shahmehri. The shield project. http://www.shields-project.eu/?q=node/19.

[160] H. Shahriar and M. Zulkernine. Music: Mutation-based sql injection vulnerability
checking. In Proceedings of the 2008 The Eighth International Conference on Quality
Software, QSIC ’08, pages 77–86, Washington, DC, USA, 2008. IEEE Computer
Society.

204

BIBLIOGRAPHY BIBLIOGRAPHY

[161] H. Shahriar and M. Zulkernine. Mutec: Mutation-based testing of cross site script-
ing. In Proceedings of the 2009 ICSE Workshop on Software Engineering for Secure
Systems, IWSESS ’09, pages 47–53, Washington, DC, USA, 2009. IEEE Computer
Society.

[162] M. E. Shin and H. Gomaa. Software requirements and architecture modeling for
evolving non-secure applications into secure applications. Science of Computer Pro-
gramming, 66(1):60 – 70, 2007. Special Issue on the 5th International Workshop on
System/Software Architectures (IWSSA’06).

[163] D. Shreyas. Software engineering for security: Towards architecting secure software.
Information and Computer Science Department, 1:1–7, 2002.

[164] G. Sindre and A. L. Opdahl. Eliciting security requirements with misuse cases.
Requir. Eng., 10(1):34–44, January 2005.

[165] B. Skaggs, B. Blackburn, G. Manes, and S. Shenoi. Network vulnerability analysis.
In Proceedings of the 45th Midwest Symposium on Circuits and Systems, volume 3,
pages 493–495, 2002.

[166] A. Sodiya, S. Onashoga, and B. Oladunjoye. Threat modeling using fuzzy logic
paradigm. In Issues in Informing Science & Information Technology, volume 4,
pages 53–60. Informing Science Institute, 2007.

[167] F. C. d. Sousa, N. C. Mendonca, S. Uchitel, and J. Kramer. Detecting implied
scenarios from execution traces. In Proceedings of the 14th Working Conference on
Reverse Engineering, pages 50–59, Los Alamitos, CA, USA, 2007. IEEE Computer
Society.

[168] C. Staite. Mobile advertising: Privacy and reward. http://www.cs.bham.ac.uk/

~cxs548/papers/auction.pdf, 2011.

[169] P. Stocks and D. Carrington. A framework for specification-based testing. IEEE
Transactions on Software Engineering, 22(11):777–793, November 1996.

[170] S. Stolfo, S. Bellovin, and D. Evans. Measuring security. IEEE Security Privacy,
9(3):60–65, 2011.

[171] A. Sutcliffe. Scenario-based requirements engineering. In Proceedings of the 11th
IEEE International Conference on Requirements Engineering, RE ’03, pages 320–
327, Washington, DC, USA, 2003. IEEE Computer Society.

205

BIBLIOGRAPHY BIBLIOGRAPHY

[172] F. Swiderski and W. Snyder. Threat Modeling. Microsoft Press, Redmond, WA,
USA, 2004.

[173] I. S. Systems. Internet scanner (iss). Web, 2003.

[174] A. Takanen, J. DeMott, and C. Miller. Fuzzing for Software Security Testing and
Quality Assurance. Artech House, Inc., Norwood, MA, USA, 1 edition, 2008.

[175] G. Taleck. Ambiguity resolution via passive os fingerprinting. In G. Vigna,
C. Kruegel, and E. Jonsson, editors, Recent Advances in Intrusion Detection, vol-
ume 2820 of Lecture Notes in Computer Science, pages 192–206. Springer Berlin
Heidelberg, 2003.

[176] A. K. Talukder, V. K. Maurya, B. G. Santhosh, J. Ebenezer, S. V. Muni, K. P. Je-
vitha, S. Samanta, and A. R. Pais. Security-aware software development life cycle
(sasdlc): processes and tools. In Proceedings of the Sixth international conference
on Wireless and Optical Communications Networks, WOCN’09, pages 253–257, Pis-
cataway, NJ, USA, 2009. IEEE Press.

[177] H. H. Thompson. Why security testing is hard. IEEE Security and Privacy, 1(4):83–
86, July 2003.

[178] H. H. Thompson, J. A. Whittaker, and F. E. Mottay. Software security vulnerability
testing in hostile environments. In Proceedings of the 2002 ACM Symposium on
Applied Computing, SAC ’02, pages 260–264, New York, NY, USA, 2002. ACM.

[179] I. Tndel, J. Jensen, and L. Rstad. Combining misuse cases with attack trees and
security activity models. In Proceedings of the 10th IEEE International Conference
on Availability, Reliability, and Security, pages 438–445. IEEE Computer Society,
2010.

[180] I. Tondel, M. Jaatun, and P. Meland. Security requirements for the rest of us: A
survey. IEEE Software, 25(1):20–27, 2008.

[181] Y. L. Traon, T. Mouelhi, and B. Baudry. Testing security policies: Going beyond
functional testing. In Proceedings of the The 18th IEEE International Symposium
on Software Reliability, ISSRE ’07, pages 93–102, Washington, DC, USA, 2007.
IEEE Computer Society.

206

BIBLIOGRAPHY BIBLIOGRAPHY

[182] T. T. Tun, Y. Yu, C. B. Haley, and B. Nuseibeh. Model-based argument analysis
for evolving security requirements. In Proceedings of the 4th IEEE International
Conference on Secure Software Integration and Reliability Improvement, pages 88–
97, 2010.

[183] S. Türpe. Security testing: Turning practice into theory. In Proceedings of the
2008 IEEE International Conference on Software Testing Verification and Valida-
tion Workshop, ICSTW ’08, pages 294–302, Washington, DC, USA, 2008. IEEE
Computer Society.

[184] G. M. Uchenick and W. M. Vanfleet. Multiple independent levels of safety and
security: high assurance architecture for msls/mls. In Proceedings of the 2005 IEEE
Military Communications Conference, pages 610–614. IEEE, 2005.

[185] S. Uchitel, R. Chatley, J. Kramer, and J. Magee. Ltsa-msc: Tool support for
behaviour model elaboration using implied scenarios. In Proceedings of the 9th
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems, TACAS’03, pages 597–601, Berlin, Heidelberg, 2003. Springer-Verlag.

[186] S. Uchitel, J. Kramer, and J. Magee. Detecting implied scenarios in message se-
quence chart specifications. ACM SIGSOFT Software Engineering Notes, 26(5):74–
82, September 2001.

[187] S. Uchitel, J. Kramer, and J. Magee. Negative scenarios for implied scenario elic-
itation. In Proceedings of the 10th ACM SIGSOFT Symposium on Foundations of
Software Engineering, SIGSOFT ’02/FSE-10, pages 109–118, New York, NY, USA,
2002. ACM.

[188] S. Uchitel, J. Kramer, and J. Magee. Incremental elaboration of scenario-based
specifications and behavior models using implied scenarios. ACM Transactions on
Software Engineering and Methodology, 13(1):37–85, January 2004.

[189] M. Ventuneac. Apache struts 2 multiple reflected xss in xwork error pages. http:
//seclists.org/bugtraq/2011/May/81, May 2011.

[190] L. Wang, E. Wong, and D. Xu. A threat model driven approach for security testing.
In Proceedings of the Third International Workshop on Software Engineering for
Secure Systems, SESS ’07, pages 10–, Washington, DC, USA, 2007. IEEE Computer
Society.

207

BIBLIOGRAPHY BIBLIOGRAPHY

[191] D. A. Wheeler. Applying engineering principles to system security design & imple-
mentation. In Proceeding of The Annual Computer Security Applications Workshop
for Application of Engineering Principles to System Security Design, volume 1,
page 6, Anaheim, CA, 2002. The Annual Computer Security Applications.

[192] J. Whittle, D. Wijesekera, and M. Hartong. Executable misuse cases for modeling
security concerns. In Proceedings of the 30th International Conference on Software
Engineering, ICSE ’08, pages 121–130, New York, NY, USA, 2008. ACM.

[193] G. Wimmel and J. Jürjens. Specification-based test generation for security-critical
systems using mutations. In Proceedings of the 4th International Conference on
Formal Engineering Methods: Formal Methods and Software Engineering, ICFEM
’02, pages 471–482, London, UK, UK, 2002. Springer-Verlag.

[194] J. M. Wing. A call to action: Look beyond the horizon. IEEE Security and Privacy,
1(6):62–67, November 2003.

[195] D. Xu and K. E. Nygard. Threat-driven modeling and verification of secure soft-
ware using aspect-oriented petri nets. IEEE Transactions on Software Engineering,
32(4):265–278, Apr. 2006.

[196] D. Xu and J. J. Pauli. Threat-driven design and analysis of secure software archi-
tectures. Journal of Information Assurance and Security, 1(3):171–180, 2006.

[197] Y. Yang, H. Zhang, M. Pan, J. Yang, F. He, and Z. Li. A model-based fuzz frame-
work to the security testing of tcg software stack implementations. In Proceedings
of the 2009 International Conference on Multimedia Information Networking and
Security, volume 1 of MINES ’09, pages 149–152, Washington, DC, USA, 2009.
IEEE Computer Society.

[198] J. Yeo. Using penetration testing to enhance your company’s security. Computer
Fraud & Security, 2013(4):17–20, 2013.

[199] R. K. Yin. Case study research: Design and methods, volume 5. Sage, 2009.

[200] J. Yoder and J. Barcalow. Architectural patterns for enabling application security.
In Proceedings of the 4th Pattern Languages of Program Design, pages 301–336.
Addison-Wesley, 2000.

208

BIBLIOGRAPHY BIBLIOGRAPHY

[201] C. Zou. Modeling, early detection, and mitigation of internet worm attacks. PhD
thesis, University of Massachusetts Amherst, 2005. AAI3193965.

209

