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ABSTRACT 

Introduction – Foot drop is a common motor impairment of the lower limb caused by 

Acquired Brain Injury (ABI) that can limit mobility and increase risk of falls. Split Crank 

(SC) cycling is proposed here as a novel paradigm to evoke functional neural plasticity 

and beneficial muscular adaptations to treat foot drop. 

 

Methods – Healthy participants were randomly assigned to SC or FC conditions for a 5 

day intervention. Transcranial magnetic stimulation (TMS) evoked stimulus-response 

curves (SRCs) for tibialis anterior (TA) and muscle kinematic activation patterns for TA, 

soleus (SOL), biceps femoris (BF) and vastus lateralis (VL) during cycling were recorded 

before and after the first and last training sessions.  

 

Results – SRCs revealed no beneficial TA corticospinal excitability adaptations to training 

but significant increases in duration of TA and BF activity were reported for TA and BF 

during SC cycling (p < .05). This occurred as an immediate response on initial exposure to 

the task. 

 

Discussion – The strength of evidence for implementing SC cycling with ABI patients in 

the treatment of foot drop was weaker than hoped. However, increased duration of TA 

activation shows promise as beneficial for foot drop sufferers. Completion of the study 

provided new information on an unexplored exercise therapy and useful observations for 

facilitating clinical translation in the future. 
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CHAPTER 1 - INTRODUCTION 

1.1 – INTRODUCTION PURPOSE 

  This chapter is aimed at establishing our current understanding of corticospinal excitability 

(CSE) in animals and humans and how the non-invasive techniques such as transcranial 

magnetic stimulation (TMS) are used to measure its changes has revealed the capacity to of 

the nervous system to adapt plastically in response to certain training paradigms. The novel 

concept of split crank (SC) cycling is introduced and how it may be advantageous for 

acquired brain injury (ABI) patients in rehabilitation from mobility impairments, focusing 

specifically on foot drop, over other currently recognised therapies. Finally, since research 

into this novel therapy is scarce, aspects of the design which need to be established in healthy 

individuals first are discussed and how they will facilitate progression into a clinical 

rehabilitation setting in the future. 

1.2 – CURRENT UNDERSTANDING OF CORTICOSPINAL PLASTICITY 

  Historically, the motor cortex was thought of as a static model of muscular representation 

with little or no capacity for adaptation
(1)

. In addition to this, it was thought that the 

somatotopical organisation of the motor cortex was discrete for specific body parts where 

each part occupied a non-overlapping cortical space
(2)

. More recently, the idea of a motor 

cortex with dynamically changing regions of muscular representation is accepted where 

sensorimotor reorganization occurs on a day to day basis throughout life
(3)

, contributing the 

development of the nervous system in early childhood
(3)

 and as an adaptation to 

environmental changes
(4)

.  There is also evidence to support neural plasticity at a spinal level 

in response to specific conditioning in animals
(5)

 and humans
(6)

 and is why neural adaptations 
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to training paradigms are often referred to as adaptations of the corticospinal tract in terms of 

CSE or plasticity.  

1.2.1 – Evidence of Corticospinal Plasticity in Animals 

  To demonstrate these neuroplastic effects, there has been a number of studies in animals 

which has enabled the use of invasive techniques assessing corticospinal plasticity
(7-9)

 that 

would be otherwise unattainable in humans. One study by Kleim et al.
(7)

 looked at changes in 

rat limb motor cortex representation before and after training with a forelimb reaching task by 

electrophysiological mapping of the cortex with microelectrodes. Greater forelimb and wrist 

representations were found for rats in the skilled reaching than unskilled reaching paradigm, 

displaying an apparent functional plasticity to improve task performance. In a similar 

experiment by Nudo et al.
(8)

, squirrel monkeys were given either a grasping task targeting 

digit activity or a key locking task which targeted forearm activity. The grasping task caused 

expansion of the motor cortex region associated with digits and contraction of the forearm 

region whilst the key-locking task showed the opposite; expansion of the forearm and 

contraction of the digit regions. The results seen in both studies were concurrent with an 

increased success rate of task performance suggesting that the observed nervous plasticity 

may have been functionally significant and contributed to the observed improvements. 

1.2.2 – Measuring Corticospinal Plasticity with Transcranial Magnetic Stimulation 

  These animal studies allow the use of invasive techniques not possible in humans to give a 

more detailed picture of the mechanisms driving plasticity. However, their physiology can be 

quite different from humans which can limit the generalisation of findings. Luckily, there 

have been recent technological advancements in neuroimaging and non-invasive stimulation 

techniques that have made looking at similar neuroplastic changes in humans a 
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possibility
(10, 11)

. In particular, the use of transcranial magnetic stimulation (TMS) has allowed 

direct assessment of motor cortex 

representation in humans and the 

efficacy of the corticospinal tract with 

relative ease. TMS uses a rapidly 

changing magnetic field to produce 

electrical excitation of motor cortical 

neurons which evokes an electrical 

response at the muscle they subserve 

known as a motor evoked potential 

(MEP)
(12-14)

. In neurorehabilitative research, TMS evoked MEPs are commonly used to assess 

changes in CSE for a target muscle via the generation of stimulus-response curves (SRCs)
(12, 

13, 15, 16)
 and cortical maps (CMs)

(10, 11, 17, 18)
. SRCs are the product of plotting a range of TMS 

stimulus intensities (ranging from 0 to 

100% maximum stimulus output or MSO) 

which are delivered to a single point on 

the motor cortex against their 

corresponding MEP magnitudes to 

produce a scatter graph. A sigmoidal 

shaped curve can then be fitted to this 

scatter where specific changes in its 

profile following training or rehabilitation 

can be indicative of changes to CSE, and neuroplastic adaptations by extension, for the 

muscle of interest
(13, 14, 16) 

(Figure 1). CMs rely on a slightly different utilization of MEPs 
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whereby a series of stimulations are delivered randomly to multiple scalp sites across a set 

grid on the motor cortex at a predefined intensity
(11)

. The resultant MEP magnitudes can then 

be used to construct a muscles motor representation map similar to the one shown in Figure 2 

where changes in map volume and area act as the indicators for changes in CSE and motor 

cortical re-organisation. In rehabilitation research these measures are considered highly 

advantageous due to their high degree of sensitivity which is often not achieved with the use 

of graded scales of functional motor recovery such as the Fugl-Meyer Motor Assessment 

(FMA) and Brunnstrom Motor Recovery Stage (BRS) assessments. In these cases, small 

improvements in neural recovery, which are likely to precede apparent functional motor 

progression, may go unseen and experimental or indeed conventional methods of 

rehabilitation may be deemed ineffective for the patient’s recovery. As such, the application 

of TMS as described above is becoming more widely used (where possible) in a rehabilitation 

setting and additionally during cases of experiments involving healthy participants where the 

measures are still sensitive enough to detect even the slightest excitability changes and 

thereby provide a basis for the application of the proposed therapy or training to patients. 

Although the two TMS applications discussed here differ in methodology, they share a 

common outcome measure in the quantification of changes in CSE and have both been 

assessed as equally effective in successfully achieving this in humans
(16)

. 

1.2.3 – Evidence of Corticospinal Plasticity in Humans 

  Using TMS to measure plasticity in some of the ways described here, including additional 

methods too, has led to a wealth of research documenting how humans also can adapt 

corticospinal excitability in response to specific training. Classen et al.
(19)

 used TMS to evoke 

twitch responses of the thumb before and after a unidirectional movement training paradigm, 

observing how the training altered kinematics of the TMS-evoked movement. It was found 
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that after the training, the acceleration vector of TMS evoked responses was modulated 

towards the trained direction which lasted for around 15-20mins, meaning the training altered 

the directional preference of the TMS evoked responses. This effect demonstrates short term 

or acute reorganization of 

the neural networks 

controlling thumb 

movement kinematics
(19)

 

as a neuroplastic response 

to the training. In a 

different study with a more skilled training exercise, Pascual-Leone et al.
(20)

 used TMS to map 

regions of the motor cortex which represented finger flexors and extensors during 5 weeks of 

a 5 finger piano training paradigm. Concurrent with a reduction in number of sequence errors, 

the trained hand showed marked map expansion compared to the untrained hand (Figure 3) 

attributed to a two stage process of plasticity
(4)

.  The first stage includes an acute stage of 

rapid map size modulation between Monday and Friday representing adaptation of existing 

neural pathways, with the slower more discrete changes occurring between Mondays, (with 

the weekend for wash-out) illustrating long term cortical structural changes as the skills 

become automatic and overlearned
(4)

. Following this, it seems that there is the potential for 

motor learning to cause lasting neural adaptations contributing to improved task performance, 

something which is well demonstrated in similar studies where performance improvements 

have been retained following the cessation of training
(21, 22)

.  

  In addition to the majority of this research which is conducted in the upper limb, there is also 

evidence to show that repetitive practice based learning can evoke functional neuroplastic 

changes in the lower limb as well, though in far fewer numbers. One such example includes 
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the ‘up’ and ‘down’ conditioning of spinal h-reflexes using or goal orientated feedback
(6)

. 

Thompson et al.
(6)

 asked participants to stand freely and maintain a level of background soleus 

activity before a h-reflex was elicited, with its magnitude being visually displayed 

immediately for the participant to see whether it was inside or out of a ‘up’ (above their 

average control h-reflex) or ‘down’ (below their average control h-reflex) conditioned range. 

Participants were able to successfully adapt the size of their h-reflexes to the operant 

conditioning within early sessions showing task-dependent adaptation, but also over a longer 

time period, illustrated by changes to their control h-reflexes which became apparent in later 

conditioning sessions, suggesting a longer term supraspinal influence on adaptation. This 

suggests a complimentary role of the brain and spine in influencing plasticity in response to 

task requirements within the nervous system
(6)

 and shows the lower limb has a similar 

neuroplastic capacity as the upper limb. In another lower limb study, Perez et al.
(12)

 used a 

tracking task controlled by ankle plantar and dorsiflexion to examine plastic changes in neural 

excitability of the tibialis anterior (TA) using TMS. It was found that TMS motor evoked 

responses (MEPs) were significantly greater following 32 mins of skilled training, with no 

significant changes seen in the non-skilled (voluntary ankle dorsi/plantar flexion) and passive 

training (assisted voluntary ankle dorsi/plantar flexion) groups. This too, shows that in 

addition to upper limb learning, motor skill training can evoke plasticity affecting lower limb 

excitability as well.  
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1.3 – UTILIZING CORTICOSPINAL PLASTICITY IN REHABILITATION 

1.3.1 – Acquired Brain Injury and its Associated Motor Impairments 

  The term Acquired Brain Injury (ABI) is commonly used in rehabilitation research studies 

but one which is also loosely defined. Following this, many studies are quite vague with their 

inclusion criteria and often have varied subject populations as a result
(23)

. However, a 

comprehensive definition used presently comes from The Toronto Acquired Brain Injury 

Network, where ABI can be seen as “damage to the brain that occurs after birth and which is 

not related to congenital disorders, developmental disabilities, or processes that progressively 

damage the brain”
(23, 24)

. This definition outlines how ABI can occur through both traumatic 

and non-traumatic damage to the brain
(24)

 which is an important factor often overlooked by 

experiments with ABI patients. 

  Two of the most common forms of ABI are Stroke and Traumatic Brain Injury (TBI). Stroke 

is a non-traumatic form of ABI and accounts for a reported 5.5 million deaths per year 

globally
(25)

 with an estimated 205,000 cases a year in the UK alone
(26)

. Stroke often causes 

motor dysfunction in muscles contralateral to the lesion site causing a sudden neurologic 

deficit which reduces cortical drive for desired movements
(27)

, and whilst the loss of upper 

limb motor function can reduce the ability to perform activities of daily living, stroke can 

commonly cause lower limb dysfunction as well with subsequent mobility issues being one of 

the highest reported post-injury health problems
(28)

.  

  Similarly, with an incidence of 300 per 100,000 population, TBI is a commonly reported 

injury in the UK where roughly 83-93% of cases are reported as mild and only around 3% as 

severe
(29)

. One of the greatest sources of TBI is via road traffic accidents, accounting for 40% 

of all TBIs with around 30% of severe cases involving the consumption of alcohol
(29)

. In cases 
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of TBI, the most common subject of rehabilitation research is concerning cognitive and 

behavioural impairments which can be associated with both mild and severe injuries
(30)

. 

Physical deficits of TBI are typically associated with severe cases alone
(30)

 and are often only 

mentioned briefly with little focus on novel rehabilitation strategies. However, common 

examples of TBI physical impairments include loss of balance, altered coordination, postural 

instability and temporal asymmetry
(31-33)

 which can affect the generation and execution of 

rhythmic patterns of muscular activity such as walking.  

  In addition to stroke and TBI, less common forms of ABI also include meningitis
(34)

, 

cancerous brain tumours
(35)

 and hypoxic injuries
(36, 37)

 all of which inflict damage to the brain 

which can contribute to motor impairments too. Typical examples of these impairments 

include ataxia
(38)

 and loss of coordination and dizziness whilst walking
(34)

 both of which may 

affect the ability to carry out activities of daily living and general quality of life.
 

1.3.2 – Optimising Functional Plasticity in ABI Rehabilitation 

  The prospect of a human nervous system which has the ability to dynamically adapt to 

environmental changes is very appealing when considering recovery from damage imposed 

by a neurological injury such as an ABI. A loss of cortical neurons devoted to a particular 

motor performance or muscle as a result of ABI can cause impairment, but by tailoring 

rehabilitation therapies to train the impaired muscle we can elicit functional reorganisation of 

motor cortical and spinal neurons to compensate, thereby promoting recovery. In these 

instances the aim is to evoke plasticity which can cause a beneficial or desired outcome, 

sometimes termed functional plasticity.   Evidence of beneficial or functional plasticity 

following ABI has been made apparent in both animal and human studies. One of the more 

simplistic examples of this is the use of Constraint-Induced Movement Therapy (CIMT) 

where use of the affected limb is encouraged during motor training by constraining the 
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unaffected limb
(39,18)

. The basis for this concept comes from the proposal of a phenomenon 

known as learned non-use syndrome (LNUS) (Figure 4) which is considered to be a major 

hurdle to overcome during ABI motor rehabilitation. Liepert et al.
(18)

 looked at how 2 weeks 

of CIMT affected motor cortical representation of the abductor pollicis brevis (APB) muscle 

in the hand in recovering stroke patients using TMS. It was found that the therapy increased 

map size of the affected APB indicating 

an apparent recovery of the cortical 

neurons lost to the ABI through functional 

plasticity
(18)

. Other studies investigating 

CIMT in humans have found similar 

findings with varying effect strengths
(40, 41)

 

and is something which has been well 

demonstrated in monkeys as well
(8)

. From 

these studies it appears that by neglecting 

to use an already weakened limb, the 

region of the motor cortex devoted to its 

activation will shrink and further 

exacerbate the impairment, but by engaging the limb in a functional manner this process can 

be deterred and even reversed with map expansion
(9)

.  

  Although the evidence presented here has established that functional neuroplasticity can 

occur by simply engaging the affected limb in a broad sense following ABI, it is important to 

establish which characteristics of these training paradigms are most important for inducing 

this effect so that rehabilitation can be tailored to optimise motor recovery. For example, in 

addition to simply engaging the affected limb it is believed that the activity should be skilled 
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or novel to maximise behavioural demand and subsequent plasticity during 

training
(9, 12, 17, 39, 42, 43)

. This has been made apparent in a study by Lundbye-Jensen et al.
(42)

 

where training involving 4 weeks of either a skilled visuomotor tracking or resistive strength 

training of the right biceps brachii (BB). Changes in the profile of TMS stimulus-response 

curves revealed an apparent increase in the corticospinal excitability of the BB muscle with 

skill training which was not apparent in the strength or control groups. This finding has 

emerged from similar studies in the human lower limb comparing skilled tracking using 

dorsiflexion of the ankle with passive movement alone
(12)

, in animal studies with monkeys 

trained to retrieve food pellets from wells of differing size
(9, 17)

 and with simple strength 

training in rats
(44)

. This suggests that the skill acquisition or behavioural demand specifically 

was driving the plasticity in a functional manner and that the repetition or physical load of the 

unskilled tasks were not sufficient to evoke plasticity alone i.e. training induced functional 

neuroplasticity does not simply act in a use or load-dependent manner
(43)

. These observations 

could be consistent with the notion that human motor cortex is concerned more with the 

organisation of complex motor patterns than executing contractions of specific muscles 

alone
(44)

 which suggests that training aimed at driving neuroplasticity should also be 

functionally relevant to the specific movements defined as outcome goals of the rehabilitation. 

  Given the evidence presented here it seems that the parameters of the training needed to 

evoke the greatest extent of functional plasticity include some level of repetition and a high or 

increasing skill aspect which requires a degree of learning. Making the training functionally 

relevant and beginning as early as possible following ABI so as to reduce the effects of LNUS 

may also prove beneficial in optimising motor rehabilitation therapy. It is important to note 

however, that no single element of training has been isolated as the most important in 

inducing functional plasticity
(43)

 so each parameter should be considered with equal weight. 
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1.4 – ABI RELATED FOOT DROP AND ITS CURRENT TREATMENTS 

1.4.1 – ABI Related Foot Drop 

  Whilst upper limb motor impairments associated with ABI can cause disruptions in the 

performance of daily tasks, lower limb dysfunction can be seen as particularly debilitating as 

it limits mobility and subsequent independence. One common lower limb impairment which 

significantly affects mobility, and is often targeted in rehabilitation as a result, is foot drop. 

Foot drop limits a person’s ability to produce normal gait from reduced ability to dorsiflex the 

ankle during the swing phase of walking
(45-47)

, which can cause limited, to no toe clearance 

and can result in the stepping foot dragging on the floor
(48, 49)

. This problem is believed to be 

caused by partial or total paresis of the ankle dorsiflexor muscles which can result from 

altered neural transmissions supplying the muscle, or an inherent weakness of the muscle 

itself
(45-47, 50)

. People suffering from foot drop often adopt compensated gait strategies to 

overcome the impairment which can include hitching or excessive bending of the leg at the 

hip
(47, 48)

. Over time these maladaptive compensation strategies can cause secondary 

complications which can lead to deterioration of balance, increased risk of falls, reduced 

confidence and decreased endurance
(47, 49)

. 

1.4.2 –  Treating Foot Drop 

1.4.2.1 – Ankle Foot Orthosis (AFO) 

  An AFO is a mechanical brace which splints the lower limb and foot to keep the ankle in a 

neutral position during walking which aids toe clearance during the swing phase and 

promotes heel strike to produce increased stability during gait
(46, 51-53) 

(Figure 5). Being 

relatively inexpensive, easy to use and providing continuous ankle stability during walking 

the AFO is one of the most frequently used treatments for foot drop
(54)

. Although use of the 
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AFO has been reported to have beneficial effects on postural stability in early stroke 

recovery
(55)

 and improve VL activity contributing to more balanced gait
(56)

, the AFO has 

several drawbacks as well. A common problem with AFOs is that although they aid toe 

clearance during swing they do not provide free ankle motion during stance which may lead 

to abnormal gait patterns
(57)

. In addition to this they 

have also been reported as uncomfortable and 

awkward to use
(46)

 which may explain why patients 

can be non-compliant with their application
(58)

. 

Another disadvantage of AFOs is that by 

immobilizing the ankle in a neutral position, the TA 

becomes inactive during walking. This promotes its 

disuse and potentially accelerates the effects of 

LNUS
(39)

 through contraction of the motor cortical representation of the TA to further delay 

recovery
(59)

. To address some of the criticisms discussed here, there have been several novel 

AFO designs proposed which include the development of a ‘power-harvesting’ AFO which 

allows free ankle movement whilst still aiding toe clearance in swing
(57)

 and an ‘active’ AFO 

with variable joint stiffness aiming to achieve a similar outcome
(52)

, though these are yet to be 

commonly use din clinical practice. 

1.4.2.2 – Functional Electrical Stimulation (FES) 

  An alternative to the AFO for the treatment of foot drop is the use of FES. FES is essentially 

electrical stimulation of a muscle or nerve subserving a muscle that elicits a specific 

functional movement which, in the case of treating foot drop, is dorsiflexion of the ankle and 

is usually achieved by targeting the TA. The idea of using electrical stimulation to activate 

weakened muscles was first tested on stroke patients by Liberson et al.
(60)

 who used a 
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triggered switch plate in the heel to stimulate TA contraction during walking and promote 

normal gait. The device was successful in reducing the effects of foot drop and, interestingly, 

also helped participants recover near normal gait patterns when the device was removed, 

displaying an apparent therapeutic effect. Since these devices are more discrete and often 

more comfortable than the AFO alternative, 

patient reports have indicated a preference 

towards them
(53, 54)

, even in cases where the 

AFO was reported as having greater orthotic 

effects on ambulation than FES
(61)

. In addition 

to patient preferences, training with FES devices 

has shown beneficial orthotic effects by 

increased walking speed and reduced 

physiological cost index (PCI) of walking
(62-65)

. 

With direct comparison to the AFO there has 

also been reports of greater improvements in 

walking speed, obstacle avoidance and 

balance
(51, 54, 62)

 suggesting patient preference is 

met with greater benefits as well.. Some studies 

have also reported a therapeutic effect of 

training with the stimulators indicating some form of functional plasticity
(63-65, 66, 67) 

(Figure 6), 

however the effects are often seen in only a select few patients and with such high between 

subject variability, it may be the case that the benefits can only be experienced by a certain 

subset of people, potentially of a specific biological predisposition
(51, 64)

. Although FES seems 

like a good alternative to the AFO, it is more expensive and there have been reported 
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problems arising from the use of surface-based FES devices, including cutaneous pain or 

discomfort from stimulation, mechanical failure, difficulty replicating electrode placement 

and achieving isolated or deep muscular contractions
(64, 68, 69)

. As such there is continued 

research into the feasability of other alternative therapies. 

1.5 – SPLIT CRANK CYCLING AS AN ALTERNATIVE FOOT DROP TREATMENT 

  As mentioned, the AFO and FES are not without their limitations and have warranted 

continued research into alternative therapies as a result. One example of this is exercise-based 

therapies which are often employed as a 

supplement to conventional rehabilitation to 

try and accelerate recovery from gait 

impairments like foot drop. But whilst 

walking would be the most functionally 

relevant exercise regime for these patients, 

muscular weakness and uncoordinated 

movements make this type of training 

dangerous without heavy assistance, which 

can be time consuming and tiring for both the 

patient and therapist
(70)

.  

  With this in mind, lower limb cycling is 

often employed as an alternative to walking 

based exercise therapies as it offers body 

weight support whilst still providing rhythmic, 

reciprocal muscular activity that may mimic walking
(71)

. It also reduces the risk of falls where 

balance control is impaired, and can include progressively increasing resistance to improve 
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muscular strength which may lead to the ability for patients to eventually support their own 

body weight, making the more functionally relevant walking exercise a possibility in the 

future
 (72)

. 

  In addition to conventional cycling regimes several novel cycling therapies have been 

developed to optimise gait recovery for ABI patients specifically
(73,74,70)

. One novel cycling 

paradigm which hasn’t received a great deal of attention in a clinical environment is split 

crank (SC) cycling where the two cranks arms of the bike work independently of one another. 

This requires the cyclist to apply continuous force to the crank arm throughout the entire 

crank cycle without assistance from the contralateral foot during the pedalling upstroke 

(explained further in Figure 7). This cycling paradigm has the potential to provide unique 

benefits to ABI patients suffering gait impairments like foot drop but there is very little 

research which has tested this explicitly. In addition to this, the evidence from conventional 

cycling fixed crank (FC) studies with ABI patients has provided contrasting results regarding 

the feasibility of this novel cycle training to induce these beneficial effects. Here, this 

evidence is discussed and areas of the literature which are lacking in this field are highlighted.   

1.5.1 – Improving Aerobic Fitness 

  As mentioned, the use of exercise-based therapies for ABI patients may help to improve 

aerobic capacity and promote faster motor recovery as a result, but few studies have tested 

this by using both aerobic fitness and functional gait improvements as primary outcome 

measures together or, in the instances where they have, measured concurrent increases in 

them both
(72, 75-77)

. However, there is some evidence provided from a stroke patient case study 

by Holt et al.
(78)

 who completed 8 weeks of static cycle training. The patient showed 

improvements in walking speed and other functional mobility measures which were coupled 

with improved performance of an incremented aerobic fitness test. Similarly, a review by 
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Pang et al.
(79)

 concluded that aerobic training can improve general aerobic fitness and 

functional mobility factors such as walking velocity and endurance for stroke patients. 

However, it should be noted that these review studies involved aerobic training programmes 

outside of cycling, such as body weight support treadmill training
(80)

 and water-based 

endurance exercise
(81)

 and as such, does not provide support for conventional cycle therapy 

specifically. Following this it seems there is a call for more extensive research assessing both 

aerobic fitness and functional mobility parameters with conventional cycle training in ABI 

patients.  

  With the absence of contralateral limb assistance during the upstroke, SC cycling should 

require more effort to perform and as such, may provide additional aerobic fitness benefits 

over FC paradigms. But in contrast to these conventional cycling studies, there is no 

experimental evidence documenting the aerobic benefits of SC cycling in ABI patients. 

However, there is one study by Luttrell et al.
(82) 

who compared cardiovascular elements of 

fitness before and after training with either FCs or SCs in healthy participants. It was found 

that training with SCs significantly reduced heart rate and VO2 Max compared to pre-training, 

with the reductions in heart rate reported as significantly greater than those training with 

normal cranks alone. This suggests that there may be potential aerobic fitness benefits of SC 

cycling for ABI patients too although it is important to take care when generalising the results 

of this single study of healthy participants to such a neurologically and physically differing 

population. The extent of these beneficial effects on functional outcome measures of gait 

performance are also unknown and as such, may be an interesting research venture in the 

future. 
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1.5.2 – Correcting Lower Limb Strength Imbalances  

Since cycling with SCs means that both legs have to work at independent intensities and 

contralateral leg contribution during the upstroke phase of the crank cycle is eliminated
(83)

, 

one proposed benefit of training with them is that they may correct strength imbalances 

between lower limbs. ABI related motor deficits are often concentrated to one side of the 

body which makes these imbalances quite common and since lower limb muscular strength 

has been shown as an indicator of post-ABI gait speed and cadence
(84)

, this asymmetry in 

strength may contribute to abnormal gait. Correcting this issue could therefore be highly 

beneficial for rehabilitation of lower limb mobility impairments. 

  Although research regarding this effect is scarce, one patient’s case report describes personal 

experience and beneficial effects of using SC training as extended rehabilitation
(85)

. The 50 

year old patient had been instructed by a neurologist to try and participate in some repetitive 

exercises to ‘retrain the brain’ but with some very basic home rehabilitation exercises he had 

seen little improvements in gait recovery. Following some advice from a personal trainer 

about single leg cycling and with the neurologist comments in mind, he started training with 

SCs and found improvements in gait after several weeks which stretched as far as regaining 

the ability to run. A similar case involved a patient with cerebral palsy describing how the 

training helped him correct a self-reported 80/20 strength imbalance in lower limbs to 51/49 

in just over a years worth of training
(85)

. Although these reports are only of isolated cases with 

patient reports serving as measures of the training, they provide some evidence for the 

potential of SCs to help correct lower limb strength imbalances contributing the irregular gait. 
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1.5.3 – Adaptations to Muscular Activation 

1.5.3.1 – Correction of Abnormal Activation 

  Aside from the aerobic fitness and strength factors which may contribute to improved gait 

following ABI, there have been a number of studies investigating how muscular activation 

can change in response to conventional cycling exercise. Abnormal muscle activity during 

gait is something which is well documented in patients suffering from ABI, from diminished 

magnitude and inappropriate on and offset activity in the ankle plantar and dorsiflexors
(86, 87)

 

to similar deficits in the knee flexor and extensors as well
(87, 88)

. Rhythmic, reciprocal 

movements associated with cycling have been proposed to correct these abnormal patterns of 

activity which may contribute to mobility deficits
(87, 89, 90)

. However, some of the research 

supporting this notion is mixed. There is some evidence that ABI patients may be able to 

adapt both the magnitude and duration of muscular EMG responses during cycling in 

response to increased load
(100)

 and speed
(101)

 respectively but this only shows the ability to 

modify muscular activation in a ‘scaled’ manner and doesn’t elucidate whether inappropriate 

on and offset of muscular activity can be modified in response to training too.  

  Schindler-Ivens et al.
(89)

 showed that stroke patients have a diminished ability to adapt 

patterns of muscular activity (on and offsets during the 360 degree crank cycle) between 

forward and backward cycling as compared to neurologically intact controls. This suggests 

that the capability to adapt the occurence of innappropriately timed bursts of muscular 

activation during locomotor activity is impaired in ABI patients. However, 

Alibiglou et al.
(93, 94)

 conducted some experiments using a decoupled ergometer with 12 

different relative angular crank positions, established as 30 degree increments from 0 degrees 

(in phase cycling) through 180 degrees (normal anti-phase cycling) to 330 degrees and found 

that stroke patients were able to adapt the timing of muscular activation bursts in a similar 
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fashion to controls, somewhat conflicting with observations of Schindler-Ivens et al.
 (89)

. It is 

important to mention, however, that these results are from single session experiments and 

none of these studies investigated the capacity of ABI patients to adapt their abnormal 

muscular activation with longer term training protocols such as those commonly seen with 

exercise-based rehabilitation therapies. It is therefore difficult to determine whether a novel 

cycle therapy such as SC cycling will have the effect of correcting, or even exacerbating, the 

abnormal muscular activation patterns exhibited by ABI patients that may contribute to 

impaired gait. Using healthy participants to develop the understanding of training adaptations 

with SCs will therefore be important to establish feasibility of safe translation to patient 

groups in the future. 

1.5.3.2 – Increased Activation of Muscles Related to Foot Drop 

  Although correcting abnormal muscular activation with cycle training may need further 

investigation with ABI patients, there is some experiments using SCs and novel instructions 

with conventional cycling in healthy participants which suggest that SC cycling may increase 

activation (both in terms of duration and magnitude) of muscles contributing to gait 

impairments and foot drop. One study by Fernandez et al.
(95)

 describes quasi-significant 

increases in the magnitude of biceps femoris (BF) and TA EMG activity following 2 weeks of 

training with SCs. Since the TA and BF are used to dorsiflex the toe and flex the knee 

respectively, it is likely that the additional effort required to pull up on the pedal (see figure 7) 

with SC cycling has contributed to training these muscles. This notion is supported by another 

study which used a ‘pull-up’ conventional cycling condition where participants were 

instructed to actively pull-up their foot in during the upstroke of the pedalling motion, 

somewhat simulating the effects expected of SC cycling
(96)

.
 
Significant increases in magnitude 

of BF EMG activity and earlier onset of TA activity (and increased duration of activity by 
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extension) were found, most likely as a result of the increased effort during the cycling 

upstroke. Considering that the TA is a key muscle involved in rehabilitation of foot drop, 

increasing the duration and magnitude of its activity during training with SCs could help 

accelerate the recovery of its function and help to eradicate the effects of this mobility 

impairment. Similarly, training the BF in this way may help to improve toe clearance during 

walking by improving flexion of the leg at the knee, all of which suggests beneficial outcomes 

of training with SCs for these patients. It is important to note, however, that these studies 

involved the use of healthy participants and using these training paradigms with ABI patients 

suffering altered and abnormal muscular activation patterns may not induce the same effect. 

As such, this novel cycling therapy warrants more research before its feasibility with this 

population can be accurately assessed.  

1.5.4 – Corticospinal Plasticity of Muscles Related to Foot Drop 

  Following the idea that SC cycling may more actively engage the TA than with conventional 

cycling it may be the case that corticospinal excitability is increased as a result of the training 

too. This follows from evidence provided in Section 1.3.2 where repetitive, skilled training of 

a specific action may induce neural plasticity of the muscles it involves
(9, 12, 17, 39, 42, 43)

. Since 

SC cycling is a unique type of exercise it is possible that it will require some aspect of 

learning to improve performance with training and as such, may fit the criteria to induce these 

effects. In addition to this, the rhythmical patterns of lower limb motor activity make it quite 

functionally relevant to walking, with toe lift playing an integral role in performing the 

exercise, suggesting there could be some functional plasticity to combat foot drop that 

accompanies the other benefits outlined here.  
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1.6 – PRESENT STUDY 

  Since there is very little research investigating the effects of SC training on healthy 

participants, and none to the author’s knowledge with ABI patients, any potentially adverse 

effects of the exercise are not well documented. In addition to this, specific parameters of the 

training such as cycling cadence need to be established for safe implementation with patients 

and piloting the training protocol may also reveal additional adaptations to methodology 

which may improve safety and quality of data recorded. Likewise, there is no data regarding 

adaptations of corticospinal excitability changes which may accompany training of the TA 

with SC cycling and evidence for any muscular activation adaptations it may induce is scarce. 

As such the present study is aimed at implementing a SC cycling training protocol with 

healthy participants, measuring adaptations of lower limb muscular activation and TA 

corticospinal excitability. The hope is that this will develop our understanding of the kinds of 

training adaptations SC cycling may evoke and give indication of how feasible such a therapy 

may be in the rehabilitation from ABI-related foot drop. Although the use of healthy 

participants makes generalization of results to the target population of ABI patients quite 

limited, the severe lack of research with SCs has warranted this pilot study to increase our 

understanding of its effects to provide a stronger basis for potential clinical applications in the 

future. Similarly, since the target of the study is to try and use a clinically translatable 

protocol, the exercise intensity used is unlikely to induce any kind of aerobic or strength 

benefits for the healthy participants and as such, will not be included as experimental 

measures. 
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1.6.1 – Hypotheses 

1. Corticospinal excitability as assessed by stimulus-response curves will be increased in 

the TA following 5 days of SC, but not FC, cycle training. This will indicate the skill 

demand of this muscle necessary to perform the task. 

a. Improvements in SC cycling performance will also accompany this effect to 

demonstrate skill acquisition with training. 

2. Prolonged duration of TA activity throughout one full crank cycle (0-360°) will be seen 

in the TA following 5 days of SC, but not FC, cycle training. This will indicate learning 

of its additional activation necessary to perform the task. 

3. Prolonged duration of BF activity throughout one full crank cycle (0-360°) will be seen 

in the TA following 5 days of SC, but not FC, cycle training. This will indicate learning 

of its additional activation necessary to perform the task. 
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CHAPTER 2 – METHODS 

  This chapter provides basic methodological information regarding measures and procedures 

for both the pilot study and the primary investigation. Aspects of the pilot study findings are 

discussed and used to optimise the protocol for the primary investigation which is also 

described in detail.  

2.1 – PARTICIPANTS, EQUIPMENT AND PROCEDURES 

2.1.1 – Participants 

  A convenience sample of healthy university students were recruited for participation in both 

the pilot and primary investigations. All participants were screened using a TMS safety form 

and gave their consent to participate in the study. Similarly, participants were screened to 

ensure they did not compete in sports deemed to incur high TA activation (semi-professional 

football, ballet) or more than 6 hours of cycling per week. Basic demographic data and 

number of hours of exercise participated in per week were also recorded. 

2.1.1.1 – Pilot Study Participants 

  Four participants (male n=3, female n=1) with a mean age of 21.5 (±0.6) and BMI of 

23.7 (±1.5) completed the pilot study protocol. The average number of hours spent exercising 

per week by the participants was 8.8 (±2.2) for sports including gymnastics, basketball, rugby 

and resistance exercise. 

2.1.1.2 – Primary Investigation Participants 

  Nineteen participants (male n=18, female n=1) with a mean age of 23.2 (±3.0) and BMI of 

23.6 (±2.3) completed the primary investigation protocol. The average number of hours spent 

exercising per week by the participants was 6.6 (±3.7) for a range of sports, most frequently 

reported was resistance exercise (n=12) followed by football (n=6). 
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2.1.2 – The Split Crank Cycle Ergometer 

  The cycle ergometer is an adapted Monark 824E 

static bicycle ergometer which has full 360° 

triggering capabilities (Figure 8)  and works with 

a flywheel (50 cm diameter) system of adjustable 

resistance by means of additional weight discs 

(Figure 9). The crank arms were adapted to work 

independently of  each other for split crank (SC) 

cycling but with the capability of fixing them 180° 

apart for normal, fixed crank (FC) cycling too 

(Figure 9). It includes clipless pedals and an 

adjustable saddle height ranging from 88cm (floor 

to saddle base) to 110cm in 2cm increments. 

Saddle height was adjusted so that there was a slight bend in the knee when sat with the crank 

arm at  bottom dead centre (BDC) and so that the participant was comfortable during cycling.  
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2.1.3 – Electromyography (EMG) and Biomechanical Recordings 

  In both the pilot and primary investigation participants were instrumented with ankle and 

knee Biometrics twin-axis goniometers placed over the respective joints as shown in Figure 

10 to record joint position changes during cycling. These signals 

were filtered and amplified at a bandwidth of 20-450Hz and gain 

of 1k using a Biometrics subject unit and K800 Amplifier system 

(Biometrics Ltd., Cwmfelinfach, Gwent, Wales, UK). Skin 

preparation prior to EMG electrode placement in both studies 

involved light abrasion of the target region to remove any 

impeding dead skin and all EMG signals were grounded using a 

rubber reference electrode (8.5cm x 4.5cm) placed mid-way 

along the tibia. Additional AP signals recorded during cycling 

included the square-wave trigger pulse emitted by the trigger box 

at top dead centre (TDC) (this served as the trigger for all AP 

recordings) and both left and right crank arm positions during 

cycling. SRC recordings were triggered by the automated 

magnetic stimuli and electrophysiological responses were 

triggered by a manually operated push-button that also triggered 

electrical stimuli. All recorded AP and electrophysiological 

signals were visualised in real-time using Mr. Kick© software (Center for Sensory-Motor 

Interaction [SMI], Aalborg University) and all SRC signals were visualised in real-time using 

an automated code in Matlab® (Version 2012a, Mathworks Inc., Cambridge, UK).  Following 

acquisition all data was stored electronically for future offline analysis. All recordings were 

taken from the participant’s right leg. 
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2.1.3.1 – Pilot Study Electromyography Recordings 

  Since pilot EMG measures consisted of only TA muscle APs during cycling. These signals 

were recorded using Biometrics EMG sensors (Type NOS. SX230, Biometrics Ltd., 

Cwmfelinfach, Gwent, Wales, UK) placed over the belly of the muscle (for electrode position 

see Figure 11). The procedure for electrode placement 

was taken from SENIAM guidelines
(97)

 and ensured 

accuracy of replicable positioning between trials. This 

was in accordance with the SENIAM and guidelines 

whichThe recorded signals were filtered and amplified 

at a bandwidth of 20-450Hz and gain of 1k using a 

Biometrics subject unit and K800 Amplifier system 

(Biometrics Ltd., Cwmfelinfach, Gwent, Wales, UK). 

The pre-processed and amplified signal was then passed 

through a National Instruments (NI) BNC board 

(Model USB-6229) and through a USB connection onto 

a PC. Signals were recorded at a 2kHz sampling 

frequency and sweep length recordings were defined according to the cadence being used (30, 

40, 50 or 60 revolutions per minute [rpm]) with an additional 0.05 second pre-trigger and 0.4 

second cushion to allow for timing and rhythm errors in metronome pacing. Since there were 

only single muscle recordings being used in the protocol, the use of simple and more portable 

EMG system was employed. 

2.1.3.2 – Primary Investigation Electromyography Recordings 

  Muscle EMG recordings for the primary investigation included responses of TA, SOL, VL 

and BF for APs and TA alone for SRCs and electrophysiological recordings. Signals were 
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recorded using Ambu® Blue Sensor N electrodes in a bipolar montage placed over the belly 

of the respective muscle (Figure 11). Again, the procedure for electrode placement was taken 

from SENIAM guidelines
(97)

. The placement of SOL was modified to measure the more 

lateral aspect of the muscle in accordance with previous studies in our laboratory. In this case, 

the SENIAM guidelines were used but the electrode was placed on the lateral rather than the 

medial aspect of the leg. Following these guidelines ensured the accuracy of replicable 

positioning between trials. The raw EMG signals were band pass filtered at 20Hz-1kHz and 

with a 50Hz notch filter before being amplified by a gain of 5k using a Digitimer D360 

isolated patient amplifier system. Processed signals were then passed through a NI BNC 

board (model 2090) and USB mass transfer onto a PC in a similar fashion to the pilot data. 

AP sweep lengths were 1.95 sec with a 0.05 sec pre-trigger and SRC sweep lengths were 

0.45 sec with a pre-trigger of 0.15 sec. Both sets of data were recorded at a 2kHz sampling 

frequency. Electrophysiological responses from TA were processed and recorded using the 

same Digitimer set-up but with a gain of only 1k, using a 0.12 sec sweep length with a 0.05 

sec pre-trigger. A more robust and sophisticated EMG recording system was used for this 

protocol since there were multiple muscle recordings during cycling and measures involving 

responses to TMS. 

2.1.3.3 – Activation Pattern Electromyography Signal Processing 

  Gain and filtering settings were adjusted to maximise the signal without exceeding the A/D 

card voltage window (i.e. clipping) and maximise the signal to noise ratio respectively. 

Similarly, a 50Hz analogue notch filter (Digitimer Ltd) was used in the primary investigation 

to reduce ambient line noise in the signal (this was unavailable when using the Biometrics 

system in the pilot study). After recording and storage of AP EMG data, signals were full 

wave rectified and digitally low-pass filtered at 10Hz. This created a linear envelope of the 
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signal, smoothing the trace enough to detect points in the crank cycle where muscles became 

active (onset) and inactive (offset). Mean signals for each participants AP were also 

normalised to the peak EMG activity of that trace before they were group averaged, making 

comparison between participants easier to visualise when the traces were presented in the 

Results chapter.  

2.1.4 – Peripheral Nerve Stimulation 

  All electrical stimuli were delivered using a Digitimer constant current stimulator (model 

DS7A). The device was set to stimulate at 300VMAX with a 0.2 ms pulse width, using a 

bipolar stimulation probe to stimulate the common peroneal nerve just below the fibula head 

to elicit a response in the TA. Details regarding recordings of EMG responses are provided in 

the previous section. 

2.1.5 – Transcranial Magnetic Stimulation 

  All magnetic stimuli were generated using a Magstim Rapid2 magnetic stimulator (Magstim 

Ltd., Whitland, Wales, UK) and delivered transcranially using a custom built saddle coil 

(Serial no. SP15526, Magstim Ltd., Whitland, Wales, UK) ranging from 0 to 100% of the 

maximum stimulator output or %MSO. 
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2.2 – DATA ACQUISITION PROCEDURES 

2.2.1 – Stimulus-Response Curves 

2.2.1.1 – Infrared Tracking and Brainsight 

  Participants were seated in an adapted recumbent chair before placing an infrared sphere 

marked elastic headband on their heads (Figure 12). The reflective spheres were tracked by a 

Northern Digital Inc.© (NDI) Polaris® Vicra® 

infrared camera and Brainsight™ 2 (software version 

2.0.8, Rogue Research Inc., Montreal, Canada) 

software (Figure 13) making it possible to track the 

participants head movements in real time. Specific 

landmarks on the participants head and face were then 

registered with Brainsight™ in reference to the 

marked elastic headband using an infrared sphere 

marked ‘wand’ (Figure 12). This allowed the TMS 

coil, also marked with infrared spheres, to be 

accurately tracked in real time over the scalp in 

reference to the participants head position in 3D space 

(Figure 13). Having this capability meant that deviation away from the target stimulation site 

on the participants motor cortex could also be monitored during SRC acquisition and 

regulated by the participants themselves using Brainsight’s™ Bullseye target system as 

shown in Figure (14). The headband and facial landmark registration process also meant that 

specific stimulation sites on the participant’s motor cortex could be stored in Brainsight™ and 

accurately reproduced in subsequent sessions. 
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2.2.1.2 – Locating the Stimulation Site 

  Once participant tracking and registration set-up was complete, the site of stimulation to use 

in the SRCs was located. An 

intensity of 60-70% MSO was 

chosen dependent on the 

participant’s resting motor 

threshold (stimulus intensity 

needed to evoke 50µV response 

in 5 out of 10 successive 

stimuli
(16)

) before single 

stimulations were delivered to a 

small area of the motor cortex (roughly 10cm x 10cm) close to the midline, slightly 

contralateral to the side of the recording site. The coil was moved around this region of the 

motor cortex until the site 

which produced the greatest 

MEP magnitude from the TA 

was found. MEP magnitude 

was calculated as the peak to 

peak value of the MEP trace 

which was visualised in real 

time using Mr. Kick© software. 

The position of the coil on the 

participants head was recorded 

with every individual stimulus by Brainsight™ software. This meant that once the optimal 
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MEP stimulation site was located, the coils position on the motor cortex could be stored and 

used with the Bullseye target system during the following SRCs. 

2.2.1.3 – Automated SRC Acquisition 

  With the stimulation site established, the coil was then fixed at this location on the 

participants scalp with a monitor displaying the Bullseye target to them for position regulation 

during SRC acquisition (Figure 14). A train of 70-100 stimuli were then delivered at pseudo-

random intensities to the motor cortex at 0.5Hz
(98)

 through an automated program designed 

and developed in Matlab® (Version 2012a, Mathworks Inc., Cambridge, UK). The code 

allowed real-time visualisation of MEP traces and the plotting of their peak-to-peak 

magnitude (non-normalised) against magnetic stimulus intensity to study the data spread as it 

developed (Figure 15). Upper and lower boundaries of stimulus intensity could be 

manipulated during stimulation to ensure that a well distributed spread of MEPs could be 
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achieved on the real-time plot (Figure 15). The train of stimuli could also be paused if the 

participant significantly deviated away from the target coil position and needed to recover or 

if stimulation became uncomfortable which occasionally occurred with trains of consecutively 

high intensities. 

2.2.1.4 – MEP Magnitude Normalisation (Mmax) 

  So that SRCs could be normalised across all participants, the maximal electromyographical 

response of the TA was recorded for each participant which was elicited using electrical 

stimuli delivered to the common peroneal 

nerve. The current (mA) of the electrical 

stimuli was steadily increased from 0 until 

there as an apparent plateau in the peak-

to-peak value of the M-wave on the EMG 

trace (Figure 16). Once the plateau was 

reached, the resultant value was recorded 

as the Mmax and MEPs in later analysis 

were expressed as a proportion of this 

value to appropriately normalise results between participants. 

 

 

 

 

 

 

 

Stimulus 

Artefact

M-Wave
H-Reflex

Mmax

Figure 16. – Example EMG trace showing how peak-

to-peak value of M-wave (between red lines) is 
recorded. The current is gradually increased until this 
value reaches a plateau (3 consecutive traces within 

0.05mV of each other) and is recorded as the Mmax
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2.2.2 – Activation Patterns and Borg Scale Scores 

  Before AP recordings began, participants were allowed a short amount of time to get up to 

the appropriate speed and instructed to emulate 180° interlimb phase differences, as in normal 

FC cycling, as closely as possible (this sometimes took a few minutes in cases where SC 

cycling was found particularly 

difficult). A single AP sweep consists 

of EMG muscle and biomechanical 

recordings corresponding to one full 

360° movement of the bicycle crank 

for the participant’s right leg. A full or 

completed AP consists of a total of 60 

individual sweeps of activity whose 

acquisition time is dependent on the 

cycling cadence. Sweep recordings 

were triggered according to a pre-

defined crank arm position of 0° (TDC) but had the capability of being set as any point 

between 0 and 360° of the crank arms range of motion using a dial on a custom built 

triggering box (Figure 8). To avoid inducing fatigue during cycling, it was also decided to 

have participants report their level of exertion during cycling. This was done using the Borg 

scale of perceived exertion
(99)

 (Figure 17) and limited to a reported level of 8 at which point 

the exercise was stopped. 

116) 
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2.3 – PILOT STUDY 

2.3.1 – Background and Purpose 

  Before testing can begin there are two key factors of the training which need to be 

established; the cycling intensity and the training session duration. Since we are using healthy 

participants in the present study, it is important that the chosen training parameters are 

realistically translatable to use with recovering ABI patients too. It is also important that the 

training parameters are not too exhausting for the present participants as fatigue could affect 

normal patterns of muscular activity
(100)

.  

  Cycling intensity has been defined using a number of different measures in studies where the 

exercise is employed as a rehabilitation therapy. Parameters such as systolic blood pressure
(75)

, 

heart rate
(72)

, work rate as a percentage of VO2 Max
(75)

 and scales of perceived exertion
(72)

 

have all been used both individually and in combination to achieve a target cycling intensity. 

Pedalling cadence is another common measure which regulates the speed at which the 

participant cycles, offering similar absolute physical exercise intensity between subjects. 

Pedalling cadence ranges in studies of this nature from 40-70 rpm
(70, 72, 76, 101, 102)

 using both 

motor
(72, 101)

 and non-motor
(70, 76, 102)

 aided cycle ergometers. As such, a reasonable range of 

cadences chosen to pilot test here were 30, 40, 50 and 60 rpm. 

  In the interest of making the training applicable to ABI patients who may find it difficult to 

exercise for long periods of time, a maximum of 20 minutes worth of continuous cycling was 

set as an upper limit for training sessions. Borg scale scores of perceived exertion (BSSs) also 

served as stop criteria for testing. It should also be noted that all pilot testing was performed 

with the SC as this is the exercise paradigm whose effects are known the least about. Since 

the continuous force application of both legs during the performance of SC cycling is most 
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likely more physically demanding than the reciprocal action associated with normal FC 

cycling, it can be assumed that conclusions based on factors such as fatigue measures in these 

tests will hold true for both paradigms. 

2.3.2 – Pilot Design 

  To determine the unknown factors discussed previously, participants were asked to come 

into the lab and cycle for 20 min or until they reached a BSS of 8 which was self-reported at 2 

min intervals. Each cadence was maintained by coordinating the motion of the right crank arm 

through 0° or TDC with a corresponding metronome tone. Participants had TA APs recorded 

from their right leg at each cadence before completing the training which was followed by a 

minimum of 20 min washout period prior to testing the new cadence. Order of cadence 

completion was randomised to try and counterbalance carry-over effects between testing 

sessions. For an overview of the protocol design, refer to Figure 18 with details of specific 

procedures described in the sub-sections which follow. For full details of procedures refer 

back to Sections 2.1 and 2.2. 
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2.3.3 – Pilot Results 

  A raw TA EMG trace from the 30 rpm cycling cadence is shown for one participant in 

Figure 19 with group average traces rectified and low-pass filtered at 10Hz shown in Figure 

20. Biomechanical knee and ankle group averages are also shown in Figure 21. The profiles 

of the TA traces are discussed in more detail in the section which follows (Section 2.3.4.1). 
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  Results of the cycling durations are displayed in Figure 22 with all participants reaching the 

upper time limit of 20 min for 30 rpm and a general trend of reduced cycling time with 

increasing cadence. No statistical analysis was carried out for this data due to the low number 

of participants. 

2.3.4 – Pilot Discussion and Implications for Primary Investigation 

  Below is a summary of the findings for the different aspects of the experiment. The 

implications of these findings for the methodology of the primary investigation are discussed. 

2.3.4.1 – Implications of Pilot Activation Patterns 

  The profiles of the EMG traces show some variation between cadences with a common 

pattern of a steeper activation gradient for both the 50 and 60 rpm cadences, whilst the 30 and 

40 rpm cadences show a more gradual rise to peak activation (Figure 20). Ankle and knee 

position traces appear to show little variation between cadences, perhaps with a slight 

tendency of reduced plantar flexion of the ankle around the middle of the crank cycle (180°) 

with faster cadences (Figure 21). Based on the AP data alone it seems that a faster cadence of 

50 or 60 rpm may be the most appropriate choice for the primary investigation since it 

provides greater magnitude of TA activation for a larger proportion of the crank cycle than the 

lower 30 and 40 rpm cadences. From a rehabilitation perspective, this could help to maximise 

the extent of training benefits for the TA and provide accelerated recovery of foot drop 

symptoms. However, the more physically challenging aspect of the faster cadence may prove 

to be too exhausting for a high enough dosage of the training and is likely to induce the 

confounding variable of fatigue. This was examined by the duration testing. 
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2.3.4.2 – Implications of Cycling Durations 

  The cycling duration results have shown a typical trend of a negative correlation between 

cycling cadence and the duration it could be maintained for. In the case of the higher cadences, 

the healthy participants were reporting a BSS of 8 after only 6.5 (±1.9) and 5.5 (±1.0) min for 

50 and 60 rpm respectively and as such, it seems unlikely that recovering ABI patients would 

be able to safely replicate these intensities for a fraction of that time or even at all. Since the 

intensity was so rapidly exhausting for the healthy subjects, it may also prove dangerous for 

application to ABI patients in that it may exacerbate their existing medical conditions and 

indeed prove detrimental to recovery. Although both and 50 and 60 rpm have been 

successfully used in other rehabilitation studies, it may be the case here that the additional 

physical demand of SC cycling specifically has made the exercise more challenging and more 

difficult to maintain. At the other end of the spectrum, the upper time limit of 20 min was 

comfortably reached by all participants during cycling with the lowest cadence of 30 rpm. 

This cadence was also the one which participants found most difficult to maintain during 

testing due to the large gaps between metronome tones. The remaining cadence of 40 rpm 

appeared to be challenging but not exhausting since the average duration fell under the limit 

by a relatively small margin (7.5 min) and being easier to maintain pace as well, seemed the 

most suitable choice for the primary experiment. It was also decided that an upper time limit 

of 15 min would be used instead of 20 to decrease the likelihood of participants reaching 

relative exhaustion on consecutive days of training in the main experiment, thus reducing the 

chances of measures made on the final day being affected as a result. 

2.3.4.3 – Additional Observations 

  The Borg scale of perceived exertion was chosen for this experiment because it is a simple, 

validated measure of perceived exertion. Its use proved generally quite effective in this sense 



 
 40 

and also in accurately assessing the participant’s level of exertion during cycling. However, 

with self-reports of exertion only being requested every 2 min, the exact point of fatigue was 

often overlooked and resulted in participants overworking themselves to the next 2 min 

interval. The revised methodology will therefore include the request of an exertion rating 

every 1 min instead of 2. This should help to resolve this issue of oversights and provide a 

more reflective means of assessing when the subject reaches the point of fatigue. 

  In addition to this, EMG recordings of knee extensor and flexor muscles vastus lateralis (VL) 

and biceps femoris (BF) and the ankle plantar flexor muscle soleus (SOL) will be made in the 

primary investigation. These measures, along with the TA EMG activity and biomechanical 

data of knee and ankle joint positions during cycling should give a more global understanding 

of how entire leg APs may be altered with training. Although additional muscle recordings 

will be made in the primary investigation, it is important to note that the greatest adaptations 

to activation with SC cycling are still expected to be seen in the TA. 

  Another observation is that participants often found it difficult to maintain cycling pace with 

the metronome when trying to correspond only the right crank arm through TDC with the 

metronome tone. With some participants who found it particularly difficult, the metronome 

pace was multiplied by 2 so that there was a tone corresponding with both the right and left 

crank arms crossing TDC alternatively. Since this proved so effective in improving the ability 

to maintain the desired pace, it was decided that this technique would be solely used in the 

primary investigation protocol, disregarding the previous method entirely. 

2.3.5 – Pilot Study Conclusions 

  The primary finding from the pilot study was that the most appropriate cycling cadence to 

use as a compromise between optimal TA activation and appropriate physical demand is 
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40 rpm. In addition to this, a reduced training session duration of 15 min and BSS reports 

every 1 min should help to both reduce the likelihood of fatigue occurring but also to more 

accurately identify its point of occurrence if it does. Finally, by including SOL, VL and BF 

recordings in APs a more global understanding of lower limb adaptations to SC cycling may 

also be made possible in the primary investigation. 

2.4 – PRIMARY INVESTIGATION 

2.4.1 – Design 

  To effectively test whether SC cycling can increase the CSE of the TA and alter muscle APs, 

randomised, controlled, between-subjects 5 day training protocol was established. Participants 

were assigned to either the split crank (SC) or fixed crank (FC) condition using randomly 

permuted blocks generated by an online randomization scheme using a web-based procedure 

(http://www.randomization.com). This design ensured that both groups were kept balanced 

during random allocation. Participants completed 5 consecutive days of either SC 

(experimental group) or normal FC (control group) cycling at 40 rpm for 15 min or until they 

reached a BSS of 8 which was reported every minute during the session. Metronome pace was 

set to 80 bpm (twice the cycling cadence) so that each tone corresponded with alternating left 

and right crank arms crossing their respective TDCs, assisting the participant in maintaining 

the cadence. On days 1 and 5 APs and SRCs were acquired from the participant’s right leg 

before and after the 15 min training session to measure changes in muscular patterns of 

activity and CSE of the TA respectively. These assessment times were selected to investigate 

short term or transient adaptations to the task (initial exposure) and how this response 

changed after 4 days training, but also to examine any persistent adaptations which would be 

apparent prior to day 5 following 24 hours of washout post-exercise. These time points reflect 

a similar methodology employed by Pascual-Leone et al.
(4)

 (Figure 3) who were interested in 
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both the rapid and gradual neuroplasticity induced with 5 finger piano sequence training. The 

complete training protocol design is displayed in Figure 23 and for details regarding the basic 

procedures and measures which were made refer back Sections 2.1 and 2.2. 
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2.5 – PRIMARY INVESTIGATION DATA ANALYSIS 

2.5.1 – Activation Pattern Trace Selection and Exclusion Criteria 

  To account for participant errors in maintaining the metronome pace, a program was written 

in Matlab® to retrieve the section of EMG or biomechanical data which corresponded with 

the minimum and maximum of the right crank position trace representing 0 and 360 degrees 

 

 

 

 

 

 

 

 

 

 

 respectively (Figure 24). Additionally, the program expressed the data with a crank position-

base instead of a time-base which meant that onset and offset analysis could be normalised 

between traces and participants. If a mean muscle EMG trace did not show distinct patterns of 

activity and inactivity they were excluded from analysis, as were the traces of the same 

muscle for measures made at other time points too. Also, with individual crank arm 

independence, limb position is slightly less constrained in SC than FC cycling and as such, 

can cause the direction of pedalling to reverse for brief periods of time during task 
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performance. The expectation was that this effect would be diminished with training as 

performance improved, meaning that group mean trace averages would be skewed more 

heavily in session 1 than session 

5 by these reversals. Since this 

skewing may lead to false 

detection of significant changes 

in muscular activation timing 

between sessions these reversal 

traces and their associated 

muscular activity were excluded 

from analysis. This was achieved by visual inspection of the knee position traces where these 

periods of reversal were easy to detect and remove. This is illustrated in Figure 25, where the 

traces with a reversal are indicated by red arrows. 

2.5.2 – Detecting Activation Pattern Muscle EMG Onset/Offset of Activity 

  Once the traces were filtered and normalised, the time in the crank cycle where each muscle 

became active and inactive was identified using a bespoke script written and developed in 

Matlab®. The script used a dual cursor configuration set to a 70ms time window and was 
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 placed by visual inspection around the flat area of EMG that preceded the onset. The root-

mean-square of the electromyogram within this window was defined as the background EMG 

and can be seen in Panel A of Figure 

26. The mean value and standard 

deviation of the background EMG 

was used to define the onset and 

offset of muscle activity. Onset was 

the point in the trace between the 

dual cursors where EMG activity 

exceeded the mean plus 3 standard 

deviations of the threshold activity, 

and was identified by visual 

inspection of a 180ms dual cursor window (Panel B, Figure 26.). Offset was defined as the 

point where the EMG activity fell below this value and was identified using dual cursor time 

window of the same length. From both onset and offset of muscle activity, total duration of 

activity was also calculated in degrees. 

2.5.3 – Split Crank Performance Indices 

  So that the extent of learning could be quantitatively measured, 3 measures of task 

performance were devised to assess both the consistency of the pedalling motion and the 

extent to which normal FC cycling was emulated. 

2.5.3.1 – Right Crank Variability (RCV) 

  The first performance measure assessed the error or variability of each crank cycle for the 

right leg as compared to a normal FC counterpart, providing an index of how smoothly and 
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consistently the participants could cycle with SCs. To do this, a linear regression between the 

minimum and maximum points in the crank position trace was calculated and used as a model 

of ideal pedalling motion to compare the actual recorded trace against (Figure 27). The root 

mean squared error (RMSE) was then calculated at each data point before it was averaged for 

each individual sweep and then across the entire 60 sweeps to produce a value indicative of 

right crank position variability for each recorded AP. All calculations were automated using a 

predefined code in Matlab® with resultant values being exported and stored for statistical 

analysis. 

2.5.3.2 – Inter-Crank Position Difference (ICPD) 

  Additionally, the extent to which participants could accurately maintain a 180° separation 

between the left and right cranks was measured. This performance index allowed assessment 

of improvements in pedal control and the ability to emulate normal FC cycling; something 

which was heavily encouraged throughout training sessions. To do this, the average distance 

in degrees between each crank was calculated for each individual sweep and used to obtain 

and average for each AP which was measured. All calculations were made using a predefined 

code in Matlab® with resultant values being exported and stored for statistical analysis. 

2.5.3.3 – Knee Position Trace Exclusions (KPE) 

  With training, the expectation is that the consistency of smooth, continuous cycling and the 

adoption of appropriate strategies will improve and as such, there would be a decrease in the 

number of traces excluded for containing periods of pedal direction reversal. Since knee 

position traces were used to identify the occurrence of these reversals, the number of knee 

position traces that were excluded were used as a performance index for training with SCs. 
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2.5.4 – Stimulus-Response Curve Analysis 

  Matlab® software was used to select the appropriate section of the EMG trace and identify 

the peak-to-peak magnitude of the MEP. TMS misfires and traces with a root mean squared 

(RMS) value which was greater than 3 standard deviations away from the 60 sweep mean 

RMS value were also excluded at this stage as well. This controlled for confounding traces 

and unwanted background activity respectively. Following exclusions, a set of analysed 

MEPs was obtained and a sigmoid curve was fitted around their scatter according to the 

equation below
(13)

 where MEP magnitude at any given stimulus intensity (i) is given as MEP(i). 

                                                                    (MEPMax – MEPMin) 

                               MEP(i) = MEPMin + --------------------------------- 

                                                                           1 + e 
(i50-i/S)

 

The four parameters of the curves are the MEP minimum or base offset (MEPMin), MEP 

maximum or curve plateau (MEPMax), the stimulus intensity at the point of inflection (i50) 

and the slope at the point of inflection (S) where the inverse of the slope (1/S) is directly 

proportional to the maximum steepness of the curve
(13)

. Outlying MEPs were defined as those 

which lay outside of the predefined prediction interval and were also excluded from the curve 

fitting. In addition to the 4 parameters, the correlation coefficient (r
2
) of each curve was 

calculated to measure how well the curve fitted the data set. Curves with an r
2
 < 0.7 were 

excluded as a quality control measure with subsequent and previous curves for that participant 

being excluded from group data as well so as not to skew the mean. Similarly, participants 

whose curves did not reach a relative upper plateau (usually due to high TMS thresholds) 

were also excluded from analysis. This procedure follows from a previous study in our 

laboratory
 (98)

. Figure 28 shows an example SRC which is superimposed over the data scatter 

including a raw MEPs translation from analysis to the plot. 
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2.5.5 – Statistical Analysis 

2.5.5.1 – Muscle Onset/Offsets, Performance Indices and Borg Scale Scores 

  The effect of training on muscle onset, muscle offset and activity duration were tested with a 

mixed design repeated measures analysis of variance (rmANOVA) with factors time point (S1 

Pre, S1 Post, S5 Pre, S5 Post) × crank type (SC and FC). For SC performance indices, 

rmANOVAs were used to test RCV RMSE, ICPD and KPE with time point factors alone. 

BSSs were measured during each of the 5 training sessions so were tested using a rmANOVA 

with factors session number (S1, S2, S3, S4, S5) x crank type (SC and FC). These statistical 

tests were aimed at investigating both the adaptations to training over time and global 

differences between SC and FC cycling strategies as a whole. 

2.5.5.2 – Stimulus-Response Curve Parameters 

  To assess changes in the profile of SRCs, statistical analyses were carried out on the 

different parameters of the curves sigmoid equation. All four parameters were tested using 

mixed design rmANOVAs (time point and crank type factors as stated in the previous section) 

where increases in MEPMax, MEPMin and Slope would be indicative of increased CSE for the 

TA, likewise a reduction in i50 as described in Figure 29. 
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CHAPTER 3 – RESULTS 

3.1 – BASELINE CHARACTERISTICS AND EXCLUSIONS 

  All participants which were recruited successfully completed the training protocol without 

any dropouts or incomplete sessions due to over-exertion. However, there were a number of 

exclusions during analysis which are detailed here and summarised in Figure 30.   

  For the SC group, one participant was excluded from all AP analysis (including performance 

indices) since failed goniometers meant inappropriate knee position traces could not be 

removed as with other participants. Similarly, cross-talk on the BNC board led to exclusion of 

4 sets of SOL and 2 sets of VL data for AP analysis. The BF data for one participant was also 

excluded here due to highly contrasting patterns of activity to the mean of others, deeming it 

an outlier (this is explored more in Chapter 4). Electrical malfunctions of the bike also meant 

that left crank position data was not recorded for 3 participants in the SC group, meaning that 

the ICPD performance index could not be measured. For SRCs, there were 3 participants who 

showed highly variable responses to TMS and recorded curves with an r
2
 of less than 0.7 and 

had all curves excluded for their data set as a result. 

  In the FC group 1 participant was excluded from all AP analysis due to absence of right and 

left crank position data which was needed to determine EMG activity at specific points in the 

crank cycle (electrical malfunction). Loss of data due to an unexpected computer shutdown 

also excluded another participant from all AP analysis. Cross-talk of the BNC board excluded 

SOL activity data for 3 participants and an additional 2 for TA. Only one participant showed 

varied TMS responses to give curves with an r
2
 of less than 0.7 and another whose high 

threshold meant that the curve plateau was not found. Both sets of curves were excluded 

accordingly. 
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  A table of participant’s baseline characteristics following random allocation into the 

experimental (SC) or control (FC) conditions are shown in Table 1. 

3.2 – STIMULUS-RESPONSE CURVE RESULTS 

  After all exclusion criteria were enforced a total of 14 participants were included for analysis 

(SC n= 7, FC n = 7). SRCs acquired from both SC and FC had minimal MEP exclusions 

following analysis (8.3 ± 1.2 and 9.1 ± 5.2 respectively). Unlike the AP analysis, significant 

differences in curve parameter values between crank types will be disregarded here as TMS 

evoked muscular excitability is inherently variable from person to person and was not 

normalised or controlled between groups prior to testing. Using the averaged SRC parameters, 

a group average set of SRCs could be constructed which is shown in Figure 31. Statistical 

analysis of the group averaged parameters revealed that there was only one significantly 

measurable difference between time points which was actually a reduction in MEPMax with 

SC training between S1 Pre and S5 Post sessions (F3,12 = 6.91, p < .05) (Figure 40). Similar to 

the ICPD results, the small sample size has produced a large standard deviation in SRC 

parameters and they have not been plotted as error bars on the MEPMax interaction plot to 

avoid masking the main effect (Figure 32). A summary of all results including standard 

deviations is provided in Table 2. Reasons for this unpredicted effect are explored more in 

Chapter 4, though generally results suggest little TA CSE changes for either training type.  
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3.3 – ACTIVATION PATTERN RESULTS 

3.3.1 – Onsets, Offsets and Active Durations Results 

  A summary of the results for the onsets of offsets of muscular activity are shown in Table 3. 

No significant differences in muscle onset or offset were found between time points with 
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 respect to crank type indicating minimal modifications to cycling strategies with training 

(Figure 33). However, on average, all 4 SC muscle onsets were significantly different to FC 

results (TA F1,12 = 192.2, p < .05; SOL F1,7 = 11.24, p < .05; VL F1,7 = 6.88, p < .05; 

BF F1,12 = 10.85, p < .05) (Figure 34). Similarly, SC average muscle offsets were significantly 

different from FC for VL (F1,7 = 9.42, p < .05) and BF (F1,12 = 80.57, p < .05). Table 4 shows 

the results of the active durations for the 4 different muscles with TA (F1,12 = 30.93, p < .05) 

and BF (F1,12 = 9.38, p < .05) reaching significant differences with respect to crank type but 

none of the muscles reaching statistically significant differences between time points (all 

presented in Figure 33). The large differences between crank types are clearly presented by 

the crank activation diagrams in Figure 34 and the processed EMG traces displayed in Figure 

35.  
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The differences between knee and ankle joint positions between the 2 crank types is displayed 

in Figure 36 and appear to be quite minimal, perhaps with slightly earlier onset of ankle 

plantar flexion for SC cycling over FC. 

 

 

 

 

 

 

 

 

 

 

 

3.3.2 – Performance Index Results 

3.3.2.1 – Right Crank Variability Results 

  In general the RMSE of the right crank reduced with training, indicated by significant 

reductions from S1 to S5 (F3,8 = 11.85, p < .05) (Figure 37). This demonstrates that 

participants were able to improve the consistency of their performance with SC training. 
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3.3.2.2 – Inter-Crank Position Difference Results 

  Since there were some participants for whom both left and right crank data could be obtained, 

some participants were excluded from this section of analysis (included n=6). There were no 

statistically significant changes in the absolute crank position differences between the 4 time 
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points (F3,5 = 0.56, ns) but the data showed a trend towards actually increasing the error 

(position deviation from the target of 180°) with the training (Figure 38). Possible reasons for 

this are discussed further in Chapter 4. With such a low sample population, the standard 

deviations of the inter-crank position differences are quite large and as such would mask the 

changes seen in Figure 34 if they were plotted as error bars. Accordingly, the standard 

deviations were plotted on a separate set of axes (Figure 39) where it is apparent that they 

reduced with training, indicating an improvement in the ability to produce more consistent 

cycling strategies. It is important to note, however, that none of these reductions achieved 

statistical significance (F3,5 = 2.21, ns). 

 

 

 

 

 

 

 

3.3.2.3 – Knee Position Trace Exclusions Results 

The number of KPEs decreased with training with statistically significant reductions from S1 

Post to S5 Pre and Post (F3,7 = 6.50, p < .05 ) (Figure 40), indicating a similar margin of 

performance improvement to the RCV index. A summary of all performance index results can 

be seen in Table 5. 
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3.3.3 – Borg Scale Score Results 

  BSSs were, on average, significantly greater for SC cycling than FC across all 5 time points 

(F1,17 = 10.35, p < .05) and significant reductions were reported between sessions 1 and 4 for 

SC cycling (F4,17 = 4.13, p < .05) (Figure 41) which could be an indication of improvements 

in physical fitness or efficiency of cycling strategy with SC training. There was also a 

significant interaction between crank type and session number during training sessions 1 to 3 

(F4,17 = 5.20, p < .05). A summary of BSS results can be seen in Table 6. Interestingly there 

was a slight increase in BSS between S1 and S5 for the SC group, though this difference did 

not achieve statistical significance. 
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CHAPTER 4 – DISCUSSION 

  The purpose of this experiment was to implement a split crank (SC) training protocol with 

healthy participants to develop our understanding of its associated muscular activation and 

corticospinal plasticity adaptations. The hope was that these findings might provide a basis to 

pursue SC cycling as a novel rehabilitation therapy to treat the symptoms of foot drop for 

recovering acquired brain injury (ABI) patients. Despite several equipment failures the 

protocol was implemented successfully and the implication and significance of the subsequent 

findings are discussed here. 

4.1 – INTERPRETATION OF RESULTS 

4.1.1 – Corticospinal Excitability Adaptations – Stimulus-Response Curves 

  It was hypothesised that corticospinal excitability (CSE) for the tibialis anterior (TA) would 

increase following novel SC cycle training due to its high skill demand, but not in the low 

skilled, conventional fixed crank (FC) control group. This prediction was not met since there 

were no significant increases in any of the stimulus response curve (SRC) parameters with 

split crank (SC) training, suggesting little or no plasticity adaptations for this target muscle. 

Since this result was paralleled in the low skilled FC condition, it suggests that the tasks skill 

demand was not high enough to evoke the neuroplastic adaptation which was expected. 

Interestingly, there was 1 significant change in MEPMax with the SC condition but it was 

actually a decrease between Pre and Post session 5. Since this indicates a reduction in CSE 

with SC training this comes as somewhat of a surprise as it completely contradicts the 

predicted outcomes of the intervention. Since SC cycling requires a large contribution of 

muscular activity from the TA to perform (as shown by activation pattern results, see Section 

3.3), it may be that the muscle was fatigued during training which has been shown to decrease 
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MEP amplitude
 (103)

 and may have contributed to the observed decrease in MEPMax. However, 

this would again comes as surprise since the exercise intensity was very low, eliciting an 

average score of only 2.2 (±0.5) which correlates to a description of only ‘Weak (Light)’ on 

the Borg scale. Considering the sample population were young healthy participants it also 

seems unlikely that the training intensity, aimed at recovering ABI patients, would induce any 

sort of fatigue. As such the basis for this apparent reduction in CSE is difficult to explain yet 

without a similar finding in the FC control group, it suggests that this may be a trait of the SC 

training specifically which should be investigated further. Follow up studies using larger 

sample populations may also help to confirm or oppose this result in the future. 

4.1.2 – Muscular Activation Adaptations 

  The hypotheses for muscular activation adaptations were that both tibialis anterior (TA) and 

biceps femoris (BF) would exhibit increased periods of activity during SC cycling than with 

FC cycling reflecting the increased toe lift and knee flexion necessary to perform the cycling 

upstroke during exercise. Whilst these results were observed, the hypothesis was only 

partially met in that the adaptation occurred immediately with initial exposure to the task and 

not as a more gradual response to training (indicating skill acquisition) as was predicted. 

These results suggest that, at least for this sample population, the skill demand of the task was 

not high enough to induce a gradual learning response in these muscles. Despite this, the 

present findings of increased TA and BF activity are somewhat in agreement with work by 

Fernandez et al.
(95)

 and Mornieux et al.
(96)

 who found small increases in magnitude of TA and 

BF responses with a SC cycling task and active ‘pull-up’ instruction respectively. This is an 

important similarity as it contributes to our understanding of SC cycle training and its 

associated muscular activation as a relatively unexplored topic of research. 
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  Interestingly, earlier vastus lateralis (VL) activity onset and delayed soleus (SOL) activity 

onset were also measured with SC cycling too; a finding which was not hypothesised prior to 

the experiment. Considering the task demands, it may be that earlier onset of VL activity 

served to drive the limb forward through top dead centre (TDC) following the cessation of the 

upstroke and into the downstroke where its primary function of knee extension could be 

employed
(104, 105)

. The period of co-contraction between VL and BF might then reflect 

additional knee and potentially hip stabilisation during the cycling upstroke where lack of 

contralateral limb assistance may produce a greater extent of variability in joint position. With 

prolonged muscular activation of TA and BF needed to perform the upstroke, it may be the 

case that muscular activation associated with the downstroke could be delayed and such, may 

explain the delayed SOL onset which is typically associated with ankle plantar flexion and the 

downstroke motion
104, 105)

. Since these observations have not been reported previously they 

may carry significance in establishing a better knowledge base of SC cycling and could be 

important when assessing future clinical applications too. 

4.1.3 – Performance Indices and Borg Scale Scores 

  The indices of SC cycling performance were hypothesised to improve with SC training 

indicating gradual skill acquisition with the intervention, which was hoped to be accompanied 

with increases in CSE of the TA and adaptations to TA and BF muscular activity during 

cycling too. Whilst the gradual adaptations to CSE and muscular activation were not observed, 

it is interesting that both the right crank variability (RCV) and knee position exclusions (KPEs) 

showed evidence of gradual improvements throughout the 5 days of training. Contrary to both 

the muscular activation and CSE results this suggests that there was some aspect of learning 

or skill acquisition that was required to successfully perform the task. This is supported to 

some extent by the results of the Borg scale scores (BSS) which showed significant reductions 
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during the SC training intervention. This apparent reduction in energy expenditure, or effort 

during cycling, may represent a learning process whereby cycling efficiency is improved, 

perhaps through improving performance consistency which is indicated by improvements in 

RCV and KPE during the 

training too.  

  Although RCV and KPEs 

appear to have worked well 

as SC performance indices, 

the inter-crank position 

difference (ICPD) index 

provided slightly contrasting 

results in that the position difference actually deviated further from the target of 180° with 

training. This may be due to the fact that participants were instructed to keep, but never 

specifically positioned with, pedals 180° apart meaning that they had no awareness of the 

correct positioning prior to training, only the position which they perceived to be correct. 

Since the current methodology simply gave an average ICPD for each sweep, there was no 

information about at which points in the crank cycle specifically the greatest deviations 

occurred. In future, a more thorough analysis of inter-crank position during cycling could 

include an assessment of ICPD on a sample point-to-point basis (Figure 41) which could also 

be used as participant feedback to help direct attention on how maintain an optimal ICPD 

during training sessions. Although absolute ICPD values have provided contradictory results 

to both the predicted outcomes and the other 2 performance indices, reductions in the standard 

deviations gave some indication of how participants were able to improve the consistency of 
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pedal strokes. Although it should be mentioned that these differences were not statistically 

significant and should be interpreted as speculation only.  

  The SC group showed a slight increase in BSS between sessions 4 and 5 which was slightly 

surprising considering the general trend of reduction that occurred in the sessions before. 

Although this difference did not reach statistical significance, it could reflect an aspect of the 

protocol which is causing some additional physical exertion for the participants and affecting 

their reported scores. However, since this effect was not seen in the FC control group it seems 

unlikely that this effect has been caused by the protocol design and may perhaps have been 

eradicated with the use of a larger sample size than the relatively small one used presently. 

4.1.4 – Performance Index and Learning Effect Discrepancies 

  The results obtained here have provided mixed evidence regarding whether there was some 

kind of learning or skill acquisition with the SC cycling paradigm. Since the muscular 

activation adaptations in the TA occurred on initial exposure, it is fair to assume that the task 

did not provide sufficient skill demand for this muscle during the intervention to evoke any 

corticospinal plasticity as a training response. This is of course, reflected in the results from 

the SRCs which showed no CSE improvements between the beginning and end of the trial. 

The apparent improvements in task performance and reduction in energy expenditure may 

therefore represent some form of skill acquisition or more gradual training adaptation 

concentrated to a muscle or muscles which were not measured under the current protocol. 

Since the evidence provided presently has shown that the main adaptations to muscular 

activation are induced to overcome the upstroke of SC cycling, we can expect that any 

additional training effects may be evoked in muscles which could help to achieve this. 

Muscles associated with hip flexion seem to fit this description well since their activity has 

been documented as occurring predominantly during the later stages of the crank 
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cycle
(104, 105, 106)

 and is supported by participant reports of muscle ache around the hip during 

cycling. It could therefore be the case that SC cycling induces increased hip flexor activity in 

addition to that of TA and BF to help achieve the upstroke of the crank cycle following 

absence of contralateral limb assistance. This effect may occur more gradually than with 

muscles that were measured presently and could, to some extent, explain why there were 

parallel improvements in performance which were measured over a similar timescale. 

Equipment limitations meant that a maximum of only 4 muscles could be recorded presently 

to give a fairly broad representation of lower limb muscular activation changes with SC 

cycling. Similarly, SRC recordings were limited to the TA only as the primary muscle of 

interest too. Follow up studies may therefore benefit from recording a larger group of muscles, 

both in terms of EMG activity and SRCs, to better understand some of the training 

adaptations which SC has the potential to induce.  This may also provide a stronger basis of 

knowledge which may be used to assess feasibility of implementing s clinical SC cycling 

paradigm in the future.  

4.2 – STUDY STRENGTHS AND LIMITATIONS 

4.2.1 – Strengths 

  This has been one of very few studies investigating training adaptations associated with SC 

cycling and as such, has helped to establish a better knowledge base for how this exercise 

regime may be translated to a clinical setting in the future. Despite the fact that not all of the 

hypotheses were satisfied, the results revealed new information regarding the timing and 

duration of lower limb muscular activity with SC cycling that may guide future research and 

follow up studies of a similar nature. The findings of increased duration of TA and BF during 

SC cycling are also supported by the research of Fernandez et al.
(95)

 and Mornieux et al.
(96)

 

and suggests that there may be beneficial training effects for these muscles over conventional 
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FC cycling which is normally used in a clinical setting. Although such benefits for patients 

suffering ABI-related foot drop is beyond the scope of this study, these findings may facilitate 

the transfer of this exercise therapy into a clinical trial in the future where these effects can be 

tested conclusively. Conducting the study with a healthy population meant that beneficial 

adaptations to the protocol could also be identified in terms of optimising both quality of data 

collected and safety of participants if the study was ever to be replicated with ABI patients 

(these are discussed in Section 4.3). The additional research questions and parameters of 

training which were raised during the completion of this investigation are discussed here, 

including the importance of addressing them before clinical trials with patients can commence. 

4.2.2 – Limitations 

4.2.2.1 – Size and Type of Sample Population 

  Although the conduction of this experiment with healthy participants has been necessary to 

develop a firmer knowledge base of SC cycling and its associated training adaptations, it does 

create a large limitation in generalising the findings to the target population of recovering ABI 

patients. Absence of a physical activity exclusion criteria for the experiment resulted in 

recruitment of participants that were quite physically active (average exercise participation of 

6.6 [±3.7] hours per week). As such, their experiences of SC cycling are likely to differ from 

an ABI patient who, in addition to motor impairments, may also have been sedentary for 

some time. Similarly, the low sample size reduces the power of the statistical tests and makes 

the generation of definite conclusions more difficult. This means that whilst current findings 

improve knowledge of this scarcely researched topic, additional studies with larger and more 

appropriately matched samples of participants are essential to accurately assess the feasibility 

of this exercise therapy as a clinical rehabilitation strategy.  
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4.2.2.2 – Knee Position Trace Exclusions Criteria 

  The use of KPE proved to be a good indicator of performance consistency in that it showed 

how the occurrence of the brief reversals of pedalling direction was reduced with training. It 

also removed the chance of recording false muscular adaptations occurring between the first 

and last sessions of training (see Section 2.5.1). However, whilst the exclusion criteria here 

was defined as traces which showed visible reversals (found using superimposition of all 60 

knee position sweeps; see Figure 25, Section 2.5.1) a more robust exclusion criteria which can 

be replicated in subsequent experiments should be developed. One potential solution to this 

could involve using a band of tolerance set at 2 or 3 standard deviations away from the mean 

trace, creating a more standardized method of excluding knee position traces in similar 

experiments.  

4.2.2.3 – Maintenance of Cycling Cadence 

  During training some participants had difficulty maintaining the desired cycling cadence. 

Since the cycle ergometer used a flywheel resistance system, increasing the cycling speed 

could reduce the resistance of cycling and as such, became a 

tendency of a several participants in the SC group as a way of 

alleviating the physical demands of the task. However, this was 

corrected to some extent by constant verbal instruction from the 

investigators and this effect was generally alleviated towards the end 

of the training intervention. Some participants in the SC group also 

struggled to keep to the 40rpm pace despite the use of the 

metronome whose tone corresponded with each pedal stroke going through TDC alternately. 

This effect was particularly apparent in the early training sessions, where a large degree of 

concentration was devoted to performing the novel task and not to maintaining cycling pace. 
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An alternative which could have been used is a cycle computer providing a digital read-out of 

current rpm that gives participants real-time feedback on cycling pace, allowing them to make 

constant adjustments during training (Figure 42). However, due to the independence of crank 

arms in SC cycling, individual legs may cycle at varying speeds making adjustments for the 

participants very difficult and attentionally demanding. Perhaps more importantly, the 

cadence may also then be more difficult for the investigator to regulate compared to the more 

widely audible metronome tone. Following this, it seems that helping participants maintain a 

desired cadence during SC cycling may be difficult to achieve and as such, should be 

considered both for future studies and when assessing feasibility of translation into a clinical 

setting too, where arguably the ability to produce rhythmic patterns of motor activity will 

already be impaired. 

4.2.3.4 – Identifying Multiple Cycling Strategies 

  An additional difficulty which arose during analysis was regarding a muscle trace for one 

participant, specifically in BF, which displayed a highly contrasting pattern of activity to the 

remaining participants’ group mean (Figure 43). After some in depth analysis the abnormality 

could not be attributed to equipment malfunction or any other confounding variables the 

investigators were aware of and due to the effects that this trace had on group mean analysis, 

the BF trace and subsequent traces for this participant were excluded as outliers. Since this 

participant was part of the SC condition and typical patterns of muscular activation are not 

well established with this task, it is conceivable that such outlying results may have been a 

result of the utilization of an alternative cycling strategy to the remaining majority of 

participants. Since there was so much unknown regarding muscular activation with SC 

training prior to this study it was difficult to have predicted that multiple strategies may have 

been utilized and additional analysis to deal with this was not employed as a result. In future 
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experiments it may be interesting to see if more than one strategy exists to perform SC 

cycling. By analysing APs trace by trace instead of using the mean, separate strategies may be 

identified within a single 

AP or muscle and could 

lead to a better 

understanding of the way 

in which participants learn 

to perform the task. 

Following this, specific 

instructions regarding 

cycling technique may be developed to evoke a strategy which will produce the most 

beneficial muscular activation for the target population and their rehabilitation needs. 

4.2.3.5 – Equipment Failures 

  One limitation of the current study which led to significant data exclusion was the number of 

equipment failures during testing. The major contributors of which included electrical bike 

malfunctions causing loss of performance analysis, and cross-talk between EMG channels 

causing loss of muscle AP data (see Figure 30). Although these equipment failures were the 

major cause of data attrition, their occurrence prior to the investigation were unforeseeable, 

especially since there had been no such issues during pilot testing. Maintenance of the SC 

ergometer was also made particularly difficult due to its novel design and limited technical 

assistance with knowledge of its mechanical and electrical properties. Future studies may 

benefit from using a more commercial SC design such as the equipment available from 

PowerCranks© (www.powercranks.com) where better support and advice regarding repairs 
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may be available. For other equipment failures which occurred here, simple replacements of 

faulty apparatus for future experiments should resolve the attrition issues of this investigation. 

4.3 – PROTOCOL ADAPTATIONS TO CATER FOR AN ABI POPULATION 

  As mentioned previously one of the benefits of using a healthy sample population is that 

adaptations to the protocol can be highlighted which may help to cater to an ABI patient 

sample population in the future; both in terms of safety and knowledge gained from findings. 

Whilst there are obvious aspects which will need modifying, such as the cycling resistance, 

other less obvious training parameters were identified here too. This section describes some of 

these protocol adaptations and outlines areas of research which should be addressed to 

facilitate a safe clinical translation of SC cycling. 

4.3.1 – Rating Perceived Exertion and Muscle Ache 

  In the present study the use of the Borg scale provided an effective means of quantifying the 

additional physical demands of SC cycling and controlling for the effects of aerobic fatigue. 

The evidence for these additional physical demands has given some insight into the potential 

benefits of SC cycling on aerobic fitness factors ABI patients may gain over and above 

conventional FC cycling based interventions as well. However, the scale did not reveal the 

extent of participant reported muscle ache that occurred with SC cycling; a factor that may 

limit participation for weaker patient populations. Following this, an effective supplement to 

the Borg scale may be the use of visual analogue scales (VASs) to rate muscular pain during 

cycling
(107)

. Its simplistic nature could make it easy to implement in the future and the 

findings which stem from its inclusion could be important to consider prior to testing with 

ABI patients where muscle ache caused by SC cycling could be particularly harmful. Making 

this adaptation to the protocol is likely to make participation safer for our target population of 
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participants but also allows the effects of fatigue to be more closely monitored and controlled 

to reduce the likelihood of excitability or muscular activation measures being affected.  

4.3.2 – Saddle Type/Design 

  One adaptation to the apparatus used which will be necessary for extended this research into 

the target population will be to change the type of saddle used on the cycle ergometer.  

Although the healthy participants used presently had very little difficulty co-ordinating 

movements and maintaining both their balance and position on the saddle, ABI patients 

experiencing decreased muscular strength and postural control may find it more challenging 

due to the upright, low body weight supporting saddle. For these reasons, using a similar 

ergometer could prove dangerous for patients who may be subject to a greater fall risk and 

subsequent injuries which may exacerbate existing conditions and unnecessarily prolong 

recovery. To address this issue a number of other experiments used in clinical settings have 

used a recumbent cycle ergometer
(87, 89, 101)

. This variation of conventional cycling caters for 

ABI patients who have significantly decreased postural or core strength making the ability to 

maintain an unassisted upright body position exhausting or in some cases impossible. 

However, this modification to conventional cycling has been criticised for not accurately 

representing the upright posture needed to maximise potential for lower limb muscular 

recovery or that which is maintained during normal walking
(70)

. In addition to this, muscular 

activity during cycling has been shown to be body-position dependent
(108)

 which means that 

maintaining an upright body position during cycling may more closely mimic the muscular 

activation associated with walking and act as a more task-appropriate, functionally relevant 

form of rehabilitation. However, it is still unknown whether such body-position dependent 

modulations of muscle activation would occur in a similar paradigm involving SC cycling. 

With the likelihood of a recumbent ergometer being needed for the first application of SC 
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cycling to an ABI population, a pilot experiment 

of this nature will be important to determine 

whether the beneficial effects on muscular 

adaptation are enhanced, or even negated, with 

altered body position. An alternative to this 

would be to employ the use of a more body 

weight supporting saddle like the one proposed 

by Hancock et al.
(70)

 (Figure 44). This way 

upright cycling can be performed with minimal 

injury risks and the added benefit of more 

accurately mimicking the upright posture needed for walking which may provide greater 

potential for improvements in lower limb muscular activity
(70)

. 

4.3.3 – Aerobic Fitness, Strength and Functional Outcome Measures 

  Due to the nature of the sample population used presently and the relatively low intensity of 

the training regime it was decided to not include outcome measures of aerobic fitness and 

muscular strength. Considering the physically active nature of participants the addition of 

these the training was not expected to induce adaptations of this nature, making the inclusion 

of these measures redundant and unnecessarily time consuming. However, one of the aspects 

of SC training which makes it so attractive is that it appears to require more physical effort 

than the FC alternative and as such may provide greater aerobic fitness benefits for ABI 

patients as a result. Similarly, the independent training of lower limbs with SC cycling may 

help to correct strength imbalances which are common in ABI patients
(85, 82)

 and may 

contribute to gait impairments. Although these measures were not included presently, the 

inclusion of BSSs has provided some indication that SC cycling may be more physically 
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demanding than FC (SC mean BSS = 2.2 ± 0.5, FC mean BSS = 1.2 ± 0.1 mean, significantly 

different p < 0.05) and as such, it is imperative that these outcome measures are included in 

future experiments with participants who are more likely to see these benefits than those used 

presently. Similarly, the inclusion of functional outcome measures of walking and mobility 

will be a necessary inclusion to establish whether any of the training adaptations that are 

measured provide any kind of functional benefits, especially since this is the key outcome of 

this training therapy and rehabilitation. If there are no measurable improvements in functional 

outcomes with ABI patients the training adaptations will be irrelevant. 

4.4 – TRAINING PARAMETERS AFFECTING MUSCULAR ACTIVATION 

  The use of cycle ergometers during research experiments inherently produces a number of 

different factors which need to be controlled to reduce inter and intra-subject variability of 

results. Some of these factors are explored in this section including how investigating them 

further may reveal methods to optimise activation of target muscles for rehabilitation. 

4.4.1 – Saddle Height 

  The present study used a fairly basic criteria of a visible slight bend in the knee when the 

pedal was at BDC to determine participant saddle height which was kept consistent 

throughout the training intervention. Although this variable was controlled in the present 

study it is interesting to note that there is considerable research demonstrating the ways in 

which changing saddle height can modulate muscular activation during cycling
(106,109-111)

. 

Sanderson et al.
(110)

 hypothesised that by inducing changes in knee and ankle kinematics, 

increasing the saddle height can modulate the environment in which leg muscles operate and 

as such, alter their activation during cycling. Other research has suggested that there is little 

modulation of these joint angles when saddle height is altered
(109)

 and results concerning 
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alterations to specific muscular activation in this field are often quite mixed
(106,109,110)

. One 

common theme amongst these studies is that any modifications of muscular activity is 

typically concerning changes in magnitude of integrated EMG activity and not adaptations to 

onset or offsets which were typically neglected as an outcome measure
(106,109,110)

. As such it 

may be interesting to investigate the effects of modulating saddle height on the timing of 

muscular activity during both FC and SC cycling too. This could be especially important if a 

specific cycling position was found to increase the magnitude and duration of activity of 

muscles targeted in rehabilitation such as the TA with foot drop. This may then contribute to 

optimising the rehabilitative capacity of a SC therapy if it is ever implemented in a clinical 

setting in the future. 

4.4.2 – Hand Position 

One factor which was not controlled was hand position during cycling (Figure 45). Altering 

hand position has the effect of altering the hip angle during cycling and has been shown to 

affect both magnitude and the timing of muscular 

EMG responses
(109, 112)

. The latter is of particular 

importance to the present study which employed 

muscle onset, offset and active durations as a 

primary outcome measure, meaning that with 

participants adopting different hand positions as 

they pleased, the failure to control this variable 

may have considerably affected results. For future 

research this can be easily controlled by picking a single hand position to use across all 

participants but it may be interesting to investigate the effects of a range of hand positions on 

muscle kinematics with SC cycling to see how it differs from the existing research concerning 
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conventional FCs. In a similar fashion to saddle height adaptations, investigating muscular 

activation adaptations between different hand positions during SC cycling could reveal 

specific orientations that optimally activate muscles of interest, such as the TA with foot drop 

rehabilitation. This again, would help to optimise the rehabilitative capacity of SC cycle 

therapy with patients and could be an important research venture to facilitate the translation of 

such an intervention into a clinical setting. 

4.4.3 – Other Parameters 

  Investigating both saddle height and hand position variations with SC cycling may reveal 

optimal parameterization of training for ABI populations but another parameter whose 

exploration could provide useful information too is adaptations to crank length. Previously 

proposed by Hancock et al.
(70)

, the idea was that thismay address the issue of limited 

participation in exercise stemming from severe hemiparesis by attenuating exercise intensity 

of the weakened limb specifically. Similarly, adaptations to crank length have also been 

shown to modulate both muscular activity level and timing with healthy participants on 

FCs
(113)

. Although such variables are typically associated with optimising performance for 

high level or elite cyclists, their effect on muscle kinematics in SC cycling remain unknown. 

It may therefore be interesting to pursue such a research opportunity, particularly if the results 

can reveal a method of grading entry into a SC training regime for patients with particularly 

severe physical impairments in a similar fashion to the description by Hancock et al.
(70)

. 
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4.5 – IMPLICATION OF RESULTS FOR ABI-RELATED FOOT DROP 

REHABILITATION 

  This investigation was conducted with the hope that findings may provide evidence to 

support future application of a SC cycling training protocol to promote rehabilitation from 

mobility impairments with special focus on foot drop specifically. Although it appears that the 

present findings have produced mixed evidence to support this notion, it has raised additional 

questions to direct future research and hopefully promote translation of the regime into a 

clinical setting in the future. 

  One aspect of the present study’s findings which weakens support of such a translation is the 

lack of CSE adaptation which occurred in the TA. The expectation of increased CSE with 

training formed a strong basis for the proposition of SC cycling as being beneficial over other 

foot drop treatments and exercise therapies, so its absence somewhat weakens this argument. 

However, this result is most likely due to the low skill demand of the task for the healthy 

population of participants used presently which may differ considerably for the target 

population of ABI patients. With physical deficits in the lower limb, ABI patients are required 

to effectively ‘re-learn’ previously habitual patterns of motor activity involved in the use of 

the impaired muscles  in order to recover normal function
(4, 114)

. Simple rhythmical exercises 

such as walking or cycling therefore become much more difficult to achieve and could require 

a greater skill demand during participation as a result
(115)

. If this is the case with SC cycling, 

the skill demand may be much higher and we could expect to see associated plasticity of CSE 

in the TA, and even additional muscles, as a result fo training. Similarly, immediate damage 

to the motor cortex following an ABI and additional contraction of representation regions 

from disuse will create an inherently weakened corticospinal connection between the motor 

cortex and the affected muscle, leaving the potential for training based excitability adaptations 
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to be quite high. In the case of the sample of healthy participants used presently, the absence 

of damage to the motor cortex and weakened corticospinal connections to muscles leaves little 

room for functional changes to CSE with training in what some may consider to a be a 

‘ceiling effect’. This means that the expected neuroplastic adaptation may be larger in a 

sample of ABI patients. If this was to be the case, more gradual adaptations to both muscular 

activation and CSE would be expected with training and could warrant a longer intervention 

in order to measure these effects, similar to other studies examining exercise based-therapies 

in a clinical setting
(72, 75, 77)

. However, since the present study was only conducted on healthy 

participants theses comments are only speculative and at this stage determining the feasibility 

of a clinical application of SC cycling with ABI patients is far beyond the scope of this study.  

  Although the results for muscular activation did not occur on the same timescale as was 

predicted, the increased activity duration of TA and BF in SC suggest that these muscles may 

be trained more extensively than with the common FC alternative. Since strength measures 

were not used presently and EMG magnitude was not normalised for comparison between 

sessions 1 and 5, the training benefits of this prolonged activation are unknown. However, 

with a particular weakness in foot drop, it could be expected that the increased activation of 

the TA specifically may contribute to accelerating treatment of this impairment over FC 

alternatives. The additional SC training adaptation which may occur in the hip flexors could 

also be beneficial for ABI patients by contributing to improved swing phase of walking, 

making them an additionally beneficial muscular adaptation for the promotion of lower limb 

motor rehabilitation and correction of abnormal gait
(116)

. However, it should be stressed that 

these comments are again speculative and the functional benefits associated with both the 

measured and predicted muscular adaptations to SC cycling remain unknown.  
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  Since there are many parameters of SC cycling regimes which have remained unexplored, 

additional studies in healthy participants will be necessary to develop a better understanding 

of the underlying the mechanisms of SC training adaptations and whether this approach will 

be beneficial and feasible to conduct with recovering ABI patients. 

4.6 – CONCLUSIONS 

  Whilst the present study has provided new information regarding a relatively unexplored 

exercise therapy, the results have not supplied the predicted strength of evidence to support 

SC cycling as a beneficial regime for sufferers of ABI-related foot drop. However, muscular 

activation data still showed promising effects of such a regime in the training of the TA which 

is key for the treatment of foot drop and as such, warrants further investigation. The 

completion of the study has also been effective in directing future research and identifying 

protocol adaptations to help facilitate the safe translation of this exercise therapy into a 

clinical setting in the future. The completion of this additional research, however, is 

imperative for such an occurrence to efficaciously take place. 
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Appendix B – Participant Information Sheet 

Participant Information Sheet 

We are conducting a study to look at the effect of a novel cycling paradigm known as split 
crank cycling on corticospinal excitability and activation changes to muscles of the lower limb. 
Split crank cycling is the same as normal cycling apart from the two pedals work 
independently of each other, meaning that the downstroke of one pedal cannot assist the 
upstroke of the other. This means force has to be applied to the pedal throughout the 360 
degree movement.   
 
The hope is that we may find evidence to support the use of split cranks in a rehabilitation 

therapy for patients suffering from lower limb motor impairments associated with acquired 
brain injuries. 
 
  For this experiment you will be required to come into the lab on 5 consecutive days; 1.5 
hours on the first and last days and around 20 minutes on the 3 days in between. On 1st 
entry to the lab we will introduce you to the equipment and ask you to sign some consent 
forms before attaching pairs of electrodes to 4 muscles on your leg. Following this we will 
use a painless and non-invasive technique with transcranial magnetic stimulation (TMS) to 
measure the excitability of 1 of these muscles. This will be followed by a brief recording of 
muscular activity during cycling on the bike before you will cycle for 15 minutes at 40 rpm 
(very low cycling cadence) or until you reach a pre-defined score on a reported exertion 
scale. Once you have finished cycling we will record muscular activity during cycling again 
followed by another measure of muscular excitability with TMS. 
 
  On the 2nd, 3rd and 4th days you will come in and only need to cycle for the 15 mins at 
40 rpm with no muscular recordings or TMS measures being taken. Then finally, on the 5th 
day, you will come in and repeat the same experimental protocol as the first day which will 
mark the end of the experiment. 
 
  I have read the attached Information sheet and discussed the investigation 
with........................... who has explained the procedures to my satisfaction.  I am willing to 
undergo the investigation but understand that I am free to withdraw at any time without 
having to give an explanation and that doing so will not affect any treatment or care I may 
receive. I have also been provided with the relevant contact details for questions that I may 
have. 

 
Signed:  ……………………………………… 
 
Witnessed:  ……………………………………… 
 
Date:  ……………………………………… 

 

For any further information please contact 
Nick Kitchen 
Email:  
School of Sport and Exercise Sciences, University of Birmingham 
Edgbaston, B15 2TT, Birmingham, UK 
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