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ABSTRACTABSTRACTABSTRACTABSTRACT    

Salmonella Typhimurium is one of the most common causes of bacteraemia in children in 

sub-Saharan Africa and is prevalent in HIV-infected individuals. However, symptoms of this 

systemic infection are unclear, and while fatalities are frequent, how infection kills is 

unknown. Here we use a mouse model of systemic (but resolving) infection to investigate 

physiological and immunological aspects of the host response to infection. The liver is 

colonised during systemic infection, and in the model used, bacterial numbers peak at day 

7 and are largely resolved within a month. Inflammatory lesions, consisting of multiple 

leukocyte populations, develop within the liver. These persist and are more severe once 

bacterial clearance is established. Whilst lesions can develop in the absence of T and B cells, 

these cells contribute to the regulation of inflammatory foci. In the absence of interferon-

γ, lesions do not develop and inflammation in the liver is largely absent.  

In parallel, extensive platelet thrombosis occurs in the liver venous system and the shared 

kinetics with lesion formation suggest these phenotypes may be co-regulated. Here we 

describe how parenchymal and vascular inflammation are anchored by inflammatory up-

regulation of podoplanin expression in the liver. Thrombosis is substantially abrogated in 

the absence of C-like lectin-type receptor-2 (CLEC-2) expression on platelets and we show 

that podoplanin (the physiological ligand for CLEC-2) expression on clodronate-sensitive 

myeloid populations is necessary for thrombus development. Therefore, the parallel 

association between inflammation and platelet activation could be the basis for developing 

novel treatments for systemic bacterial infections in humans. 
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CHAPTER 1: CHAPTER 1: CHAPTER 1: CHAPTER 1: ININININTRODUCTIONTRODUCTIONTRODUCTIONTRODUCTION    

1.1 1.1 1.1 1.1 SalmonellaeSalmonellaeSalmonellaeSalmonellae    entericaentericaentericaenterica     

Salmonella enterica are intracellular Gram negative bacteria which cause a range of 

important diseases. Salmonella enterica serovar Typhi (S. Typhi) is a serovar specific to 

humans and higher primates and it causes typhoid fever. This disease places a large clinical 

burden on the developing world; data from the World Health Organisation reported in 

excess of 21 million illnesses and 200, 000 fatalities, caused by typhoid fever during the 

year 2000 (Crump et al., 2004). Non-typhoidal Salmonellae (NTS) including Salmonella 

enterica serovar Enteritidis (S. Enteritidis) and Salmonella enterica serovar Typhimurium 

(S. Typhimurium or STm) can be transmitted between animals and humans and are a major 

cause of food-related infections in developed countries and throughout the world 

(Hohmann, 2001). 

1.1.1 Typhoid fever1.1.1 Typhoid fever1.1.1 Typhoid fever1.1.1 Typhoid fever    

Typhoid fever is a systemic infection which is endemic particularly in areas which lack clean 

available drinking water and suitable sewage-treatment systems (House et al., 2001). 

Studies on the prevalence of S. Typhi infections indicate that approximately half of culture-

positive cases occur in children under 5 years old and the highest incidence of cases is 

found in children aged 2-3 years (Graham, 2002, Lepage et al., 1987, Sinha et al., 1999, 

Saha et al., 2001, Duggan and Beyer, 1975). Symptoms consist of fever approximately one 

week after initial infection, accompanied by enteritis and sometimes diarrhoea and 

bradycardia (Pramoolsinsap and Viranuvatti, 1998). Bacteraemia is low-level but enables 

bacterial dissemination and colonisation of organs including the spleen and liver (Santos et 
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al., 2001). Typhoid fever can result in organ damage and other complications including 

intestinal perforation, bleeding diathesis and encephalitis (van Basten and Stockenbrugger, 

1994, Rao et al., 1978, Olubodun et al., 1994, Greig and Naidoo, 1981, Pramoolsinsap and 

Viranuvatti, 1998). 

Typhoid fever can be treated with antibiotics and prognosis is usually good if diagnosed 

and treated quickly. However, prognosis is poorer in individuals with underlying conditions 

including anaemia or malaria, those with severe complications, and when antibiotic 

treatment is delayed (Pramoolsinsap and Viranuvatti, 1998).  Choice of antibiotic depends 

on availability, however, resistance to the three first-line antibiotics (commonly used to 

treat typhoid fever) is a problem, especially in endemic areas (Mirza and Hart, 1993, 

Pramoolsinsap and Viranuvatti, 1998, Malik, 2002). In addition, typhoid fever can become 

persistent whereby bacteria can reside within infected individuals for many years (Gordon, 

2008). These carriers of infection are vital for maintaining bacterial populations and act as 

reservoirs, occasionally releasing bacteria back into the environment in their stools. 

Carriers of S. Typhi include both typhoid patients and individuals who have never had 

clinical features of the disease (Monack et al., 2004b). 

1.1.2 N1.1.2 N1.1.2 N1.1.2 Nonononon----typhoidal typhoidal typhoidal typhoidal SalmonellaeSalmonellaeSalmonellaeSalmonellae    infectionsinfectionsinfectionsinfections    

In developed countries, NTS primarily causes gastroenteritis whereby ingestion of 

contaminated food leads to a local infection in the gastrointestinal tract and is associated 

with abdominal pain, vomiting and diarrhoea (Zhang et al., 2003). Infections are not 

associated with bacteraemia and are self-limiting, although they can become more severe 

in the immuno-compromised and the elderly (Hohmann, 2001, Levine et al., 1991). 

However, in developing countries including sub-Saharan Africa, NTS is a common cause of 
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systemic disease in children and HIV-infected individuals (Graham et al., 2000b, Gordon, 

2008). 

1.1.2.1 Systemic non1.1.2.1 Systemic non1.1.2.1 Systemic non1.1.2.1 Systemic non----typhoidal typhoidal typhoidal typhoidal SalmonellaeSalmonellaeSalmonellaeSalmonellae    infectioninfectioninfectioninfections in subs in subs in subs in sub----Saharan AfricaSaharan AfricaSaharan AfricaSaharan Africa: : : : 

prevalence and epidemiologyprevalence and epidemiologyprevalence and epidemiologyprevalence and epidemiology    

In tropical Africa, NTS is one of the most common causes of bacteraemia in children and is 

prevalent in HIV-infected individuals (Graham et al., 2000b, Graham et al., 2000c, Nesbitt 

and Mirza, 1989, Cheesbrough et al., 1997, Green and Cheesbrough, 1993, Mabey et al., 

1987, Walsh et al., 2000, Lepage et al., 1987). In children, NTS bacteraemia is most 

prevalent between the ages of 6-24 months, with the highest incidence in those aged 10-

14 months (Graham et al., 2000b, MacLennan et al., 2008). This may be partly explained 

by the increased incidence of intestinal infections at this age. Reduced integrity of the 

intestinal mucosa (a common feature of malnutrition) may make this age group more 

susceptible to invasive disease (Graham et al., 2000b, Berkowitz, 1992). Children aged 1-4 

months are not particularly susceptible to NTS bacteraemia, which is associated with the 

presence of maternal antibody at this time (MacLennan et al., 2008).  

In a study of inpatient children at the Queen Elizabeth Central Hospital, Blantyre, Malawi, 

40% of blood culture isolates were NTS, and NTS bacteraemia was associated with a 24% 

case fatality rate (Walsh et al., 2000, Graham et al., 2000b). NTS also frequently causes 

pneumonia and bacterial meningitis in both neonates and in children over the age of 2 

months. At the Queen Elizabeth Central Hospital, NTS meningitis has a case fatality rate of 

57%, which has also been reported in other areas of tropical Africa (Molyneux et al., 1998, 

Graham et al., 2000b, Molyneux et al., 2000). NTS is frequently isolated from septic arthritis 

in children (Lavy et al., 1995, Molyneux and French, 1982). However, with the exception of 
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NTS meningitis and septic arthritis which are associated with recognisable symptoms, NTS 

bacteraemia can be difficult to identify (Graham et al., 2000b). 

1.11.11.11.1.2.2 C.2.2 C.2.2 C.2.2 Clinical features of linical features of linical features of linical features of nonnonnonnon----typhoidal typhoidal typhoidal typhoidal SalmonellaeSalmonellaeSalmonellaeSalmonellae    bacteraemiabacteraemiabacteraemiabacteraemia    

NTS bacteraemia can be difficult to recognise because there are often no major symptoms 

and it is frequently associated with underlying conditions which may have unrelated clinical 

features. Features of gastroenteritis such as vomiting and diarrhoea are usually absent. 

Generally, infected individuals are febrile, although if malnourished, which is common in 

infected children, fever can be less pronounced (Green and Cheesbrough, 1993). 

Symptoms associated with pneumonia (including tachypnea, dyspnea and cough) are 

frequently presented, and hepatosplenamegaly is often observed (Graham et al., 2000b). 

Anaemia has been repeatedly observed in cases of NTS bacteraemia in African children, 

more so than with other Gram negative systemic bacterial infections (Graham et al., 2000b, 

Green and Cheesbrough, 1993). Associations between NTS bacteraemia and anaemia may 

be explained in part by the common co-incidence of NTS bacteraemia with malaria. The 

association between these infections was first reported in a study in Nigeria in 1975, and a 

link between the two has since been repeatedly confirmed (Duggan and Beyer, 1975, 

Mabey et al., 1987, Graham et al., 2000b). Both infections are more common in the rainy 

season and whilst NTS is repeatedly reported to affect the outcome of malaria, 

susceptibility to NTS bacteraemia is increased by malaria. For example, antibody responses 

are diminished and complement concentrations in the serum are reduced in patients with 

malaria (Greenwood et al., 1972, Greenwood et al., 1978). Malnutrition is also more 

prevalent during the rainy season in tropical Africa, which may increase susceptibility to 

NTS infection (Graham et al., 2000b). 
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It is likely that NTS comes from a variety of sources, including infected water and food, 

domestic animals, contact with infected humans, and the environment (Graham et al., 

2000b). Nosocomial transmission is likely in many hospitals in developing countries. The 

diagnosis of NTS bacteraemia is often missed or delayed due to its elusive presentation and 

therefore inappropriate examination. Often blood is not cultured, both due to lack of 

facility but also if patients are admitted to clinic for additional reasons, including malaria 

and pneumonia. As with typhoid fever, NTS infections are currently treated with 

antibiotics, the choice depends both on treatment cost and the resistance of local bacterial 

strains (Kariuki et al., 2006, Graham et al., 2000b). Multidrug resistance is becoming a 

significant clinical problem in both S. Typhi and NTS infections; at present there are no 

vaccines for NTS bacteraemia (Gordon et al., 2008, MacLennan et al., 2008, Graham, 2002). 

1.1.31.1.31.1.31.1.3    Animal models of Animal models of Animal models of Animal models of SalmonellaSalmonellaSalmonellaSalmonella    infectioninfectioninfectioninfectionssss    

Typhoid fever is specific to higher primates and humans, however, it can be modelled using 

STm infection of mice. This resembles human typhoid in terms of systemic bacterial 

distribution, bacterial growth kinetics and symptoms (including fever). This model has been 

established for a long time and has contributed to the development of vaccines against 

typhoid (Blanden et al., 1966, Harrison et al., 1997). However, the systemic NTS infections 

described in children and HIV-infected individuals in sub-Saharan Africa and other regions 

of the developing world have very similar features to typhoid with regard to the systemic 

nature of infection. Thus the murine STm infection model may also provide insights into 

human systemic NTS infection (in addition to typhoid)(Tsolis et al., 2011). Furthermore, 

STm is a natural rodent pathogen (Santos et al., 2001). 
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Different strains of mice show differing susceptibility to STm infection, and this is largely 

accounted for by the presence of the susceptibility gene Ity. This encodes Natural 

resistance-associated macrophage protein-1 (Nramp), a transmembrane divalent cation 

transporter, which is recruited into the cellular membrane of phagocytes in 

reticuloendothelial system (RES) organ macrophages when they undergo phagocytosis 

(Vidal et al., 1993, Jones and Falkow, 1996, Pie et al., 1997, Vidal et al., 1995). Therefore 

Nramp-susceptible strains of mice do not tolerate virulent intracellular bacterial infections 

due to an inability to regulate bacterial numbers within phagocytes. These mice die within 

a few days due to uncontrollable bacterial replication.  

This system does not appropriately model the systemic NTS infections of humans in sub-

Saharan Africa, where the bacteraemia is modest (Gondwe et al., 2010). However, by use 

of an attenuated strain of STm in an Nramp–susceptible strain of mouse, the systemic 

infection resembles elements of the infection in humans much more closely. STm virulence 

is associated with a variety of genes and a range of virulent and attenuated strains have 

been created for studying infections in vivo (Everest et al., 1997). In this study, we used an 

attenuated strain of STm whereby the aroA gene is mutated. This STm strain cannot 

synthesise aromatic amino acids, thus results in a slower bacterial doubling time (Monack 

et al., 2004b). Furthermore, by using a slower growing strain, infections persist for several 

weeks thus it is possible to follow the progression of the infection to resolution stage and 

investigate different stages of the immune response. In addition, there is an extensive 

range of genetically modified mice available on a C57BL/6 genetic background, which 

facilitates an indispensable mechanism for the investigation of the inflammatory immune 

response in vivo. 



7 

 

1.1.41.1.41.1.41.1.4    Pathogenesis Pathogenesis Pathogenesis Pathogenesis of of of of SalmonellaSalmonellaSalmonellaSalmonella    TTTTyyyyphimuriumphimuriumphimuriumphimurium    infectioninfectioninfectioninfection    

Salmonella Typhimurium (both in the West and in developing countries) is usually acquired 

orally. Following ingestion, STm crosses the epithelial barrier at the membranous epithelial 

(M) cells in the Peyer’s patches (Carter and Collins, 1975). These M cells are specialised for 

uptake and transcytosis of gut antigens into phagocytic cells (Monack et al., 2004a). 

Salmonella Pathogenicity Island 1 (SPI1) genes are required to ensure epithelial crossing 

(Ohl and Miller, 2001). STm infects the phagocytes of the lamina propria and in non-

systemic infections, the infection is self-limiting. 

1.1.4.1 1.1.4.1 1.1.4.1 1.1.4.1 Pathogenesis of systemic Pathogenesis of systemic Pathogenesis of systemic Pathogenesis of systemic SalmonellaSalmonellaSalmonellaSalmonella    TyTyTyTyphimurium infectionphimurium infectionphimurium infectionphimurium infection    

In host-adapted systemic infection, such as NTS bacteraemia in humans in sub-Saharan 

Africa, or systemic STm infection in Nramp-susceptible mice, STm infects the lamina 

propria phagocytes as described above. However, STm then dissociates into the blood and 

lymphatics within infected phagocytes, and colonises organs of the RES, including the 

spleen and liver (Vazquez-Torres et al., 1999, Carter and Collins, 1974). This bacterial 

dissemination is illustrated in Figure 1.1. Additionally, STm can also disseminate from the 

gut into the blood via CD18+ phagocytes without colonisation of the Peyer’s patches. These 

two routes potentiate distinct immune responses. Whereas CD18+-mediated Salmonella 

entry into the circulation stimulates systemic response, M cells induce a mucosal response 

(Vazquez-Torres et al., 1999). 
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Figure 1.1 Dissemination of Salmonella from the gut. 

When ingested, bacteria in the gut lumen invade M cells (specialised epithelial cells) 

within the Peyer’s patches of the intestinal mucosa. Bacteria are taken up by 

macrophages and neutrophils in the lamina propria. During systemic infection, such as 

typhoid fever or systemic NTS infection, bacteria may be preferentially phagocytosed by 

dendritic cells and or macrophages which will disseminate via the bloodstream and 

lymphatics to secondary lymphoid tissues including the MLN. From here, they will be 

disseminated further, to the spleen, liver and other sites. Back on the lamina propria, the 

phagocytic cells secrete inflammatory cytokines which recruit T and B cells to the site. T 

cells can secrete inflammatory cytokines including IL12 (which stimulates IFNγ 

production), IFNγ (which is required for control of intracellular bacterial replication) and 

TNFα (which recruits additional innate cells). Bacteria can persist in these RES tissues and 

may reseed the intestinal mucosa via the MLN and bile ducts. Image taken from (Monack 

et al., 2004b). 

 

During systemic infection, STm are predominantly located intracellularly within 

phagocytes, but are also observed extracellularly (Richter-Dahlfors et al., 1997, Conlan and 

North, 1992, Nnalue et al., 1992, Mastroeni et al., 1995, Hsu, 1989, Lin et al., 1987). 

However, intracellular survival within macrophages is necessary to avoid extracellular host 
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defence mechanisms and is required for bacterial virulence (Fields et al., 1986, Lindgren et 

al., 1996). Thus to survive within macrophages, bacteria must be resilient against 

complement killing and oxidative stress generated by macrophages. This is mediated by 

virulence genes known as Salmonella Pathogenicity Island 2 (SPI2) genes (Fields et al., 

1986, Salcedo et al., 2001, Vazquez-Torres et al., 2000, Hensel, 2000). 

1.1.51.1.51.1.51.1.5    Host immunityHost immunityHost immunityHost immunity    to to to to SalmonellaSalmonellaSalmonellaSalmonella    TyTyTyTyphimuriumphimuriumphimuriumphimurium    

During STm infection, effective control of bacterial growth requires both an innate and an 

adaptive cell-mediated host response. The innate system can control bacterial replication, 

however, an adaptive response is required to initiate bacterial clearance (Mastroeni et al., 

1995, Richter-Dahlfors et al., 1997, Conlan and North, 1992). 

1.1.5.11.1.5.11.1.5.11.1.5.1    Innate immune response to Innate immune response to Innate immune response to Innate immune response to SalmonellaSalmonellaSalmonellaSalmonella    TyhphimuriumTyhphimuriumTyhphimuriumTyhphimurium    

To ensure that an innate immune response is only initiated when the host may be in danger 

from an invading pathogen, and to prevent unwanted immune activation, the host must 

have a robust mechanism of pathogen detection. This is enabled by host pattern 

recognition receptors (PRRs), which recognise invaders by their surface expression of 

pathogen-specific molecules, known as pathogen associated molecular patterns (PAMPs) 

(Janeway and Medzhitov, 2002). Host cells do not express PAMPs, hence innate responses 

cannot be initiated following detection of host cells. Several different types of host PRRs 

can initiate differential immune responses. In the gut, Toll-like receptors (TLRs) and 

Nucleotide Binding and Oligomerisation Domain (NOD)-like receptors (NLRs) are important 

in PAMP recognition on invading pathogens, including Salmonella (Balaram et al., 2009). 



10 

 

When PRRs are activated by the relevant pathogenic stimuli, they signal via adaptor 

proteins in the cytoplasm (including myeloid differentiation factor 88 (Myd88)), which 

activate transcription factors (such as nuclear factor kappa-light-chain-enhancer of 

activated B cells (NFκB)) and ultimately induce transcription of inflammatory genes 

(Janeway and Medzhitov, 2002). These genes encode a multitude of inflammatory 

proteins, including pro-inflammatory cytokines such as tumor necrosis factor-α (TNFα), 

Interferon-γ (IFNγ), Interleukin (IL) -1, IL6, and IL8. Once translated into functional protein, 

pro-inflammatory cytokines bind their relevant receptors and often initiate cell 

proliferation, which drives an inflammatory response. Other inflammatory genes encode 

bactericidal proteins, nitric oxide synthase, cyclooxygenase-2 and pro-proliferation 

signalling molecules including mitogen-activated protein kinases (Balaram et al., 2009). 

1.1.5.2 1.1.5.2 1.1.5.2 1.1.5.2 Innate cellsInnate cellsInnate cellsInnate cells    

There are several different lineages of innate cells which express PRRs and are thus capable 

of detecting and responding to invading pathogens (Janeway and Medzhitov, 2002). These 

cells are collectively termed leukocytes and they are all derived from a common myeloid 

haematopoietic progenitor, as illustrated in Figure 1.2.  

Innate cells include: dendritic cells (DCs) macrophages, neutrophils, eosinophils, basophils 

and natural killer (NK) cells. Although these cells are described under these labels there is 

a wide range of diversity in their expression of phenotypic markers, indicating that there 

are multiple sub-populations of these cells. The cell subsets investigated during this thesis 

are detailed further in the relevant results chapters. The induced inflammatory gene 

expression will differ in each cell type, enabling cell-type specific cytokine production, thus 

the inflammatory function of each cell type will vary accordingly. Some of the main 
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inflammatory functions of innate cells are outlined in Table 1.1. Importantly, the initiation 

of innate inflammation is a rapid process; these cells are constantly circulating the body 

and are fully equipped with the means to react quickly. 

 

 

Figure 1.2 Haematopoiesis 

Haematopoiesis is the hierarchical process in which new blood cells are generated. 

Multipotent haematopoietic stem cells (HSCs), (or SCID repopulating cells (SRCs)) are 

primitive cells which can give rise to all other progenitor cells, which then can 

reconstitute the repertoire of blood cells. HSCs (grey cell to left of Figure) give rise to 

lineage-restricted progenitors, which in turn, can proliferate or differentiate down either 

the lymphoid or myeloid lineages. Myeloid progenitor cells give rise to long-term colony-

initiating cells (LTC-ICs) which give rise to colony-forming cells (CFCs), which give rise to 

myeloid-lineage cells. Mature blood cells cannot proliferate further. Image taken from 

(Corey et al., 2007). 
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Innate 

leukocyte 

Important functions 

Neutrophil • Arrive first at the site of infection (Peveri et al., 1988). 

• Secrete chemokines to attract other innate cells. 

• Contain granules containing antibacterial proteins, and 

hydrolytic enzymes (Masson et al., 1969). 

• Phagocytose and kill intracellular bacteria by the respiratory 

burst (Segal, 2005). 

• Attracted by IL8 

Macrophage • Tissue resident phagocytes. 

• Phagocytose and kill intracellular bacteria by the generation 

of cytotoxic reactive oxygen species (ROS) (Umezawa et al., 

1995). 

Kupffer cell 

(liver resident 

macrophage) 

• Can be both protective and destructive (Klein et al., 2007). 

• Produce pro-inflammatory cytokines including TNFα and IL6 

which stimulates T cells (Tacke et al., 2009, Zimmermann et 

al., 2012). 

• Produce IL12 and IL18 which regulate NK cells  

(Hsu et al., 2007, Tacke et al., 2009). 

• Phagocytose bacteria and other infected host cells (Brown et 

al., 2010). 

Dendritic cell 

(DC) 

• Professional antigen presenting cells (APCs). Following 

antigen uptake and processing, DCs present antigen to 

lymphocytes in the context of major histocompatibility 

complex MHC (Banchereau and Steinman, 1998). 

Table 1.1 Cells of the innate immune system 

The cells of the innate system provide a rapid and robust defence against invading 

pathogens, including Salmonella (Janeway and Medzhitov, 2002). However, whilst this 

system can control pathogen invasion to some degree, in the case of STm infection, a cell-

mediated response is required to establish bacterial clearance. Particularly in the case of 

STm, efficient bactericidal killing by macrophages requires T cell help, thus an adaptive 

response is necessary (Ramarathinam et al., 1993). 
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1.1.51.1.51.1.51.1.5.3 .3 .3 .3 Innate versus aInnate versus aInnate versus aInnate versus adaptive immunitydaptive immunitydaptive immunitydaptive immunity    

Cells of the adaptive immune response, known as lymphocytes, of which there are two 

classes, are derived from a common lymphoid progenitor (Kondo et al., 1997). The two 

lineages of lymphocyte are called T and B lymphocytes, named after the primary lymphoid 

tissue in which they mature (the thymus and bone marrow, respectively). These cells differ 

fundamentally to those of the innate compartment in that they are antigen-specific. Thus 

during their generation, they are programmed to respond to a specific antigen in a process 

known as somatic recombination. On recognition of their specific antigen, these cells 

clonally proliferate, thus making copies of themselves which can also respond to the 

specific antigen which has been encountered. Whilst this enables a more directed immune 

strategy than the innate system, it takes a few days to develop, thus the innate response 

is vital during initial pathogen control, until the adaptive response is established. 

1.1.51.1.51.1.51.1.5.4.4.4.4    Adaptive immunity to Adaptive immunity to Adaptive immunity to Adaptive immunity to SalmonellaSalmonellaSalmonellaSalmonella    TyhphimuriumTyhphimuriumTyhphimuriumTyhphimurium    

Although there are only two lineages of lymphocytes, these have been extensively 

compartmentalised into further sub-types based on surface expression of a multitude of 

markers (Jelley-Gibbs et al., 2008, Le Pottier et al., 2007). Subtypes of CD4+ T lymphocytes 

are illustrated in a simplified form in Figure 1.3. These lymphocyte subpopulations have 

specific functions which have been described elsewhere (Mosmann et al., 1986, Mosmann 

and Coffman, 1989). CD4+ T cells are particularly important in the primary response to STm 

because they promote the bactericidal effect of macrophages, they promote inflammation, 

and they mediate switched antibody production by B cells (Nauciel, 1990, Mittrucker et al., 

1999, Monack et al., 2004b). 
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Figure 1.3 CD4+ T cells differentiate down distinct lineages. 

During CD4+ T cell activation in the periphery, naïve CD4+ T cells differentiate according 

to the local cytokine environment. T cells within each lineage have distinct functions, 

which are potentiated by their effector cytokine profiles. These lineages include Th1 cells, 

Th2 cells and regulatory T cells (discussed further here); and follicular T helper cells, and 

Th17 cells. Diagram adapted from (Jelley-Gibbs et al., 2008). 

 

T cells become activated upon antigen presentation by innate antigen presenting cells such 

as DCs (Tacke et al., 2009, Winau et al., 2007). The direction of the response to Th1 or Th2 

can depend on the antigen and the cytokine environment (Bobat et al., 2011, Serre et al., 

2008, Balaram et al., 2009). STm induces a Th1 response and this response requires the 

transcription factor T-bet and is potentiated by pro-inflammatory Th1 cytokines IFN-γ, TNF-

α, IL-2 and IL-12 (Pie et al., 1997, Ramarathinam et al., 1991). These cytokines repress Th2 

signals including production of IL-4, thus maintaining a cell-mediated response (Balaram et 
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al., 2009). T cells are further stimulated to produce IFN-γ by DC and activated macrophage 

secretion of IL-12 (which additionally stimulates IFN-γ production by NK cells and NKT 

cells). Interferon-γ induces the bactericidal activity of macrophages and B cell 

Immunoglobulin (Ig) G2a production, thus is vital for defence against intracellular bacteria 

(Pie et al., 1996, Nauciel and Espinasse-Maes, 1992, Mastroeni et al., 1998, Kaufmann, 

1993). The priming of Th1 responses in these models of infection is strongly dependent 

upon the collaboration of monocyte-derived and conventional DCs (Flores-Langarica et al., 

2011). 

To prevent overt immune activation, especially during inflammatory responses, regulatory 

T cells (Tregs) exert anti-inflammatory function including the release of anti-inflammatory 

cytokines such as IL10 (Chen et al., 2003). The transcription factor FoxP3 is associated with 

Tregs in mice. This is particularly important in persistent infections where the extent of 

macrophage activation can result in pathological damage to host tissues (Monack et al., 

2004b). In addition to cell-mediated immunity, there are multiple other host strategies 

which contribute to immunity to STm. In particular, complement and antibody-mediated 

bacterial opsonisation, and humoral responses are essential, and these are discussed 

elsewhere (MacLennan et al., 2008, Mittrucker et al., 2000, Nakoneczna and Hsu, 1983, 

MacLennan et al., 2010).  
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1.2 Liver p1.2 Liver p1.2 Liver p1.2 Liver physiologyhysiologyhysiologyhysiology    

The liver is colonised during systemic Salmonella infection and in this study, we investigate 

the host inflammatory response in this effector site, therefore an understanding of liver 

anatomy is fundamental. The structure of the liver is highly dependent on the unique 

organisation of its vasculature, and this is detailed in Figure 1.4 (Thomson and Knolle, 

2010). 

 

Figure 1.4 The acinus structure of the liver and its vasculature. 

The portal vein (delivering blood from the gut) and the hepatic artery (delivering blood 

from the heart) meet in the intrahepatic portal tracts, and drain into the sinusoidal 

capillaries. Portal tracts also support bile ducts, which transport bile from the canaliculi 

(between adjacent plates of hepatocytes), to the extra-hepatic biliary system. Blood 

from the portal tract flows through the sinusoids, and is drained by the central vein. 

Inset: Sinusoids are lined by hepatic sinusoidal endothelial cells (HSEC) which are unique 

in that they lack basement membranes and tight junctions. HSEC are fenestrated and are 

organised into sieve plates. Kupffer cells, the liver resident macrophages, reside adjacent 

to sinusoidal endothelium. Below this is the space of Disse where stellate cells, hepatic 

fibroblasts, and extracellular matrix proteins are located. Image taken from (Adams and 

Eksteen, 2006). 
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1.2.1 1.2.1 1.2.1 1.2.1 Hepatic blood supplyHepatic blood supplyHepatic blood supplyHepatic blood supply    

The liver receives a dual blood supply whereby the hepatic portal vein carries blood from 

the gut and the hepatic artery supplies oxygenated blood from the heart (Crispe, 2003). On 

entering the liver, these vessels, together with the bile duct, branch into intrahepatic portal 

tracts, which are encased in connective tissue. The general architecture of the liver can be 

compartmentalised into multiple acini, which describes a small portion of hepatic tissue 

and the vasculature which serves it (Adams and Eksteen, 2006). 

Blood enters the acinus at the portal tract where it flows into specialised capillaries called 

sinusoids. These provide a sponge-like environment where the separate blood supplies 

(oxygenated blood from the heart and nutrient/antigen-rich blood from the gut) mix 

before progressing through the acinus. Sinusoids run between chords of hepatocytes, 

(specialised parenchymal cells of the liver), to a central venule where blood is drained away 

towards the inferior vena cava. The sinusoids are lined with fenestrated sinusoidal 

endothelial cells which lack a basement membrane and tight junctions. This facilitates 

intimate contact between blood plasma (and its constituents) and hepatocytes. Blood flow 

through sinusoids is regulated by myofibroblast sphincters, and an oxygen gradient 

throughout each acinus (due to proximity to the portal tract) enables different acinus 

regions to maintain different hepatocyte functions. Consequently, some areas are more 

prone to hypoxic damage (Adams and Eksteen, 2006). 

1.2.2 1.2.2 1.2.2 1.2.2 Cells of the liverCells of the liverCells of the liverCells of the liver    

The parenchymal cells of the liver, hepatocytes, are polarised epithelial cells which run in 

parallel cords between the portal tract and central venule. These cords of hepatocytes are 

at least two cells thick, and running between adjacent hepatocytes is the bile canalliculus, 
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a small tributary of the bile duct branches in the portal tracts. Thus hepatocytes produce 

bile and secrete it (through the apical membrane) into these canalliculi, where it is drained 

towards the portal tracts, in the opposite direction to blood flow. The basolateral 

membrane of hepatocytes lies adjacent to the fenestrated endothelium of the sinusoids. 

The area between these cellular membranes, known as the space of Disse, is where stellate 

cells reside. Associated with the surface of sinusoidal endothelium are NK cells and Kupffer 

cells, liver-resident macrophages, which are important in pathogen defence. Kupffer cells 

express many innate recognition receptors which trigger phagocytosis, and can contribute 

to granuloma formation during infection (Beattie et al., 2010). Therefore, the liver is an 

important immunological organ, due to its capacity to detect both blood-borne and gut 

associated antigens (Liaskou et al., 2012). 

1.2.2.1 Kupffer cells1.2.2.1 Kupffer cells1.2.2.1 Kupffer cells1.2.2.1 Kupffer cells    

Kupffer cells reside in the sinusoids, thus provide an extensive network of intravascular 

macrophages, strategically positioned for the detection of pathogens (Crispe, 2009, Bilzer 

et al., 2006, Zimmermann et al., 2012). Kupffer cell heterogeneity is reported in mice and 

humans with regard to expression of phenotypic markers, cellular function, and cellular 

origin (Kinoshita et al., 2010, Klein et al., 2007, Tacke et al., 2009). Two Kupffer cell 

populations have been defined in mice: a sessile, liver-resident population, and a more 

motile population, derived from bone-marrow precursors which are characterised by 

higher CD80 expression (Klein et al., 2007, Tacke et al., 2009).  

1.2.31.2.31.2.31.2.3    Liver fLiver fLiver fLiver functionunctionunctionunction    

The liver plays a vital role in maintaining host homeostasis, particularly in digestion and 

metabolism (Protzer et al., 2012, Treyer and Musch, 2013). Hepatocytes regulate blood 
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glucose concentration by storing glucose as glycogen during hyperglycaemia and 

subsequently by elevating glucose concentrations by gluconeogenesis. Fatty acids are 

metabolised to triglycerides and ketones, and hepatocytes also produce cholesterol, 

plasma proteins, including albumin and clotting factors, and bile acid (Amitrano et al., 2002, 

Peck-Radosavljevic, 2007, Treyer and Musch, 2013). The liver is also vital in the elimination 

of toxic compounds, including ammonia, which is broken down to urea and released into 

sinusoidal blood for removal in the kidney, and other harmful substances including drugs 

and alcohol. These can be broken down and excreted via the urinary pathway, or 

conjugated to glutathione (for increased solubility), for excretion in bile. 

1.2.41.2.41.2.41.2.4    The liver as an immunological organThe liver as an immunological organThe liver as an immunological organThe liver as an immunological organ    

Due to its proximity to the gut, the liver is vital in immune surveillance (Gao et al., 2008). 

Gut-derived antigenic material is constantly delivered in the portal vein, and the liver must 

be permanently on guard (Zimmermann et al., 2012). Yet the constant exposure to foreign 

but safe antigens, such as food antigens, dictates the liver must also be highly tolerogenic 

(Tacke et al., 2009). A resting human liver contains at least 1010 lymphocytes, including T 

cells (predominantly primed memory cells), NK cells and NKT cells (Adams and Eksteen, 

2006). Hepatic dendritic cells play a vital role in the maintenance of the tolerogenic state 

of the liver and features such as their enhanced phagocytic ability facilitates this function 

(Hsu et al., 2007). However, they play an equally vital role in immune induction, both in 

antigen presentation and in the activation of other immune cells via cytokine release (Hsu 

et al., 2007, Crispe, 2011). Multiple DC populations are found in the liver, located 

throughout the parenchyma and portal tracts (Adams and Eksteen, 2006, Jomantaite et al., 

2004, Yoneyama and Ichida, 2005).  
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    1.2.1.2.1.2.1.2.4.14.14.14.1    InflammationInflammationInflammationInflammation    in the liverin the liverin the liverin the liver    

Entero-hepatic lymphocyte recirculation allows a constant monitoring of antigens in the 

gut and liver, enabling efficient recruitment of inflammatory cells when necessary (Grant 

et al., 2002, Seki et al., 2000). During inflammation, myeloid and plasmacytoid DCs enter 

the liver from the blood (Yoneyama and Ichida, 2005). On antigen encounter, myeloid DCs 

move through the space of Disse to the portal tracts where they enter lymph nodes, leaving 

the liver at the porta hepatis (Adams and Eksteen, 2006). Lymphocyte populations of the 

liver (CD4+ and CD8+ T cells, NK cells and NKT cells) can expand quickly. In addition, 

peripheral lymphocytes infiltrate from the portal vein or the hepatic artery and are 

captured by adhesion molecules expressed by hepatic sinusoidal endothelial cells (HSECs). 

Due to the low-shear flow of sinusoids, HSECs do not express selectins, which are classically 

required for tissue capture of lymphocytes. Instead, lymphocytes can directly interact with 

HSEC adhesion molecules (including Vascular Adhesion Protein-1, Vascular Cell Adhesion 

Molecule-1 and Intercellular Adhesion Molecule-1) via integrins (Lalor and Adams, 2002).    

Chemokine expression differs at portal tracts and on sinusoidal endothelium. Some 

chemokines are constitutively expressed in portal areas, facilitating lymphocyte 

surveillance in addition to recruitment during inflammation. Fewer chemokines are 

expressed in parenchymal areas under normal conditions, however, infiltrates rely on 

chemokines to reach their target destination once inside the tissue (Lalor and Adams, 2002, 

Adams and Eksteen, 2006). 

1111.2.5.2.5.2.5.2.5    DDDDetection of liver injuryetection of liver injuryetection of liver injuryetection of liver injury    

Liver injury can manifest in multiple forms including: hepatitis (inflammation in the liver), 

cholestasis (disrupted bile flow), necrosis, pre-neoplastic/neoplastic injury, or reversible 
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pathologies such as steatosis. Other non-specific pathology can occur, particularly if the 

liver is not the primary site of pathology (Ramaiah, 2007). Biochemical analysis of the 

serum can indicate differential liver damage by the detection of different liver-specific 

components, including: leakage enzymes, cholestasis enzymes, and liver-synthesised 

products. 

Hepatic leakage enzymes are located in the cytoplasm of hepatocytes and altered 

membrane permeability can result in their leakage through the basal-lateral membrane 

into the sinusoidal blood. Examples include: alanine aminotransferase (ALT) and aspartate 

aminotransferase (AST). For assessing hepatocyte injury, ALT is more informative as it is 

hepatocyte-specific and is found in both periportal and centrilobular cells (Amacher, 2002). 

Furthermore, ALT has a longer half-life (40-60 hours) than AST (12 hours), thus can provide 

a more sensitive measure of hepatocyte injury (Ramaiah, 2007). AST is additionally located 

in myocytes and erythrocytes, thus its presence in the serum can reflect muscle injury and 

hemolysis, respectively. Whilst ALT is a cytosolic protein, AST is both a cytosolic and a 

mitochondrial protein, thus more extensive hepatocyte injury is required to detect AST in 

the serum. Both the duration and extent of liver injury, and the rate of removal from serum 

affect measurement of these enzymes (Ramaiah, 2007, Solter, 2005).  

Cholestasis (interrupted bile flow) is detected by increased hepatic production of 

cholestatic enzymes alkaline phosphatase (ALP) and gamma-glutamlytransferase (GGT). 

These are released into the canaliculi and blood following cholestasis, and in response to 

certain drugs (Ramaiah, 2007). Both enzymes are located in biliary epithelial cells; ALP is 

additionally found in the canaliculi of the intestinal mucosa, thus ALP concentrations can 

be altered by diet (Amacher, 2002). Total serum bilirubin is elevated in pre- and post-

hepatic cholestasis when conjugated bilirubin leaks into the blood. However, total bilirubin 
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is also increased in the serum during hemolysis (pre-hepatic bilirubinemia) and when not 

properly secreted into canaliculli (post-hepatic bilirubinemia). Cholestasis-induction 

enzymes can usually be detected before increased serum bilirubin (Ramaiah, 2007). 

The detection of liver-synthesised/metabolised products in the blood further assesses 

hepatobilliary function. Altered blood concentrations of coagulation proteins, albumin and 

ammonia can indicate liver injury, although, liver function must be severely disrupted to 

detect changes in the blood (Ramaiah, 2007). Measurement of bile acid (synthesised by 

hepatocytes) and bilirubin in the blood are used to assess hepatocyte uptake and 

detoxification, and are a specific indicator of liver injury (Ramaiah, 2007). 

1.2.61.2.61.2.61.2.6    Liver patholoLiver patholoLiver patholoLiver pathology during systemic infectiongy during systemic infectiongy during systemic infectiongy during systemic infection    

Systemic infections are frequently associated with tissue pathology and this can occur in 

multiple tissues including the liver. In the liver, pathological lesions called granulomas can 

form. These are composed of specifically arranged infiltrated leukocytes and they can limit 

tissue damage from both the pathogen (by restricting dissemination) and the host 

inflammatory response (Saunders et al., 2004, Bokhari et al., 2008, Guilloteau et al., 1991). 

However, due to their disruption of liver architecture, lesions can cause irreparable 

damage to host tissue, and can be pathogenic (Herkel et al., 2005). Additionally, following 

infection resolution, the liver may undergo emergency tissue repair, thus leaving tissue 

further damaged by fibrosis (Wahl et al., 1986).  

1.2.61.2.61.2.61.2.6.1 The impact of typhoid fever on the liver.1 The impact of typhoid fever on the liver.1 The impact of typhoid fever on the liver.1 The impact of typhoid fever on the liver    

Hepatitis is a common feature of typhoid fever (Pramoolsinsap and Viranuvatti, 1998). The 

impact of this can range from hepatomegaly and modest alterations in biochemical tests 
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to Salmonella hepatitis, characterised by acute pathology, abnormal liver function, and is 

frequently associated with jaundice (Serefhanoglu et al., 2003, Yildirim et al., 2010). 

Salmonella hepatitis occurs in all ages both in typhoid fever endemic and non-endemic 

areas, although incidence is highest in the East (reported in 4-8% of typhoid fever patients 

in India) (Pramoolsinsap and Viranuvatti, 1998). Severe Salmonella hepatitis occurs more 

frequently in patients with underlying infection, and those who are malnourished or 

anaemic (Khosla et al., 1988, Husain, 2011). 

1.2.61.2.61.2.61.2.6.2 P.2 P.2 P.2 Pathologathologathologathology of y of y of y of SalmonellaSalmonellaSalmonellaSalmonella    hepatitishepatitishepatitishepatitis    

Salmonella hepatitis is characterised by hyperplasia of reticuloendothelial cells and 

development of granulomatous lesions known as typhoid nodules (Malik, 2002). These 

occur in both sinusoidal and portal areas and are formed by aggregation of Kupffer cells, 

macrophages and monocytes, and can be necrotic in the centre. Lymphoid cells are seen 

throughout the sinusoids (Ramachandran et al., 1974, Khosla et al., 1988, Pramoolsinsap 

and Viranuvatti, 1998). These lesions have been described in the liver during typhoid fever 

since 1860 (Mallory, 1898). In addition, cholestasis is associated with Salmonella hepatitis. 

This can be especially prominent during jaundice, which is likely to be caused by a 

combination of granulomatous pathology, (which may occur with portal phlebitis and 

cholangitis), and haemolysis (Pramoolsinsap and Viranuvatti, 1998, de Brito et al., 1977). 

Although biochemical tests can be severely altered during Salmonella hepatitis, this has 

not been directly linked with overt pathology (Huang et al., 2005). Increased serum 

concentrations of transaminase and bilirubin are common, whereas ALP and cholesterol 

may be mildly elevated (Pramoolsinsap and Viranuvatti, 1998). The disruption to liver 

function during Salmonella hepatitis has been associated with multiple organ injury and 
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disseminated intravascular coagulation (DIC) (Rao et al., 1978, Greig and Naidoo, 1981, 

Ozen et al., 1995, Huang et al., 2005). 

1.2.61.2.61.2.61.2.6.3 Liver pathology during systemic NTS infection.3 Liver pathology during systemic NTS infection.3 Liver pathology during systemic NTS infection.3 Liver pathology during systemic NTS infectionssss    

There is little evidence of hepatic pathology and aberrant liver function in systemic NTS 

infections in humans. This may be due to the limited facilities available in endemic areas, 

in addition to illusive diagnosis of NTS infections. Considering the prevalence of hepatic 

complications in typhoid, and with bacterial colonisation of the liver apparent in murine 

studies, it is likely that hepatic complications in human systemic NTS infections may 

frequently pass by unreported. 

1.2.61.2.61.2.61.2.6.4 Evidence .4 Evidence .4 Evidence .4 Evidence inininin    murine NTS infemurine NTS infemurine NTS infemurine NTS infectionctionctionctionssss    

In murine models of NTS infections, hepatic pathology is similar to that seen in typhoid 

fever whereby histopathological lesions form in the liver, although the severity and kinetics 

vary with the infection conditions used (Nakoneczna and Hsu, 1980, Nakoneczna and Hsu, 

1983, Conlan and North, 1992, Mastroeni et al., 1995, Umezawa et al., 1995, Everest et al., 

1997, Richter-Dahlfors et al., 1997, Sheppard et al., 2003, Brown et al., 2006, Nix et al., 

2007, Brown et al., 2010, Barreiros et al., 2000). 

Briefly, a low dose (102 CFU) of virulent STm induces acute microscopic abscesses by day 4, 

which are initially composed of polymorphonuclear (PMN) leukocytes. By day 7, 

granulomas with necrotic centres are established with monocytes found at the periphery, 

which are resolved within 2 weeks and hepatic tissue is regenerated (Nakoneczna & Hsu, 

1980). A higher dose (105 CFU) of virulent STm results in acute microscopic abscess 

formation by day 2, which cover 70% of the liver by day 4. Extensive necrosis is also 
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observed, and mice begin to die (Nakoneczna and Hsu, 1983). Thus STm virulence 

determines the kinetics of hepatic pathology, and this has been confirmed more recently 

(Richter-Dahlfors et al., 1997). Furthermore, control of bacterial growth during the first 

week of infection requires TNF-α and this has been additionally shown to be due to TNF-α-

mediated macrophage recruitment in the formation of granulomas in the liver (Mastroeni 

et al., 1991, Mastroeni et al., 1995). Thus granuloma formation is a necessity for the host 

to control bacterial growth. 

Additional studies have more recently described lesion formation in greater detail, 

including the presence of lymphocytes and the transient nature of PMN cells in these 

structures (using 3 x 103 CFU virulent STm) (Mastroeni et al., 1995). These studies report 

an absence of neutrophils in the liver during the first couple of days, but that these cells 

later occupy the central regions of foci, where necrosis is observed. Disintegrated 

neutrophils are later replaced by monocytes (Richter-Dahlfors et al., 1997). Incidentally, 

Kupffer cells have been described at the periphery of foci and in interstitial spaces, whilst 

infiltrating monocytes are observed within lesions in some studies (Richter-Dahlfors et al., 

1997).  

1.2.61.2.61.2.61.2.6....5555    Inflammatory lesions disrupt Inflammatory lesions disrupt Inflammatory lesions disrupt Inflammatory lesions disrupt parenchymal architectureparenchymal architectureparenchymal architectureparenchymal architecture    

During infection, inflammation disrupts hepatic architecture as has been shown by 

fluorescent labelling of actin filaments, which enable visualisation of the hepatocyte plates, 

bile canaliculli, and sinusoids. Leukocyte infiltration disrupts hepatocyte plate architecture 

and this occurs prior to hepatomegaly. Additionally, visualisation of the junctions between 

hepatocytes (by cytokeratin Endo-A staining) further illustrates altered hepatocyte 

structure early post-infection (Richter-Dahlfors et al., 1997). Increased infection dose 
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results in a similar severity of altered hepatic morphology, but a faster progression of 

infection (Richter-Dahlfors et al., 1997). 

1.21.21.21.2.6.6.6.6.6.6.6.6    Bacteria coBacteria coBacteria coBacteria co----localise with macrophages ilocalise with macrophages ilocalise with macrophages ilocalise with macrophages in the livern the livern the livern the liver    

In the liver, STm has been visualised in multiple cell types including hepatocytes, Kupffer 

cells, neutrophils, although bacteria were not usually detected within PMN cells (due to 

their efficient killing of ingested bacteria). This study used a high dose (107 CFU) of virulent 

bacteria and infected hepatocytes were observed undergoing cell lysis and in contact with 

PMN leukocytes (Conlan and North, 1992). Growth of STm within hepatocytes and PMNs 

has been further demonstrated using both a lethal challenge dose (105 CFU virulent STm) 

and low bacterial dose in conjunction with neutralisation of TNF-α. Hepatocytes containing 

intracellular bacteria were severely damaged (Mastroeni et al., 1995). These studies both 

used un-physiological infection doses to enable bacterial visualisation in vivo (Hsu, 1989). 

Using a challenge dose which mimics natural systemic infection, STm are predominantly 

detected intracellularly within CD18+ macrophages. These macrophages are largely located 

within lesions but can be seen in interstitial areas as infection progresses, however, STm 

always co-localises to leukocytes. Observation of bacterial cell division inside macrophages 

suggests this is the predominant site of proliferation (Richter-Dahlfors et al., 1997). 

Furthermore, a study into the dynamics of bacterial growth and foci development 

demonstrated that bacteria expand clonally within host cells and do not move between 

foci (Sheppard et al., 2003). Thus bacterial growth in the liver is due to increased infected 

cells, foci and increased infected cells per foci (Mastroeni and Sheppard, 2004, Richter-

Dahlfors et al., 1997, Sheppard et al., 2003). The concept of a critical threshold in both 
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bacterial load of host cells and in foci size has been further addressed by stochastic 

modelling and histology (Mastroeni et al., 2009, Brown et al., 2006, Grant et al., 2009). 

1.2.6.7. Infection, hepatic inflammation and haemostasis1.2.6.7. Infection, hepatic inflammation and haemostasis1.2.6.7. Infection, hepatic inflammation and haemostasis1.2.6.7. Infection, hepatic inflammation and haemostasis    

Systemic bacterial infections, including those caused by NTS, can be associated with serious 

clinical complications including multiple organ failure (Karima et al., 1999, Graham et al., 

2000b, Rajekar et al., 2008, Muyembe-Tamfum et al., 2009, de la Fuente-Aguado et al., 

1999, Laing et al., 1995). These infections can additionally induce clinical complications of 

a haematological nature, including aberrant blood coagulation, as is seen with DIC (Wada 

et al., 2008). The severity of the haemostatic defect frequently correlates to outcome of 

infection (Yaguchi et al., 2004, Levi et al., 2000). Thus a complete understanding of how 

systemic infection affects both the host’s immunological response and other physiological 

responses including inflammation and haemostasis are required to facilitate appropriate 

therapeutic control of these infections. The haemostatic system is described below. 

 

 

 

 

 

 



28 

 

1.3 Haemostasis1.3 Haemostasis1.3 Haemostasis1.3 Haemostasis    

Blood flow is maintained by the haemostatic system, which tightly regulates the host 

mechanisms of response to vascular damage. This balanced system must be able to 

respond rapidly to blood vessel injury, but must be suitably regulated to prevent 

unnecessary activation, such as unwanted thrombosis. Components of the haemostatic 

system are: blood vessels, platelets, coagulation factors, coagulation inhibitors and 

fibrinolysis mediators (Hoffbrand et al. 2006). Haemostasis can become dysregulated 

during inflammation and this can result in a pro-coagulant environment and unwanted 

pathologies including DIC, and different mechanisms appear to regulate these events in 

the arterial and venous systems (Esmon, 2005, Engelmann and Massberg, 2013). In recent 

years, the extent to which coagulation and inflammation are closely regulated has become 

increasingly apparent. Here we summarise the general perception in the literature of the 

relationship between these physiological responses, and highlight important examples of 

this partnership during systemic infection. 

1.3.1 Coagulation1.3.1 Coagulation1.3.1 Coagulation1.3.1 Coagulation    

Coagulation is the mechanism which gives rise to blood clotting. The coagulation system is 

composed of a tightly regulated cascade of coagulation factors which are located in the 

plasma (Engelmann and Massberg, 2013). Activation of this system results in the 

production of thrombin and conversion of fibrinogen to fibrin, which can form a 

haemostatic plug at the site of vessel injury by capturing platelets and other circulating 

cells (Furie and Furie, 2008). The cascade can be amplified at many levels, and is regulated 

by negative feedback, resulting in efficient and localised coagulation (Hoffbrand et al. 

2006). 



29 

 

1.3.1.21.3.1.21.3.1.21.3.1.2    Endothelial cells in coaguEndothelial cells in coaguEndothelial cells in coaguEndothelial cells in coagulation regulationlation regulationlation regulationlation regulation    

The vascular endothelium is responsible for maintaining sufficient blood supply to vital 

organs. Thus these cells are key to the regulation of coagulation and also of blood cell 

migration, expression and synthesis of adhesion molecules and chemokines, 

vasopermeability and vascular tonus (Keller et al., 2003, Esmon, 2005). Under normal 

conditions, endothelial cells express anticoagulant molecules including heparin sulphate, 

thrombomodulin and plasminogen activator. However, on endothelial activation, 

expression is switched to pro-coagulation molecules including tissue factor (TF) and Von 

Willebrand factor (VWF), but also cytokines, adhesion molecules and growth factors 

(Camerer et al., 1996, Keller et al., 2003). In addition, endothelial production of 

anticoagulant molecules including protein C and antithrombin (AT) can be reduced, and 

the endothelial involvement in the fibrinolytic system can be disrupted (Biemond et al., 

1995, Keller et al., 2003, Levi et al., 1999). 

Endothelial function can be impaired during activation and/or injury. For example, 

activated endothelial expression of adhesion molecules and the subsequent leukocyte 

recruitment can damage the endothelium, thus activating coagulation (Keller et al., 2003). 

A major role of the endothelium in maintaining haemostasis is the regulation of platelets. 

Platelets can bind to hepatic sinusoidal endothelial cells in vitro and this has been shown 

to increase leukocyte recruitment (Lalor et al., 2013). Endothelial cells prevent aggregation 

of activated platelets by the synthesis and secretion of nitric oxide and prostacyclin (Keller 

et al., 2003). 
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1.3.21.3.21.3.21.3.2    Platelets and platelet activationPlatelets and platelet activationPlatelets and platelet activationPlatelets and platelet activation    

Platelets are the second most abundant corpuscular constituents of blood and are small 

cells (1-3 μm diameter) produced by megakaryocytes in the bone marrow (Battinelli et al., 

2007). In their resting form they are disc-shaped and upon activation they become 

spherical with pseudopodia (Yeaman, 2010). Platelets are a-nucleate but contain residual 

mRNA derived from their megakaryocyte parent cell, and important cellular components 

are stored within granules in the cytoplasm. These components include ADP and Ca2+, in 

addition to proteins involved in haemostasis, such as VWF and fibrinogen, and microbicidal 

proteins are also stored in platelet granules (Fitzgerald et al., 2006a).    

When vascular injury occurs in the arteriolar system, platelets are captured via binding of 

platelet membrane glycoproteins GP1bα and αIIbβ3 to VWF bound to exposed collagen 

(Hogan et al., 2002, Bergmeier et al., 2008). This interaction brings the platelet Ig receptor, 

GPVI, into the vicinity of collagen, resulting in platelet activation (Massberg et al., 2003). 

Platelet activation results in a conformational change in the platelet fibrinogen receptor 

GPIIb/IIIa, enabling its binding to immobilised fibrinogen and, among other ligands, soluble 

fibrinogen (Furie and Furie, 2005, Broze et al., 1988). 

The presence of platelets at the site of injury is important in the provision of sufficient 

surface area of membrane phospholipid, which enables efficient activation of the 

coagulation cascade (Lentz, 2003). Rapid haemostatic plug formation is usually able to 

control bleeding temporarily and is regulated by endothelial cell-derived prostacyclin to 

prevent excessive platelet aggregation (Hoffbrand et al. 2006). However, fibrin cross-

linking is required to stabilise the plug, which is especially important once platelet autolysis 

occurs (Hoffbrand et al. 2006). 



31 

 

1.3.21.3.21.3.21.3.2.1 .1 .1 .1 Platelet activation through CPlatelet activation through CPlatelet activation through CPlatelet activation through C----type lectintype lectintype lectintype lectin----like receptor like receptor like receptor like receptor 2222    

In addition to the GPVI-mediated platelet activation described above, platelets can become 

activated by other means. Interaction of platelet-expressed C-type lectin-like receptor 2 

(CLEC-2) with its ligand podoplanin has been shown to activate platelets in vitro (Watson 

et al., 2010, Hughes et al., 2010b, Suzuki-Inoue et al., 2006). Podoplanin is a 

transmembrane glycoprotein (also referred to as gp38) found on multiple cell types, 

including stromal cells and inflammatory macrophages (Astarita et al., 2012). Its expression 

by lymphatic endothelial cells (LEC) (and not other blood endothelial cells) has enabled its 

use as a marker for lymphatic endothelium (Wetterwald et al., 1996). Podoplanin may 

contribute to the development of architecture in lymphoid organs such as the spleen and 

lymph nodes, and has an important role in orchestrating various aspects of inflammation 

in these sites (D. Withers, personal communication) (Astarita et al., 2012, Peters et al., 

2011). However, podoplanin is the only reported physiological ligand for CLEC-2 and the 

relationship between podoplanin on LEC and platelet-expressed CLEC-2 is well defined and 

is necessary for the development of lymphatic vasculature (Suzuki-Inoue et al., 2010). 

Expression of CLEC-2 is also detected on activated DCs although additional reports of 

expression on other cell types, including neutrophils, are now believed to be due to off-

target effects of some antibodies (G. Desanti, manuscript in preparation) (Astarita et al., 

2012, Kerrigan et al., 2009, Acton et al., 2012). Recently, there have been several reports 

of podoplanin-CLEC-2 interaction in various inflammatory scenarios. For example, CLEC-2 

expressed by DCs can mediate DC motility within lymphoid tissues and can aid recruitment 

of these cells from the periphery, by interaction with podoplanin on LECs and fibroblastic 

reticular cells (FRCs) (Acton et al., 2012). Furthermore, the importance of CLEC-2 

expression by platelets has been demonstrated in the maintenance of vascular integrity by 
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preventing haemorrhage during inflammation in lymph nodes and other sites (Boulaftali et 

al., 2013, Herzog et al., 2013). Accounts of podoplanin up-regulation during inflammation 

have also been reported on macrophages (Hou et al., 2010, Kerrigan et al., 2012). Thus 

podoplanin can have an impact on signalling in both inflammation and in platelet activation 

and so in theory, could link these two host responses. However, whilst platelets can be 

activated via CLEC-2 in vitro, as yet, there has been no evidence of inflammatory 

podoplanin expression and platelet activation via platelet-expressed CLEC-2 in vivo. 

In mice, embryos which lack CLEC-2 generally do not survive, and this is possibly due to 

impaired lymphatic function as a consequence of blood-lymphatic mixing and a failure to 

inflate the lungs at term (Suzuki-Inoue et al., 2010, Finney et al., 2012). For this reason, the 

study of CLEC-2 in mice relies on the Cre lox system whereby CLEC-2 can be deleted on 

specific cells, for example, in PF4.Cre.CLEC-2fl/fl mice, CLEC-2 is deficient specifically on 

megakaryocytes and platelets (Finney et al., 2012, Tiedt et al., 2007). These mice have 

slightly reduced platelet numbers compared to WT mice, (due to mixing between blood 

and lymph), although this appears to be less severe than in the constitutive knockout which 

may explain the increased survival at term. Additionally, embryos which lack podoplanin 

frequently do not survive to adulthood, although this can be variable depending on the 

genetic background of mice used (Mahtab et al., 2008, Uhrin et al., 2010). 

1.3.31.3.31.3.31.3.3    ThrombosisThrombosisThrombosisThrombosis    

Whilst haemostasis facilitates intravascular thrombus formation in response to vascular 

injury, this process can become pathological. Thrombosis, the formation of intravascular 

clot(s) which result in vessel occlusion, can initiate serious clinical events including 

myocardial infarction and stroke, which are the leading cause of death worldwide (Roger 
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et al., 2011). Thrombosis can occur in both veins and arteries although the pathological 

features in each are distinct (Engelmann and Massberg, 2013). However, both systems can 

enable activation of platelets and of the coagulation cascade. 

Arterial thrombosis is frequently termed atherothrombosis due to its association with 

atherosclerotic plaque rupture. Typically, the endothelium becomes damaged during 

plaque rupture, and platelets are recruited to the exposed sub-endothelial molecules, for 

example by the platelet collagen receptor, GPVI (as in haemostasis) (Nieswandt et al., 

2001). However, activated platelets recruit leukocytes (by chemokine release), and these 

can become associated with the growing thrombus (Furie and Furie, 2008). Additionally, 

platelets can form an adhesive bridge between the arterial vascular endothelium and 

circulating blood, which preferentially recruits monocytes to the endothelium (Kuckleburg 

et al., 2011). In contrast, venous thrombosis is often not associated with endothelial 

damage, however, endothelial cells can become activated, as in deep vein thrombosis 

(DVT) which promotes leukocyte recruitment, both indirectly and via expression of VWF 

(von Bruhl et al., 2012, Brill et al., 2011). The interactions between recruited leukocytes 

and platelets facilitate propagation of venous thrombosis, for example, by release of 

neutrophil extracellular traps (NETS) (von Bruhl et al., 2012). 

1.3.41.3.41.3.41.3.4. Mouse models and haemostasis. Mouse models and haemostasis. Mouse models and haemostasis. Mouse models and haemostasis    

The mouse is a powerful model for human coagulation disorders because there is a high 

degree of homology between many proteins of the coagulation system and their inhibitors 

(both physiological and pharmacological) between the species (Tsakiris et al., 1999, Hogan 

et al., 2002). However, some aspects of haemostasis differ in mice. For example, mice have 

a greater normal platelet count and a lower platelet volume than humans, and murine 
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platelets survive for approximately half the life span of human platelets (Corash et al., 

1989, Tsakiris et al., 1999, Levin and Ebbe, 1994).  

A significant difference between human and murine platelets is the presence of Fc gamma 

receptor IIa (FcγRIIa). This low affinity IgG receptor expressed by platelets (and multiple 

other cells) plays a key role in interactions between bacteria and platelets which can result 

in platelet aggregation (Kerrigan and Cox, 2010, Cohen-Solal et al., 2004, Tilley et al., 2013, 

Cox et al., 2011). Blocking signalling via FcγRIIa has been shown to prevent platelet 

aggregation in response to several bacteria, including Staphylococcus aureus, and thus is 

an important therapeutic target in infectious vascular pathologies, such as infective 

endocarditis (Fitzgerald et al., 2006b). However, the genetic equivalent of FcγRIIa is absent 

in mice, and so investigation of platelet-bacterial interactions via FcγRIIa must rely on 

transgenic mice (McKenzie et al., 1999). 

1.3.51.3.51.3.51.3.5    The relationship between coagulation and inflammationThe relationship between coagulation and inflammationThe relationship between coagulation and inflammationThe relationship between coagulation and inflammation    

Inflammation and coagulation are two separate host responses which directly influence 

each other by cross-talk between the mediators of each system. Pro-inflammatory 

molecules can activate coagulation, block anticoagulation and fibrinolysis and alter platelet 

responses. For example, monocytes can release micro-particles which express 

intravascular tissue factor (TF), thereby facilitating activation of the coagulation cascade by 

interaction of TF with coagulation factor VIIa (Giesen et al., 1999). On the other hand, 

coagulation can promote an inflammatory environment by activating cells and by initiating 

release of inflammatory mediators, for example, from platelets (Esmon, 2005). Endothelial 

cells seem to be particularly important in this relationship because they produce many 

coagulation mediators, such as VWF (which influence inflammation), and are also very 
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responsive to inflammatory cytokines (which can initiate coagulation) (Brill et al., 2011, 

Keller et al., 2003). 

1.3.61.3.61.3.61.3.6    Haemostasis and infectionHaemostasis and infectionHaemostasis and infectionHaemostasis and infection    

Inflammatory activation of coagulation can be common during infection (Esmon, 2005, Levi 

and van der Poll, 2005, Cornet et al., 2007, Opal, 2003, Vervloet et al., 1998, Zeerleder et 

al., 2005).  Coagulation activation during infection can be an important host response for 

the prevention of pathogen dissemination during systemic disease (Sun, 2006). For 

example, fibrin has long been associated with antimicrobial defence, both during 

coagulation and in extravascular regions such as the peritoneal cavity (Zinsser and Pryde, 

1952, Degen et al., 2007). However, systemic bacterial infections can result in severe 

haemostatic complications including DIC (described below), immune thrombocytopenia 

purpura, infective endocarditis, stroke, and myocardial infarction (Elkind and Cole, 2006, 

Corrado et al., 2006, Franchini and Veneri, 2004). A feature which many of these conditions 

have in common is aberrant platelet function, and this may be pathogen induced 

(Fitzgerald et al., 2006a). The ability of pathogens to interfere with host coagulation to 

enhance dissemination and to overcome host immune surveillance mechanisms has also 

been reported (Degen et al., 2007, Valls Seron et al., 2010).  

Despite the association between inflammation and coagulation, the relationship is not 

simple, especially during systemic infection. For example, sepsis, in which DIC is common, 

is characterised by both pro- and anti-inflammatory phases of host response (Lewis et al., 

2012, Angus and van der Poll, 2013, van't Veer and van der Poll, 2008). Whilst platelet 

accumulation and increased aggregation have been shown in response to endotoxin in 

several animal models, in sepsis patients, reduced platelet aggregation is common. It is 
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believed that sepsis can promote platelet-release of vascular endothelial growth factor 

(VEGF), thus promoting vascular repair. Evidence suggests the content of platelet α-

granules, including VEGF, may be altered at the megakaryocyte level during sepsis, possibly 

in response to inflammation (Yaguchi et al., 2004). 

1.3.6.1 1.3.6.1 1.3.6.1 1.3.6.1 Disseminated intravascular coagulationDisseminated intravascular coagulationDisseminated intravascular coagulationDisseminated intravascular coagulation    

Disseminated intravascular coagulation is a syndrome which accompanies and often 

complicates another condition, such as bacterial septicaemia, haematological malignancy 

and trauma. DIC is characterised by consumption of coagulation factors and platelets and 

activation of the fibrinolytic system, which can be due to enhanced activation of 

coagulation or disrupted anticoagulation. However, the symptoms can be contradictory 

and so difficult to treat (Kitchens, 2009). These include microvascular thrombosis, and 

thrombo-embolic disease, however, thrombosis may be presented alongside excessive 

bleeding, which occurs due to depletion of coagulation proteins and platelets (Keller et al., 

2003, Levi et al., 1999). The thrombi produced during DIC can be found in different organs, 

including the liver, and can promote multiple organ failure (Levi et al., 1999, Karima et al., 

1999). The main strategy for treatment of DIC is resolution of the underlying disorder, 

although additional therapies, including anticoagulants may be used alongside to relieve 

symptoms (Levi et al., 1999).   

1.3.7 The1.3.7 The1.3.7 The1.3.7 The    role of platelets in systemic infectionrole of platelets in systemic infectionrole of platelets in systemic infectionrole of platelets in systemic infection    

Bacteria can interact with platelets either directly or indirectly and this can promote 

platelet activation (Kerrigan and Cox, 2010, Petersen et al., 2010). Localised platelet 

activation can result in thrombus formation, whilst more systemic interactions can lead to 

activated platelet consumption and thrombocytopenia, and more severe complications 
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including DIC (Fitzgerald et al., 2006a). Platelet activation has been reported even when 

the bacteraemia is low level, and sometimes not detectable, but this may not necessarily 

be due to direct interactions between the bacteria and platelets (Franchini and Veneri, 

2004).  The literature suggests that platelet defects, either in platelet number or integrity, 

may correlate with infection severity, for example, low platelet counts can indicate poor 

outcome of infection (Yaguchi et al., 2004, Yeaman, 2010). 

Platelets are believed to contribute to host defence against bacterial pathogens in a 

number of ways. Their expression of multiple innate receptors, including TLRs and 

complement receptors, enables recognition of microorganisms in the blood (Semple et al., 

2011, Cox et al., 2011). There is growing evidence that platelets can directly interact with 

bacteria, thus are becoming recognised as important effector cells of the innate response 

and may also be vital in the initiation of effective adaptive responses (Kerrigan et al., 2002, 

Wong et al., 2013, Jenne et al., 2013, Cox et al., 2011, Engelmann and Massberg, 2013). An 

exciting example of the innate capacity of platelets is the ‘touch-and-go’ interaction 

between platelets and Kupffer cells in the liver (Wong et al., 2013). This brief interaction, 

facilitated by platelet expressed GPIb and VWF on Kupffer cells, results in sustained platelet 

adhesion via GPIIb/IIIa in the presence of bacteria, enabling platelets to surround bacteria 

at the Kupffer cell surface, and bacteria are subsequently destroyed. In addition, platelet 

cytoplamsic granules contain platelet microbicidal proteins (PMPs), including defensins, 

which are released during infection, and platelets can also release multiple cytokines which 

recruit leukocytes during infection (Yeaman, 2010, Fitzgerald et al., 2006a, Yeaman et al., 

1998). Platelets can trigger NET production, and this has been shown to promote 

thrombosis (Clark et al., 2007, Brill et al., 2012, Fuchs et al., 2010). 
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1.3.71.3.71.3.71.3.7.1 Immun.1 Immun.1 Immun.1 Immunothrombosisothrombosisothrombosisothrombosis    

Immunothrombosis is a recently described process whereby during infection, coagulation 

is activated in host defence against the invading pathogen, and it is believed that this is 

distinct from haemostasis (Massberg et al., 2010, Engelmann and Massberg, 2013). 

Multiple strategies contribute to immumothrombosis, including monocyte and monocyte-

derived microparticle TF delivery, NET formation, and direct anti-bacterial activity by 

platelets. Immunothrombosis contributes to innate host defence by retaining pathogens 

within fibrin structures and micro-thrombi, thus by restricting pathogen dissemination and 

preventing tissue invasion. Immune-mediated thrombi also concentrate host antimicrobial 

strategies and can promote recruitment of further host immune cells (Engelmann and 

Massberg, 2013). 

1.3.7.21.3.7.21.3.7.21.3.7.2    Infection and vascular integrityInfection and vascular integrityInfection and vascular integrityInfection and vascular integrity    

Whilst putative links between infection and cerebrovascular disease including stroke 

remain anecdotal, the association between infection and atherosclerosis has become more 

widely recognised in recent years (Elkind and Cole, 2006). Platelet contribution to vascular 

inflammation and the progression of atherosclerotic lesions has been demonstrated, and 

it is likely that infection may elevate vascular inflammation and platelet recruitment at all 

stages of pathogenesis (Fitzgerald et al., 2006a). Thus, evidence of infection-mediated 

inflammation leading to significant vascular pathology, particularly during chronic infection 

of Helicobacter pylori and Chlamydia pneumoniae, emphasises the urgency with which we 

require increased understanding of infectious inflammation and vascular disruption (Keller 

et al., 2003). 
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1.3.81.3.81.3.81.3.8    Haemostasis during Haemostasis during Haemostasis during Haemostasis during SalmonellaSalmonellaSalmonellaSalmonella    infectioninfectioninfectioninfection    

Typhoid fever is frequently associated with anaemia, leukopenia, leukocytosis, 

eosinophilia, thrombocytopenia and bone marrow suppression (Yildirim et al., 2010, Malik, 

2002, Butler et al., 1978, Serefhanoglu et al., 2003). Indeed, the onset of these 

haematological features contribute to the overall host response. For example, 

splenomegaly in conjunction with thrombocytopenia or leukopenia, is associated with a 

2.5 fold increased risk of developing complications (Malik, 2002). Thrombocytopenia 

occurs in 25% of typhoid fever patients with Salmonella hepatitis (Pramoolsinsap and 

Viranuvatti, 1998). Its onset is a risk factor for multiple organ dysfunction syndrome 

(MODS); indeed, multiple organ failure has been associated with thrombocytopenia and 

thrombosis at autopsy (Nguyen et al., 2001). Thrombocytopenia-associated multiple organ 

failure (TAMOF), a syndrome associated with thrombosis in critically ill patients, has also 

been reported during S. Typhi infection (Nguyen and Carcillo, 2006, Yildirim et al., 2010).  

Particularly in the pre-antibiotic era, thrombosis was ascribed to typhoid infections such as 

typhoid fever (Huckstep 1962). In addition, thrombosis of Peyer’s patch capillaries leading 

to necrosis, haemorrhage and perforation of the intestine has been reported, as have 

myocarditis and DIC, although these are rare (Bitar and Tarpley, 1985, Santos et al., 2001, 

Malik, 2002). Additional haematological abnormalities during typhoid include arrested 

myeloid cell maturation in the bone marrow and reduced erythroblast and megakaryocyte 

numbers; increased histiocyte phagocytosis, and rapid onset of anaemia due to 

haemolysis, bone marrow suppression and occult bleeding (Malik, 2002). Indeed 

haemophagocytic syndromes in general play an important role in many infections, and this 

is particularly prevalent in typhoid (Janka, 2007, Fisman, 2000, Silva-Herzog and Detweiler, 

2008, Silva-Herzog and Detweiler, 2010). 
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1.3.8.1.3.8.1.3.8.1.3.8.1111    HaematologicalHaematologicalHaematologicalHaematological    complications complications complications complications duringduringduringduring    NTS NTS NTS NTS bacteraemiabacteraemiabacteraemiabacteraemia    

One of the most frequent complications of NTS bacteraemia in children in tropical Africa is 

anaemia; 88% of children with NTS bacteraemia in Zaire also had anaemia (Graham et al., 

2000b, Cheesbrough et al., 1997, Bronzan et al., 2007, Graham et al., 2000c, Lepage et al., 

1987, Brent et al., 2006). However it is often not clear which is the underlying ailment: the 

bacteraemia or the anaemia. Additionally, NTS bacteraemia is frequently associated with 

either co-infection or recent infection by malaria, of which anaemia is an important feature 

(Bronzan et al., 2007, Berkley et al., 1999, Mackenzie et al., 2010). During malaria, 

peripheral red blood cells are diminished both by decreased erythropoiesis and by 

destruction (of both parasitised and non-parasitised cells) by macrophages in the spleen 

(Burgmann et al., 1996, Kurtzhals et al., 1997). The co-existence of NTS bacteraemia, 

anaemia and malaria are repeatedly reported to be caused by the disrupted immune 

response during co-infection (Mabey et al., 1987, Graham et al., 2000a). Malaria may 

reduce the capacity for macrophage bactericidal function, thus impairs the host response 

and increases host susceptibility to NTS (Graham et al., 2000a, Greenwood et al., 1978, 

Kaye et al., 1967, Warren and Weidanz, 1976). However, in some studies, increased 

bacterial growth may also be explained by increased iron availability during malarial 

haemolysis (Kaye and Hook, 1963). 

With the exception of Sickle cell disease, the incidence of which is elevated in tropical Africa 

and poses a particular risk for bacterial sepsis, reports of additional haemostatic 

complications during systemic NTS infections are scarce and anecdotal (Ebong, 1986, 

Morpeth et al., 2009, Chang et al., 2003, Huang, 1996, Arora et al., 2011). For example, 

rare spontaneous bacterial peritonitis caused by NTS and S. Typhi have been occasionally 

reported in immune-suppressed patients, and mycotic aneurysm caused by NTS has also 
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been described (de la Fuente-Aguado et al., 1999, Laing et al., 1995, Rajekar et al., 2008, 

Muyembe-Tamfum et al., 2009). Salmonella meningitis has been associated with brain 

infarction and associated abscesses (Huang, 1996, Chang et al., 2003, Kim et al., 1999, 

Arentoft et al., 1993, van Sorge et al., 2011, Arii et al., 2001, Hanel et al., 2000). However, 

the pathogenesis of these and other haematological complications have not yet been 

explored in detail. 

1.3.81.3.81.3.81.3.8.2 Haematological.2 Haematological.2 Haematological.2 Haematological    abnormalities in systemic NTS infection in mabnormalities in systemic NTS infection in mabnormalities in systemic NTS infection in mabnormalities in systemic NTS infection in miceiceiceice    

A recent study described altered blood homeostasis during systemic STm infection in mice 

(Brown et al., 2010). Thrombocytopenia is evident throughout infection and peaks in 

severity with bacterial load of tissues, splenomegaly and microcytic anaemia severity. 

Increased mean platelet volume and macro-platelets in blood film analysis suggested 

thrombopoiesis. Erythrocyte and reticulocyte microcytosis persists, yet increased 

reticulocyte counts suggest erythrocyte regeneration; polychromasia and erythrocytosis 

are observed. Erythrocyte anisocytosis occurs late, and fragmentation (schistocytes) of 

both mature and immature erythrocytes occurs at the peak of infection, but is absent later 

(Brown et al., 2010). Additionally, this study and others, have reported thrombosis during 

systemic NTS infection in mice, but these observations have been purely anecdotal (Brown 

et al., 2010, Mastroeni et al., 1995, Nakoneczna and Hsu, 1983, Roy et al., 2006, Wickham 

et al., 2007). 
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1.4 Rationale of study1.4 Rationale of study1.4 Rationale of study1.4 Rationale of study    

1.4.1 The impact of 1.4.1 The impact of 1.4.1 The impact of 1.4.1 The impact of SalmoSalmoSalmoSalmonellanellanellanella    TyphimuriumTyphimuriumTyphimuriumTyphimurium    infection on the liverinfection on the liverinfection on the liverinfection on the liver    

In some areas of the developing world, a high proportion of NTS-infected children are 

reported to die within 24 hours of reaching clinic, yet how infection kills these children is 

unknown. Risk of severe disease and death is associated with bacteraemia, but frequently, 

unlike other systemic bacterial infections, no major symptoms are presented (Graham et 

al., 2000c). To determine how NTS bacteraemic children die, both immunological and 

physiological factors must be considered. A potential imbalance in homeostasis during 

infection may be linked to the cause of death. 

To investigate the physiology of how the host responds to infection, we focussed on the 

liver. Aberrant hepatic pathology and function are common features of typhoid infections 

and NTS colonisation of the liver during murine infections is evident (Pramoolsinsap and 

Viranuvatti, 1998, Mastroeni et al., 1995). We hypothesised that liver disruption during 

infection may have significant physiological consequences, which may be a major 

contributing factor to the sudden deaths of young children in sub-Saharan Africa.  

1.4.2 The impact of 1.4.2 The impact of 1.4.2 The impact of 1.4.2 The impact of SalmonellaSalmonellaSalmonellaSalmonella    Typhimurium Typhimurium Typhimurium Typhimurium infection on the circulatory infection on the circulatory infection on the circulatory infection on the circulatory 

systemsystemsystemsystem    

Coagulation is an important host strategy for the prevention of bacterial dissemination, 

and co-regulation between inflammation and coagulation is evident in the literature. 

Haemostasis is a tightly regulated system, but imbalance during infection, such as that seen 

in DIC has been reported. However, with the exception of increased incidence of anaemia 

in regions where malaria is prevalent, there is very little evidence regarding haematological 
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abnormalities both in murine and human NTS infections. During our preliminary studies, 

an extensive thrombosis phenotype became apparent in the vasculature of the liver. 

Without knowing whether thrombosis is a protective host mechanism to infection, or an 

aberrant activation of coagulation, we wanted to investigate this phenotype further. We 

hypothesised that a coagulation disorder such as DIC could be the underlying cause of 

death in systemically NTS-infected African children. 

1.4.3 1.4.3 1.4.3 1.4.3 Project aimsProject aimsProject aimsProject aims    

The aim of this project is to use a mouse model to investigate how NTS-infected children 

may die from infection. Future utilisation of these observations may be invaluable in the 

identification of novel therapeutic interventions to extend the time between presentation 

at clinic and host death. This may provide sufficient opportunity for the immune system or 

anti-microbial treatment to control infection. 

To investigate how the liver and circulatory system contribute to the host response to 

infection, the following questions will be addressed: 

• What events occur in the liver during infection? 

• How is inflammation in the liver regulated? 

• How does infection influence liver function? 

• How is the circulatory system affected by infection? 
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Chapter Chapter Chapter Chapter 2222: Materials and Methods: Materials and Methods: Materials and Methods: Materials and Methods    

2.1 Materials2.1 Materials2.1 Materials2.1 Materials    

All reagents were purchased from Sigma-Aldrich (Poole, U.K.) unless otherwise stated. 

Details of all buffers used can be found at the end of this Chapter (section 2.10). 

2.2 Mice2.2 Mice2.2 Mice2.2 Mice    

Six to eight week wild type (WT) C57BL/6J mice were obtained from HO Harlan OLAC Ltd. 

(Bicester, U.K.). All genetically modified mice used were bred from in-house colonies in the 

University of Birmingham Biomedical Services Unit (BMSU). The original sources of these 

mice are listed in Table 2.1. Aged (18 month old) WT mice were obtained from Charles 

River Laboratories. All animals were housed in the BMSU in conditions free from specific-

pathogens. All experiments were performed in accordance with UK Home Office 

regulations and were ethically approved by the UK Ethics Committee. 

Strain of mouse Phenotype Source 

Rag 1-/- 

(C57BL/6J) 

Absence of T and B lymphocytes. 

Generated by disruption of Rag-1 

gene and subsequent early 

inhibition of cell development 

Professor Chris Buckley, 

University of Birmingham 

(Mombaerts et al., 1992b) 

IgH-/-kappa-/- 

(C57BL/6J) 

Absence of B lymphocytes. 

Generated by breeding out the 

QM IgH transgene from QM mice 

(in which the other IgH locus is 

inactivated). 

Dr Kai Toellner, 

University of Birmingham 

(Cascalho et al., 1996) 

TCRβδ-/- 

(C57BL/6J) 

Absence of T lymphocytes (γδ and 

αβ). 

Jackson Laboratory 

(Mombaerts et al., 1992a) 
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Generated by targeted gene 

deletion of the TCR beta and delta 

genes 

T-bet-/- 

(C57BL/6J) 

AbrogatedTh1 cell function and 

impaired IFNγ induction. 

Generated by disruption to T-bet 

gene by homologous 

recombination 

Jackson Laboratory 

(Szabo et al., 2002) 

B6.129S2-

Cd8atm1Mak/J 

(CD8-/-) 

(C57BL/6J) 

Deficient in functional cytotoxic T-

cells 

Deficient in CD8α protein 

production due to insertion of 

premature stop codon into the 

Cd8a gene. 

Dr Nick Jones, 

University of Birmingham 

 

Jackson Laboratories 

(Fung-Leung et al., 1991) 

Interferon-gamma-/-
 

(C57BL/6J) 

Deficient in IFNγ production due 

to insertion of premature stop 

codon into the Ifng gene. 

Professor Richard Grencis, 

University of Manchester 

Jackson Laboratories 

(Dalton et al., 1993) 

Interleukin (IL)-4-/-
 

(BALB/c) 

Generated by disruption to IL4 

gene by homologous 

recombination 

Professor Manfred Kopf, 

Basel Institute for 

Immunology, Switzerland 

IL-4-Receptor  

alpha-/- 

(BALB/c) 

Deficient in IL4-receptor alpha 

chain, therefore impaired IL4 and 

IL-13 signalling. 

Generated by Cre-mediated 

recombination of the IL4-receptor 

alpha allele through the cre/loxP 

system. 

Professor James Alexander  

University of Strathclyde 

(Mohrs et al., 1999) 

IL-6-/- 

(C57BL/6J) 

Deficient in IL6 signalling 

Generated by disruption to IL6 

gene by homologous 

recombination 

Charles River Laboratories 

(Kopf et al., 1994) 

IL-10-/- 

(C57BL/6J) 

Deficient in IL-10 signalling. 

Generated by homologous 

recombination of IL-10 with a 

neomycin cassette. 

Mice develop chronic enterocolitis 

Charles River Laboratories 

(Kuhn et al., 1993) 
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TNF-alpha  

Receptor-/- 

(C57BL/6J) 

Mice fail to bind TNF 

Double mutant mice, defective in 

bothTnfrsf1a (p55) and Tnfrsf1b 

(p75) were generated by crossing 

single-mutant mice. Targeted 

disruption in both genes by 

insertion of neomycin resistance 

cassette. 

Professor Richard Grencis, 

University of Manchester 

Jackson Laboratories 

(Peschon et al., 1998) 

CD1d-/- 

(C57BL/6J) 

Deficient in invariant NKT cells 

Targeted mutation into the CD1d1 

gene thus iNKT cells are not 

selected and subsequent early 

inhibition of cell development. 

Dr Nick Jones, 

University of Birmingham 

Originally obtained from 

Luc van Kaer 

(Mendiratta et al., 1997) 

Platelet factor 4. 

Cre.CLEC-2fl/fl 

(C57BL/6J) 

CLEC-2 is deficient on platelets and 

megakaryocytes. 

Generated by Cre-mediated 

recombination of the CLEC-2 allele 

through the cre/loxP system  

(Tiedt et al., 2007). 

Professor Steve Watson, 

University of Birmingham 

(Finney et al., 2012) 

Table 2.1 Strains of genetically modified mice used. 

2.2.12.2.12.2.12.2.1    Generation of irradiation bone mGeneration of irradiation bone mGeneration of irradiation bone mGeneration of irradiation bone marrow chimeric micearrow chimeric micearrow chimeric micearrow chimeric mice    

Irradiation bone marrow chimeric mice were generated whereby IFNγ was absent in either 

haematopoietic cells, radiation-resistant cells, both cell types, or neither. All recipient mice 

were administered Baytril in their diet for two weeks prior to irradiation, according to 

BMSU protocol. WT and IFNγ-/- recipient mice were irradiated by 9 Grays (Gy) of γ-radiation 

over 2 doses of 450rads, 2 hours apart. These mice were reconstituted with either IFNγ-

sufficient or IFNγ-deficient bone marrow (BM) from donor WT or IFNγ-/- mice respectively.  

Donor mice were killed shortly before required and BM cells were isolated under sterile 

conditions. Cells were retrieved by flushing the femur and tibia in sterile RPMI (10 mL) 

through a 100 μm mesh. Cells were centrifuged (350 x g, for 8 minutes) and erythrocytes 
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were lysed for 1 minute using ACK Lysing buffer (Gibco, Paisley, UK). Cells were centrifuged 

(350 x g; 8 minutes), re-suspended in sterile RPMI and counted using a haemocytometer. 

Cells were washed twice in sterile PBS and were re-suspended at a density of 5 x 107/mL. 

Cells (200μL) were transferred i.v. into recipient mice (107 cells per mouse), one hour 

following the final irradiation dose. Four groups of donor – recipient mice were generated 

as described in Table 2.2. Mice were left to reconstitute for 10-12 weeks before infecting 

with STm as described in section 2.3. 

Donor Recipient 

WT WT 

IFNγ-/- WT 

WT IFNγ-/- 

IFNγ-/- IFNγ-/- 

Table 2.2 Groups of donor and recipient mice used to generate bone marrow radiation 

chimeras 

2.2.2 Generation of mixed irradiation bon2.2.2 Generation of mixed irradiation bon2.2.2 Generation of mixed irradiation bon2.2.2 Generation of mixed irradiation bone marrow chimeric micee marrow chimeric micee marrow chimeric micee marrow chimeric mice    

A mixed bone marrow system was used to generate mice in which Tbet was absent 

specifically in T cells. These mice were kindly prepared by Dr Ruth Coughlan, University of 

Birmingham. The recipient mice were TCRβδ-/- mice (which lack total T cells). These mice 

were administered Baytril for 2 weeks prior to irradiation (8 Gy of γ-radiation over 2 doses 

of 450rads as described above). 

Bone marrow was isolated from donor mice as described above. Donor mice were either 

TCRβδ-/-, Tbet-/- or WT. Once prepared, cell suspensions from the donor mice were mixed 

whereby TCRβδ-/- cells were mixed with either WT or Tbet-/- cells at a ratio of 80:20. 

Therefore donor BM consisted of 80%  TCRβδ-/- BM  and 20% T-bet-/- BM or 80%  TCRβδ-/- 
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BM  and 20% WT BM. In the generated mice, T cells lacked Tbet whereas the remainder of 

cells were Tbet sufficient. For those mice which received mixed WT instead of mixed Tbet-

/- BM cells, all cells in the recipient mice were Tbet-sufficient. Donor cells (107 in 200 μL 

sterile PBS per mouse) were administered i.v. to irradiated recipients. Reconstitution was 

assessed at 6 weeks post cell transfer by flow cytometry of tail bleeds by Dr Ruth Coughlan. 

Mice were left to reconstitute for 10-12 weeks before infecting with STm as described 

below. 

2.3 Infection of mice2.3 Infection of mice2.3 Infection of mice2.3 Infection of mice    

2.3.1 Preparation of bacterial inoculum2.3.1 Preparation of bacterial inoculum2.3.1 Preparation of bacterial inoculum2.3.1 Preparation of bacterial inoculum    

All infections were with the attenuated Salmonella enterica serovar Typhimurium (STm) 

strain SL3261, originally obtained from Dr RA Kingsley (Wellcome Trust Sanger Institute, 

Cambridge) (Hoiseth and Stocker, 1981). STm were cultured overnight in 10 ml Luria-

Bertani (LB) medium (Invitrogen, Paisley, UK) at 37oC with aeration (180 revolution per 

minutes (rpm)). The overnight culture was diluted and incubated as described until 

bacteria reached late-log phase (optical density (OD) λ600 nm 0.8 – 1.0). Approximately 1 

x 109 bacteria (1 ml culture) was harvested by centrifugation (6,000 x g for 5 minutes at 

4oC). Bacteria were washed twice in sterile Phosphate Buffered Saline (PBS) (at 6,000 x g 

for 5 minutes at 4oC) and were then re-suspended in 1 ml sterile PBS. Bacteria were diluted 

to a final concentration of 2.5 x106 per ml. 
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2.3.2 Infection protocol2.3.2 Infection protocol2.3.2 Infection protocol2.3.2 Infection protocol    

 Mice were infected by intra-peritoneal (i.p.) injection (200 µl containing 5 x 105 bacteria). 

Occasionally, infections were performed by the intra-vascular (i.v.) route, and this is clearly 

stated in the appropriate results sections (see Section 5.2). Bacteria (200 µl inoculum 

containing 5 x 105 bacteria) were prepared and quantified as above. Infection doses were 

quantified using the Miles and Misra technique (Miles et al., 1938). Briefly, bacteria were 

serially diluted in sterile PBS and cultured overnight on agar plates at 37oC. 

2.3.32.3.32.3.32.3.3    TimeTimeTimeTime----course of infectioncourse of infectioncourse of infectioncourse of infection    

Mice were infected as described above and were killed by a schedule 1 method at the 

required time post-infection, in accordance to Home Office Regulation. To establish the 

kinetics of infection in the liver, mice were infected on the same day and were killed at set 

time-points throughout infection, including days: 1, 2, 3, 5, 7, 14, 18, 21, 28, 35 and 50 post-

infection. At least 3-4 mice were used at each time point. Genetically modified mice were 

used to elucidate the role of various cell types and molecular mediators in the host 

response to infection. These mice are detailed in Table 2.1. To compare the host response 

to infection in these mice with that in WT control mice, both WT and genetically modified 

mice were infected on the same day and were routinely killed at day 7 post-infection. This 

time-point was used for multiple studies because the pathological response in the liver of 

WT mice is fully established and well-characterised at this time. 

2.3.42.3.42.3.42.3.4    Experiment endExperiment endExperiment endExperiment end----pointpointpointpoint    

At the time of sacrifice, blood was obtained by cardiac puncture which was performed 

under anaesthesia by insertion of a 25g x 5/8” gauge needle directly through the chest 
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cavity and into the heart. Approximately 1 mL blood was obtained from each animal. All 

needles and syringes used for obtaining blood were pre-coated in 5 mM 

Ethylenediaminetetraacetic acid (EDTA) to prevent coagulation. Tissues including the 

spleen, liver, kidney, lungs and brain were removed for further examination as described 

in the following sections. 

2.4 Bacterial culture from infected tissue2.4 Bacterial culture from infected tissue2.4 Bacterial culture from infected tissue2.4 Bacterial culture from infected tissuessss    

The bacterial burden of the liver (and other tissues) was calculated to determine the extent 

of bacterial colonisation. Total mass of the liver was recorded and approximately 0.2g of 

each liver was disrupted through a 70 µm nylon-cell strainer (BD Biosciences) in 1 ml RPMI-

1640 medium. Cell suspensions were serially diluted and plated onto LB agar plates. Plates 

were incubated overnight at 37oC and bacterial colonies were counted the next day. Total 

colony forming units (CFU) per tissue were calculated using the mass of tissue cultured, the 

volume of culture, the dilution and volume of culture plated out. The equation is below. 

 

 

 

To determine whether bacteria were evenly distributed throughout the liver, the entire 

tissue was divided into areas and the CFU per gram of liver was measured as described 

above. Liver areas are outlined below (Figure 2.1-2). Livers were divided into 4 lobes (A-D), 

the largest of which were further dissected into internal and peripheral regions. Liver 
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regions are detailed in Table 2.3. Bacteria were cultured uniformly from across the entire 

tissue (described in Chapter 3, Section 3.2), therefore in subsequent experiments, bacterial 

burden of the liver was measured using any 0.2 g of liver tissue located from any part of 

the liver. 

 

Figure 2.1 The liver and its constituent lobes (photographs not to scale) 

 

 

Figure 2.2 Regions of the liver.  

The liver was divided into 6 regions to measure bacterial distribution throughout the 

liver. Lobes A-D match those in the photograph in Diagram 2.1. Lobes A and B were 

further dissected into peripheral and interior regions (Areas 1 and 2; 3 and 4). Diagram is 

not to scale. 
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Liver Area Region 

1 Interior of lobe A 

2 Exterior of lobe A 

3 Interior of lobe B 

4 Exterior of lobe B 

5 Lobe C 

6 Lobe D 

Table 2.3 Regions of the liver 

2.5 Histology2.5 Histology2.5 Histology2.5 Histology    

2.5.1 Tissue preparation for histological examination2.5.1 Tissue preparation for histological examination2.5.1 Tissue preparation for histological examination2.5.1 Tissue preparation for histological examination    

Once dissected, a portion of the liver to be examined histologically was separated from the 

rest of the tissue. This was then weighed and snap frozen immediately using liquid 

nitrogen. Rapid freezing was necessary to prevent unwanted post-mortem deterioration 

of the tissue. Liver tissue was stored at -80oC until required. In addition, external pathology 

of the liver was assessed prior to freezing, and sometimes photographs were taken. 

However, tissues were frozen as soon as possible once excised. Occasionally, the spleen 

and lungs were also collected for histological examination. Spleens were frozen and were 

sectioned as described below (at a depth when the white pulp was clearly visible). Lungs 

were inflated with 4% Formaldehyde (Adams Healthcare Ltd, Leeds, UK) prior to removal 

and were kindly prepared, paraffin embedded and sectioned by Jean Shaw, Centre for Liver 

Research, University of Birmingham. 



53 

 

2.2.2.2.5.2 Sectioning liver tissue5.2 Sectioning liver tissue5.2 Sectioning liver tissue5.2 Sectioning liver tissue    

All tissues were sectioned using a cryostat (Bright Instruments, Huntington, UK). Tissues 

were mounted using OCT TissueTek compound (Dako, Denmark) and serial 5-6 µm sections 

were taken onto micro slides (Surgipath). Slides were air dried for 1 hour before fixation in 

acetone at 4oC for 20 minutes.  Slides were air dried for 10 minutes, then stored in 

polythene bags at -20oC. 

To determine the distribution of pathology within the liver, initially each lobe of the liver 

was sectioned entirely. At depths of 100-150 µm, sections were stained using Tolluidine 

Blue (M. Khan) to monitor leukocyte infiltration. A few drops of Tolluidine Blue were 

applied to each section, prior to washing in water. This technique was later modified, so 

further livers were serially sectioned in two positions: near the top surface of the lobe and 

at the deepest region of the lobe, adjacent to the major vasculature (Figure 2.3).  

 

Figure 2.3 Sectioning liver tissue. 

Liver lobes were serially sectioned in two positions: the top of the lobe (shown on the 

left) and the deepest region of the lobe, adjacent to the major vasculature (shown on 

the right). 

At each position of each liver lobe, a section was stained using Tolluidine Blue as described 

above. The remaining slides were fixed and stored as described above. Pathology of the 

liver was very similar at both positions sectioned in all lobes and so subsequent tissues 

were only sectioned in one position: the middle of lobe A, adjacent to the major 

vasculature. 
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2.5.2.5.2.5.2.5.3 Haematoxylin and Eosin staining3 Haematoxylin and Eosin staining3 Haematoxylin and Eosin staining3 Haematoxylin and Eosin staining    

Slides were removed from -20oC storage and were thawed inside the sealed polythene bags 

prior to staining (to prevent condensation damage to tissues). Haematoxylin and eosin 

(H&E) staining was performed as described in Table 2.4 (all materials were purchased from 

Leica Microsystems, Peterborough, UK). Following staining, slides were mounted using DPX 

mountant. 

Reagents Length of incubation (minutes) 

Water 2 

Haematoxylin 4 

Water 2 

Acid alcohol 30 seconds 

Water 2 

Scott’s tap water substitute 30 seconds 

Water 2 

Eosin 1 

Water 2 

Water 2 

Alcohol 2 

Alcohol 2 

Alcohol 2 

Alcohol 2 

Clearene 2 

Clearene 2 

Clearene 1 

Table 2.4 Reagents and incubation times of Haematoxylin and Eosin staining 
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2.5.42.5.42.5.42.5.4    ImmunohistochemistryImmunohistochemistryImmunohistochemistryImmunohistochemistry    

Immunohistochemistry (IHC) was used to characterise the leukocyte infiltrate in the liver 

during infection. Slides were removed from -20oC storage and were thawed inside sealed 

polythene bags as described above. Prior to staining, tissue sections were rehydrated in 

Tris buffer (pH 7.6), while primary antibody combinations were prepared. All antibodies 

used for IHC are detailed in Table 2.5. Antibodies were diluted in Tris buffer (pH 7.6) and 

75 µl was added to each section. Slides were incubated at room temperature for 1 hour in 

a humidified chamber and were then washed twice in Tris buffer for 5 minutes. Secondary 

antibodies were adsorbed with normal mouse serum at 10% of the final volume for at least 

30 minutes. Where hamster anti-mouse primary antibodies were used, goat anti-hamster 

IgG [heavy and light chains] (which had been commercially pre-adsorbed) was added to 

the secondary antibody solution prior to adding 75 µl to each section. Slides were 

incubated at room temperature in a humidified chamber for 45 minutes and were washed 

as above. 

Secondary antibodies were linked to either biotin or horse-radish peroxidise (HRP). 

Alkaline-phosphatase (AP) complex (ABComplex, Vector Laboratories) was prepared by 

addition of avidin (solution A) and biotinylated AP (solution B) to Tris buffer (pH 7.6), both 

at a 1/100 dilution. The solution was incubated at room temperature for 30 minutes to 

enable formation of the AP complex. This was then added to each section and slides were 

incubated at room temperature in a humidified chamber for 40 minutes, then were washed 

as above. 

Slides were developed using peroxidise (for HRP-linked antibodies) and AP (for biotin-

linked antibodies) substrates. The peroxidise substrate, a 3, 3’-diaminobenzidine 
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tetrahydrochloride (DAB) tablet, was dissolved in 15 ml Tris buffer (pH 7.6) and was filtered. 

50 µl hydrogen peroxide was added and substrate was added to the sections. Once 

developed to the required intensity, slides were washed as above. The AP substrates were 

prepared as follows: Levamisole (8 mg) was dissolved in 10 ml Tris buffer (pH 9.2). Napthol 

AS-MX phosphate (4 mg) was dissolved in 380 µl N,N-dimethyl-formide and was added to 

the centre of the Levamisole solution. Fast Blue BB salt (10 mg) was added and the solution 

was filtered and added to each section. Once developed, slides were washed in Tris buffer 

(pH 7.6) and then in dH2O to stop any further reaction of the substrates. Slides were air 

dried and mounted using Glycerol. 

2.5.4.1 Analysis of immunohistochemistry2.5.4.1 Analysis of immunohistochemistry2.5.4.1 Analysis of immunohistochemistry2.5.4.1 Analysis of immunohistochemistry    

Photographs of IHC-stained tissue sections were taken using a Leica CTR6000 microscope 

(Leica, Milton Keynes, UK) with Image J and QCapture software. Quantification of both H&E 

and immunohistochemistry stained slides was performed by point counting using a 

graticule. To measure the proportion of liver area occupied by inflammatory lesions, the 

number of grid intercepts on lesions was expressed as a proportion of the total number of 

intercepts over the area counted. A total of 60 grids was counted for each tissue, and were 

representative of the entire area. The number of cells per lesion was assessed for 30 lesions 

on each tissue section and these were representative of the entire section. The percentage 

of vessel occlusion was measured as a proportion of the number of grid intercepts on 

thrombi in the large vessels to the number of grid intercepts on the large vessels (where 

vessel area exceeded 150 intercepts). To standardise as far as possible, only the largest 

vessels (greater than 150 intercepts) were included, and livers were sectioned to 

approximately equivalent positions in each tissue. 
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Target Species Concentration Working 

dilution 

Source and clone 

Anti-mouse CD3ε Hamster 0.5 mg/mL 1/300 BD Pharmingen 

145-2C11 

Anti-mouse CD4 Rat 0.5 mg/mL 1/800 BD Pharmingen 

(L3T4)  RM4-5 

Anti-mouse CD8 Rat 1.0 mg/mL 1/800 AbD serotec 

YTS105.18 

Anti-mouse FoxP3 Rat 0.5 mg/mL 1/50 eBiosciences 

FJK-16s 

Anti-mouse F4/80 Rat 1.0 mg/mL 1/500 AbD serotec 

Cl:A3:1 

Anti-mouse CD11c Hamster 1.0 mg/mL 1/500 AbD serotec 

N418 

Anti-mouse Ly6C-

biotinylated 

Rat 0.5 mg/mL 1:200 BD Biosciences 

AL-21 

Anti-mouse Ly6G-

biotinylated 

Rat 0.5 mg/mL 1:200 eBioscience 

RB6-8C5 

Anti-mouse 

podoplanin 

Syrian 

hamster 

0.5 mg/mL 1:200 eBioscience 

eBio8.1.1 

Anti-mouse CD41 Rat 0.5 mg/mL 1:200 BD Pharmingen 

MWReg30 

Anti-mouse Von 

Willebrand Factor 

Rabbit 0.2 mg/mL 1:50 Santa Cruz 

Biotechnology 

H-300 

Anti-mouse MHC II 1-

Ab 

Rat 0.5 mg/mL 1:200 BD Pharminghen 

M5/114.15.2 

CD105 Rat 0.3 mg /mL 1:500 BD Biosciences 

MJ7/18 

CD34 Rat 1 mg/mL 1:400 Serotec 

1H6 

Anti-rat IgG (heavy 

and light chains)  

Biotinylated 

Rabbit 0.85mg/mL 1/600 DAKO 

Polylonal 

Anti-sheep IgG (heavy 

and light chains) -HRP 

Donkey Discontinued 1/100 The Binding Site 

Polyclonal 

Anti-sheep IgG (heavy 

and light chains) -HRP 

Donkey 0.8 mg/mL 1:300 Jackson 

ImmunoResearch 

Polyclonal 

Anti-hamster IgG 

(heavy and light 

chains) 

Goat 1mg/ml 1/100 Southern Biotech 

Polyclonal 

Table 2.5 Primary and secondary antibodies used in immunohistochemistry 
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2.5.52.5.52.5.52.5.5    Confocal microscopyConfocal microscopyConfocal microscopyConfocal microscopy    

Confocal microscopy was used to further characterise inflammation in the liver during STm 

infection. Prior to staining slides were removed from -20oC storage, thawed as described 

above and rehydrated in PBS for 5 minutes. Slides were blocked in 10% foetal calf serum 

(FCS) in PBS (100 μL per section) for 10 minutes. All subsequent staining steps were 

performed in 10% FCS in PBS and 100 μL antibody solution was added per section, and all 

antibodies used are detailed in Table 2.6. Primary antibodies were prepared at the 

appropriate concentrations and were added to each section. Slides were incubated in a 

moist chamber in the dark at room temperature for 1 hour. Slides were washed for 10 

minutes in PBS prior to addition of appropriate secondary antibodies (and amplification 

steps). Slides were incubated for 45 minutes as above prior to washing for 10 minutes in 

PBS. If a third antibody was required, this was prepared as described in Table 2.6 and was 

added to each section. Slides were incubated for 45 minutes as above prior to washing for 

10 minutes in PBS. All slides were incubated in Hoechst 33258 nuclear stain for 2 minutes, 

were washed in PBS and mounted using Prolong Gold Anti-fade Reagent (Invitrogen, 

Paisley, UK). Slides were stored in aluminium foil at -20oC until required. A LSM510 

microscope (Zeiss, Germany) was used to take images in conjunction with Zeiss LSM image 

software (Zeiss, Germany). 

2.5.2.5.2.5.2.5.5555.1.1.1.1    Confocal microscopy isotype controlsConfocal microscopy isotype controlsConfocal microscopy isotype controlsConfocal microscopy isotype controls    

To ensure that the fluorescent levels of the LSM510 microscope were set accurately, each 

stain combination used was accompanied by a serial section control which was always 

stained alongside the sample of interest. All primary antibodies were omitted from this 

stain and 100 μL 10% FCS in PBS was added instead. All subsequent conjugated antibodies 
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were used as described above for the sample of interest. When acquiring images, all laser 

strengths were adjusted so that only minimal fluorescence was detected on isotype 

samples. This measure was taken to ensure the fluorescence detected was in conjunction 

with specific staining identified by the primary antibodies of interest, and that background 

fluorescence from the tissue was minimal. An example of an isotype control image is shown 

in Figure 3.7, Chapter 3, and this is representative of all isotype images used in this study 

(others have not been included). 

Target Species Concentration Working 

dilution 

Source and clone 

CD11b Rat 1.0 mg/mL 1:400 AbD Serotec 

ICRF44 

CD11c APC Armenian 

Hamster 

0.2 mg/mL 1:50 eBioscience 

N418 

CD31 FITC Rat 0.5 mg/mL 1:100 eBioscience 

390 

CD41 PE Rat 0.2 mg/mL 1:100 eBioscience 

eBioMWReg30 

CD41 (Purified) Rat 0.2 mg/mL 1:200 eBioscience 

eBioMWReg30 

CD45.2 FITC Rat 0.5 mg/mL 1:400 eBioscience 

104 

CD248 Rabbit  1:400 A kind gift from Clare 

Isacke, Institute of 

Cancer Research 

MHC II Biotinylated Rat 0.5 mg/mL 1:100 eBioscience 

M5/114.15.2 

Podoplanin Alexa 

Fluor 488 

Syrian 

Hamster 

0.5 mg/mL 1:200 eBioscience 

eBio8.1.1 

Podoplanin (Purified) Syrian 

Hamster 

0.5 mg/mL 1:200 eBioscience 

eBio8.1.1 

ICAM-1 FITC Rat 0.5 mg/mL 1:100 eBioscience 

YN1/1.7.4 

VCAM-1 eFluor 660 Rat 0.2 mg/mL 1:50 eBioscience 

429 

Von Willebrand 

Factor 

Rabbit 0.2 mg/mL 1:50 Santa Cruz 

Biotechnology 

H-300 
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Hamster IgG (heavy 

and light chains) 

Biotinylated 

Goat 0.5 mg/mL 1:100 Southern Biotech 

Polyclonal 

FITC Alex Fluor 488 Rabbit 1.0 mg/mL 1:200 Invitrogen 

Rat IgG (heavy and 

light chains) Cy3 

Donkey 0.3 mg/ 400μL 1:200 Jackson 

ImmunoResearch 

Rat IgG (heavy and 

light chains) FITC 

Donkey 0.3 mg/ 250μL 1:100 Jackson 

ImmunoResearch 

Armenian Hamster 

IgG (heavy and light 

chains) Alexa Fluor 

647 

Goat 0.5 mg/ 400μL 1:100 Jackson 

ImmunoResearch 

Alexa Fluor 647 

Streptavidin 

 1.0 mg/ 650μL 1:200 Jackson 

ImmunoResearch 

Alexa Fluor 488 

Streptavidin 

 2.0 mg/mL 1:100 Jackson 

ImmunoResearch 

Cy3 Streptavidin  2.0 mg/mL 1:200 Jackson 

ImmunoResearch 

Rabbit IgG (heavy and 

light chains) Cy3 

Donkey 0.5 mg/ 400μL 1:200 Jackson 

ImmunoResearch 

Rabbit IgG (heavy and 

light chains) FITC 

Donkey 0.5 mg/ 400μL 1:100 Jackson 

ImmunoResearch 

Rabbit IgG (heavy and 

light chains) Alexa 

Fluor 488 

Donkey 0.5 mg/ 400μL 1:200 Jackson 

ImmunoResearch 

Rabbit IgG (heavy and 

light chains) Alexa 647 

Donkey 0.5 mg/ 400μL 1:300 Jackson 

ImmunoResearch 

Table 2.6 Primary and secondary antibodies used by confocal microscopy 

2.6 Flow cy2.6 Flow cy2.6 Flow cy2.6 Flow cyttttometryometryometryometry    

2.6.1 2.6.1 2.6.1 2.6.1 Isolation of single cell leukocyte suspensions from the liverIsolation of single cell leukocyte suspensions from the liverIsolation of single cell leukocyte suspensions from the liverIsolation of single cell leukocyte suspensions from the liver    

Leukocytes isolated from the livers of infected and non-infected mice were quantitatively 

characterised using a Fluorescent Activated Cell Sorter (FACS). On removal from mice, livers 

were kept on ice in 1 mL RPMI media supplemented with glutamine. The mass of the entire 

liver and of a portion used for flow cytometry (approximately 1.0 g) were recorded. 
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Splenocytes were used for single colour controls during FACS acquisition and were 

processed alongside cells isolated from the liver. However, steps 2.6.2 and 2.6.3 were not 

required. Instead, spleens were homogenised through a 70 µm nylon cell strainer (BD 

Biosciences) using normal media (RPMI + 2% FBS + 5 mM EDTA) and cells were harvested 

at 375 x g for 4 minutes at 4°C. Erythrocytes were lysed for 1 minute using Ammonium 

Chloride Potassium (ACK) Lysing buffer (Gibco, Paisley, UK). Splenocytes were then 

quantified as described in section 2.6.3. 

2.62.62.62.6.2.2.2.2    Collagenase digestionCollagenase digestionCollagenase digestionCollagenase digestion    

To ensure adequate isolation of all leukocyte subsets, livers were collagenase-digested and 

leukocytes were then enriched for using gradient centrifugation, as has been described 

elsewhere (Klein et al., 2007, Li et al., 2013, Sakai et al., 1978). Initially, livers were 

mechanically disrupted using dissection scissors in a 5 mL bijoux to ensure maximum and 

uniform surface area exposure. Collagenase D (Roche) was prepared at the appropriate 

dilution (approximately 1mg/mL) in sterile RPMI medium without FCS or EDTA. Enzyme 

solution (1mL) was added to each bijoux and livers were digested for 20 minutes at 37oC 

with agitation (180 rpm). To stop collagenase activity, 0.5mM EDTA (approximately 200μL) 

was added to each tissue. Livers were homogenised through a 70 µm nylon cell strainer 

(BD Biosciences) using normal media (RPMI + 2% FBS + 5 mM EDTA) and were washed by 

centrifugation (375 x g, 4oC for 5 minutes). Cells were re-suspended in 12 mL RPMI media 

(without FCS or EDTA) in preparation for gradient centrifugation. 

2.6.3 Gradient centrifugation2.6.3 Gradient centrifugation2.6.3 Gradient centrifugation2.6.3 Gradient centrifugation    

Gradient centrifugation was used to ensure leukocytes were efficiently separated from 

other cellular contaminants including hepatocytes, erythrocytes and platelets, as has been 
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described elsewhere (Klein et al., 2007). The cell suspension from each tissue was first 

divided into two 6 mL samples (which we had identified as the optimum cell density when 

processing 1.0 g liver tissue). A Ficoll gradient was prepared at a 1:2 proportion of Ficoll-

Paque PLUS (GE Healthcare) to cell suspension. Samples were centrifuged at 2000 rpm for 

20 minutes at room temperature without brake, resulting in formation of a cell density 

gradient. The interface layer was collected as shown in Figure 2.4 and isolated cells were 

washed in RPMI (375 x g, 4oC for 5 minutes). Cells were re-suspended in the desired volume 

of normal media (RPMI + 2% FBS + 5 mM EDTA) prior to quantification. 

 

Figure 2.4 Isolation of the leukocyte fraction from Ficoll gradient. (Diagram adapted from 

Ficoll-Paque PLUS Instructions, GE Healthcare). 

 

2.6.4 Cell quantification2.6.4 Cell quantification2.6.4 Cell quantification2.6.4 Cell quantification    

Cell suspensions (10 μL each sample) were diluted in Trypan blue stain (1:10) and viable 

cells were quantified using a Haemocytometer grid. Cells were counted in two quadrats 

(4x4) at x10 magnification and the mean was used to calculate absolute number of cells as 

described by the equation below. 
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2.6.52.6.52.6.52.6.5    Extracellular stainingExtracellular stainingExtracellular stainingExtracellular staining 

After determining cell numbers, samples were centrifuged (375 x g at 4oC for 5 minutes) 

and re-suspended in FACS buffer (PBS + 2% FBS + 5 mM EDTA + 0.1% Sodium Azide), at a 

cell density of approximately 5 x 106 /mL. Cells were plated in a 96 v-bottom well plate at 

375 x g for 5 minutes at 4oC for FACS staining. Cell CD32/FcγIII and CD16/FcγII receptors 

were blocked prior to staining by incubating with anti-mouse CD16:CD32 for 20 minutes 

on ice. This and all other antibodies were prepared in FACS buffer and all dilutions are 

detailed in Table 2.7 below. 

Cells were pelleted as described earlier and 50 µl of the appropriate antibody mix or 

compensation sample was added to each well. PBS (50 μl) was added to the unstained 

control. Cells were incubated on ice for 20 minutes in the dark. Cells were washed twice in 

FACS buffer (375 x g at 4oC for 5 minutes) and were re-suspended in 150 μl FACS buffer 

containing 0.1% Paraformaldehyde before storing at 4oC until acquisition. Cells were 

acquired using the CyAn FACS Analyser (Dako, Denmark) using Summit v4.3 software. Data 

were analysed using FlowJo software (Version 9.6.3(TreeStar)). 

2.62.62.62.6.6.6.6.6    Intracellular stainingIntracellular stainingIntracellular stainingIntracellular staining    

For measurement of all intracellular antigens by flow cytometry, the extracellular staining 

protocol outlined above was followed until the final fixation step (0.1% PFA). 
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Target Species Concentration Working 

dilution 

Source and 

clone 

B220 PE Texas Red Rat 0.2 mg/mL 1:500 BD 

Pharmingen 

RA3-6B2 

B220 PerCP Cy5.5 Rat 0.2 mg/mL 1:300 BD 

Pharmingen 

RA3-6B2 

CD3ε FITC Armenian 

Hamster 

0.5 mg/mL 1:100 eBioscience 

145-2C11 

CD3ε PE Armenian 

Hamster 

0.2 mg/mL 1:50 eBioscience 

145-2C11 

CD4 eFluor450 Rat 0.2 mg/mL 1:100 eBioscience 

RM4-5 

CD8α APC Rat 0.5 mg/mL 1:300 eBioscience 

53-6.7 

CD8α PerCP-Cy5.5 Rat 0.2 mg/mL 1:2000 eBioscience 

53-6.7 

CD11b APC Rat 0.2 mg/mL 1:300 eBioscience 

M1/70 

CD11b eFluor450 Rat 0.2 mg/mL 1:300 eBioscience 

M1/70 

CD11c PE-Cy7 Armenian 

Hamster 

0.2 mg/mL 1:200 BD 

Pharmingen 

HL3 

CD16/32 (Purified) Rat 0.5 mg/mL 1:100 BD 

Pharmingen 

2.4G2 

CD19 APC Rat 0.2 mg/mL 1:200 BD 

Pharmingen 

ID3 

CD19 APC-Cy7 Rat 0.2 mg/mL 1:200 BD 

Pharmingen 

ID3 

CD44 PerCP-Cy5.5 Rat 0.2 mg/mL 1:200 eBioscience 

IM7 

CD45 APC eFluor780 Rat 0.2 mg/mL 1:500 eBioscience 

30-F11 

CD62L PE Rat 0.2 mg/mL 1:200 eBioscience 

MEL-14 

CD138 APC Rat 0.2 mg/mL 1:300 BD 

Pharmingen 

281-2 

F4/80 APC Rat 0.2 mg/mL 1:200 eBioscience 

BM8 

F4/80 FITC Rat 0.5 mg/mL 1:100 eBioscience 

BM8 
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IgG2c PE Rat 0.2 mg/mL  BD 

Biosciences 

A23-1 

IgM PE Rat 0.2 mg/mL  eBioscience 

11/41 

Ly6C PerCP-Cy5.5 Rat 0.2 mg/mL 1:500 eBioscience 

HK1.4 

Ly6G PE Rat 0.2 mg/mL 1:200 eBioscience 

RB6-8C5 

MHC II (I-A/I-E) APC Rat 0.2 mg/mL 1:500 eBioscience 

M5/114.15.2 

NK1.1 FITC Mouse 0.5 mg/mL 1:100 eBioscience 

PK136 

Podoplanin PE Syrian 

Hamster 

0.2 mg/mL 1:100 eBioscience 

eBio8.1.1 

IgG Isotype Control PE Syrian 

Hamster 

0.2 mg/mL 1:100 eBioscience 

Table 2.7 Antibodies used for analysis by flow cytometry 

 

2.6.6.1 2.6.6.1 2.6.6.1 2.6.6.1 Intracellular FoxP3 stainingIntracellular FoxP3 stainingIntracellular FoxP3 stainingIntracellular FoxP3 staining    

For measurement of intracellular FoxP3 expression, isolated cells were permeabilised using 

the eBioscience kit, according to the manufacturer’s instructions. Briefly, cells were fixed 

in 1X FoxP3 Fixation/Permeabilization Buffer (eBioscience) for 30 minutes at 4oC, protected 

from light. After 30 minutes, 1X Permeabilization Buffer (eBioscience) was added before 

washing twice in 1X Permeabilization Buffer (375 x g at 4oC for 5 minutes). Antibodies 

against intracellular target antigens (FoxP3) were diluted in 1X Permeabilization Buffer and 

cells were stained for 30 minutes at 4oC, protected from light. Cells were then washed twice 

in 1x Permeabilization Buffer (375 x g at 4oC for 5 minutes), and were re-suspended in FACS 

buffer and acquired using the CyAn FACS Analyser (Dako, Denmark), as described above. 
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2.6.6.2 2.6.6.2 2.6.6.2 2.6.6.2 Plasma cell intracellular stainingPlasma cell intracellular stainingPlasma cell intracellular stainingPlasma cell intracellular staining    

To investigate intracellular Ig in plasma cells, isolated cells were fixed in 1X 

Cytofix/Cytoperm (BD Biosciences), according to the manufacturer’s instructions, for 20 

minutes at 4oC, protected from light. Antibodies against intracellular target antigens were 

diluted in permeabilisation buffer (diluted from 10X Permwash) (BD Biosciences). Cells 

were stained with the appropriate antibodies (or isotype controls) for 30 minutes at 4oC, 

protected from light. Cells were washed in permeabilisation buffer and subsequently in 

FACS buffer (375 x g for 4 minutes at 4°C before re-suspension in FACS buffer and 

acquisition using the CyAn FACS Analyser (Dako, Denmark), as described above. 

2.7 Clodronate t2.7 Clodronate t2.7 Clodronate t2.7 Clodronate treatmentreatmentreatmentreatment    

For the depletion of Kupffer cells, mice were treated with clodronate-coated liposomes 

(Buiting and Van Rooijen, 1994, Van Rooijen, 1989). This procedure has been described 

elsewhere and is reported to deplete macrophages in the liver (Van Rooijen and Sanders, 

1996, Wong et al., 2013). Briefly, mice were treated i.p with 200 μL clodronate suspension 

or PBS control liposomes 24 hours before STm infection (i.p.). The cell depletion was 

maintained by subsequent i.p. treatment of clodronate every 2-3 days. Mice were killed at 

7 days post-infection and livers and blood were obtained (as described above) for further 

analysis. 

2.8 Analysis of whole blood 2.8 Analysis of whole blood 2.8 Analysis of whole blood 2.8 Analysis of whole blood     

The cellular components and other constituents of whole blood were quantified 

throughout infection at the time-points described in Section 2.3.3. Following cardiac 
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puncture (outlined in Section 2.3.4), blood was stored at room temperature and 100 μL 

from each sample was analysed using an automated ABX Pentra 60 Hematology Analyzer 

(Horiba ABX Diagnostics, France), according to the manufacturer’s instructions. Each 

sample was analysed in triplicate and the mean for each parameter was calculated. The 

following parameters were measured: total white cell count, percentage of lymphocytes, 

monocytes, neutrophils, eosinophils and basophils, total red cell count, haemoglobin 

concentration, haematocrit, red cell distribution width, mean corpuscular volume, mean 

corpuscular haemoglobin, mean corpuscular haemoglobin concentration, platelet count 

and mean platelet volume. Blood plasma was separated from the remaining blood by 

centrifugation (6000 x g for 15 minutes). Plasma samples were stored at -20oC until 

required for further analysis.  

2.2.2.2.9999    Biochemical liver function assaysBiochemical liver function assaysBiochemical liver function assaysBiochemical liver function assays    

To assess the extent of hepatocyte injury following infection, biochemical assays were 

performed on serum from infected mice in conjunction with the Biochemistry Department 

at Birmingham Women’s Hospital. Peripheral blood was obtained from infected mice by 

cardiac puncture as described above and serum/plasma was frozen at -20oC. The content 

of liver-specific enzymes and products was then quantified by automated equipment by 

Biochemistry Department technicians, according to the manufacturer’s instructions. 

Concentrations of alanine transaminase, aspartate transaminase, alkaline phosphatase 

and total bilirubin were measured. 
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2.9 Statistical analysis2.9 Statistical analysis2.9 Statistical analysis2.9 Statistical analysis    

Differences between the medians of two groups was assessed using the two-tailed Mann-

Whitney non-parametric sum of ranks test. The statistics programme in GraphPad Prism 

version 4.0 was used to calculate p values, which were interpreted as significant where p ≤ 

0.05. Consistency in results was ensured by performing the majority of experiments at least 

twice, and this is indicated in Figure legends. For analysis of statistical significance during a 

time-course of infection, each time-point was analysed compared to day 0 (non-infected 

mice) only. On histograms this is illustrated as in Figure 2.5 below. Additionally, statistical 

significance at the time of resolution was measured and this is indicated separately on the 

histogram. For example, differences between data recorded at day 14/21 and day 35 were 

analysed to determine statistical significance. If differences were not statistically 

significant, but were almost so, the p value is indicated on the figure. 

 

 

Figure 2.5 Example of statistical significance presentation during a time-course of 

infection. Each point was compared to day 0 values only. 
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2.10 Media and buffers2.10 Media and buffers2.10 Media and buffers2.10 Media and buffers    

2.10.12.10.12.10.12.10.1    LB agar platesLB agar platesLB agar platesLB agar plates    

LB medium (Invitrogen) 2.0% w/v and 2.0% w/v Bacteriological Agar (Melford Laboratories, 

Ipswich, UK) were dissolved in dH2O and autoclaved at 121oC for 30 minutes. Plates were 

poured whilst agar was still molten and were dried at room temperature and stored at 4oC 

until required. 

2.10.22.10.22.10.22.10.2    BuffersBuffersBuffersBuffers    

Buffer Ingredients Method 

Luria Bertani 

(L.B) Medium 

LB medium (Invitrogen, Paisley, UK) 20% 

w/v 

Dissolved in deionised 

water (dH2O) and 

autoclaved at 121oC for 

30 minutes. Media was 

used at room 

temperature. 

Phosphate 

buffered saline 

(PBS) pH 7.4 

 

8.0 g NaCl 

0.2 g KCl 

1.44 g Na2HPO4 

0.24 g KH2PO4 

Dissolved in 900 ml dH2O 

and adjusted to pH 7.4, 

before finalising the 

volume (1 L).  

Autoclaved to sterilise. 

Tris buffer pH 

7.6 

 

1.0 L of 200 mM Tris Base (6.057g 

Trizma base   in 1L dH20) 

1.5 L of 154 mM NaCl (3.188g NaCl 

(Melford, Ipswich, UK) in 1L dH20) 

1.0 L of 0.1 N HCl  

(3.75ml 10.1M HCl (Fisher scientific, 

Loughborough UK) 

Appropriate volumes of 

each buffer were added to 

prepare a final volume of 

3.5L. 

Tris buffer pH 

9.2 

 

 Prepared as above (Tris 

Buffer pH 7.6) and HCl 

(1M) was added 

(dropwise) until pH 9.2 

was reached, prior to 

making up to the desired 

volume with NaCl.  

Table 2.8 Buffers 
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CHAPTER 3:CHAPTER 3:CHAPTER 3:CHAPTER 3:    

SALMONELLASALMONELLASALMONELLASALMONELLA    TYPHIMURIUM INFECTION IN THE LIVERTYPHIMURIUM INFECTION IN THE LIVERTYPHIMURIUM INFECTION IN THE LIVERTYPHIMURIUM INFECTION IN THE LIVER    

3.1 3.1 3.1 3.1 BackgroundBackgroundBackgroundBackground    

In sub-Saharan Africa, NTS-infected children frequently die within 24 hours of reaching 

clinic, yet how infection kills these children is unknown. Death is associated with 

bacteraemia, but frequently, unlike other systemic bacterial infections, no major 

symptoms are presented (Graham et al., 2000b). To determine how these individuals die 

from systemic NTS infection, both immunological and physiological factors must be 

addressed. During typhoid infections, the liver can be associated with both abnormal 

function and overt pathology (Pramoolsinsap and Viranuvatti, 1998).  The liver is a vital 

organ and potential disruption during infection may have significant physiological 

consequences (Protzer et al., 2012, Crispe, 2003, Thomson and Knolle, 2010, Gao et al., 

2008). Therefore, a thorough understanding of how the liver is affected by systemic NTS 

infections is required. It is well documented that during systemic Salmonella infections in 

mice, the liver becomes colonised by bacteria (Mastroeni et al., 1995). Therefore, to 

investigate how systemic Salmonella infections can affect the host physiologically, we 

examined the impact of infection on the liver.  

Whilst bacterial colonisation of the liver during murine NTS infections is well known, the 

extent to which this relates to systemic infections in humans is less well understood. As 

outlined in Chapter 1 section 1.2.6.4, multiple studies have described the development of 
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histopathological lesions in the liver during systemic infection of mice (Nakoneczna and 

Hsu, 1980, Mastroeni et al., 1995, Everest et al., 1997). These studies have established a 

relationship between the kinetics of lesion development and the dose of bacterial 

inoculum used, and have identified several of the key cell types which contribute to these 

structures (Richter-Dahlfors et al., 1997, Sheppard et al., 2003, Grant et al., 2009). 

Furthermore, the dynamics of bacterial growth within host cells with particular reference 

to lesion size has also been well characterised, especially since the development of 

appropriate fluorescent-labelling techniques (Helaine et al., 2014). However, very few of 

these studies utilise physiologically relevant challenge doses and hence interpretation with 

regard to human infections must be undertaken with extreme caution. In addition, there 

is little evidence as to how inflammatory pathology in the liver may impact on liver function 

and therefore overall outcome of infection (Pramoolsinsap and Viranuvatti, 1998). Thus we 

were particularly keen to determine whether liver pathology may contribute more 

fundamentally to host susceptibility to systemic infection. 

Here we use a systemic but resolving model of Salmonella Typhimurium (STm) infection in 

Nramp-susceptible mice, to study the liver during infection. The host response to this 

infection in secondary lymphoid tissues such as the spleen has been well characterised in 

the Cunningham lab (Cunningham et al., 2007). Briefly, bacterial replication during the first 

week of infection is controlled by the innate response. There is a high bacterial load in 

colonised sites which is, in effect, “capped” by innate cells. However, an adaptive response 

is required to clear bacteria from colonisation sites, and this is not established until around 

18-21 days post-infection. Once this adaptive response can enforce bacterial clearance, 

bacterial numbers in colonised tissues resolve within about a month post-infection.  
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To determine if the kinetics of infection in the liver are similar to that seen in the spleen, 

we examined livers at various key time-points during infection, corresponding to different 

stages of the host immune response in the spleen. These included: day 7 (when peak 

bacterial load is limited by innate cells); day 21 (when the adaptive response is established 

and bacterial clearance has begun); day 28 (when bacterial clearance is well underway); 

and day 35 (when infection should be largely resolved). A later time-point of day 50-55 was 

used to identify any lasting effects of the infection in the liver. These key time-points have 

been used throughout this study to characterise how the infection is established and 

resolved in this effector site. 

3.1.23.1.23.1.23.1.2    Aim of studyAim of studyAim of studyAim of study    

Here we show the kinetics of Salmonella colonisation in the liver and describe how the host 

responds to this systemic infection. The aims of this section were to: 

• Describe hepatic colonisation of STm including bacterial distribution and kinetics of 

infection; 

• Characterise inflammatory lesion development and resolution during the course of 

infection; 

• Phenotype infiltrating leukocytes to identify which host immune cells contribute to 

this response. 
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RESULTS 

3.23.23.23.2    The liver is colonised by The liver is colonised by The liver is colonised by The liver is colonised by SalmonellaSalmonellaSalmonellaSalmonella    TTTTyphiyphiyphiyphimmmmuriumuriumuriumurium    during systemic during systemic during systemic during systemic infectioninfectioninfectioninfection    

WT mice were infected by intraperitoneal (i.p.) injection of 5 x 105 attenuated STm and at 

key time-points during infection, the liver bacterial burden was measured and the liver was 

examined for signs of pathology. Liver mass increases from day 3 post-infection and peaks 

at day 21 (Fig 3.1 A). After this time, hepatomegaly resolves, yet does not reach the original 

mass of non-infected mice by day 55. To check if this is an age-related phenotype (and if 

liver mass increases with age), aged mice (18 month old) were infected alongside 6-8 week 

WT C57BL/6J mice and hepatomegaly was measured during infection. Liver mass is 

equivalent in non-infected aged and non-aged mice, suggesting the observed 

hepatomegaly is infection-induced (Fig 3.1 B).  

Viable bacteria can be cultured from the liver within 24 hours of infection (Fig 3.1 C). 

Bacterial burden in the liver peaks at day 7 post-infection and bacterial clearance is 

established by day 14, although bacterial numbers are not significantly cleared until day 

21. Bacterial numbers are reduced over the following weeks, but can still be detected at 

55 days. To ascertain the extent of bacterial colonisation in the liver relative to other 

colonised sites, the bacterial loads of the liver, spleen, brain, lungs, kidney and blood were 

measured at day 7 post-infection. At this peak time of bacterial burden in the liver, 

bacterial numbers are generally lower than those detected in the spleen but greater than 

other non-lymphoid organs (Fig 3.1 D). 
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To assess whether bacterial distribution is even throughout the entire liver, bacterial 

numbers were additionally measured at different sites throughout the tissue, during the 

course of infection. Livers were divided into the four lobes, and both internal and 

peripheral areas of the two largest lobes were also examined. Days 7, 21 and 35 post-

infection are shown as representative time points (Fig 3.1 E). Although there is some 

variation, bacterial colonisation is uniform across the entire tissue. 

3.3.3.3.3333    Liver pathology during infectionLiver pathology during infectionLiver pathology during infectionLiver pathology during infection    

Having established that the liver is colonised throughout and that bacteria persist in this 

effector site even once they are completely cleared from lymphoid tissues such as the 

spleen, we wanted to determine to what extent infection causes liver pathology. The 

exterior surface of non-infected livers is smooth and shiny, with no blemishes or other 

distinctive features and livers are a reddish-pink colour (Fig 3.2 A). Within the first 48 hours 

of infection, some slight changes to this appearance are detected (data not shown), and 

these are apparent in all livers by day 7 post-infection (Fig 3.2 B). Pathological features 

include: loss of the smooth appearance; a tendency for peripheral regions of lobes to 

become bloodshot, and this can spread throughout the lobes; white/grey lesions of varying 

severity appear throughout the tissue (although these are more frequent on the smallest 

lobe). At day 21 post-infection, these features can be more severe (Fig 3.2 B). From day 28 

onwards, lesions are largely absent but many livers remain bloodshot at the periphery and 

this can persist at day 50 (Fig 3.2 C-D). 
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3.3.1 3.3.1 3.3.1 3.3.1 Hepatic lesions form Hepatic lesions form Hepatic lesions form Hepatic lesions form rapidly after infection and peak between rapidly after infection and peak between rapidly after infection and peak between rapidly after infection and peak between days 7 and days 7 and days 7 and days 7 and 

21 post21 post21 post21 post----infectioninfectioninfectioninfection    

Having identified pathological lesions on the liver surface, we were keen to determine how 

this pathology continues within the tissue and if it resembles that reported in other NTS 

infection models (Mastroeni et al., 1995, Richter-Dahlfors et al., 1997). We focussed on 

what cells and molecular mediators are in lesions with the view of investigating how 

hepatic pathology may affect liver architecture and the consequences this may have on 

liver function and infection outcome. Initially, we stained non- infected and infected livers 

with Haematoxylin and Eosin (H&E) to detect infiltrate in the parenchymal tissue during 

infection. Figure 3.2 E demonstrates the influx of cells into the liver at day 7 post-infection 

and the development of inflammatory lesions. These lesions can become necrotic in the 

centre, as shown in Figure 3.2 F. Interestingly, external lesions directly correspond to 

internal regions of hepatocyte necrosis (as illustrated by individually sectioning lesions 

visible on the liver surface and examining by H&E) (data not shown). 

The proportion of the tissue area occupied by lesions was quantified by point counting of 

H&E stained sections. Non-infected livers contain rare infiltrated leukocytes which are 

sparsely distributed throughout the sinusoids and tend to gather in portal areas (Fig 3.3 A). 

Lesions are established by 2 days post-infection (data not shown), and are most 

pronounced at days 7 and 21 post-infection. Although there is an increased sinusoidal 

distribution of cells during infection, the majority of leukocytes localise to lesions, which 

are compact and can form proximal or distal to vessels. Leukocytes also associate with 

portal areas (as in non-infected mice).  
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Pathology is most severe at day 21 and generally resolves by day 35 when the remaining 

foci are small and compact and there are fewer cells both in the sinusoids, and in portal 

areas (Fig 3.3 A and data not shown). After this time, although foci are largely absent, more 

cells associate with vessels than in non-infected mice. Images shown are representative of 

the entire liver; all lobes were analysed at 3 depths of sectioning and the phenotype is 

consistent throughout (data not shown).  

3.3.23.3.23.3.23.3.2    Inflammatory lesions develop in the liver by both intraperitoneal and Inflammatory lesions develop in the liver by both intraperitoneal and Inflammatory lesions develop in the liver by both intraperitoneal and Inflammatory lesions develop in the liver by both intraperitoneal and 

intravascular intravascular intravascular intravascular routes of infectionroutes of infectionroutes of infectionroutes of infection    

To assess whether development of inflammatory lesions in the liver is a consequence of 

infection and not an effect of infecting i.p., mice were infected by either i.p or intravascular 

(i.v.) injection and inflammation was examined. Hepatomegaly is equivalent in both 

infection routes at day 7, but greater at day 21 after i.v. infection, although this does not 

reach statistical significance (Fig 3.4 A). Bacterial loads and inflammatory lesion induction 

are equivalent at both time-points, irrespective of infection route (Fig 3.4 B-C and data not 

shown). Therefore both i.p. and i.v. infection results in similar systemic infection, as has 

been previously demonstrated in other murine Salmonella infections (Hsu, 1989). 

3.3.3.3.3.33.33.33.3    HepaticHepaticHepaticHepatic    lesions lesions lesions lesions containcontaincontaincontain    heterogeneous heterogeneous heterogeneous heterogeneous populationspopulationspopulationspopulations    of of of of leukocyteleukocyteleukocyteleukocytessss    

Immunohistochemistry (IHC) was used to identify what cells are present in inflammatory 

lesions. In non-infected mice, individual F4/80+ Kupffer cells are found throughout the 

sinusoids and isolated CD3+ T cells and CD11c+ dendritic cells (DCs) are associated with 

portal areas (Fig 3.5 A).  
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At day 7 post-infection, lesions contain F4/80+ cells, CD11c+ cells, F4/80+ CD11c+ cells and 

cells positive for monocytic markers CD11b and Ly6C (Fig 3.5 B-C and data not shown). 

Neutrophils, identified by Ly6G+ staining, can also be seen in lesions, although these are 

less common than other myeloid populations (Fig 3.5 C). T cells are frequently located at 

the periphery of lesions (Fig 3.5 B, discussed further below). We detect an increase in 

sinusoidally-distributed F4/80+ cells which generally do not stain for CD11c (Fig 3.5 B). 

Therefore these cells are likely to be macrophages (including Kupffer cells) rather than 

F4/80-expressing DC subtypes (such as monocyte-derived DCs). Figure 3.5 D shows serially 

stained sections of a single inflammatory lesion. 

At day 21 post-infection, lesions are similar and there is a higher density of cells in the 

sinusoids, mainly due to increased CD11c+ and CD11c+ F4/80+ cells (Fig 3.5 E-F). 

Inflammatory lesions have a similar appearance by either the i.p. or i.v. route at both days 

7 and 21 (Fig 3.5 G and data not shown). 

3.3.43.3.43.3.43.3.4    Lesions contain Lesions contain Lesions contain Lesions contain CD4CD4CD4CD4++++    and T regulatory cells at the and T regulatory cells at the and T regulatory cells at the and T regulatory cells at the peripheryperipheryperipheryperiphery    

As Th1 cells are required for STm infection control (Pie et al., 1997), we hypothesised that 

the majority of T cells present would be CD4+ and so we stained sections for CD3, CD4, CD8 

and FoxP3. In non-infected livers, T cells are rare and CD4+ and CD8+ T cells are found in 

similar proportions (Fig 3.6 A). At day 7 post-infection, T cells generally localise to the 

periphery of lesions and are mainly CD4+. There are a greater proportion of CD8+ T cells at 

day 21, although the majority are CD4+, and there are more T cells in the sinusoids. There 

are fewer T cells by day 35 and these are concentrated in the remaining foci and both CD4+ 

and CD8+ cells are present (Fig 3.6 A). 
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In non-infected livers, occasional FoxP3+ regulatory T (Treg) cells are observed, but these 

are rare (Fig 3.6 B). Following infection, FoxP3+ cells are observed both within lesions and 

adjacent to vessels (Fig 3.6 B and data not shown). The distribution of FoxP3+ cells is similar 

at days 7 and 21, although there are more FoxP3+ cells present at day 21. At day 35, some 

FoxP3+ cells can be found in the remaining lesions, and fewer are observed beside vessels 

(Fig 3.6 B and data not shown). Quantification of IHC staining confirmed that the number 

of CD3+ T cells per foci is greater at day 21 (Fig 3.6 C). The number of FoxP3+ cells per lesion 

is also increased at day 21 and the ratio of CD3+ FoxP3+ cells to total CD3+ cells is also 

elevated (Fig 3.6 D-E). Interestingly, there remains an elevated number of Treg cells per 

lesion at day 35 (Fig 3.6 D). In addition, considering lesions are generally smaller at this 

time-point than at day 7, a greater proportion of the total cells in a lesion are CD3+ (because 

the number of CD3+ cells per lesion is equivalent to that at day 7) (Fig 3.6 C and data not 

shown). This suggests lesions are made of a greater proportion of T cells relative to other 

populations at resolving stages of infection, and that Tregs make a prominent contribution 

to this. These data highlight the multitude of leukocyte populations present in lesions. 

3.3.53.3.53.3.53.3.5    Podoplanin is expressed in iPodoplanin is expressed in iPodoplanin is expressed in iPodoplanin is expressed in inflammatory lesionsnflammatory lesionsnflammatory lesionsnflammatory lesions    

Having identified many of the leukocytes which contribute to inflammatory lesions, we 

wanted to identify other cell types associated with these structures, for which we used 

confocal microscopy. Infected livers were stained with CD45.2 to identify haematopoietic 

cells, in conjunction with podoplanin, a glycoprotein associated with inflammation (Farr et 

al., 1992). At day 7 post-infection, the majority of cells within inflammatory lesions are 

CD45.2+, indicating they are haematopoietic (Fig 3.7 A). Podoplanin is also seen in lesions 

and co-localises with CD45.2+ cells (magenta staining) (Fig 3.7 A).  
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Co-expression of podoplanin is also seen with MHC II (magenta staining), CD11c (cyan 

staining) and, to some extent CD11b (magenta staining), indicating that podoplanin can be 

expressed by myeloid cells, some potentially with antigen-presenting capabilities (Fig 3.7 

B-C). Podoplanin was also stained in conjunction with CD31, an endothelial marker, also 

expressed on leukocytes, and CD248, expressed by fibroblasts and pericytes during liver 

fibrosis (Alridge, manuscript in preparation). The co-localisation of podoplanin with CD248+ 

cells (magenta staining) together with the podoplanin+ staining on CD45.2- cells in Figure 

3.7 A, may indicate the presence of stromal populations in inflammatory lesions (Fig 3.7 

D). 

3.43.43.43.4    Leukocyte quantification and detailed phenotypingLeukocyte quantification and detailed phenotypingLeukocyte quantification and detailed phenotypingLeukocyte quantification and detailed phenotyping    

Having identified some cells present within lesions, we wanted to assess these populations 

in more detail, for which we used flow cytometry. To ensure adequate isolation of 

leukocyte populations from the liver, both collagenase digestion and gradient 

centrifugation were used, as has been described elsewhere (Klein et al., 2007, Flores-

Langarica et al., 2011, Cabrera et al., 2013, Crispe, 2001). Cells in the leukocyte fraction 

were isolated, quantified and total leukocyte cellularity of the liver was calculated. 

Cellularity in this leukocyte fraction (referred to for ease as leukocyte cellularity, although 

other CD45- cells are also retained here), increases very modestly within the first 24 hours 

but is increased by approximately 8-fold by day 3 (Fig 3.8 A). The highest cellularity is 

detected at days 14-21 and this is resolving by day 35. 

To identify and quantify which cells contribute to this increased cellularity, leukocytes were 

stained with T cell, B cell, macrophage, neutrophil and DC markers and populations in the 

livers of non-infected mice were compared with those at day 7 post-infection.  
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The gating strategy used to type myeloid cells in the liver is adapted from Frank Tacke et 

al. (Tacke et al., 2009)(F. Tacke, personal communication). In this way, Kupffer cells are 

F4/80+ Ly6Glo CD11blo and Ly6Clo, whereas monocytes are F4/80+ Ly6Glo CD11bhi Ly6Chi. 

Both these populations can be further phenotyped by looking at expression of CD11c and 

MHC II. The gating strategies are illustrated and representative FACS plots are shown in 

Figure 3.8 B-D. 

3.4.1 3.4.1 3.4.1 3.4.1 Kupffer cells are the dominant myeloid population in nonKupffer cells are the dominant myeloid population in nonKupffer cells are the dominant myeloid population in nonKupffer cells are the dominant myeloid population in non----infected liversinfected liversinfected liversinfected livers    

In non-infected livers, approximately 85% of F4/80+ Ly6Glo cells are Kupffer cells and 

monocytes make up the remaining 15% (Fig 3.8 C-F). Absolute numbers of both 

populations are relatively low and the ratio of absolute numbers of Kupffer cells to 

monocytes is greater than 1 (approximately 10 Kupffer cells to every monocyte) (Fig 3.8 E-

I). In non-infected mice, most Kupffer cells are CD11c+ but do not express MHC II; around 

5-10% Kupffer cells express high levels of MHC II and around 10% express low levels of 

MHC II (Fig 3.8 E-F). The majority of monocytes express CD11c to some extent, however, 

MHC II expression is low (Fig 3. 8 G-H). 

3.4.2 3.4.2 3.4.2 3.4.2 Kupffer cells Kupffer cells Kupffer cells Kupffer cells and and and and monomonomonomonocytes cytes cytes cytes are found at similar levels after are found at similar levels after are found at similar levels after are found at similar levels after infectioninfectioninfectioninfection    

At day 7 post-infection, dramatically more monocytes are found in the liver, relative to 

non-infected mice (Fig 3.8 C-I). The proportion of Kupffer cells decreases from 

approximately 85% of F4/80+ Ly6Glo cells to 40-50% at day 7, and the proportion of 

monocytes increases from 15% to 50-60% (Fig 3.8 F and H). This corresponds to an increase 

in absolute numbers of both cell types, with an approximate 10-fold increase in Kupffer cell 

numbers and a 100-fold increase in monocytes (Fig 3.8 E and G). After infection, the ratio 

of Kupffer cells to monocytes is around 1 (Fig 3.8 I). After infection, the proportion and 
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absolute number of CD11clo MHC IIlo Kupffer cells increases approximately 100-fold and 

the number of CD11c+ MHC II+ Kupffer cells increases approximately 20-fold (Fig 3.8 E-F). 

The number of CD11c+ MHC II- cells remains similar to that seen in non-infected mice, 

however, as a percentage of total Kupffer cells, this population is severely reduced 

following infection, from a median of 70% of Kupffer cells to below 5% after infection (Fig 

3.8 E-F). Absolute numbers of all monocyte subtypes increase following infection, however, 

the largest proportional difference is seen for CD11clo MHC II+ monocytes (Fig 3.8 G-H). 

3.4.3 3.4.3 3.4.3 3.4.3 Ly6GLy6GLy6GLy6G++++    populations increase postpopulations increase postpopulations increase postpopulations increase post----infectioninfectioninfectioninfection    

Neutrophil populations are also substantially augmented following infection. In non-

infected livers, there are two main neutrophil populations, based on levels of Ly6G 

expression, of which the Ly6G+ population is more abundant than Ly6Ghi cells (Fig 3.8 C, J 

and L). In the Ly6Ghi population, approximately 90% of cells are CD11b+ Ly6C+ CD11c- (Fig 

3.8 K). Approximately half of the Ly6G+ population are CD11b+, of which 80% are CD11c- 

(Fig 3.8 M). After infection, both the proportions and absolute numbers of both the Ly6Ghi 

and Ly6G+ neutrophil populations increase (Fig 3.8 J-M). The number of Ly6Ghi cells 

increases 100-fold and Ly6G+ cell numbers increase approximately 70-fold (Fig 3.8 J and L). 

The phenotype of Ly6Ghi cells is not altered by infection; the proportion of cells expressing 

CD11b and Ly6C is similar to before infection, although this can be variable (Fig 3.8 K). 

However, there is a greater proportion and number of Ly6G+ cells expressing CD11b after 

infection (Fig 3.8 L-M). 
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3.4.4 3.4.4 3.4.4 3.4.4 Dendritic cell populations Dendritic cell populations Dendritic cell populations Dendritic cell populations increase increase increase increase inininin    the liver following infectionthe liver following infectionthe liver following infectionthe liver following infection    

Whilst DCs are likely to contribute to some of the CD11c+ gates discussed above, DC 

populations were examined separately using a gating strategy defined by Hsu et al. and 

illustrated in Figure 3.9 A (Hsu et al., 2007). Using this method, DCs are described as CD11c+ 

CD3- CD19- and are classified into five sub-populations, which are shown in Table 3.1 below. 

Representative FACS plots are shown in Figure 3.9 B-C. 

 

Dendritic cell subset Phenotype 

Natural Killer DC CD11blo CD8α- NK1.1+ B220+ 

Myeloid DC CD11b+ CD8α- NK1.1- B220- 

Lymphoid DC CD11b- CD8α+ NK1.1- B220- 

Mixed Lymphoid/Myeloid DC CD11b- CD8α- NK1.1- B220- 

Plasmacytoid DC CD11b- CD8α- NK1.1- B220+ 

Table 3.1 Classification of hepatic dendritic cells, adapted from (Hsu et al., 2007). 

The absolute numbers of all DC subtypes increase following infection, however, the 

proportions of these populations vary considerably (Fig 3.9 D-F). The proportion of NK DCs 

increases from approximately 10% (of total CD11blo CD8α- DCs) in non-infected mice to 

35% at day 7 (Fig 3.9 F). In contrast, myeloid DCs make up approximately 65% of total 

CD11b+ CD8α- DCs before infection, but this drops to less than 10% after infection (Fig 3.9 

F). The proportions of lymphoid, mixed lymphoid/myeloid and plasmacytoid DCs all vary 

slightly with infection: the proportion of lymphoid DCs increases almost 2-fold; mixed 

lymphoid/myeloid DCs also become slightly more frequent, whereas plasmacytoid DC 

frequency decreases by approximately 10% (Fig 3.9 F).  



99 

 

 



100 

 
 



101 

  



102 

 

3.4.5 3.4.5 3.4.5 3.4.5 CD3CD3CD3CD3++++    CD4CD4CD4CD4++++    and CD3and CD3and CD3and CD3++++    CD8CD8CD8CD8++++    T cells increase in the liver followingT cells increase in the liver followingT cells increase in the liver followingT cells increase in the liver following    infectioninfectioninfectioninfection    

T lymphocytes were also phenotyped by flow cytometry and the activation status of T cells 

was examined using CD44 and CD62L expression (Ravindran and McSorley, 2005). The 

gating strategy used and representative FACS plots are shown in Figure 3.10 A-C. The 

absolute number of CD4+ T cells is increased over 10-fold at day 7 post-infection, although 

the proportion of these cells out of total isolated leukocytes does not change significantly 

(Fig 3.10 D-E).  

Absolute numbers of all CD4+ T cell populations increase after infection; there is at least a 

10-fold increase in numbers of both activated and central memory CD4+ T cells (Fig 3.10 D). 

The proportion of activated CD4+ T cells increases from approximately 70% in non-infected 

livers to around 90% after infection, and the proportion of naïve CD4+ T cells is diminished, 

from approximately 20% to 5% (Fig 3.10 E). 

All CD8+ T cell populations examined also increase in absolute number after infection, with 

total CD3+ CD8+ cells increasing approximately 10-fold (Fig 3.10 F). However, as a 

proportion of total leukocytes, the frequency of CD8+ T cells is reduced by about half, from 

6% to 3% following infection (Fig 3.10 G). The proportion of activated CD8+ T cells increases 

(from 25 to 65%) following infection whereas the frequency of naïve CD8+ T cells decreases 

from around 50% to 10-20% (Fig 3.10 G). 
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3.4.6 3.4.6 3.4.6 3.4.6 B lymphocytes increase in the liver following infectionB lymphocytes increase in the liver following infectionB lymphocytes increase in the liver following infectionB lymphocytes increase in the liver following infection    

Having been unable to detect B lymphocytes by histology in the liver due to interference 

caused by background reactivity of the tissue, these cells were examined in more detail by 

flow cytometry. B lymphocytes were gated on B220+ CD19+ cells and then examined for 

intracellular IgM and class-switched IgG2c, alongside plasma cell marker CD138 (Fig 3.11 

A). Representative FACS plots are shown in Figure 3.11 B-C. The number of B220+ CD19+ 

cells increases post-infection (Fig 3.11 D). There are modest numbers of IgM+ B cells in the 

livers of non-infected mice, and the majority of these are not plasma cells (Fig 3.11 F-G). 

After infection, there are increased IgM+ cells, and the majority remain CD138-. There are 

similar numbers of IgG2c+ plasma cells to IgM+ plasma cells in non-infected mice 

(approximately 5000 of each per liver) (Fig 3.11 F). However, there are approximately 10 

fold more IgM+ CD138- cells compared to IgG2c+ CD138- cells following infection (Fig 3.11 

F). There is an approximate 8-fold increase in IgG2c+ plasma cells following infection, 

compared to a 2.5-fold increase in IgM+ plasma cells (Fig 3.11 F). 

3.5 3.5 3.5 3.5 Leukocyte quantificatioLeukocyte quantificatioLeukocyte quantificatioLeukocyte quantification over the course of infectionn over the course of infectionn over the course of infectionn over the course of infection    

These flow cytometry studies were performed on mice on the same day to enable direct 

comparison between non-infected and infected livers. Thus these data provide a useful 

quantitative measure of infiltration in the liver after infection, and this supports our 

histological observations. However, to provide a more complete understanding of the 

dynamics of leukocyte infiltration over the course of infection, leukocytes were isolated 

from livers at different time-points, and were analysed by flow cytometry. 
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3.5.1 3.5.1 3.5.1 3.5.1 Myeloid cell numbers increase witMyeloid cell numbers increase witMyeloid cell numbers increase witMyeloid cell numbers increase within 24 hours and peak at day 14hin 24 hours and peak at day 14hin 24 hours and peak at day 14hin 24 hours and peak at day 14    

The gating strategy used to define myeloid cells and representative FACS plots illustrate 

how myeloid cell dynamics are altered during the first 35 days of infection (Fig 3.12 A-B). 

As discussed above, in a resting liver the myeloid cells are predominantly Kupffer cells, 

which constitute 80% of F4/80+ Ly6Glo cells, and the ratio of Kupffer cells to monocytes is 

greater than 1 (Fig 3.12 C-E). Between 24 and 72 hours, the proportion of Kupffer cells 

begins to decline and the proportion of monocytes increases. This dynamic continues until 

day 14 when the ratio of Kupffer cells to monocytes is approximately 1, and the proportion 

of F4/80+ Ly6Glo cells which are Kupffer cells is reduced to around 40-50%. At some point 

between days 14 and 35, this pattern begins to resolve; the proportion of Kupffer cells 

begins to increase and the proportion of monocytes falls (Fig 3.12 C-E). 

When absolute numbers are considered, Kupffer cells are increased within 24 hours 

followed by a rapid increase in numbers between days 3 and 7 (Fig 3.12 C). Numbers of 

Kupffer cells continue to increase by day 14, and are resolving by day 35, but even at this 

time, there are approximately 8 times more Kupffer cells per liver than in a resting mouse. 

Monocytes increase steadily from within 24 hours until day 14; by day 3 numbers are 

increased 10-fold and they rise further to a maximum increase of 100-fold  by day 14 (Fig 

3.12 C). This is a greater fold increase than is seen in Kupffer cells, however by day 14, 

absolute numbers of both cell types are comparable. This is reflected in the ratio of Kupffer 

cells to monocytes which is approximately 1:1 at day 7 and is less than 1 at day 14 (Fig 3.12 

D). By day 35, monocyte numbers are resolving, as is shown by absolute numbers, cell 

frequencies and Kupffer cell to monocyte ratio (Fig 3.12 C-E). 
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Absolute numbers of Ly6Ghi and Ly6G+ populations increase by 24 hours (Fig 3.12 F). Both 

populations increase in number around 100-fold by day 7, however, whereas Ly6Ghi cell 

numbers continue to rise at day 14, Ly6G+ cell numbers are maintained and do not increase 

further. Cell numbers in both populations are resolving by day 35, although Ly6Ghi cells 

have resolved by a greater extent at this time. However, in terms of the percentage of total 

isolated leukocytes these populations have very different kinetics. Ly6G+ cells increase in 

frequency from 8 to 20% within 24 hours, then increase to around 25-30% by day 7 and 

this proportion is maintained at day 35 (Fig 3.12 G). In contrast, Ly6Ghi cells contribute less 

than 1% to the total isolated leukocytes in the liver of a non-infected mouse (Fig 3.12 G). 

These cells double in proportion to around 2% within 24 hours, then drop to almost resting 

proportions by day 3. By day 7, the frequency of these cells is again around 2% and this 

rises to around 7% at day 14. Although Ly6Ghi cells contribute less than 10% of total 

leukocytes in the liver, absolute numbers increase as leukocyte cellularity in the liver 

increases, thus these cells are likely to be important in the overall host response to 

infection. 

3.5.2 3.5.2 3.5.2 3.5.2 Distribution of DC subsets is altered considerably during infectionDistribution of DC subsets is altered considerably during infectionDistribution of DC subsets is altered considerably during infectionDistribution of DC subsets is altered considerably during infection    

Dendritic cells were not examined beyond day 14 in this study (because we were originally 

interested in their role during antigen presentation and initiation of immune responses), 

so we cannot comment on their contribution to, or kinetics during resolution. 

Representative FACS plots illustrate DC staining in Figure 3.13 A. Total dendritic cells 

(CD11c+ CD3- CD19-) are increased in the liver within 24 hours and are increased 

approximately 10-fold relative to resting numbers by day 3 (Fig 3.13 B).  
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These numbers are maintained and are further increased at day 14. The most pronounced 

increase in DC numbers in the liver occurs between 24 and 72 hours. 

Further phenotyping identified that different populations of DCs have surprisingly different 

dynamics during the first 2 weeks of infection. Absolute numbers of NK DCs increase almost 

1000-fold by day 14 and they also increase in proportion (of total CD11c+ CD3- CD19- 

CD11blo CD8α- cells) (Fig 3.13 C-D). Myeloid DCs are increased by approximately 7-fold 

within 24 hours, and these numbers are maintained at day 14 (Fig 3.13 C). However, as a 

proportion (out of CD11c+ CD3- CD19- CD11b+ CD8α- cells), myeloid DCs decrease steadily 

and severely from approximately 90% in non-infected mice to less than 10% by day 7 (Fig 

3.13 D). Cell numbers in the remaining DCs subsets are all relatively stable over the time-

course measured, however, the proportion of mixed lymphoid/myeloid DCs falls from day 

3 onwards (Fig 3.13 C-D). The proportion of plasmacytoid DCs (out of CD11c+ CD3- CD19- 

CD11b- CD8α- cells) increases gradually from approximately 55% in resting mice to 80% at 

day 14 (Fig 3.13 D). 

3.5.3 3.5.3 3.5.3 3.5.3 T cell subset numbers T cell subset numbers T cell subset numbers T cell subset numbers are are are are alteralteralteraltered during ed during ed during ed during the timethe timethe timethe time----course of infectioncourse of infectioncourse of infectioncourse of infection    

Representative FACS plots of T cells populations are shown in Figure 3.14 A. Resembling 

the pattern of cellularity, there is a small drop in CD3+ CD4+ T cells at day 1, but absolute 

numbers leap by day 3 and peak in numbers at day 14 (Fig 3.14 B). The proportion of total 

leukocytes which are CD4+ T cells drops by 50% within 24 hours of infection, before 

reaching non-infected proportions by day 35 (Fig 3.14 B). 
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Most CD4+ T cells are activated, with numbers almost 10-fold higher by day 3, although 

naïve and central memory cells are also increased at day 3 (Fig 3.14 C). The proportion of 

activated CD4+ T cells increases steadily from approximately 70% in non-infected mice to 

90% at day 35 (Fig 3.14 D). The proportion of naïve CD4+ T cells is approximately 20-30% in 

non-infected mice and after day 3, becomes negligible, however, numbers remain constant 

throughout infection (Fig 3.14 C-D). Whereas the proportion of central memory CD4+ T cells 

peaks at day 1, absolute numbers are elevated at day 3, and persist (Fig 3.14 C-D). 

3.5.3.1 3.5.3.1 3.5.3.1 3.5.3.1 CD8CD8CD8CD8++++    T cells are particularly abundant duringT cells are particularly abundant duringT cells are particularly abundant duringT cells are particularly abundant during    the resolution stagethe resolution stagethe resolution stagethe resolution stage    

The dynamics of CD3+ CD8+ T cells is very different to that of CD4+ T cells in the liver during 

infection. Numbers of CD3+ CD8+ T cells increase steadily from day 3 post-infection, 

however, CD8+ T cells only peak in the liver at day 35, when they become the dominant T 

cell subset and numbers are almost 100-fold above those in non-infected mice (Fig 3.14 E). 

The proportion of these cells (out of total lymphocyte-sized cells) remains at approximately 

5% until day 14, after which it increases to 35% by day 35 (Fig 3.14 E). In non-infected mice, 

the majority of CD8+ T cells in the liver are naïve, but this drops shortly after infection from 

40% in resting mice to less than 10% at day 7 (Fig 3.14 G). Absolute numbers of naïve CD8+ 

T cells peak transiently at day 3 but are otherwise constant throughout infection (Fig 3.14 

F). Approximately 30% of CD8+ T cells are activated in non-infected mice, and this increases 

throughout infection to around 90% at day 35 (Fig 3.14 G). The absolute number of 

activated CD8+ T cells drops very marginally in the first 24 hours, then rises constantly, 

reaching an over 100-fold increase at day 35, and there is no indication of resolution of 

these cell numbers (Fig 3.14 F). The proportion of effector memory CD8+ T cells is elevated 
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early post-infection but falls after day 3, whilst absolute numbers are increased throughout 

infection (Fig 3.14 F-G). 

3.6 3.6 3.6 3.6 Liver function alteration is limited during infectionLiver function alteration is limited during infectionLiver function alteration is limited during infectionLiver function alteration is limited during infection    

Considering the extensive infiltration and pathology which develops in the liver and 

persists for several weeks during infection, we hypothesised that hepatocyte function may 

become disrupted. In particular, we suspected that infiltration and the localised necrotic 

regions (which can be extremely severe towards the periphery of lobes), may impair blood 

flow, affecting oxygen/nutrient supply to hepatocytes. To determine if liver function is 

maintained during infection, liver injury was measured by the detection of liver-specific 

enzymes and metabolites in the serum in the presence and absence of infection, as has 

been described elsewhere (Ramaiah, 2007). Normal serum concentrations of these 

components are listed in Table 3.2 (Mazzaccara et al., 2008). 

Analyte Male Female 

AST U/L 75 91 

55-91 51-122 

ALT U/L 61 55 

46-70 42-73 

ALP U/L 84 145 

67-128 103-217 

Total bilirubin 

μmol/L 

7.2 7.9 

5.1-11.9 3.4-14.3 

Table 3.2. Serum biochemical analytes measured in C57BL/6J mice aged 4-8 months. 

Median is shown in bold; 2.5th-97.5th percentile intervals are indicated below. Table 

adapted from (Mazzaccara et al., 2008). 
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Alkaline phosphatase (ALP) concentration is greater than reference levels in non-infected 

mice, but falls significantly at day 7 post-infection, before steadily recovering (Fig 3.15 A). 

Serum concentrations of alanine transaminase (ALT) in non-infected mice are comparable 

to reference values and are elevated at day 7 and 21, but return to baseline as the infection 

resolves (Fig 3.15 B). The concentration of aspartate transaminase (AST) is greater than 

standard values at day 0, and is elevated at day 7 and, to a greater extent, at day 21 post-

infection, but returns to normal as the infection resolves (Fig 3.15 C). The ratio of AST to 

ALT was calculated, however this remains fairly constant throughout infection (Fig 3.15 D). 

Similarly, the concentration of total bilirubin remains comparable to day 0 throughout 

infection (Fig 3.15 E). 

These data suggest a limited injury to hepatocytes between days 7 and 21, corresponding 

to the peak in liver pathology. As pathology is resolved, concentrations of leakage 

enzymes return to normal, and cholestatic injury markers generally remain comparable to 

day 0 values throughout infection. 
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3.73.73.73.7    DiscussionDiscussionDiscussionDiscussion 

Here we have described the kinetics of bacterial colonisation in the liver during our 

resolving systemic STm infection model. We have characterised the events which occur 

pathologically in the liver and have phenotyped and quantified leukocyte infiltration 

throughout infection.    

3.7.1 3.7.1 3.7.1 3.7.1 SalmonellaSalmonellaSalmonellaSalmonella    colonises the entire livercolonises the entire livercolonises the entire livercolonises the entire liver    

Salmonella are detected in the liver within 24 hours of i.p. infection and the bacterial load 

peaks at day 7. In comparison to other peripheral sites, the bacterial burden of the liver, 

although lower than the spleen, is greater than the lungs and kidney. Importantly, 

bacteraemia is relatively low, and this reflects that measured in human systemic NTS 

infections in sub-Saharan Africa, thus highlights the relevance of our infection model 

(MacLennan et al., 2008). 

By culturing distinct regions of the liver we identified that Salmonella are distributed 

throughout the entire tissue during the course of infection. This is an important 

observation because often certain regions of the liver can be more prone to pathology, 

both on the tissue surface and within. For example, lesions are frequently seen on the 

surface of smaller lobes, and necrotic tissue is more prominent towards the periphery of 

lobes, as identified by Haemotoxylin & Eosin staining (H&E) and by immunohistochemistry 

(IHC). Thus it is likely that the pathology we observe is immune mediated, and, although 

initiated by the presence of bacteria, not caused by the bacteria itself (for example by 

secreted bacterial toxins) (Nolan, 1981, Bilzer et al., 2006). Furthermore, this idea is 

supported by the relationship between the kinetics of bacterial load and pathology 

severity. Bacterial clearance is initiated by day 14 and is well established by day 21, as has 
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been shown previously in the spleen (Cunningham et al., 2007). However, we detect the 

most extensive infiltration and pathology in the parenchyma at around days 14-21, thus at 

a time when bacterial numbers are no longer at their peak. Therefore, it seems likely that 

the pathology we see in the liver is leukocyte- (as opposed to bacteria-) driven (Bilzer et 

al., 2006, Hsu, 1989). 

3.7.2 3.7.2 3.7.2 3.7.2 Inflammatory lesions develop in the parenchyma of the liverInflammatory lesions develop in the parenchyma of the liverInflammatory lesions develop in the parenchyma of the liverInflammatory lesions develop in the parenchyma of the liver    

Others have previously described the formation of lesions in the liver during systemic 

Salmonella infection in mice (Richter-Dahlfors et al., 1997, Mastroeni et al., 1995, 

Nakoneczna and Hsu, 1980). These studies have detected bacteria within host cells which 

are localised to inflammatory lesions (Everest et al., 1997, Richter-Dahlfors et al., 1997). 

Thus although we do not measure bacterial concentration within lesions, it is likely that 

this is where bacteria reside in our infection model also. 

We demonstrate the most abundant cells in lesions are F4/80+, F4/80+ CD11c+, and Ly6C+ 

myeloid populations. This is in general agreement with observations from other groups, 

taking into consideration differing kinetics of infections (Richter-Dahlfors et al., 1997). 

Based on our observations and flow cytometry data, we would conclude that inflammatory 

lesions are composed of both Kupffer cells and infiltrating monocyte populations, with a 

large increase in monocyte cell numbers post-infection. The F4/80+ CD11c+ staining of 

sinusoid localised cells would suggest that Kupffer cells maintain residence in this site 

during infection, as shown by others (Beattie et al., 2010). Previous studies have suggested 

that Kupffer cells do not overtly contribute to lesion composition, but we would argue that 

differing infection models using higher bacterial inoculums may account for this 

discrepancy (Richter-Dahlfors et al., 1997, Nnalue et al., 1992, Lin et al., 1987, Conlan and 
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North, 1992). Ly6C+ cells are also found in sinusoids but these are generally CD11c-. This 

indicates their monocyte phenotype as opposed to F4/80+ DC populations including 

monocyte derived dendritic cells (MoDC)/inflammatory DCs (infDCs) (Segura and 

Amigorena, 2013, Flores-Langarica et al., 2011, Hespel and Moser, 2012, Tam et al., 2008). 

However, the F4/80+ CD11c+ cells in the sinusoids (generally referred to here as Kupffer 

cells) could also consist of MoDCs. Monocyte-derived DCs prime Th1 cells in this infection 

in the spleen, therefore they may also be important for antigen presentation in the liver 

(Flores-Langarica et al., 2011). To differentiate between Kupffer cells and MoDCs in the 

sinusoids, further characterisation by additional markers is required by confocal 

microscopy. However, the current literature regarding inflammatory DC populations in the 

liver (including MoDCs), especially in bacterial infections, reflects the importance of these 

populations and this must be addressed in the future (Segura and Amigorena, 2013, 

Schreiber et al., 2011). 

Others have noted the abundance of polymorphonuclear (PMN) cells in inflammatory 

lesions following Salmonella infection (Nakoneczna and Hsu, 1980, Conlan, 1996). 

Although we do detect these cells in lesions (by both H&E and Ly6G+ staining), we would 

suggest these cells are not particularly frequent relative to other myeloid populations. 

Neutrophils may be more prominent in lesion composition at earlier time-points (Richter-

Dahlfors et al., 1997), however, it is important to note the differing infection models used 

by other groups (Mastroeni et al., 1995, Lin et al., 1987, Conlan and North, 1992, Hsu, 

1989). Often, high bacterial inoculums are used which may stimulate very different 

responses in the host repertoire of leukocytes. 
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3.7.2.13.7.2.13.7.2.13.7.2.1    T cells are locatedT cells are locatedT cells are locatedT cells are located    at the periphery of inflammatory lesionsat the periphery of inflammatory lesionsat the periphery of inflammatory lesionsat the periphery of inflammatory lesions    

In non-infected livers, CD3+ T cells are relatively rare and are located throughout the 

sinusoids, and are more commonly seen in portal regions. These cells are an even mix of 

CD4+ and CD8+ cells. Shortly after infection, the majority of T cells are CD4+, which is 

expected considering the necessity for CD4+ Th1 cells to mediate bacterial clearance 

(Ravindran et al., 2005). 

After infection, T lymphocytes preferentially localise to the periphery of inflammatory 

lesions and there are greater numbers of CD3+ T cells per lesion when pathology is most 

extensive. We hypothesised that T cells may play a role in the restriction of lesion growth 

in a similar manner to that seen by Tregs surrounding the islets of Langerhans cells in the 

pancreas during autoimmune inflammation, where these cells prevent islet infiltration 

(Sarween et al., 2004). Indeed we do detect some FoxP3+ Treg cells in these regions. 

However, in WT mice, although the majority of CD3+ cells are CD4+, the frequency of Tregs 

is low. Thus it is likely that the majority of CD3+ CD4+ T cells found at the lesion periphery 

are of Th1 and other phenotypes (Ravindran and McSorley, 2005). Considering the 

localisation of bacteria in these lesions (reported by others (Richter-Dahlfors et al., 1997)) 

and the high density of myeloid populations in lesion (observed here), it is likely that these 

CD4+ T cells may localise to these regions to interact with innate cells. A major function of 

activated Th1 cells is IFNγ production, and this will be discussed in the context of lesion 

development in the next chapter (Ramarathinam et al., 1993, Pie et al., 1997). In addition, 

the CD8+ T cells detected in the liver following infection, are also likely to play an important 

role in the host response; this is also discussed in Chapter 4. 
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3.7.3 3.7.3 3.7.3 3.7.3 The majority of The majority of The majority of The majority of CD4CD4CD4CD4++++    T cells are activated in the liverT cells are activated in the liverT cells are activated in the liverT cells are activated in the liver    

Flow cytometry enabled more extensive phenotyping of both CD4+ and CD8+ T cells in the 

liver in the presence and absence of infection. In a resting mouse, the majority (70%) of 

CD4+ T cells are effector (CD44+ CD62Llo), and most of the remaining CD4+ T cells are naïve 

(CD44- CD62L+). This has been described elsewhere (Mittrucker et al., 2002). The liver, due 

to its proximity to the gut and its extensive vascularisation, is constantly sampling the 

plethora of gut-derived antigens and is therefore an important effector tissue (Crispe, 

2011). In conjunction with our histological data, the CD4+ T cells detected at the lesion 

periphery must be generally activated, and are likely to be antigen specific (although we 

have not shown this) (Ravindran and McSorley, 2005). 

3.7.3.1 3.7.3.1 3.7.3.1 3.7.3.1 The frequency of CD8The frequency of CD8The frequency of CD8The frequency of CD8++++    T cells is increased as infection resolvesT cells is increased as infection resolvesT cells is increased as infection resolvesT cells is increased as infection resolves    

By measuring proportions and numbers of leukocytes during the course of infection, we 

have identified that, in line with the general dynamics of infiltration in the liver, most 

populations tend to increase in number, then decline as inflammation is resolved. 

Considering the dominance of the Th1 response in the control of STm infection, we were 

surprised by the accumulation of CD8+ T cells in the liver during the resolution stages. By 

histology, we have observed an even mix of CD4+ and CD8+ T cells in the absence of 

infection. During peak inflammation we detect a higher abundance of CD4+ T cells, and as 

infection resolves, we detect a more balanced T cell population. However, quantification 

by flow has highlighted the prominence CD3+ CD8+ cells, particularly at later time-points. 

CD8+ T cells increase in absolute number fairly steadily from around day 3 post-infection. 

This is probably due to increased leukocyte cellularity in the liver during the course of 

infection, because the proportion of total lymphocytes which are CD8+ remains constant 
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(at less than 10%) until at least day 7. From day 14, the proportion of CD8+ T cells increases 

significantly, thus suggesting that these cells are important later during infection. Indeed 

the majority (90%) of these cells are activated at day 35, and histological data indicates 

their location both in lesions and in the sinusoids. Others have reported expansion of CD8+ 

T cells during murine STm infection and have demonstrated the IFNγ-producing capabilities 

of these cells, following appropriate stimulation (Mittrucker et al., 2002). However, the 

mechanisms behind CD8+ T cell contribution to Salmonella immunity are less well 

understood. The function of these cells is partly addressed using CD8-/- mice, and is detailed 

in Chapter 4. 

3333.7.4 .7.4 .7.4 .7.4 Hepatocyte Hepatocyte Hepatocyte Hepatocyte injuryinjuryinjuryinjury    is detected but liver function is maintained as infiltration is detected but liver function is maintained as infiltration is detected but liver function is maintained as infiltration is detected but liver function is maintained as infiltration 

infiltration resolvesinfiltration resolvesinfiltration resolvesinfiltration resolves    

During typhoid fever, abnormal liver function has been reported by biochemical read-outs, 

although this has not been directly linked with overt pathology (Huang et al., 2005, 

Ramachandran et al., 1974). We detect heightened concentrations of hepatocyte leakage 

enzymes ALT and AST, at times when severe pathology is observed in the liver. Detection 

of these proteins in the blood can indicate membrane damage to hepatocytes, thus the 

term “hepatocyte leakage enzyme” (Ramaiah, 2007). Thus inflammation may induce some 

level of hepatocyte injury (Tacke et al., 2009, Zimmermann et al., 2012). The phenotype we 

observe resolves as infiltration is controlled thus there is no lasting evidence of hepatocyte 

injury. It should be noted that variability between mice at each time-point was quite high, 

making interpretation difficult, especially of cholestatic injury markers. In addition, ALT is 

not completely liver-specific, thus can be detected in the serum upon muscle cell damage 

and haemolysis (Ramaiah, 2007). AST is also present in erythrocytes and skeletal muscle, 
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thus its detection in serum doesn’t necessarily indicate liver-specific injury (Ramaiah, 

2007). Furthermore, anaemia and the associated haemolysis are strongly associated with 

systemic NTS infection (discussed further in Chapter 6) (Mabey et al., 1987). These 

phenotypes may contribute to elevated ALT and AST serum concentrations.  

3.7.5 3.7.5 3.7.5 3.7.5 Parenchymal necrosisParenchymal necrosisParenchymal necrosisParenchymal necrosis    

We observed necrotic regions at the centre of inflammatory lesions, which we believe to 

be composed of necrotic hepatocytes due to the presence of remaining nuclei (S. 

Hubscher, personal communication). Necrotic sites can be extensive and, although 

distributed throughout the parenchyma, tend to be more common at the periphery of 

sections (although this has not been quantified). Necrotic regions are always surrounded 

by leukocytes, which are always absent from the necrotic centres of foci. Similar regions 

have been described elsewhere, both in association with typhoid fever and with systemic 

NTS infection (Richter-Dahlfors et al., 1997, Mallory, 1898) (Rubin & Weinstein, 1977). 

Others have eluded to restricted hepatocyte blood supply due to sinusoidal occlusion by 

infiltrating leukocytes as an explanation of this necrosis (Richter-Dahlfors et al., 1997, 

Mallory, 1898). In addition, STm is known to induce apoptosis of host cells during the 

infection process (Richter-Dahlfors et al., 1997). Thus we may be detecting both necrosis 

and apoptosis, and further investigation is required to differentiate between the two. 

3.7.6 3.7.6 3.7.6 3.7.6 SummarySummarySummarySummary    

These data illustrate the extensive accumulation of both myeloid and lymphoid 

populations in the liver during infection. While it is likely that this is largely due to leukocyte 

infiltration, it is worth acknowledging the haematopoietic capabilities of the liver due to 

the presence of pluripotent stem cells in this site in adult mice (Taniguchi et al., 1996). Flow 
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cytometry in conjunction with histology provides substantial evidence as to which cells are 

in the liver, where they are distributed, and their dynamics during the course of infection. 

This provides useful information regarding which cells may be important in the driving of 

and the regulation of hepatic pathology. Some remaining questions particularly with regard 

to the role of particular cell types and signalling components, such as IFNγ, will be 

addressed in the next chapter. 
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CHAPTER 4: CHAPTER 4: CHAPTER 4: CHAPTER 4:     

THE REGULATION OF INFLAMMATION IN THE LIVERTHE REGULATION OF INFLAMMATION IN THE LIVERTHE REGULATION OF INFLAMMATION IN THE LIVERTHE REGULATION OF INFLAMMATION IN THE LIVER    

4.1 Introduction4.1 Introduction4.1 Introduction4.1 Introduction    

We showed in Chapter 3 the kinetics and constitution of inflammatory lesions in the liver 

during infection, with pathology peaking in severity when bacterial clearance is well 

established. This suggested that this pathology may be immune cell-mediated and driven 

by the pro-inflammatory environment rather than a direct response to the bacteria (Bilzer 

et al., 2006, Hsu, 1989). To further dissect the immunological response to infection in the 

liver we wanted to identify key cell types and molecular components which may be 

required for the development of inflammatory foci. 

Previous studies have histologically identified multiple cell types which contribute to 

pathological lesions in the liver during murine systemic NTS infections (Nakoneczna and 

Hsu, 1980, Richter-Dahlfors et al., 1997, Mastroeni et al., 1995). In addition, some of the 

key cytokines involved in this pathology have been identified, although how these 

signalling components contribute to the process is less well understood (Mastroeni et al., 

1995, Everest et al., 1997, Mastroeni et al., 1998). Furthermore, there is far less evidence 

describing to what extent individual inflammatory populations contribute functionally to 

the progression of lesion development beyond simple observation of the cells present. In 

Chapter 3, the leukocyte populations which accumulate in the liver during infection were 

rigorously phenotyped, therefore we have a clear understanding of which cells are present. 

In this Chapter, we sought to understand which of these cells and their associated 
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molecular products are required for lesion development. To our knowledge, this approach 

to understanding hepatic pathology during systemic NTS infection is novel. 

To determine the contribution of individual cellular populations to the development of 

inflammatory lesions, mice which lacked specific immune cells or signalling mediators such 

as transcription factors and cytokines were infected and livers were examined at day 7 

post-infection. Where possible, this analysis included both histological observation and 

flow cytometric analyses. The day 7 time-point was consistently used because 

inflammatory lesions are fully established in WT mice at this time and so it provides ample 

opportunity for comparison. 

4.4.4.4.1.21.21.21.2    Aim of studyAim of studyAim of studyAim of study    

In this chapter we investigate how inflammatory lesions develop in the liver during 

infection. Here we: 

• Identify immune cells or molecules which are required for the development of 

inflammatory lesions during infection (using genetically altered mice); 

• Identify immune cells or molecules which regulate leukocyte accumulation in the 

liver during infection (using genetically altered mice); 

• Determine whether the IFNγ necessary for inflammation is derived from a 

haematopoietic or non-haematopoietic source (by generating bone marrow 

radiation chimeric mice); 

• Examine the role of Tbet in the relationship between CD4+ Th1 cells and Treg cells 

during inflammation in the liver. 

 



134 

 

RESULTS 

4.24.24.24.2    Inflammatory lesions develop in the liver in the absence of adaptive Inflammatory lesions develop in the liver in the absence of adaptive Inflammatory lesions develop in the liver in the absence of adaptive Inflammatory lesions develop in the liver in the absence of adaptive 

immune cellsimmune cellsimmune cellsimmune cells    

To determine whether inflammatory lesions can develop in the absence of T and B cells, 

we used Rag-1-deficient mice. Livers from non-infected Rag-1-/- mice are similar to those 

from non-infected WT mice, albeit slightly larger, as shown by H&E staining and 

immunohistochemistry (IHC) (Fig 4.1 A-C). 

Rag-1-deficient mice were infected alongside WT mice as described in Chapter 2 and livers 

were examined for pathology and leukocyte infiltration after 7 days. After infection, 

hepatomegaly in Rag-1-deficient mice is similar or less severe to that in WT mice, and the 

bacterial burden of the liver is slightly elevated (Fig 4.2 A-B). In the absence of B and T cells, 

livers tend to have a greater severity of pathology on the exterior of the tissue (Fig 4.2 C). 

Within the liver, inflammatory lesions still form in Rag-1 deficient mice, but are frequently 

smaller and more diffuse (Fig 4.2 D-E). Lesions contain single F4/80+, CD11c+, and double 

F4/80+ CD11c+ cells as in WT mice, however, there are more cells in the sinusoids and in 

portal regions in Rag-1 deficient mice (Fig 4.2 E and data not shown). 
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Flow cytometry was used to quantitatively assess the extent of leukocyte infiltration at day 

7 post-infection in WT and Rag-1-deficient mice. Interestingly, total leukocyte cellularity of 

the liver is similar or elevated in the absence of lymphocytes (Fig 4.2 F). Representative 

FACS plots of myeloid staining are shown in Figure 4.2 G. Absolute numbers of Kupffer cells 

and monocytes are higher in Rag-1-deficient mice relative to WT, and a greater proportion 

of F4/80+ Ly6Glo cells are monocytes (Fig 4.2 H-J). Absolute numbers and frequencies of 

Ly6Ghi and Ly6G+ cell populations are also higher in Rag-deficient mice (Fig 4.2 K-L). These 

data suggest that inflammation in the liver is not lymphocyte driven and lesion 

development does not require B or T cells. However, due to the more diffuse infiltration 

observed in the liver, either B or T cells or both cell types may be required for optimal 

inflammatory restriction. 

4.34.34.34.3    InflammatoInflammatoInflammatoInflammatory lesions develop normally in the absence of B cellsry lesions develop normally in the absence of B cellsry lesions develop normally in the absence of B cellsry lesions develop normally in the absence of B cells    

To elucidate whether the importance of lymphocytes in hepatic immune regulation is B 

and/or T cell mediated, we examined inflammation in the livers of IgHκ-/- mice, which lack 

B cells specifically. In the absence of infection, livers from B cell-deficient mice resemble 

those from WT mice in size and histology (Fig 4.3 A and data not shown). Leukocytes 

isolated from IgHκ-/- and WT livers were examined by flow cytometry. In resting mice, the 

leukocyte cellularity is similar, as are the absolute numbers of all myeloid populations 

examined (despite variability between mice) (Fig 4.3 B-H). The proportions of Kupffer cells 

and monocytes are lower and higher respectively in mice lacking B cells, thus the ratio of 

Kupffer cells to monocytes is slightly less in these mice (Fig 4.3 E-F). Absolute numbers and 

frequencies of CD3+ CD4+ T cells are similar to WT (Fig 4.3 I-K). 
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At day 7 post-infection, hepatomegaly and bacterial burden are similar in IgHκ-/- and WT 

mice, supporting previous studies which show B cells are not required for bacterial 

clearance at this time (Fig 4.4 A-B) (McSorley and Jenkins, 2000). However, IgHκ-/- mice 

tend to have more overt pathology on the tissue exterior than in WT mice, frequently with 

white lesions on the surface of the smaller hepatic lobes (Fig 4.4 C). However, inflammatory 

lesions in the liver resembled those of WT mice (Fig 4.4 D). Both F4/80+ cells and CD11c+ 

cells and F4/80+ CD11c+ cells are found in lesions and T cells are peripherally-located (Fig 

4.4 E and data not shown). The frequency of cells in the sinusoids is similar to that in WT 

mice.  

Leukocyte cellularity after infection is equivalent to WT in IgHκ-/- mice (Fig 4.4 F). The 

number of Kupffer cells is the same, although the proportion of total F4/80+ Ly6Glo cells of 

this phenotype is lower in IgHκ-/- mice (Fig 4.4 G-J). Monocyte numbers are greater in the 

absence of B cells, and the proportion of these cells is increased 3-4 fold (Fig 4.4 G-J). 

However, both these phenotypes may be explained by the higher than usual ratio of 

Kupffer cells to monocytes in WT mice in this experiment. Number and frequency of Ly6Ghi 

cells are significantly increased in the absence of B cells, whereas Ly6G+ cells are more 

similar to WT (Fig 4.4 K-L). 

Representative FACS plots of CD4+ T cell staining are shown in Figure 4.4 M. The proportion 

of total lymphocyte-sized cells which are CD4+ is significantly increased in the absence of B 

cells although the absolute number of these cells is similar to in WT mice (Fig 4.4 N-O). 

There is a greater number and frequency of naïve CD4+ T cells in the absence of B cells and 

the proportion of activated CD4+ T cells is significantly lower.  
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These data highlight an inherent inflammatory phenotype in mice lacking B cells, whereby 

monocytes are increased in the liver. This phenotype is maintained following infection, and 

is accompanied by elevated numbers of naïve CD4+ T cells. 

4.44.44.44.4    T cells are dispensable for the development of inflammatory lesions but do T cells are dispensable for the development of inflammatory lesions but do T cells are dispensable for the development of inflammatory lesions but do T cells are dispensable for the development of inflammatory lesions but do 

contribute to hepatic inflammationcontribute to hepatic inflammationcontribute to hepatic inflammationcontribute to hepatic inflammation    

Having shown that B cells do not contribute to inflammatory lesion development, we were 

keen to determine whether T cells have a role in hepatic inflammation. To test this we 

infected WT and TCRβδ-/- mice, whereby both αβ and γδ T cells are absent, and examined 

liver inflammation at day 7 post-infection. TCRβδ-/- mice have slightly larger livers in the 

absence of infection than WT mice, but these are histologically similar (Fig 4.5 A and data 

not shown). 

After infection, livers from T cell-deficient mice are significantly larger than those from WT 

mice, although they have similar bacterial burdens at this stage (Fig 4.5 B-C). The external 

appearance of T cell-deficient livers can be variable (data not shown). Inflammatory lesions 

are present in T cell-deficient mice but inflammation across the entire tissue appears more 

diffuse than in T cell-sufficient mice (Fig 4.5 D). Lesions consist of the same myeloid 

populations as are detected in WT mice (Fig 4.5 E). 

Leukocyte cellularity is similar to WT livers after infection, despite the absence of T cells 

(Fig 4.5 F). Myeloid populations were examined by flow cytometry and representative FACS 

plots of cells are shown in Figure 4.5 G. In the absence of T cells, there is a more marked 

increase in absolute number and frequency of monocytes than in WT livers (Fig 4.5 H-J).  
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Absolute numbers of Kupffer cells are similar to those in WT mice, although the proportion 

of F4/80+ Ly6Glo cells which are Kupffer cells is reduced (Fig 4.5H-J). Proportions and 

numbers of all Ly6G+ populations are greater than those in WT, although not significantly 

(Fig 4.5 K-L). The gating strategy used to phenotype DC populations is shown in Figure 4.5 

M. Total DCs (CD11c+ CD3- CD19-) are significantly heightened in the absence of T cells and 

this is seen in all five DC subclasses examined (Fig 4.5 N-P). 

4.4.4.4.5555    There arThere arThere arThere are subtle integral abnormalities in leukocytes in e subtle integral abnormalities in leukocytes in e subtle integral abnormalities in leukocytes in e subtle integral abnormalities in leukocytes in TbetTbetTbetTbet----deficient deficient deficient deficient liverliverliverliverssss    

Having identified differences in the response in TCRβδ-/- mice, we wanted to examine 

whether a loss of specific T helper lineage-associated factors contributes to this. The 

importance of Th1 cells in the control of Salmonella infection in mice is known (Ravindran 

et al., 2005, Pie et al., 1997). Therefore Tbet-/- mice, which have a defective capacity to 

induce Th1 cells, were infected alongside WT mice, and livers were examined at day 7 post-

infection. 

Livers from non-infected Tbet-deficient mice are similar in mass, appearance and histology 

to WT (Fig 4.6 A and data not shown). To identify any integral anomalies in leukocyte 

composition in the absence of Tbet, livers were examined by flow cytometry. In the 

absence of infection, livers from both strains have a similar leukocyte cellularity (Fig 4.6 B). 

Representative FACS plots of myeloid cells are shown and absolute numbers of all 

populations examined are similar in the absence of Tbet (Fig 4.6 C-H). However, the relative 

proportions of Kupffer cells and monocytes are higher and lower, respectively, than in WT 

livers (Fig 4.6 C-H). 
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There are subtle differences in the T cell populations of Tbet-deficient mice, and 

representative FACS plots are shown (Fig 4.6 I). Total CD3+ CD4+ T cell numbers are reduced 

and this is due to significantly reduced activated CD4+ T cells (Fig 4.6 J). Whilst naïve CD4+ 

T cell numbers are equivalent to WT, the proportion of these cells (out of total CD3+ CD4+ 

cells) is significantly higher (Fig 4.6 J-K). Numbers of CD3+ CD8+ T cells are similar to WT 

although a significantly greater proportion of leukocytes are CD8+ in the absence of Tbet 

(Fig 4.6 L-M). There are also significantly greater proportions of activated and lower 

proportions of naïve CD8+ T cells in Tbet-deficient mice (Fig 4.6 L-M). 

4.5.14.5.14.5.14.5.1    Tbet isTbet isTbet isTbet is    reqreqreqrequired for normal inflammatory lesion development in the liveruired for normal inflammatory lesion development in the liveruired for normal inflammatory lesion development in the liveruired for normal inflammatory lesion development in the liver    

After infection, Tbet-/- mice have greater hepatomegaly that WT mice and bacterial 

numbers are significantly higher (Fig 4.7 A-B). Livers from these mice have similar signs of 

external pathology to WT livers (data not shown). Although inflammatory lesions develop 

in Tbet-/- mice, these are smaller and less frequent than in WT mice, and contain fewer T 

cells (Fig 4.7 C-E). There is a tendency for a higher sinusoidal distribution of F4/80+, CD11c+ 

and F4/80+ CD11c+ cells. 

4.5.24.5.24.5.24.5.2    There is aThere is aThere is aThere is an enhancedn enhancedn enhancedn enhanced    regulatory environment in theregulatory environment in theregulatory environment in theregulatory environment in the    absence of Tbetabsence of Tbetabsence of Tbetabsence of Tbet    

Having identified a propensity for fewer CD3+ T cells at the periphery of inflammatory 

lesions in the absence of Tbet, and considering the inability of CD4+ cells to differentiate to 

Th1 cells in the absence of this transcription factor, we were interested in the phenotype 

of these peripheral CD3+ cells. We hypothesised that there could be an increase in Treg 

cells in lesions in the absence of Tbet. 
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To test this, we infected Tbet-deficient mice and looked for FoxP3+ T cells in the liver at day 

7 post-infection by IHC. In the absence of Tbet there are more CD3+ FoxP3+ cells detected 

in the liver after infection relative to WT mice (Fig 4.8 A-B). These cells are concentrated at 

the periphery of inflammatory lesions and in vascular regions. Total CD3+ cells and Tregs 

were quantified per lesion in WT and Tbet-/- mice. Tbet-/- mice have fewer CD3+ cells per 

lesion, yet more CD3+ FoxP3+ cells per lesion, thus the ratio of CD3+ FoxP3+ cells to CD3+ 

cells is far greater in Tbet-/- mice (Fig 4.8 C-E). These data suggest that the presence of Tbet 

promotes an inflammatory environment, thus reducing numbers of regulatory cells. 

Despite an increased Treg presence in Tbet-deficient mice, hepatic infiltration is 

substantial, as is indicated by increased leukocyte cellularity in the liver (Fig 4.9 A). 

Representative FACS plots of myeloid populations are shown in the absence of Tbet (Fig 

4.9 B). Numbers of all myeloid populations examined are elevated, and this is particularly 

marked in Ly6Ghi cells, the proportion of which doubles in the absence of Tbet (Fig 4.9 C-

G). Representative T cell FACS plots are shown in Figure 4.9 H.  

T cell numbers are equivalent to WT livers, although the percentage of total leukocytes 

which are CD3+ CD4+ cells are significantly lower, and of these cells, a significantly reduced 

proportion are activated (Fig 4.9 I-L). These data suggest in the absence of Th1 

differentiation there is a general increase in myeloid cells matched by a diminution of non-

FoxP3+ T cells in lesions. 

  



156 

 
 



157 

 
 



158 

 

 



159 

 

4.5.34.5.34.5.34.5.3    TbetTbetTbetTbet    expression in T cells drives an inflammatory expression in T cells drives an inflammatory expression in T cells drives an inflammatory expression in T cells drives an inflammatory phenotypephenotypephenotypephenotype    

To test if these phenotypic observations are associated specifically with Tbet expression in 

T cells, we generated mixed bone marrow chimeras whereby total T cell-deficient mice 

were irradiated and then reconstituted with bone marrow harvested from either Tbet-

sufficient or Tbet-deficient donor mice (Fig 4.10 A-B). Mice were infected as described 

above and livers were examined for inflammation at day 7 post-infection. 

Although liver mass is similar, mice which lack Tbet in T cells have a higher bacterial load in 

the liver at day 7 post-infection, suggesting Tbet expression in T cells plays some role in 

facilitating bacterial clearance (Fig 4.10 C-D). We investigated the dynamics of CD4+ T cell 

populations in these chimeric mice in more detail by flow cytometry, and representative 

FACS plots are shown (Fig 4.10 F). Despite equivalent leukocyte numbers being retrieved 

from livers of infected mice, there are approximately 6-fold fewer CD3+ CD4+ T cells in Tbet-

deficient chimera livers (Fig 4.10 E-G). These cells also make up a significantly lower 

proportion of total lymphocytes isolated from the liver (Fig 4.10 H). In addition, number 

and proportion of activated CD4+ T cells are significantly lower (Fig 4.10 G-H). These data 

indicate that Tbet in T cells is required for normal accumulation of CD4+ T cells in the liver 

during infection. 
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Considering that an absence of Tbet in CD4+ T cells renders these cells unable to 

differentiate into cells of a Th1 phenotype, we were interested to see if the fate of T cells 

is altered in Tbet-deficient T cells. We hypothesised that FoxP3+ T cell numbers may be 

altered in the absence of Tbet in T cells. Although absolute numbers of CD4+ FoxP3+ Tregs 

are lower in mice reconstituted with Tbet-deficient bone marrow, interestingly, the 

proportion of these cells is approximately doubled in these mice (Fig 4.10 G-H). Thus in the 

absence of Tbet in T cells, there is a heightened propensity for CD4+ T cells to differentiate 

into a regulatory, FoxP3-expressing phenotype. These data suggest a role for T cell-

expressed Tbet in driving a more pro-inflammatory (and less regulatory) environment. 

4.64.64.64.6    Inflammation is abrogated in the absence of IInflammation is abrogated in the absence of IInflammation is abrogated in the absence of IInflammation is abrogated in the absence of IFNFNFNFNγγγγ    

Interferon-γ is a Th1-associated cytokine, associated with macrophage activation during 

intracellular infections, and is important in the induction of inflammation in the liver 

following Salmonella infection (Kaufmann, 1993, Pie et al., 1997). To examine the role of 

IFNγ in our infection model, WT and IFNγ-deficient mice were infected as described above 

and liver inflammation was examined at day 7 post-infection. 

Non-infected livers from IFNγ-deficient mice tend to be slightly smaller than those of age-

matched WT mice, and this is far more apparent in spleen mass (Fig 4.11 A-B). 

Histologically, livers from both strains are similar (data not shown). Leukocyte cellularity is 

2-3-fold lower in IFNγ-deficient mice relative to WT, and this correlates with diminished 

numbers of all myeloid populations examined (Fig 4.11 D-I). Representative FACS plots of 

myeloid and T cell staining are shown (Fig 4.11 D and J). Numbers of CD3+ CD4+ T cells are 

also lower in IFNγ-deficient mice relative to WT, and this is reflected in all sub-populations 

examined (Fig 4.11 K-L). 
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At day 7 post-infection, whilst hepatomegaly is observed in IFNγ-deficient mice, it is 

generally not to the same extent as in WT (Fig 4.12 A). This contrast is far more apparent 

in splenomegaly, whereby spleen mass increases by a median 5-fold at day 7 in WT mice, 

and only by a median 2-3 fold in IFNγ-deficient mice (Fig 4.12 B). The median bacterial 

burden of the liver is 10-fold greater in mice lacking IFNγ, however, pathology is much 

lower (Fig 4.12 C-D). Livers from infected IFNγ-/- mice histologically resemble those from 

non-infected mice with occasional, sporadic inflammatory lesions. The absence of 

inflammatory F4/80+ and CD11c+ cells following infection is immediately apparent, as is the 

lack of T cells (Fig 4.12 D-E and data not shown). 

Leukocyte cellularity of IFNγ-/- mice is lower than in WT mice following infection; absolute 

numbers of all myeloid populations examined are lower, although there is an increased 

proportion of monocytes (Fig 4.13 A-G). Similarly, numbers of CD3+ CD4+ and CD8+ T cell 

populations are lower in IFNγ-/- mice, however, there are greater proportions of naïve CD4+ 

and CD8+ T cells in the absence of IFNγ (Fig 4.13 H-L). These data support previous 

observations of deficient inflammation in the liver during bacterial infections/endotoxin 

treatment in the absence of IFNγ signalling (Hess et al., 1996, Toyonaga et al., 1994, Car et 

al., 1994). 
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4.6.1 4.6.1 4.6.1 4.6.1 IFNIFNIFNIFNγ in haematopoietic cells is required for γ in haematopoietic cells is required for γ in haematopoietic cells is required for γ in haematopoietic cells is required for hepatic hepatic hepatic hepatic pathologypathologypathologypathology    

We next investigated the source of IFNγ necessary to drive inflammation in the liver during 

infection. To test this, we generated irradiation bone marrow chimeric mice whereby WT 

and IFNγ-deficient mice were irradiated and then reconstituted with either IFNγ-sufficient 

or IFNγ-deficient bone marrow cells from donor WT or IFNγ-/- mice. This enabled us to 

decipher whether the IFNγ necessary for inflammation and control of bacterial replication 

is derived from haematopoietic or non-haematopoietic populations. As control groups, we 

also generated chimeric mice whereby irradiated WT mice were reconstituted with WT 

donor bone marrow and irradiated IFNγ-/- mice were reconstituted with IFNγ-/- donor bone 

marrow (Fig 4.14 A-D). This enabled confirmation that any phenotypes were not simply 

effects of the procedure. Mice were infected as described and inflammation in the liver 

was examined at day 7 post-infection. 

Liver mass in the WT to WT group is equivalent to that of normal WT (non-chimeric) mice 

at day 7, suggesting hepatomegaly occurs as normal in this group (in the absence of non-

infected chimera controls, this provided a point of comparison) (Fig 4.15 A). Similarly, IFNγ-

/- mice reconstituted with IFNγ-/- bone marrow, had smaller livers than the WT to WT group, 

as in straight non-chimeric IFNγ-/- mice. Hepatomegaly occurs in both the mixed bone 

marrow groups, suggesting IFNγ from either haematopoietic or non-haematopoietic cells 

can drive this phenotype, but that IFNγ is required. 

Bacterial burden is similar in mice receiving WT bone marrow (despite hosts being IFNγ-

sufficient or deficient), suggesting that IFNγ from haematopoietic cells is required for 

control of bacterial replication (Fig 4.15 B). Mice which lack all IFNγ have significantly higher 

bacterial loads than either of the WT donor cells groups.  
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When IFNγ is only available from non-haematopoietic sources, bacterial load is variable, 

suggesting that IFNγ from non-haematopoietic cells contributes to but cannot always 

control bacterial replication. In summary, hepatomegaly and bacterial burden are similar 

in mice which can produce IFNγ and this suggests that at this stage of the infection, there 

is some compensation for loss of IFNγ between different cellular sources. 

This is also reflected by the extent of inflammation observed histologically. In the WT to 

WT group, inflammatory lesions form in the liver as they do in WT non-chimeric mice and 

show a similar cellular heterogeneity (Fig 4.15 C and data not shown). Inflammation and 

lesion development is seen to an equivalent extent in IFNγ-deficient mice which are 

reconstituted with WT bone marrow cells. However, mice which lack all IFNγ have reduced 

hepatic inflammation and lesion development. Lesions in these mice are less defined, 

although there is more inflammation than is seen in straight IFNγ-/- (non-chimeric) mice (as 

shown in Figure 4.12 E). This suggests that the chimera generation process intrinsically 

induces some degree of hepatic inflammation. 

The significant finding is that when IFNγ is only available from non-haematopoietic sources 

(when irradiated WT mice are reconstituted with IFNγ-/- marrow cells), inflammation and 

lesion development is substantially diminished in the liver (Fig 4.15 C). There is a lack of 

sinusoidal F4/80+ cell accumulation and the few lesions which form are rare and are 

generally far smaller than those in IFNγ-sufficient mice. These data demonstrate that IFNγ 

from haematopoietic (bone marrow-derived) sources is required for hepatic inflammation 

and lesion development during infection. 
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4.6.24.6.24.6.24.6.2    IFNγ from haematopoieIFNγ from haematopoieIFNγ from haematopoieIFNγ from haematopoietic sources drives Kupffer celltic sources drives Kupffer celltic sources drives Kupffer celltic sources drives Kupffer cell    but not monocyte or but not monocyte or but not monocyte or but not monocyte or 

or neutrophil accumulation in the liveror neutrophil accumulation in the liveror neutrophil accumulation in the liveror neutrophil accumulation in the liver    

Leukocyte populations isolated from the liver were quantified in these chimeric mice, at 

day 7 post-infection by flow cytometry. Total cells retrieved during leukocyte isolation from 

livers is similar in all 4 groups of mice (Fig 4.16 A). Absolute number and proportion of 

Kupffer cells tends to be lower in mice reconstituted with bone marrow from IFNγ-/- mice 

(Fig 4.16 B-C). In contrast, absolute numbers of monocytes are similar in all groups of mice, 

and an increased proportion of F4/80+ Ly6Glo cells are of monocyte phenotype in both 

groups of mice reconstituted with IFNγ-deficient bone marrow (Fig 4.16 C). This suggests 

that monocyte infiltration into the liver is not dependent on haematopoietic-derived IFNγ 

but that the accumulation of F4/80+ Kupffer cells is more haematopoietic-derived IFNγ-

dependent. Thus Kupffer cell accumulation requires haematopoietic IFNγ to some extent. 

This supports the histology whereby the majority of F4/80+ cells are single positive (they 

do not express CD11c) in mice reconstituted with IFNγ-deficient bone marrow (Fig 4.15 C). 

In contrast, many F4/80+ cells also express CD11c (black cells) in mice reconstituted with 

WT bone marrow, suggestive of Kupffer cell CD11c expression. Furthermore, the ratio of 

Kupffer cells to monocytes is generally higher in mice receiving WT bone marrow (Fig 4.16 

D). This emphasises the more monocyte-dominant environment (reduced Kupffer cell 

accumulation) in the absence of haematopoietic-derived IFNγ.  

Absolute numbers and proportions of Ly6Ghi cells are slightly elevated in all groups of 

chimeric mice relative to the WT to WT group (Fig 4.16 E). In contrast, the proportion (and 

to some extent) the absolute number of Ly6G+ cells is reduced in IFNγ-deficient recipient 

mice (Fig 4.16 E).  
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This suggests that non-bone marrow-derived IFNγ is necessary to some extent for Ly6G+ 

cell accumulation in the liver during infection, but that haematopoietic IFNγ can 

supplement this to some extent. 

4444.6.3 .6.3 .6.3 .6.3 CD8CD8CD8CD8++++    but not but not but not but not CD4CD4CD4CD4++++    T cell dynamics are altered in the absence of T cell dynamics are altered in the absence of T cell dynamics are altered in the absence of T cell dynamics are altered in the absence of 

haematopoietic IFNγhaematopoietic IFNγhaematopoietic IFNγhaematopoietic IFNγ    

Representative FACS plots of T cell populations are shown in Figure 4.17 A. Absolute 

numbers of CD3+ CD4+ T cells are similar in all groups, as are proportions of sub-populations 

of these cells (Fig 4.17 B-C). Whilst absolute numbers of CD3+ CD8+ T cells are similar in all 

groups, there are some small differences, particularly in proportions. Numbers and 

proportions of activated and naïve CD8+ T cells are slightly reduced and slightly heightened 

respectively in groups with recipient IFNγ-deficient mice (Fig 4.17 D-E). The percentage of 

memory CD8+ T cells is increased in all groups apart from the WT to WT group (Fig 4.17 E). 

These data suggest that CD4+ T cell accumulation in the liver during infection is not IFNγ-

dependent but that CD8+ T cell sub-populations vary when IFNγ is available from different 

sources. 

4444.7 .7 .7 .7 Inflammatory and antiInflammatory and antiInflammatory and antiInflammatory and anti----inflammatory cytokinesinflammatory cytokinesinflammatory cytokinesinflammatory cytokines    

To examine the host response in the absence of other cytokines associated with 

inflammation, we infected mice deficient in TNFαR, IL6 or IL10 and assessed hepatic 

inflammation at day 7 post-infection. 
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4444.7.1 .7.1 .7.1 .7.1 Inflammatory lesions develop in tInflammatory lesions develop in tInflammatory lesions develop in tInflammatory lesions develop in the liver in the absence of TNFαhe liver in the absence of TNFαhe liver in the absence of TNFαhe liver in the absence of TNFαR signallingR signallingR signallingR signalling    

signallingsignallingsignallingsignalling    

In the absence of infection, liver mass is similar between WT and TNFαR-/- mice (Fig 4.18 

A). For flow cytometric analysis, non-infected WT and TNFαR-/- livers were taken from mice 

on different days. Absolute numbers of myeloid cells and T cells are generally similar or 

lower than in WT, however, a lower proportion of cells are CD8+ and the distribution of 

CD8+ sub-populations is altered whereby there is a significantly lower percentage of central 

memory cells and a significantly higher percentage of naïve cells (Fig 4.18 B-K).  

At day 7 post-infection, the mass and bacterial burden of TNFαR-/- livers are similar to WT 

(Fig 4.19 A-B). Inflammatory lesions are present in TNFαR-/- mice, indicating that signalling 

via this receptor is not required for lesion formation (Fig 4.19 C). However, fewer 

leukocytes are retrieved from livers of TNFαR-/- mice relative to WT (Fig 4.19 D). Absolute 

numbers and proportions of all myeloid populations are decreased, with the exception of 

an increased proportion of F4/80+ Ly6Glo cells which are Kupffer cells (Fig 4.19 E-H). T cells 

are comparable in number and constituent to in WT livers (Fig 4.19 K-O). Whilst total 

CD11c+ cells are reduced in the absence of TNFαR, the dynamics of subsets are altered, 

whereby the proportion of myeloid and mixed myeloid/lymphoid DCs are greater than in 

WT (Fig 4.19 P-R). Thus whilst there are some alterations in leukocyte constituency, in 

particular the reduced accumulation of Kupffer cells, monocytes and DCs, loss of the 

inflammation-associated TNFαR molecule induces a distinct phenotype that differs to that 

associated with loss of IFNγ. Importantly, inflammatory lesions develop in the absence of 

TNFαR. 
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4444.7.2 .7.2 .7.2 .7.2 Inflammation is enhanced in the absence of IL10Inflammation is enhanced in the absence of IL10Inflammation is enhanced in the absence of IL10Inflammation is enhanced in the absence of IL10    

In the absence of infection, IL10-deficient livers are of a similar mass and appearance to 

those of WT mice, and leukocyte distribution in the liver is similar (Fig 4.20 A and D, and 

data not shown). However, with the usual 5 x 105 dose of attenuated STm, IL10-/- mice show 

greater clinical signs after infection, so are typically infected with only one fifth of this (1 x 

105 CFU). Mice were infected with this lower dose, and responses were assessed in the 

liver after 7 days. 

Using this reduced inoculum, hepatomegaly can be less extensive in WT mice whereas, 

hepatomegaly in IL10-/- mice is substantial (Fig 4.20 B). Bacterial load of the liver is 

significantly lower in IL10-/- mice, despite these mice showing more clinical symptoms 

(lethargy, dishevelled fur, squinty). Inflammation in WT livers is less severe in response to 

the reduced bacterial infection dose, however, small foci do still form (Fig 4.20 E). 

Inflammatory lesions are more pronounced in IL10-/- livers. These data indicate that 

inflammation in the liver is enhanced in the absence of IL10, and that this is independent 

of bacterial load. 

4444.7.3 .7.3 .7.3 .7.3 IL6 is not required for inflammatory lesion development in the liverIL6 is not required for inflammatory lesion development in the liverIL6 is not required for inflammatory lesion development in the liverIL6 is not required for inflammatory lesion development in the liver    

We assessed responses in the liver in mice lacking IL6 at day 7 post-infection. IL6-deficient 

mice have significantly larger livers than WT mice in the absence of infection, and this is 

visually apparent upon dissection (Fig 4.21 A). After infection, IL6-/- livers can reach up to 

3g in mass; approximately 30% larger than WT infected livers, however, bacterial burden 

is similar to WT (Fig 4.21 B-C). Furthermore, inflammatory lesions develop normally and 

have a similar distribution of leukocyte infiltrate to that seen in WT mice (Fig 4.21 D).  
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From these data we conclude that IL6 signalling is not necessary for inflammatory lesion 

development during infection. 

4444.8 .8 .8 .8 Hepatic Hepatic Hepatic Hepatic pathology is exacerbated ipathology is exacerbated ipathology is exacerbated ipathology is exacerbated in the absence of IL4n the absence of IL4n the absence of IL4n the absence of IL4    

To investigate the role of other T cell subsets in the host response to infection, we infected 

mice deficient in IL4, IL4Rα, CD8 or CD1d and examined the livers after 7 days. Interleukin 

4 is typically associated with Th2 responses and plays a role in controlling a number of 

processes such as Th2 differentiation, IgE switching, and in some inflammatory diseases 

such as asthma (Swain et al., 1990). Non-infected mice which lack IL4 resemble WT livers 

in both size and appearance (Fig 4.22 A and data not shown). 

At day 7 post-infection, IL4-deficient livers are similar in size and bacterial burden to WT, 

yet show evidence of enhanced pathology (Fig 4.22 B-F). White lesions can be seen to a far 

greater extent than in WT mice, and these are particularly prominent at the periphery of 

lobes. In addition, there is a greater tendency for extensive necrotic regions, especially 

towards the edges of lobes in IL4-deficient livers (Fig 4.22 G). These are less common and 

far less extensive in WT livers. Inflammatory lesions develop in the livers of IL4-/- mice, but 

these tend to be smaller and more frequent than those seen in WT livers (Fig 4.22 H). These 

data suggest that IL4 may have a protective role during infection, thus minimising immune-

mediated tissue damage. 
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4444.8.1 .8.1 .8.1 .8.1 Inflammation in IL4RαInflammation in IL4RαInflammation in IL4RαInflammation in IL4Rα----deficient mice resembles WTdeficient mice resembles WTdeficient mice resembles WTdeficient mice resembles WT    

To determine whether this pathology is exacerbated by a loss of multiple Th2 cytokines, 

experiments were repeated in IL4Rα-/- mice, which are also deficient for IL13 signalling 

(Mohrs et al., 1999). Livers from non-infected IL4Rα-/- mice are a similar size and 

appearance to WT livers (Fig 4.23 A and data not shown). At day 7 post-infection, both mice 

have similar sized livers and bacterial burdens, however, the exterior pathology can be 

more severe in IL4Rα-deficient mice (although this is variable) (Fig 4.23 B-E). Despite this, 

inflammatory lesions develop similarly to those in WT mice (Fig 4.23 F). These data suggest 

that the enhanced pathology in IL4-deficient mice may be specific to IL4 as the phenotypes 

are not observed to the same extent in the absence of IL4Rα. 

4444.9 .9 .9 .9 CD8 plays a role in accumulation of myeloid populations in the liver during CD8 plays a role in accumulation of myeloid populations in the liver during CD8 plays a role in accumulation of myeloid populations in the liver during CD8 plays a role in accumulation of myeloid populations in the liver during 

infectioninfectioninfectioninfection    

To investigate the role of CD8 in hepatic inflammation, mice lacking CD8 were infected and 

livers were examined at days 7 and 35 post-infection. In the absence of infection, liver mass 

and leukocyte cellularity are equivalent in CD8-/- and WT mice, and myeloid populations 

are similar (Fig 4.24 A-H). Absolute numbers of CD4+ T cells detected are similar to WT with 

the exception of fewer activated CD4+ T cells (Fig 4.24 I-J). However, proportions of CD4+ T 

cells are altered in the absence of CD8, whereby the proportion of activated T cells is lower 

and there are increased proportions of naïve and central memory cells (Fig 4.24 K). 
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Liver mass in CD8-/- mice is slightly increased at day 7 and decreased at day 35, relative to 

WT, although this is not statistically significant (Fig 4.25 A). The bacterial burden is similar 

to that of WT livers at day 7 post-infection, but is approximately 2-fold higher in CD8-/- mice 

at day 35, suggesting CD8 plays some role in bacterial clearance at later stages of infection 

(Fig 4.25 B). Absolute numbers of leukocytes isolated from livers are similar in each strain 

at both time-points (Fig 4.25 C). Numbers of all myeloid subsets are not more than 2-fold 

different to WT mice at either time-point, however, the proportion of F4/80+ Ly6Glo cells 

which are Kupffer cells is lower at both time-points and the proportion of monocytes is 

increased, relative to WT (Fig 4.25 D-I). The ratio of Kupffer cells to monocytes is lower in 

CD8-/- mice at both time-points, although this does not reach statistical significance (Fig 

4.25 G). 

Absolute numbers of all CD4+ T cell subsets are higher at day 7 in CD8-deficient mice, 

although are all proportionally similar to WT (Fig 4.25 J-L). At day 35, all CD4+ T cell numbers 

and proportions are comparable to WT (Fig 4.25 J-L). These data indicate that CD8 plays a 

role in myeloid cell accumulation in the liver during infection, however, whether this is due 

to CD8 expression by T cells or other cell types is unknown. 

4444.10 .10 .10 .10 Invariant natural killer T cells coordinInvariant natural killer T cells coordinInvariant natural killer T cells coordinInvariant natural killer T cells coordinate myeloid and lymphoid ate myeloid and lymphoid ate myeloid and lymphoid ate myeloid and lymphoid 

inflammation, and are important in inflammation resolutioninflammation, and are important in inflammation resolutioninflammation, and are important in inflammation resolutioninflammation, and are important in inflammation resolution    

Invariant natural killer T (iNKT) cells are prominent in the liver and so we were keen to 

explore what role they play in hepatic inflammation during infection (Seki et al., 2000). To 

test this, we infected mice lacking CD1d, the atypical MHC molecule required for iNKT cell 

activation (Emoto and Emoto, 2009).  
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In the absence of CD1d, iNKT cells cannot undergo selection in the thymus, so their 

development is blocked (Mendiratta et al., 1997). Inflammation was examined in the liver 

at days 7 and 35 post-infection. 

In the absence of infection, liver mass, leukocyte cellularity and myeloid cell numbers and 

proportions, are all similar or slightly lower in CD1d-/- livers (Fig 4.26 A-H). Numbers and 

proportions of total CD4+ T cells are significantly lower in CD1d-/- livers, which is due to 

significantly fewer activated and naive CD4+ T cells (Fig 4.26 I-K). However, the proportions 

of naïve and central memory CD4+ T cells are significantly increased relative to WT mice 

(Fig 4.26 K). In contrast, total CD8+ T cell numbers are similar to WT, but this disguises a 

significantly increased number and proportion of effector CD8+ T cells and diminution in 

naïve CD8+ T cells (Fig 4.26 L-M). 

After infection, liver mass is equivalent in WT and CD1d-deficient mice at both day 7 and 

35 (Fig 4.27 A). Although the bacterial load is equivalent in both groups at day 7, CD1d-/- 

mice have 50-100 fold more bacteria per liver than WT mice at day 35, indicating a role for 

iNKT cells in bacterial clearance (Fig 4.27 B). However, at day 7, inflammatory lesions 

develop normally in livers of CD1d-deficient mice (Fig 4.27 C-D). Despite this, fewer 

leukocytes are retrieved from the livers of CD1d-/- mice at day 7, and there are lower 

absolute numbers of all myeloid populations examined (Fig 4.27 E-K). In contrast, leukocyte 

numbers, in particular myeloid numbers, are elevated at day 35 relative to WT, and the 

ratio of Kupffer cells to monocytes does not resolve (Fig 4.27 E-K). These observations 

probably reflect continued infection at this later time-point. 
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There are fewer CD3+ CD4+ T cells detected at day 7 in CD1d-/- mice and this is most 

pronounced in the 10-fold lower number of activated cells (though is apparent in all sub 

populations) (Fig 4.28 A-B). The proportion of total leukocytes which are CD3+ CD4+ is 

significantly reduced in CD1d-/- mice at day 7, yet percentages of sub-populations are 

generally comparable to WT (Fig 4.28 C). At day 35, CD4+ T cell numbers are similar to WT 

mice with the exception of lower naïve cells in CD1d-/- mice. In contrast, numbers of CD8+ 

T cells more resemble those seen in WT, with the exception of fewer naïve cells in CD1d-/- 

mice at both time-points (Fig 4.28 D-E). CD8+ T cell proportions vary relative to WT mice, 

especially at day 7 when there is a greater percentage of central memory and lower 

percentages of activated and naïve CD8+ T cells (Fig 4.28 F). These data highlight an altered 

T cell environment in the liver during infection in mice lacking CD1d whereby CD4+ T cell 

numbers are generally diminished. 
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4444.11 .11 .11 .11 DiscussionDiscussionDiscussionDiscussion    

In this chapter we have demonstrated that adaptive cells, although not required for the 

development of inflammatory lesions, play an important role in their persistence and in 

the regulation of inflammatory dynamics in the liver. Of particular interest we have 

identified that Th1 cells drive leukocyte infiltration in the liver during infection and that in 

the absence of Tbet, the environment is more regulatory. This phenotype is even more 

pronounced when Tbet is absent specifically from T cells, thus reinforcing the role of Th1 

cells in inflammation. In the absence of IFNγ in haematopoietic cells there is a lack of 

inflammation in the liver during STm infection. 

4444.11.1 .11.1 .11.1 .11.1 Inflammatory lesions develop in the absence of adaptive immune cellsInflammatory lesions develop in the absence of adaptive immune cellsInflammatory lesions develop in the absence of adaptive immune cellsInflammatory lesions develop in the absence of adaptive immune cells    

In mice which lack B and T lymphocytes, inflammatory lesions are observed normally at 

day 7 post-infection. There can be a more diffuse sinusoidal distribution of parenchymal 

infiltrate, and lesions can be slightly less defined, but they do form. In the absence of B cells 

specifically, lesion development is identical to that in WT mice, indicating that B cells are 

not required to any extent in the formation of inflammatory lesions. When T cells 

specifically are absent, lesions are present, but as in Rag-1-deficient mice, they can be 

slightly more diffuse. Therefore, T cells may play some role in the organisation and 

persistence of lesions once they are formed, but neither B nor T cells are required for initial 

lesion development. Despite the absence of the entire T cell compartment in TCRβδ-/-mice, 

leukocyte cellularity increases. This is apparent for all myeloid populations measured and 

may suggest that T cells play a role in regulating innate leukocyte infiltration in the liver. 
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4444.11.2 .11.2 .11.2 .11.2 Tbet is required for normal inflammation iTbet is required for normal inflammation iTbet is required for normal inflammation iTbet is required for normal inflammation in the livern the livern the livern the liver    

To elucidate which T cell subset(s) contribute to inflammatory lesion growth, we used 

genetically altered mice which lacked molecules associated with Th1 and Th2 responses. 

Lesions form normally in the absence of aspects of Th2 cell signalling (in IL4-deficient mice), 

and NKT cells (in CD1d-deficient mice). Lesions have not yet been examined histologically 

in the absence of CD8+ T cells. However, in the absence of Th1 cells (in Tbet-deficient mice), 

although lesions can form, they are smaller and occur less frequently than in WT mice. This 

phenotype is more severe than in the absence of total T cells and implicates a role of Th1 

cells in lesion maintenance. 

4444.11.3 .11.3 .11.3 .11.3 Th1 cells drive inflammation in the liverTh1 cells drive inflammation in the liverTh1 cells drive inflammation in the liverTh1 cells drive inflammation in the liver    

Tbet is the transcription factor required for CD4+ T cells to differentiate into Th1 cells (Szabo 

et al., 2000). However, Tbet is not solely expressed in CD4+ T cells, and various roles in 

other leukocyte populations have been described. For example, Tbet in B cells is important 

for the production of IgG2a class-switched antibodies, and Tbet expression is required in 

DCs and CD8+ T cells for the normal function of these cells during immune responses (Mohr 

et al., 2010, Lugo-Villarino et al., 2003, Sullivan et al., 2003). Whilst Tbet-deficient mice 

therefore lack Th1 cells, this transcription factor is universally absent, thus the phenotypes 

we observe may be due to the role of Tbet in other populations. 

To address this, we generated mixed bone marrow irradiation chimera mice whereby 

specifically T cells lacked Tbet. These chimeras demonstrate similar phenotypes to those in 

mice which are universally deficient in Tbet. Despite this important observation, we cannot 

comment as to the importance of Tbet expression in CD8+ T cells in our system. In mice 

lacking CD8 expression we observe substantial differences to WT mice in leukocyte 
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populations in the liver at the resolution stages of infection. However, as yet we have no 

evidence that this is due to CD8 expression in T cells, although both histological and flow 

data illustrate the prominence of CD8+ T cells at later stages of infection. Even if these 

phenotypes are caused by CD8+ T cells (and not expression of CD8 in other cell types such 

as DCs), as yet we do not have any data regarding CD8+ T cells in the Tbet/TCRβδ chimeras. 

Hence we do not know whether Tbet expression in CD8+ T cells plays any role in the 

function of these cells during inflammation in this system (Sullivan et al., 2003).  

4444.11.4 .11.4 .11.4 .11.4 In the absence of Tbet there is a more regulatory environmentIn the absence of Tbet there is a more regulatory environmentIn the absence of Tbet there is a more regulatory environmentIn the absence of Tbet there is a more regulatory environment    

We demonstrate that in the absence of Tbet, there are fewer CD3+ cells in each 

inflammatory lesion, and we would expect this to be due to a lack of Th1 cells in these 

mice. However, there is an increased presence of FoxP3+ regulatory T cells (Tregs) in lesions 

relative to in Tbet-sufficient mice. In addition, there are less leukocytes observed within 

the sinusoids in Tbet-deficient mice. These observations suggest that in the absence of 

Tbet, Tregs may, in some capacity, prevent extensive infiltration which is usually driven by 

Th1 cells. Whether, in the absence of Th1 cells, Tregs are less “held back” due to the less 

inflammatory environment, so can accumulate in the liver more readily, or in the absence 

of Tbet, there is a more fundamental phenotype with regard to CD4+ T cell fate, is not yet 

known. It should be noted, however, that Tbet expression can be induced in Tregs in an 

IFNγ-mediated manner, and that this enables their migration into the vicinity of Th1 cells, 

thus facilitating their efficient regulation of effector cells (Koch et al., 2009). 

Regulatory T cells either develop in the thymus from immature CD4+ cells, or peripheral 

mature but naïve CD4+ T cells can differentiate down a regulatory route outside the thymus 

(Sakaguchi, 2004, Fehervari and Sakaguchi, 2004). In the absence of Tbet expression at the 
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developmental stage in the thymus, potentially a greater proportion of CD4+ T cells may 

develop down the regulatory FoxP3+ lineage in the thymus. Therefore this may explain 

increased numbers of Tregs in the liver. Alternatively, more peripheral CD4+ T cells may be 

induced to become regulatory in the absence of pro-inflammatory Th1 cells (in Tbet-

deficient mice). However, because FoxP3+ cells in the liver are rare in the absence of 

infection, we would expect peripheral induction of Treg differentiation to require an 

inflammatory stimulus (which may be absent in Th1-deficient mice). This is beyond the 

scope of this study but provides an interesting observation for future investigation. Finally, 

the increased proportion of CD4+ FoxP3+ cells detected by flow in the mixed bone marrow 

chimera mice, which lack Tbet specifically in T cells, further emphasises the inflammatory 

nature of Tbet+ T cells (Ravindran et al., 2005).  

4444.11.5 .11.5 .11.5 .11.5 IFNIFNIFNIFNγ is required for inflammatory lesion developmentγ is required for inflammatory lesion developmentγ is required for inflammatory lesion developmentγ is required for inflammatory lesion development    

The major role of Th1 cells in control of intracellular bacterial infections such as STm is in 

IFNγ production (Ravindran et al., 2005). Interferon-γ is required to induce efficient 

phagocytosis by macrophages and hence is vital in effective bacterial clearance (Mastroeni, 

2002). Indeed we and others have demonstrated elevated bacterial loads (in a range of 

bacterial infections) in the absence of IFNγ (Hess et al., 1996, Nauciel and Espinasse-Maes, 

1992, Yamamoto et al., 2001, Kupz et al., 2013, Cooper et al., 1993, Mastroeni et al., 1992). 

Here we demonstrate, in the absence of IFNγ, inflammatory lesions do not develop and 

leukocyte infiltration is abrogated. 
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4444.11.6 .11.6 .11.6 .11.6 A haematopoietic IFNγ source is required for bacterial clearance and A haematopoietic IFNγ source is required for bacterial clearance and A haematopoietic IFNγ source is required for bacterial clearance and A haematopoietic IFNγ source is required for bacterial clearance and 

hepatic inflammatory organisationhepatic inflammatory organisationhepatic inflammatory organisationhepatic inflammatory organisation    

Considering the similarities between the phenotypes of mice lacking Tbet and mice lacking 

IFNγ (whereby bacterial load is elevated and inflammation diminished, but to a greater 

extent in IFNγ-deficient mice), we wanted to further investigate the relationship between 

hepatic inflammation, bacterial load and IFNγ availability. For this we generated radiation 

bone marrow chimera mice. These mice clearly demonstrate that IFNγ from a radiation-

sensitive (thus probably haematopoietic) source is required for both bacterial clearance 

and organisation of leukocyte infiltration into inflammatory lesions in the liver. 

Furthermore, we have recently repeated this experiment including an additional day 21 

time-point and early indications suggest that these phenotypes are exacerbated at this 

time in mice which lack haematopoietic IFNγ (data not shown). However, to fully establish 

whether it is IFNγ produced by T cells, we will need to generate mixed bone marrow 

chimeras using IFNγ-deficient and TCRβδ-deficient mice. 

4444.11.7 .11.7 .11.7 .11.7 Haematopoietic and nonHaematopoietic and nonHaematopoietic and nonHaematopoietic and non----haematopoietic Ihaematopoietic Ihaematopoietic Ihaematopoietic IFNγ have different effects on FNγ have different effects on FNγ have different effects on FNγ have different effects on 

innate infiltration in the liverinnate infiltration in the liverinnate infiltration in the liverinnate infiltration in the liver    

Flow cytometry highlighted differences in leukocytes isolated from the liver depending on 

the available source of IFNγ. Absolute numbers and proportions of Kupffer cells were 

reduced at day 7 in mice which had either IFNγ from non-BM sources, or were completely 

IFNγ-deficient. Whereas mice which had non-BM-derived IFNγ had higher absolute 

numbers and proportions of Ly6G+ and Ly6Ghi cells relative to mice with BM-derived IFNγ. 

These data suggest that non-haematopoietic IFNγ plays a role in the accumulation of 

neutrophils in the liver during inflammation, whilst Kupffer cell expansion is dependent (to 
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some extent) on haematopoietic IFNγ. As mentioned above, bacterial loads are greater in 

mice which lack total IFNγ and are generally elevated in mice whereby IFNγ is derived from 

non-BM sources. These are the same groups of mice with lower-than-WT numbers of 

Kupffer cells. These data could be interpreted as IFNγ from BM cells is required for both 

Kupffer cell expansion and bacterial clearance, which would suggest that in the liver it is 

Kupffer cells which are responsible for bacterial phagocytosis. One could hypothesise that 

this BM source of IFNγ is Th1 cells, although this is speculative as multiple bone-marrow 

derived cells produce this cytokine (Ravindran et al., 2005, Seki et al., 1998). Finally, CD4+ 

T cells do not require any IFNγ source for accumulation in the liver, whereas CD8+ T cell 

numbers and proportions are dampened when IFNγ is lacking from any compartment (BM, 

non-BM or both). 

4444.11.8 .11.8 .11.8 .11.8 Signalling through TNFα is not required for inflammatory Signalling through TNFα is not required for inflammatory Signalling through TNFα is not required for inflammatory Signalling through TNFα is not required for inflammatory lesion lesion lesion lesion 

developmentdevelopmentdevelopmentdevelopment    

To determine whether the lack of inflammatory lesion development in the absence of IFNγ 

is due to pro-inflammatory signals in general, we used TNFαR-deficient mice. In these mice, 

inflammatory lesions develop as normal at day 7, demonstrating that TNFαR signalling is 

not required. Indeed bacterial load is equivalent to WT in these mice at day 7, thus at this 

time, TNFαR plays no role in innate control of bacterial replication. These data reflect that 

the phenotype seen in IFNγ-deficient mice may be specific to that cytokine. 

Despite TNFαR not being required for lesion development, there are pronounced 

differences in leukocyte populations in the liver in the absence of this receptor. Absolute 

numbers of all myeloid populations examined are reduced and the ratio of Kupffer cells to 

monocytes is greater than 1 (as it is in non-infected mice). This reflects a more Kupffer cell-
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dominated environment, highlighting defects in monocyte accumulation in the liver in the 

absence of TNFαR signalling. This would suggest that in these mice, although lesions 

develop, they may be composed more of Kupffer cells and less of monocytes (Ly6Chi cells) 

and neutrophils (Ly6G+). It is likely these lesions remain functional as bacterial loads are 

not affected. Despite the altered proportions of myeloid cells, however, absolute numbers 

of Kupffer cells are also reduced relative to WT. This may implicate defects in Kupffer cell 

proliferation or in differentiation of circulating monocytes into tissue resident 

macrophages in the absence of TNFαR (Seki et al., 2000). Numbers and relative proportions 

of both CD4+ and CD8+ T cell subsets are unaffected by lack of TNFαR. 

4444.11.9 .11.9 .11.9 .11.9 InflInflInflInflammation resolution: the roles of CD8ammation resolution: the roles of CD8ammation resolution: the roles of CD8ammation resolution: the roles of CD8++++    T cells and iNKT cellsT cells and iNKT cellsT cells and iNKT cellsT cells and iNKT cells    

As eluded to above, we detect substantial differences in leukocyte accumulation in the liver 

during resolution of infection in mice which lack either CD8 or CD1d. 

4444.11.9.1 C.11.9.1 C.11.9.1 C.11.9.1 CD8D8D8D8++++    T cells in monocyT cells in monocyT cells in monocyT cells in monocyte dispersalte dispersalte dispersalte dispersal    

In Chapter 3, we demonstrated how CD8+ T cell numbers peak during infection resolution. 

We also showed that in WT mice hepatomegaly does not fully resolve within 50 days of 

infection. Here we show that in CD8-/- mice, hepatomegaly is reduced to a greater extent 

than in WT mice at day 35 post-infection, suggesting a putative link between numbers of 

CD8+ T cells and liver mass during infection resolution. The increase in CD8+ T cell numbers 

and proportions which we detect in WT mice at day 35 would suggest these cells have a 

function at this time. Whilst there are no significant alterations to CD4+ T cell populations 

in the absence of CD8, the proportion of monocytes in the liver at day 35 remains elevated. 

This, in addition to the accumulation of CD8+ T cells in the liver at this time, may suggest 

CD8+ T cells play a role in resolution of infiltrating Ly6Chi monocytes. An important point in 
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this context is that although we have examined the activation status of T cells, we have not 

investigated their cytokine profiles. This is an important future step. 

Bacteria, although cleared by day 35 in the absence of CD8, generally persist to a greater 

extent than in WT mice. Recently, CD8 has been shown to play a role in antibody class 

switching, thus the defective bacterial clearance we detect in the liver may be accounted 

for by diminished antibody responses (Faustini, manuscript in preparation). However, 

whether these effects are due to T cell expression of CD8 or expression by other cells 

including DCs are not yet known (Hsu et al., 2007). 

4444.11.10 .11.10 .11.10 .11.10 Invariant NKInvariant NKInvariant NKInvariant NKT cells are required for T cells are required for T cells are required for T cells are required for bacterial clearancebacterial clearancebacterial clearancebacterial clearance    

Mice lacking iNKT cells have an impairment in their ability to clear bacteria from the liver. 

As bacterial loads are similar to WT mice at day 7, this suggests that CD1d is important in 

the resolution of infection. However, leukocyte cellularity is reduced at day 7 and elevated 

at day 35 relative to WT, suggesting both reduced initial accumulation of infiltrate, and 

defective inflammatory resolution. Hence iNKT cells are important in both the onset and 

resolution of inflammation in the liver.  

Inflammatory lesions develop normally in CD1d-deficient mice by day 7 post-infection, and 

livers from these mice have an equivalent bacterial load to WT at this time. Yet despite the 

elevation in myeloid cells at day 35, bacteria are not cleared, although burdens are lower 

than day 7. The ratio of Kupffer cells to monocytes does not resolve as it does in WT mice, 

reflecting a greater proportion of monocytes; numbers of Ly6G+ and Ly6Ghi cells are also 

increased. Invariant NKT cells are an important source of IFNγ, although it is suggested they 

are not as potent IFNγ producers as NK cells (Emoto and Emoto, 2009, Seki et al., 1998). 

However, these data may potentially indicate that in the absence of iNKT cells, there is 
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reduced IFNγ production (by haematopoietic cells) and that this may prevent adequate 

accumulation of Kupffer cells (as shown by the IFNγ chimera data) and hence bacterial 

clearance is impaired. The enhanced presence of monocytes and Ly6G-expressing cells may 

not contribute to bacterial clearance to the extent that Kupffer cells may do, (as suggested 

in the IFNγ chimera experiment where higher bacterial loads corresponded with lower 

proportions of Kupffer cells). These findings potentially contribute to the IFNγ chimera data 

discussed above and it will be interesting if the haematopoietic IFNγ source is both T and 

non-T cell-dependent (Seki et al., 2000). 

In addition, there are 10-fold fewer activated CD4+ T cells at day 7 in CD1d-/- mice, again, 

suggesting a relationship between iNKT cells and CD4+ T cell accumulation in the liver 

during infection. This defect is also apparent in non-infected mice, yet numbers of activated 

CD8+ T cells are higher in non-infected CD1d-/- mice. Furthermore, numbers of CD8+ T cells 

are maintained at day 35 as they are in WT mice, indicating that during resolution, the 

absence of iNKT cells bears no effect on CD8+ T cells. 

4444.12 .12 .12 .12 ConclusionConclusionConclusionConclusion    

Here we have demonstrated the necessity for IFNγ in hepatic inflammation during 

Salmonella infection and have identified that a haematopoietic source of this cytokine is 

required for lesion development. Whilst adaptive cells are not required for the initial 

development of inflammatory foci in the liver during infection, these cells play a significant 

role in the regulation of inflammation in the liver. We have begun to explore the balance 

between inflammation and inflammatory regulation in the liver, which is facilitated by 

expression of Tbet in T cells. These observations contribute to our understanding of 

inflammation in parenchymal liver tissue and have highlighted several avenues of study 
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which may influence how inflammation is perceived with regard to therapeutic 

intervention. In addition to parenchymal inflammation in this murine model, we, and 

others, detect severe vascular occlusion in the blood vessels during infection. This is 

descried fully in the next chapter. 
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CHAPTER CHAPTER CHAPTER CHAPTER 5555::::    

THE REGULATION OF HEPATIC THROMBOSIS AFTER THE REGULATION OF HEPATIC THROMBOSIS AFTER THE REGULATION OF HEPATIC THROMBOSIS AFTER THE REGULATION OF HEPATIC THROMBOSIS AFTER 

SYSTEMIC SYSTEMIC SYSTEMIC SYSTEMIC SALMONELLASALMONELLASALMONELLASALMONELLA    INFECTIONINFECTIONINFECTIONINFECTION    

5.1 5.1 5.1 5.1 IntroductionIntroductionIntroductionIntroduction    

The direct and indirect contributions of platelets to immune responses are becoming 

increasingly well recognised. There are multiple reports of platelets assisting other innate 

players and this has been described fully in section 1.3.7, Chapter 1. Infection is a 

wonderfully appropriate platform to further investigate the role of platelets in immune 

regulation because it provides an insight into the physiological consequences of this 

interaction. And this is becoming increasingly recognised, as the therapeutic control of 

bacterial infection begins to reach beyond ever-problematic obstacles (such as 

antibacterial resistance) to other physiological effects of infection, including multiple organ 

failure and, as we describe here, thrombosis. Indeed, the recent introduction of the term 

Immunothrombosis emphasises the importance of this emerging field (Engelmann and 

Massberg, 2013). Here we have studied how thrombus development is regulated during 

Salmonella infection. Thrombosis is a well described feature of typhoid, but the 

mechanisms behind it remain relatively unexplored. 

5.1.1 5.1.1 5.1.1 5.1.1 Thrombosis andThrombosis andThrombosis andThrombosis and    SalmonellaSalmonellaSalmonellaSalmonella    infectioninfectioninfectioninfectionssss    

In the context of murine NTS infections, there are occasional reports of thrombosis during 

infection, and these are generally in reference to colonised RES organs including the spleen 

and liver (Roy et al., 2006, Nakoneczna and Hsu, 1983, Mastroeni et al., 1995, Brown et al., 
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2010). Additionally, DIC-like phenotypes have been reported in some studies (Brown et al., 

2010). These observations are brief and descriptive, without offering insight as to how or 

why thrombosis occurs. In human NTS infections, haemostatic abnormalities of any 

description are little more than anecdotal. There is, however, more evidence of thrombosis 

in human S. Typhi infections (Malik, 2002, Serefhanoglu et al., 2003, Yildirim et al., 2010, 

Butler et al., 1978, Nguyen et al., 2001). Furthermore, especially before the advent of 

antibacterial therapeutics, thrombosis was ascribed to typhoid fever and multiple 

additional bleeding complications were also commonly associated with this disease 

(Huckstep 1962). Incidentally, these bleeding abnormalities have been linked to cause if 

death in infected individuals (Huckstep 1962). Thus, thrombosis during Salmonella 

infections in humans is well documented, yet has received little attention. In this Chapter, 

we will describe this thrombosis phenotype and investigate the mechanism of platelet 

activation. 

5.1.2 5.1.2 5.1.2 5.1.2 Aim of studyAim of studyAim of studyAim of study    

We were keen to explore the thrombosis phenotype which occurs in the hepatic 

vasculature during systemic Salmonella infection. We were particularly interested in the 

potential co-regulation between inflammation within the liver and in the vascular system, 

and in the relationship between inflammation and platelet activation. Thus the aims of this 

section were to: 

• Characterise the thrombosis phenotype over the course of infection; 

• Identify which host immune cells contribute to this response; 

• Determine the mechanism of thrombosis; 

• Understand the relationship between thrombosis and tissue inflammation. 



218 

 

RESULTSRESULTSRESULTSRESULTS    

5.2 5.2 5.2 5.2 Thrombi develop in the hepatic venous system Thrombi develop in the hepatic venous system Thrombi develop in the hepatic venous system Thrombi develop in the hepatic venous system during systemic during systemic during systemic during systemic SalmonellaSalmonellaSalmonellaSalmonella    

infectioninfectioninfectioninfection    

Alongside the development of inflammatory foci in the liver, thrombosis is observed in the 

hepatic vasculature within 5 days of intraperitoneal (i.p.) Salmonella infection. This can be 

very extensive, completely occluding the vessel lumen in places (Fig 5.1 A-D). These 

thrombi develop specifically in the veins of the liver, (identified by thin vascular walls), and 

in particular thrombi are found in the portal vein, identified histologically by proximity to 

the hepatic artery, bile ducts and lymphatic vessels, all of which contribute to the portal 

tract (Fig 5.1 E). Thrombi are not detected in arteries and arterioles in the liver. To confirm 

that thrombosis is not a phenotype specific to the i.p. infection route, intravenous 

infections were also performed and the extent of thrombosis measured at day 7 and 21 

post-infection. Thrombosis occurs to a similar extent as for i.p. injection (Fig 5.1 F-G). We 

do not detect vascular occlusion in the spleen, kidney, lung, brain and thymus (Fig 5.1 H-I 

and not shown). Therefore, in this model of infection, thrombosis appears to be a liver-

specific host response to Salmonella infection, occurring primarily in the portal vein. 

5.2.1 5.2.1 5.2.1 5.2.1 Thrombi develop with parallel kinetThrombi develop with parallel kinetThrombi develop with parallel kinetThrombi develop with parallel kinetics to hepatic inflammatory lesionsics to hepatic inflammatory lesionsics to hepatic inflammatory lesionsics to hepatic inflammatory lesions    

To understand how thrombosis contributes to the host response to infection, thrombi 

development over the time-course of infection was characterised by histology. Thrombi 

appear around day 5 post-infection and peak in severity at day 21 and are largely resolved 

by day 35 (Fig 5.2 A-B and data not shown).  
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Whilst infection is required for thrombus development, it is not related to bacteraemia 

directly as the severity of bacteraemia peaks around day 7 post-infection, and bacteria 

cannot be detected in the blood beyond day 14 (Fig 5.2 C). Thus the severity of thrombosis 

peaks at day 21 when viable bacteria are no longer found in the blood. This suggests that 

thrombus development and indeed maintenance of thrombus severity is determined by 

the host response to infection, or bacteria in tissues, rather than purely relating to the 

presence of bacteria in the blood. Intriguingly and suggestively, the kinetics of thrombus 

development and resolution more closely parallel those of inflammatory foci in the liver, 

rather than those of bacterial colonisation of the liver (Fig 5.2 D). We therefore 

hypothesised that both these features of the host response to infection share elements of 

co-regulation. 

All quantification of thrombosis severity in this study is presented as a percentage of vessel 

occlusion. For this measure to be comparable, it is assumed that total vessel area is 

equivalent both in the presence and absence of infection, and in all mouse strains used, 

(see below). Due to the substantial hepatomegaly after infection, it is likely that the 

proportion of tissue occupied by vessel may differ. To standardise as far as possible, 

generally thrombi have been quantified in an equivalent large portion of the portal vein in 

each tissue, although this is an approximation to be aware of. 

5.2.3 5.2.3 5.2.3 5.2.3 Thrombi are composed of platelets and are surrounded by a leukocyte cuffThrombi are composed of platelets and are surrounded by a leukocyte cuffThrombi are composed of platelets and are surrounded by a leukocyte cuffThrombi are composed of platelets and are surrounded by a leukocyte cuff    

cuffcuffcuffcuff    

The composition of thrombi was investigated to identify which host cells may play a role in 

thrombus formation. Since thrombi are well established within one week of infection, livers 

from infected mice were examined at 7 days post-infection. The white appearance of 
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thrombi suggested a high platelet content, which was confirmed by staining for the 

platelet-specific integrin subunit αIIb (CD41) (Fig 5.3 A). Furthermore, thrombi are Von 

Willebrand factor (VWF)-positive as shown by magenta dual CD41+ VWF+ cells in Figure 5.3 

B-D. This further supports the platelet composition of thrombi, as activated platelets bind 

to VWF (Lenting et al., 2012). In addition, CD31+ vascular endothelial cells also express VWF 

during infection, shown by cyan staining (Figure 5.3 B-C).  

We hypothesised that thrombi form in situ in the liver (rather than forming in other sites) 

for the following two reasons. Firstly: thrombi consistently appear to be closely associated 

with the host vessel wall and are rarely seen free in the vessels. This association 

predominantly occurs at sites of leukocyte accumulation (Fig 5.3 E). Secondly, thrombi are 

surrounded by a heterogeneous cuff of leukocytes (Fig 5.3 F-H). These cells were identified 

by immunohistochemistry (IHC) as being variably positive for F4/80, CD11c, CD3, and Ly6C. 

These leukocytes are found around the surface of thrombi, whilst Ly6G+ cells, when found, 

are consistently located within the bulk of the thrombus. 

Seeing as we detect endothelial expression of VWF during infection, we looked for further 

evidence of endothelial activation during infection to decipher whether this surface may 

provide platelet-activating stimuli. Endothelial up-regulation of V-CAM-1, ICAM-1, CD105 

and Ly6C were identified at day 7 post-infection by IHC (data not shown). However, we do 

not detect MHC II expression by CD31+ endothelial cells following infection, which can be 

a useful marker of endothelial activation (data not shown) (Puntener et al., 2012). These 

data suggest there are selective changes in the endothelial phenotype after Salmonella 

infection. 
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5.3 5.3 5.3 5.3 Thrombosis in the liver is paralleled by a severe thrombocytopeniaThrombosis in the liver is paralleled by a severe thrombocytopeniaThrombosis in the liver is paralleled by a severe thrombocytopeniaThrombosis in the liver is paralleled by a severe thrombocytopenia    

Considering platelets are the main constituent of the thrombi seen in the liver during 

infection, we hypothesised that these cells could play a vital role in the systemic response 

to infection. To measure how platelet numbers are altered by Salmonella infection, 

platelets in the blood of infected mice were quantified throughout the time-course of 

infection. Reference values for platelet numbers from the literature are indicated in Table 

5.1 below. Blood obtained from non-infected mice were in accordance with reference 

values. 

Parameter Male Female 

Platelets (per mm3) 7.54 x 105 7.57 x 105 

Table 5.1. Median platelet counts of C57BL/6J mice aged 3-7 months. Table adapted from 

(Mazzaccara et al., 2008). 

 

Severe thrombocytopenia is observed in the blood by day 7 post-infection, and this persists 

at day 21 (Fig 5.4 A). Platelet numbers begin to resolve by day 28 and are normal by day 

50. Within this time frame, the mean platelet volume (MPV) shows some limited inverse 

correlation with platelet numbers, with an elevated MPV observed at both day 7 and 21 

(Fig 5.4 B). Mean platelet volume is normal by day 50. Both increased MPV and reduced 

platelet counts occur in parallel with severity of thrombosis in the liver. In addition, 

increased megakaryocytes are observed in the spleen at day 7 post-infection (Fig 5.4 C-D). 
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5.4 5.4 5.4 5.4 Development of thrombosis occurs independently of the adaptive immune Development of thrombosis occurs independently of the adaptive immune Development of thrombosis occurs independently of the adaptive immune Development of thrombosis occurs independently of the adaptive immune 

responseresponseresponseresponse    

To investigate how the host immune response may contribute to thrombosis (and whether 

thrombosis is regulated in a similar manner to foci formation), we wanted to know if 

thrombi develop in mice which lack key components of the host’s repertoire of immune 

cells or molecules. Importantly, thrombi are not detected in non-infected mice of any strain 

used in this study (data not shown). Whilst platelet numbers and MPV in non-infected mice 

are similar across all strains used, there are subtle variations in some strains: in particular 

Rag-1-/-, IgHκ-/-, TNFαR-/- and IL10-/- mice have modest elevations in platelet numbers (Fig 

5.5 A-B). 

To determine which host cells are important in thrombosis, mice which lacked B 

lymphocytes, T lymphocytes or both B and T lymphocytes were infected and thrombus 

formation in the liver was quantified after 7 days. Generally, thrombi develop normally in 

the absence of total lymphocytes (Fig 5.6 A-C), and of B cells (Fig 5.7 A-C), or T cells (Fig 5.8 

A-C), although this can be variable. However, the presence of thrombi in these mice 

indicate that the initiation of thrombosis does not require the adaptive immune response. 

This parallels the observation that inflammatory lesions also develop in the absence of B 

cells and T cells (described in Chapter 4). In addition, the thrombocytopenia and MPV in 

these mice after infection, whilst variable, is comparable to that seen in infected WT mice; 

(in exception, Rag-1-/- mice have less severe thrombocytopenia than WT mice) (Fig 5.6 to 

5.8 D-E). 

  



230 

 

 



231 

 

 



232 

 

 



233 

 

 



234 

 

5.5 5.5 5.5 5.5 Thrombosis is auThrombosis is auThrombosis is auThrombosis is augmented in the absence of Tbet, but not IL4gmented in the absence of Tbet, but not IL4gmented in the absence of Tbet, but not IL4gmented in the absence of Tbet, but not IL4    

Although inflammatory foci develop normally in the absence of lymphocytes, as described 

in Chapter 4, we found that loss of Tbet, (the transcription factor required for CD4+ Th1 cell 

differentiation), resulted in reduced parenchymal pathology (Fig 4.7). Lesion formation is 

reduced in Tbet-deficient mice at day 7 post-infection, and there is reduced leukocyte 

infiltration into sinusoids. At day 18, there is still an inability to form discrete lesions, but 

there is an abundance of sinusoidal infiltration and parenchymal pathology is, thus, 

extremely severe (data not shown). The inability of these mice to clear infection may also 

contribute to these differences at day 18 (data not shown). 

To determine the importance of Tbet in thrombus development, Tbet-deficient mice were 

infected and the extent of thrombosis measured 7 days post-infection. Unexpectedly, in 

the absence of Tbet, the severity of thrombosis is significantly augmented; the proportion 

of vascular occlusion is approximately doubled in these mice (Fig 5.9 A-C). This phenotype 

is further exacerbated at day 18 (data not shown), when thrombosis is associated with 

severe infiltration of vascular regions, correlating with the extensive parenchymal 

pathology observed at this time. Although thrombosis in Tbet-deficient mice is more severe 

than that observed in WT mice, the extent of thrombocytopenia is similar between these 

two strains (Fig 5.9 D). However, MPV is further increased in Tbet-deficient mice relative 

to WT, which is suggestive of a more severe platelet phenotype in the absence of Tbet (Fig 

5.9 E). 
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In contrast, preliminary studies indicate that thrombus development may be dampened by 

the absence of IL4, yet is unaltered by the absence of IL4Rα (Fig 5.10 A-D). However, both 

these mice strains have modestly reduced thrombocytopenia and less elevation in MPV, 

relative to WT mice (Fig 5.10 E-F). The contrast in thrombosis phenotype between these 

two strains suggested a role for IL-13 in thrombosis regulation, because IL-13 and IL4 both 

signal via IL4-Rα (Mohrs et al., 1999). To test this, we infected IL13-deficient mice and 

examined thrombosis at day 7 post-infection. Thrombosis is of a similar severity to that 

seen in WT mice (data not shown), suggesting the reduced thrombosis seen in IL4-/- mice 

is specific to that cytokine. To determine the role of iNKT cells in thrombosis development, 

we infected mice lacking CD1d. Whilst thrombosis and extent of thrombocytopenia are 

similar to WT in these mice, MPV is significantly greater than in WT mice (Fig 5.11 A-D). 

Taken together, these data indicate that both inflammatory lesions and thrombosis 

develop independently of adaptive immune cells. However, there are circumstances in 

which Tbet can restrict host-mediated tissue pathology and thrombosis. Therefore, 

although adaptive immune cells are not required for the development of thrombosis, it is 

likely that the adaptive immune response may have an important role in the regulation of 

this phenotype. 
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5.65.65.65.6    Thrombosis is Thrombosis is Thrombosis is Thrombosis is driven by prodriven by prodriven by prodriven by pro----inflammatory cytokineinflammatory cytokineinflammatory cytokineinflammatory cytokine----mediated inflammationmediated inflammationmediated inflammationmediated inflammation    

Seeing as thrombosis occurs in the absence of the adaptive immune response, we wanted 

to determine to what extent the process is regulated by innate mechanisms. One major 

feature of the innate immune response is inflammation and so we hypothesised that 

inflammation may be mediating thrombosis during infection. We used mice lacking IFNγ to 

test this because we were aware that these mice lack leukocyte infiltration in the liver 

following Salmonella infection, despite a similar or enhanced bacterial burden to that seen 

in WT mice (Kupz et al., 2013, Nauciel and Espinasse-Maes, 1992, VanCott et al., 1998). 

Indeed, an absence of inflammatory lesion development is observed in IFNγ-deficient mice 

in our NTS infection model (Fig 4.12). In the absence of IFNγ, thrombosis is abolished (Fig 

5.12 A-C). This demonstrates that thrombus development is dependent on IFNγ-mediated 

inflammation, and, as in inflammatory foci development, is not dependent purely on 

bacterial burden. Furthermore, these mice have a significantly less severe 

thrombocytopenia than WT mice and MPV is unchanged after infection (Fig 5.12 D-E). 

To test whether this lack of thrombosis in the absence of inflammation was specifically due 

to the absence of IFNγ, or was related to inflammatory signals per se, thrombus 

development in mice lacking TNFαR was examined. It was demonstrated in Chapter 4 that 

although a lack of IFNγ is associated with a lack of inflammation in the liver, inflammatory 

foci formation is not affected by loss of TNFαR signalling (Fig 4.19). In contrast, thrombosis 

is significantly abrogated on day 7 in the absence of TNFαR, despite these mice developing 

inflammatory foci (Fig 5.13 A-C).  
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Furthermore, mice deficient in TNFαR have less severe thrombocytopenia and less 

augmented MPV compared to WT mice (although the MPV measured in WT controls is 

particularly low in this experiment) (Fig 5.13 D-E).  

Considering the inflammatory component of thrombosis, we hypothesised that in the 

absence of molecules associated with supressing inflammation, thrombosis may be 

enhanced. To test this, IL10 deficient mice were infected and thrombosis was measured 

after 7 days. As IL10-deficient mice are more sensitive to infection, a reduced bacterial 

dose was used and so thrombi development in WT mice was less severe. Thrombosis is 

significantly exacerbated in the absence of IL10 (Fig 5.14 A-C). Furthermore, 

thrombocytopenia is more pronounced and MPV is elevated further compared to WT mice 

(Fig 5.14 D-E). This further supports the relationship between inflammation and 

thrombosis. 

However, it is important to note that cytokines associated with inflammation may not 

always contribute to thrombosis. For example, there is a similar level of thrombosis in IL6-

deficient mice relative to WT (Fig 5.15 A-C). Furthermore, thrombocytopenia is significantly 

more severe in IL6-deficient mice, showing that thrombosis is not the sole cause of the 

thrombocytopenia (Fig 5.15 C-D). Mean platelet volume in IL6-deficient mice is similar to 

that measured in WT mice (Fig 5.15 E). Overall, these data support an established 

relationship between thrombosis in the liver and platelet numbers in the blood, however, 

reduced circulating platelets during infection is not entirely explained by thrombus 

development. 
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5.7 5.7 5.7 5.7 Podoplanin expression is increased in the liver during infectionPodoplanin expression is increased in the liver during infectionPodoplanin expression is increased in the liver during infectionPodoplanin expression is increased in the liver during infection    

We wanted to investigate how IFNγ-mediated inflammation could result in thrombus 

formation so we began to consider potential signalling components which could be 

involved in both inflammation and in platelet activation. One such potential molecule 

which could link these two physiological processes is podoplanin which is up-regulated on 

macrophages and Th17 cells in inflammation and activates platelets through CLEC-2 

(Astarita et al., 2012, Hou et al., 2010). So we looked for podoplanin expression in the liver 

in the presence and absence of infection. 

In non-infected livers, podoplanin expression is restricted to lymphatic endothelium 

associated with portal regions (Fig 5.16 A). Following infection, there is increased 

podoplanin expression in the liver. This is predominantly found in the inflammatory foci 

and associated with host vascular endothelium, particularly in regions adjacent to thrombi 

(Fig 5.16 B). Podoplanin expression is also detected within the sinusoids in both non-

infected and infected mice by IHC, and this occurs in conjunction with F4/80+ staining, 

suggestive of podoplanin expression by Kupffer cells (Fig 5.16 C-D). So we hypothesised 

that increased podoplanin expression in the liver may be conducive to thrombosis 

development via platelet activation mediated by CLEC-2. 
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5.8 5.8 5.8 5.8 Platelet activation via CPlatelet activation via CPlatelet activation via CPlatelet activation via CLECLECLECLEC----2 is required for thrombus2 is required for thrombus2 is required for thrombus2 is required for thrombus    developmentdevelopmentdevelopmentdevelopment    

To test the involvement of platelet activation through CLEC-2, we used PF4.Cre.CLEC-2fl/fl 

mice, whereby CLEC-2 is selectively deleted in cells that express platelet factor 4; primarily 

megakaryocytes and platelets, as shown below. These mice were infected and the extent 

of thrombosis was measured after 7 days. 

 

Diagram 5.1 Salmonella infection of PF4.Cre.CLEC-2fl/fl mice. Platelet expression of CLEC-

2 is indicated on the right. 

 

In these mice, thrombus development is nearly or totally abrogated, indicating that CLEC-

2 expression on platelets is required for thrombus development (Fig 5.17 A-C). However, 

despite the diminished thrombosis in these PF4.Cre.CLEC-2fl/fl mice, a severe 

thrombocytopenia and elevated MPV is still observed (Fig 5.17 D-E). 

We were keen to examine the extent of inflammation in these PF4.Cre.CLEC-2fl/fl mice, to 

ascertain whether, in the absence of CLEC-2 on platelets, there was any feedback on 

inflammation, particularly on podoplanin expression. By histology, cellular infiltration is 

very similar to that seen in WT mice, despite less extensive hepatomegaly in these mice 

(Fig 5.17 F-H). Bacterial loads in the liver are comparable to in WT mice (Fig 5.17 I). 
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Flow cytometry was used to quantify leukocyte infiltration. Representative FACS plots 

indicate the gating strategies used to analyse myeloid infiltrate, DCs and T cells in WT and 

PF4.Cre.CLEC-2fl/fl mice (Fig 5.18 A-F). Absolute numbers of Kupffer cells, monocytes, Ly6G+ 

and Ly6Ghi cells are equivalent in WT and PF4.Cre.CLEC-2fl/fl mice at day 7 post-infection 

(Fig 5.19 A-D). Total DC numbers are also equivalent to WT, as are NK DCs, myeloid DCs, 

plasmacytoid DCs and mixed myeloid/lymphoid DCs. There are reduced lymphoid DCs in 

PF4.Cre.CLEC-2fl/fl mice after infection (Fig 5.19 E-J). There are also reduced CD4+ T cells, 

especially activated cells, however, numbers of CD8+ T cells are similar to those seen in WT 

mice (Fig 5.19 K-N). Importantly, a similar increase in podoplanin expression is seen in 

PF4.Cre.CLEC-2fl/fl and WT mice after infection by IHC (Fig 5.20 A-C). Therefore, these data 

indicate that platelet activation occurs through CLEC-2 and occurs in conjunction with 

elevated podoplanin expression during inflammation. 

5.8.1 5.8.1 5.8.1 5.8.1 CLECCLECCLECCLEC----2 and increased podoplanin expression are conduciv2 and increased podoplanin expression are conduciv2 and increased podoplanin expression are conduciv2 and increased podoplanin expression are conducive, but not e, but not e, but not e, but not 

sufficient for thrombosis developmentsufficient for thrombosis developmentsufficient for thrombosis developmentsufficient for thrombosis development    

We have demonstrated that CLEC-2 expression on platelets is required for platelet 

activation and thrombus development during Salmonella infection, as is increased 

podoplanin expression. To confirm that podoplanin up-regulation is a consequence of 

inflammation, we examined podoplanin expression in IFNγ-/- mice, which lack inflammation 

during infection. Podoplanin expression is not increased at day 7 in IFNγ-/- mice, which 

illustrates the inflammatory-association of podoplanin up-regulation during infection (Fig 

5.21 A-B). However, thrombosis is also absent in TNFαR-deficient mice, despite normal foci 

formation in the parenchymal tissue.  
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Thus we looked for podoplanin expression in TNFαR-deficient mice following infection, 

hypothesising that they would lack podoplanin up-regulation. However, despite a lack of 

thrombus development, podoplanin expression appears similar to that seen in infected WT 

mice (Fig 5.21 C-D). Therefore, expression of podoplanin in the liver is not sufficient for 

thrombus development and a TNFαR-mediated signal is also required. 

5.9 5.9 5.9 5.9 Podoplanin is expressed on multiple cells adjacent to vesselsPodoplanin is expressed on multiple cells adjacent to vesselsPodoplanin is expressed on multiple cells adjacent to vesselsPodoplanin is expressed on multiple cells adjacent to vessels    

Elucidating which cells are expressing podoplanin was addressed initially by confocal 

microscopy. As stated above, podoplanin expression in the liver of non-infected mice is 

predominantly restricted to lymphatic endothelial cells, although it is also found on some 

F4/80+ cells (Fig 5.16). During infection, podoplanin is expressed by both CD45+ and CD45- 

populations, reflecting its co-localisation with both haematopoietic and non-

haematopoietic populations (Fig 5.22 B). We do not detect podoplanin expression on 

CD31+ vascular endothelial cells at any point before, or during infection (Fig 5.22 A and C). 

Initially we focussed on podoplanin expression on CD45+ cells because we observed 

podoplanin+ F4/80+ cells in the livers of both non-infected and infected mice, suggesting 

that macrophage populations may express podoplanin. Moreover, others have reported 

increased podoplanin expression by macrophages during inflammation both in vitro and in 

vivo (the spleen) (Hou et al., 2010, Kerrigan et al., 2012). We particularly focused on 

periportal areas adjacent to thrombi. 
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Macrophage expression of podoplanin was examined by confocal microscopy. In the 

absence of infection, isolated F4/80+ cells are detected in the sinusoids, some CD11c+ cells 

are seen in portal regions and podoplanin is generally restricted to lymphatic endothelium 

(Fig 5.23 A and C). At day 7, F4/80+ cells are abundant near to the vessels and many of these 

express CD11c (Fig 5.23 B and D). Podoplanin expression by F4/80+ CD11c+ cells appears 

white. Some CD11c+ cells express podoplanin but not F4/80 and some CD11c+ cells express 

neither podoplanin nor F4/80. Single positive podoplanin-stained cells indicate either 

lymphatic vessels or podoplanin expression by non F4/80 or CD11c expressing cells. 

There are few CD11b+ cells in non-infected livers and these accumulate near vessels, and 

co-staining with CD11c is rare (Fig 5.24 A and C). At day 7, CD11b+ cells are increased in 

periportal areas, and some of these cells express podoplanin (Fig 5.24 B and D). There are 

also white cells, indicating podoplanin expression by CD11c+ CD11b+ cells. However, the 

majority of podoplanin expression is found on CD11c+ cells and on CD11c- CD11b- cells. 

CD11b+ podoplanin- cells are also common, suggesting podoplanin is not expressed by cells 

expressing high levels of CD11b (monocyte populations). These data suggest podoplanin is 

expressed predominantly by F4/80+ CD11c+ and F4/80+ CD11c- cells and to some extent by 

CD11b+ cells, although CD11b expression is relatively low on podoplanin+ cells. 
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5.9.1 5.9.1 5.9.1 5.9.1 Podoplanin Podoplanin Podoplanin Podoplanin expression on nonexpression on nonexpression on nonexpression on non----haematopoiehaematopoiehaematopoiehaematopoietic cells during infectiontic cells during infectiontic cells during infectiontic cells during infection    

Having shown that podoplanin is expressed by both CD45+ and CD45- populations at day 7 

post-infection we were keen to characterise non-haematopoietic distribution of 

podoplanin expression in the liver using confocal microscopy. As illustrated above, 

podoplanin+ CD45- cells are mostly located adjacent to the vasculature, especially in portal 

regions where thrombi are found, and can be seen in inflammatory lesions (Fig 5.22 B). The 

following markers were used to further characterise these cells: ICAM-1, VCAM-1, CD248 

and CD31. 

In non-infected livers, podoplanin expression is not detected on ICAM-1+ cells, and there is 

very little VCAM-1 staining present (Fig 5.25 A-C). At day 7 post-infection, there is extensive 

up-regulation of ICAM-1 expression throughout the parenchyma, including in portal 

regions (Fig 5.25 D-F). Expression of VCAM-1 is also increased following infection, and many 

VCAM-1+ cells are also ICAM-1+. Podoplanin co-localises with ICAM-1+ cells, VCAM-1+ cells 

and ICAM-1+ VCAM-1+ cells and is also found on ICAM-1- VCAM-1- cells, in addition to its 

expression by lymphatic endothelial cells. There are very few podoplanin+ cells which do 

not express ICAM-1 or VCAM-1 in areas adjacent to the portal vein, and there are ICAM-1+ 

and VCAM-1+ cells in this area which do not express podoplanin. As a point of reference, 

expression of these markers was also examined in the spleen at day 7 post-infection. As in 

the liver, there is much overlap in ICAM-1 and VCAM-1 staining and the abundance of white 

cells reflects podoplanin expression by cells expressing both ICAM-1 and VCAM-1 (Fig 5.26 

A-E). 
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Endosialin, or CD248, is a stromal cell marker expressed on fibroblasts and pericytes (Lax 

et al., 2007). These cells are located under the vascular endothelium, (where podoplanin+ 

cells are detected following infection), so we hypothesised that CD248+ cells may express 

podoplanin. In non-infected livers, CD31+ vascular endothelial cells line the vessels and 

CD248+ cells lie adjacent to this on the tissue side (Fig 5.27 A-C). Expression of CD31 can be 

detected on sinusoidal endothelium and expression of CD248 can be seen in similar areas. 

Podoplanin expression is restricted to lymphatic endothelium and is also detected on 

isolated cells in the parenchyma (likely to be F4/80+ cells) (Fig 5.27 A-C). 

At day 7 post-infection, CD31 expression is found at the vasculature/parenchyma 

boundary, as in non-infected mice (Fig 5.27 D-F). Expression of CD248 is increased upon 

infection and is located both adjacent to CD31+ vascular endothelium and additionally is 

detected in the parenchyma, where it appears at the edges of sinusoids and in 

inflammatory lesions. Podoplanin co-localises with CD248 staining to some extent, 

however, there are also both single positive blue and red cells present. Taken together, 

these data suggest non-haematopoietic populations contribute to podoplanin expression 

in the liver during infection. 

5.9.2 5.9.2 5.9.2 5.9.2 Podoplanin is expressed by CD45Podoplanin is expressed by CD45Podoplanin is expressed by CD45Podoplanin is expressed by CD45++++    and CD45and CD45and CD45and CD45----    cells during infectioncells during infectioncells during infectioncells during infection    

Having shown where podoplanin is up-regulated in the liver during infection, flow 

cytometry was used to identify to what extent it is expressed by different populations. To 

enable direct comparison and to assess small changes in podoplanin expression, FACS 

analysis was performed on non-infected and day 7-infected livers on the same day. Initially, 

cells were classified by CD45 expression and podoplanin expression was measured in both 

groups.  
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However, the collagenase-digestion and gradient centrifugation during the processing of 

tissues enriches for leukocytes, thus the retrieved CD45- cells represent only a fraction of 

the true CD45- content of the liver.    

5.9.2.1 5.9.2.1 5.9.2.1 5.9.2.1 Podoplanin expression by CD45Podoplanin expression by CD45Podoplanin expression by CD45Podoplanin expression by CD45----    cellscellscellscells    

The gating strategy and representative FACS plots are shown in Figure 5.28 A-C. Numbers 

of CD45+ cells and CD45- cells significantly increase at day 7 post-infection (Fig 5.28 D-E). 

There is an approximate 50-fold increase in CD45- cells at day 7, and the number of 

podoplanin+ CD45- cells increases approximately 20-fold (Fig 5.28 E-F). The percentage of 

podoplanin+ CD45- cells decreases after infection, which supports the modest increase in 

podoplanin+ CD45- cells seen relative to the total increase in CD45- cell numbers (Fig 5.28 

E-G). To ensure that flow analysis was as inclusive as possible of CD45- cells (which are 

often difficult to isolate from tissues), the “heavy” fraction of the Ficoll gradient was also 

assessed for podoplanin expression. It is this fraction where hepatocytes end up following 

gradient centrifugation so other CD45- cells may also be retained here. It proved 

particularly difficult to quantify cells in this fraction so all analysis focusses on proportions 

rather than absolute numbers.  

Despite leukocyte enrichment, it is inevitable that some leukocytes will be retained in 

further layers of the gradient. The proportion of CD45+ cells detected in the non-leukocyte 

fraction significantly increases following infection, and median fluorescent intensity (MFI) 

of podoplanin is slightly elevated on total CD45+ cells (Fig 5.29 A-C). The proportion of 

CD45- cells decreases after infection, and although the percentage of these cells expressing 

podoplanin increases, podoplanin MFI is reduced in CD45- cells following infection (Fig 5.29 

C-F). 
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In these studies, the MFI in an indicated population is inclusive of all events acquired, 

therefore, can seem lower than expected (particularly in comparison to levels detected 

histologically). Despite this, comparison of relative MFI between populations derived from 

the same sample can be extremely useful. However, in the non-leukocyte fraction of the 

Ficoll gradient, the majority of cells will be hepatocytes, thus will negatively skew 

interpretation of CD45- podoplanin expression. 

5.9.2.2 5.9.2.2 5.9.2.2 5.9.2.2 CD45CD45CD45CD45++++    podoplaninpodoplaninpodoplaninpodoplanin----expressing cells are primarily CD11cexpressing cells are primarily CD11cexpressing cells are primarily CD11cexpressing cells are primarily CD11c++++    F4/80F4/80F4/80F4/80++++    

Initial screening of different CD45+ cells revealed that podoplanin expression is not 

detected above isotype levels on CD3+ cells or CD31+ cells, but is detected on F4/80+ cells, 

MHC II+ cells and to a lesser extent on CD11c+ cells (data not shown). Therefore, to further 

phenotype CD45+ cells based on podoplanin expression, cells were initially separated into 

three populations by their expression of CD11c and F4/80, as illustrated in Figure 5.30 A-B. 

The absolute number of podoplanin-expressing cells increases in all three populations, 

however, the dynamics of this differ between populations (Fig 5.30 C-E). There is a 5-10-

fold increase in the number of CD11c+ F4/80- podoplanin+ cells after infection, however, 

the proportion of CD11c+ F4/80- cells which express podoplanin is slight; approximately 3% 

CD11c+ F4/80- cells express podoplanin in non-infected livers, and this increases to 6% by 

day 7 (Fig 5.30 C and F). In the CD11c- F4/80+ population, podoplanin+ cells are extremely 

rare in non-infected livers, yet increase by approximately 100-fold after infection (Fig 5.30 

D). The percentage of CD11c- F4/80+ cells expressing podoplanin increases from 1% to 

approximately 20% after infection (Fig 5.30 G). In contrast to both these populations, there 

is a substantial frequency and number of CD11c+ F4/80+ podoplanin+ cells in non-infected 

livers, the number of which increases 20-fold after infection (Fig 5.30 E and H).  
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However, the frequency of these cells remains similar after infection (Fig 5.30 H). This 

detection of podoplanin in non-infected livers supports our histological data. 

To further dissect which cells express podoplanin, each population was further phenotyped 

using Ly6C expression, which is up-regulated on monocyte populations on entering the 

liver (Tacke, 2012, Karlmark et al., 2009). The gating strategy is shown in Figure 5.31 A-C. 

The numbers of CD11c+ F4/80- cells and CD11c- F4/80+ cells expressing podoplanin are low 

in non-infected mice, regardless of Ly6C expression (Fig 5.31 D-F and J-K). The majority of 

CD11c+ F4/80+ cells which express podoplanin are Ly6Clo (Fig 5.31 N-P). 

After infection, the highest proportion of CD11c+ F4/80- podoplanin+ cells are Ly6Clo, 

although there are comparable numbers of podoplanin+ cells in all three CD11c+ F4/80- 

populations (Ly6Chi Ly6Clo and Ly6C-) (Fig 5.31 D-I). CD11c- F4/80+ cells were further gated 

into Ly6C+ and Ly6C- cells. After infection, a slightly lower proportion of CD11c- F4/80+ Ly6C+ 

cells express podoplanin relative to CD11c- F4/80+ Ly6C- cells, although cell numbers in 

each population are similar (Fig 5.31 J-M). The F4/80+ CD11c+ cells were further gated into 

three populations based on Ly6C expression. There is a greater proportion of F4/80+ 

CD11c+ cells expressing podoplanin when these cells are Ly6Clo or Ly6C- (compared to 

Ly6Chi) (Fig 5.31 Q-S). Absolute numbers of CD11c+ F4/80+ cells expressing podoplanin 

increase significantly following infection, regardless of Ly6C expression (Fig 5.31 N-P). 
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In summary, in the absence of infection, most podoplanin+ cells are CD11c+ F4/80+ Ly6Clo 

cells. After infection, the greatest numbers of podoplanin+ cells are CD11c- F4/80+ and 

CD11c+ F4/80+. In these populations, numbers of Ly6C+ podoplanin+ cells and Ly6C- 

podoplanin+ cells are increased following infection, demonstrating that both Ly6Chi (more 

monocyte lineage) and Ly6Clo (both Kupffer cell and newly infiltrated macrophage 

populations) can express podoplanin (Tacke et al., 2009). 

5.9.2.3 5.9.2.3 5.9.2.3 5.9.2.3 Podoplanin expression is highest on CD11cPodoplanin expression is highest on CD11cPodoplanin expression is highest on CD11cPodoplanin expression is highest on CD11c++++    F4/80F4/80F4/80F4/80++++    cellscellscellscells    

To explore the level to which these cells express podoplanin, the MFI was investigated. As 

mentioned above, because the MFI of an indicated population is inclusive of all events 

acquired, the relative MFI between populations in a sample provides the most reliable 

interpretation. 

Podoplanin MFI (gated on total cells) is increased at day 7 post-infection, relative to in non-

infected mice, where the MFI is comparable to isotype (Fig 5.32 A-D). In CD45- cells, 

podoplanin MFI was not obtained due to the bimodal distribution of fluorescent intensity 

(Fig 5.32 B-D). In non-infected mice, podoplanin expression in CD11c+ F4/80- cells, is 

marginally higher than isotype and this increases negligibly after infection (Fig 5.32 E). In 

CD11c- F4/80+ cells, podoplanin MFI is equivalent to isotype in non-infected mice and 

increases 3-4 fold after infection (Fig 5.32 F). However, in CD11c+ F4/80+ cells from non-

infected livers, the MFI of podoplanin is considerably above isotype and is approximately 

10-fold higher than that measured on either CD11c+ F4/80- cells or CD11c- F4/80+ cells. This 

decreases slightly upon infection, but is still at least twice that recorded in any other 

population (Fig 5.32 E-G). These data are represented in histogram form (Fig 5.32 H-I). 
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These data support our histological observations that podoplanin is expressed by both 

CD45+ and CD45- populations in the livers of non-infected mice and that after infection, 

podoplanin expression in the liver is increased. There are subtle differences in how 

podoplanin expression is altered by infection in different populations of cells.    

5.9.3 5.9.3 5.9.3 5.9.3 PodoplaPodoplaPodoplaPodoplanin expression increases within 24 hours of infectionnin expression increases within 24 hours of infectionnin expression increases within 24 hours of infectionnin expression increases within 24 hours of infection    

We know that increased podoplanin expression in the liver during infection is due to 

increased numbers of podoplanin-expressing cells, and increased expression per cell. This 

is apparent by day 7, however, thrombi first appear by day 5 post-infection and so we 

hypothesised that podoplanin expression would already be increased by this time. To test 

this, podoplanin expression was assessed at early time-points post-infection in the liver by 

FACS and by IHC. 

By histology, more podoplanin+ cells are detected by 24 hours of infection, relative to in 

non-infected mice, and this is most apparent in cells adjacent to the vessels (Fig 5.33 A- B 

and H-I). Within 48 hours, podoplanin+ cells are frequently in contact with other 

podoplanin+ and podoplanin- cells in the parenchyma, and podoplanin+ cells are seen 

beside vessels (Fig 5.33 C and J). By day 5, inflammatory lesions are established and many 

of the cells in lesions are podoplanin+. Nearly all podoplanin+ cells in the parenchyma also 

express F4/80 (Fig 5.33 D). Thrombi are formed by this time and podoplanin+ (but largely 

F4/80-) cells accumulate adjacent to vessels, especially in proximity to thrombi (Fig 5.33 K). 

At days 7 and 21, the podoplanin distribution is similar to that seen at day 5, but the 

number of podoplanin+ cells are increased (and this is to a greater extent at day 21) (Fig 

5.33 E-F and L-M). There are less F4/80+ leukocytes in the liver by day 35, however, many 

of these are podoplanin+ (Fig 5.33 G and N). 
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5.9.3.1 5.9.3.1 5.9.3.1 5.9.3.1 Podoplanin expression increases on F4/80Podoplanin expression increases on F4/80Podoplanin expression increases on F4/80Podoplanin expression increases on F4/80++++    cells within 24 hourscells within 24 hourscells within 24 hourscells within 24 hours    

Podoplanin was measured by FACS using the gating strategy outlined above (Fig 5.30), and 

illustrated by representative FACS plots in Figure 5.34 A. Absolute numbers of cells in all 

populations examined increase during the first week of infection (Fig 5.34 B-E). The 

proportion of CD11c+ F4/80- cells expressing podoplanin increases from approximately 1% 

in non-infected livers to 2-3% within 24 hours, and this proportion is maintained at 72 

hours (Fig 5.34 F). There is a 2-fold increase to approximately 6% by day 7. Absolute 

numbers of CD11c+ F4/80- podoplanin+ cells rise steadily during the first week, reaching 

approximately 5 x 105 cells per liver by day 7 (Fig 5.34 F and I). This pattern is similar yet 

more dynamic in CD11c- F4/80+ cells. The initial proportion of podoplanin+ cells doubles 

within 24 hours from approximately 10% to 20% of CD11c- F4/80+ cells (Fig 5.34 G). At day 

3, this proportion falls back to equivalent proportions as in non-infected mice. This drop is 

not reflected in absolute numbers; the 20-fold increase in CD11c- F4/80+ podoplanin+ cells 

within 24 hours is maintained at day 3 (Fig 5.34 J). By day 7, numbers are increased 10-20 

fold, and the proportion of podoplanin+ cells is similar to at 24 hours.  

In contrast, podoplanin is expressed by 50-70% of CD11c+ F4/80+ cells in the liver in non-

infected mice (Fig 5.34 H). This proportion of podoplanin+ cells is greater than that of either 

the CD11c+ F4/80- or CD11c- F4/80+ populations at any point during infection. The 

proportion of CD11c+ F4/80+ cells which express podoplanin drops within 24 hours by 

approximately a third. This is recovered by day 7, and approximately 90% of CD11c+ F4/80+ 

cells express podoplanin at day 14. Numbers of podoplanin+ CD11c+ F4/80+ cells increase 

steadily throughout the first few days of infection, increasing 100-fold by day 7 (Fig 5.34 

K).  
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Numbers of CD45- cells (retained in the leukocyte fraction) increase between days 3 and 7, 

as do podoplanin+ CD45- cells (Fig 5.34 L and N). The proportion of CD45- cells which are 

podoplanin+ falls during the first 3 days, but recovers by day 14 (Fig 5.34 M). 

Taken together, these data indicate increased podoplanin expression in the liver within 24 

hours of infection, and this trend continues throughout the first week. During the first 24 

hours, the largest increase in absolute number of podoplanin+ cells occurs in CD11c- F4/80+ 

cells, and it is also this population which increases the most by day 7 (approximate 1000-

fold increase by day 7). However, numbers of CD11c+ F4/80+ podoplanin+ cells also increase 

within the first 24 hours and although this increase is only 2-3 fold, this population 

constitutes the majority of podoplanin-expressing cells at any point throughout infection. 

5.9.4 5.9.4 5.9.4 5.9.4 Podoplanin mean fluorescent intensity peaks at days 3 and 7 postPodoplanin mean fluorescent intensity peaks at days 3 and 7 postPodoplanin mean fluorescent intensity peaks at days 3 and 7 postPodoplanin mean fluorescent intensity peaks at days 3 and 7 post----infectioninfectioninfectioninfection    

infectioninfectioninfectioninfection    

Podoplanin MFI in CD11c+ F4/80+ cells is greater than that in CD11c- F4/80+ cells or CD11c+ 

F4/80- cells at any time-point measured (Fig 5.35 A-D). While in this population, MFI 

remains constant until after 72 hours, there is a transient peak in podoplanin MFI at 24 

hours in both CD11c- F4/80+ and CD11c+ F4/80- cells, which resolves by 72 hours and MFI 

increases in all three populations at day 7 (Fig 5.35 A-C). This dual peak also occurs in 

podoplanin MFI of total leukocytes isolated from the liver (Fig 5.35 E). Podoplanin MFI of 

CD45- cells decreases during infection from day 1 (Fig 5.35 F). 
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5.9.5 5.9.5 5.9.5 5.9.5 Podoplanin expression is comparablePodoplanin expression is comparablePodoplanin expression is comparablePodoplanin expression is comparable    to WT in PF4.Cre.CLECto WT in PF4.Cre.CLECto WT in PF4.Cre.CLECto WT in PF4.Cre.CLEC----2222fl/flfl/flfl/flfl/fl    micemicemicemice    

Podoplanin expression was quantified by FACS in WT and PF4.Cre.CLEC-2fl/fl mice. In the 

absence of infection, liver mass is equivalent and leukocyte cellularity is modestly 

increased in PF4.Cre.CLEC-2fl/fl mice, due to increased myeloid cells (Fig 5.36 A-H). Numbers 

of podoplanin+ cells are comparable or greater in PF4.Cre.CLEC-2fl/fl mice, although 

significantly lower proportions of CD11c- F4/80+ and CD11c+ F4/80+ cells express 

podoplanin (Fig 5.36 I-N). Podoplanin MFI is marginally reduced in CD11c+ F4/80+ cells (Fig 

5.36 O). Numbers of CD45- cells retained in the leukocyte fraction are comparable in both 

strains, as are numbers and proportions of podoplanin+ cells (Fig 5.36 P-R). 

Despite significantly less extensive hepatomegaly after infection, leukocyte cellularity is 

similar in PF4.Cre.CLEC-2fl/fl and WT mice (Fig 5.37 A-B). There are marginally fewer CD11c- 

F4/80+ cells in PF4.Cre.CLEC-2fl/fl mice but other populations are similar to WT (Fig 5.37 C-

H). Numbers and proportions of podoplanin+ cells are comparable, except for modestly 

reduced numbers of CD11c- F4/80+ podoplanin+ and CD11c+ F4/80+ podoplanin+ cells, 

relative to WT (Fig 5.37 I-N). Podoplanin MFI is comparable to WT in all CD45+ populations 

examined (Fig 5.37 O). Podoplanin+ CD45- cells are comparable in both strains (Fig 5.37 P-

R). 

These data support our histological findings that podoplanin expression is elevated post-

infection in PF4.Cre.CLEC-2fl/fl mice to a similar extent as in WT mice. Therefore the 

diminished thrombosis in PF4.Cre.CLEC-2fl/fl mice is likely not to be associated with 

differential podoplanin expression relative to WT mice. 
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5.10 5.10 5.10 5.10 ClodronateClodronateClodronateClodronate----sensitive cells are required for thrombus developmentsensitive cells are required for thrombus developmentsensitive cells are required for thrombus developmentsensitive cells are required for thrombus development    

Having demonstrated heterogeneous podoplanin expression in the liver during infection 

on both CD45+ and CD45- populations, we wanted to determine if expression on any cell 

type in particular is important for thrombosis. To test this, mice were treated with 

clodronate-loaded liposomes, which have been shown to deplete macrophage 

populations, or control PBS-liposomes, 24 hours prior to Salmonella infection (Van Rooijen 

and Sanders, 1996, Flores-Langarica et al., 2011). Depletion was maintained throughout  

infection by subsequent clodronate (or PBS) injections (Fig 5.38 A). Thrombosis and 

podoplanin expression were measured 7 days post-infection. Thrombosis is totally 

abrogated in the absence of clodronate-sensitive cells and thrombocytopenia is 

significantly less severe, although the MPV in these mice remains similar to that in PBS 

treated mice (Fig 5.38 B-F). These data demonstrate that clodronate-sensitive cells are 

important for thrombus development. 

5.10.1 5.10.1 5.10.1 5.10.1 Podoplanin expression is reduced following clodronate treatmentPodoplanin expression is reduced following clodronate treatmentPodoplanin expression is reduced following clodronate treatmentPodoplanin expression is reduced following clodronate treatment    

To determine whether clodronate depletion alters podoplanin expression in livers post-

infection, podoplanin expression was assessed by histology and FACS. Whilst podoplanin is 

still detected in the liver post-clodronate treatment, by histology there appears to be less 

expression in the parenchyma (Fig 5.39 A). Podoplanin expression is observed on F4/80- 

cells adjacent to the vessels both in PBS and clodronate-treated mice, albeit to a lower level 

(Fig 5.39 B). Staining for CD41 confirms the absence of platelet thrombi in clodronate-

treated mice (Fig 5.39 C). 
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Following clodronate treatment, the liver bacterial burden is significantly lower, 

hepatomegaly is significantly less pronounced, and leukocyte numbers are modestly 

reduced (Fig 5.39 D-F). Representative FACS plots illustrate podoplanin expression (Fig 5.40 

A-B). Numbers of total CD45+ cells are not affected by clodronate treatment, however, 

there are significantly reduced CD11c- F4/80+ and CD11c+ F4/80+ cells (Fig 5.40 C-F). 

Moreover, the proportion of cells which are CD11c+ F4/80- is significantly increased and 

that of CD11c- F4/80+ and CD11c+ F4/80+ cells are significantly reduced following 

clodronate depletion (Fig 5.40 G-J). Numbers of podoplanin+ CD11c+ F4/80- cells are not 

affected by clodronate treatment (Fig 5.40 K and N). However, numbers of CD11c- F4/80+ 

podoplanin+ and CD11c+ F4/80+ podoplanin+ cells are significantly reduced, although the 

proportion of these cells which are podoplanin+ is unchanged following treatment (Fig 5.40 

L-M and O-P).  

Numbers of CD45- cells recovered in the leukocyte fraction are significantly reduced 

following clodronate treatment, but remain a similar proportion of the total retrieved cells 

to that in PBS-treated mice (Fig 5.40 Q-R).  Numbers of CD45- podoplanin+ cells are 

unchanged, despite a significant increase in the proportion of these cells expressing 

podoplanin (Fig 5.40 S-T). Podoplanin MFI is similar in all CD45+ populations examined 

following clodronate treatment, and is approximately doubled in CD45- cells (Fig 5.40 U-Z). 

Taken together, these data indicate a modest reduction in podoplanin expression following 

clodronate treatment, particularly in CD11c- F4/80+ and CD11c+ F4/80+ cells. This supports 

our histological observations and suggests that reduced podoplanin following clodronate 

treatment could be associated with an absence of thrombus development.  
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5.10.2 5.10.2 5.10.2 5.10.2 MultiMultiMultiMultiple cell types are affected by cple cell types are affected by cple cell types are affected by cple cell types are affected by clodronate treatmentlodronate treatmentlodronate treatmentlodronate treatment    

To fully elucidate which cells are depleted by clodronate treatment, myeloid cells were 

characterised more rigorously by FACS. Representative FACS plots illustrate the gating 

strategy (Fig 5.41 A-B). Kupffer cells and infiltrating monocyte populations are derived from 

an initial F4/80+ Ly6Glo gate (as described in Chapter 3). Total cells in this gate are modestly 

decreased following clodronate treatment although the proportion of cells in this gate (out 

of total cells retrieved) is similar (Fig 5.41 C-D). Kupffer cell numbers are variable following 

treatment, and the proportion of F4/80+ Ly6Glo cells which are Kupffer cells remains the 

same (Fig 5.41 E-F). Further classification of cells in this “Kupffer cell gate” using CD11c and 

MHC II show that CD11c+ cells (likely to be activated Kupffer cells) tend to be reduced 

following treatment, regardless of MHC II expression (Fig 5.41 G-H and J-K). CD11clo MHC 

IIhi cells in this gate are increased upon treatment (Fig 5.41 I and L). These data suggest that 

F4/80+ Ly6G- CD11blo Ly6Clo CD11c+ cells are affected by clodronate treatment and that 

some of these cells have the capacity to present antigen via MHC II, and some do not. 

Monocyte numbers (F4/80+ Ly6Glo CD11bhi Ly6Chi) are variable, yet also tend to be reduced 

following clodronate treatment (Fig 5.41 M and P). Cells in this “monocyte gate” were 

further classified using CD11c and MHC II. All cells in this gate are CD11clo, however, only 

cells with low MHC II expression were affected by clodronate, although the proportion of 

monocytes which are MHC IIlo is negligible (Fig 5.41 N-O and Q-R). These data imply that 

MHC IIlo monocyte populations from the circulation are also affected by clodronate 

treatment. 
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Neutrophils were classified as F4/80lo, Ly6G+ or Ly6Ghi, and were further phenotyped by 

CD11b and CD11c expression. Numbers and proportions of all Ly6G+ populations do not 

significantly change following treatment, with the exception of a reduced proportion of 

CD11b+ CD11clo cells (Fig 5.41 S-Z). Absolute numbers of Ly6Ghi cells are slightly lower 

following treatment, and this is apparent in both sub-populations but the proportion of 

total cells in this gate is unchanged (Fig 5.41 a-d). The proportion of Ly6Ghi cells which are 

CD11bhi CD11clo significantly decreases upon treatment, and the proportion of CD11b+ 

CD11clo cells significantly increases (Fig 5.41 3-f). Taken together, these data show that 

multiple myeloid subsets are affected by clodronate treatment, including Kupffer cells, 

infiltrating monocyte populations, and neutrophil populations. 

5.11 5.11 5.11 5.11 DiscussionDiscussionDiscussionDiscussion    

In this chapter, we have demonstrated that thrombi develop in the liver during systemic 

Salmonella infection and that this host response (in addition to inflammatory foci 

formation) occurs independently of the adaptive immune response. Instead, thrombosis 

requires IFNγ-mediated inflammation and podoplanin up-regulation on myeloid 

populations, enabling platelet activation via CLEC-2. This is the first account of CLEC-2-

mediated thrombus formation in an inflammatory environment. It is plausible that this 

interaction may be important in other aberrant physiological settings, such as cancer and 

trauma and so the implications from this study should be suitably considered in the future. 



310 

 

5.11.1 5.11.1 5.11.1 5.11.1 During During During During SalmonellaSalmonellaSalmonellaSalmonella    infection, thrombosis develops in the liver and is infection, thrombosis develops in the liver and is infection, thrombosis develops in the liver and is infection, thrombosis develops in the liver and is 

associated with thrombocytopeniaassociated with thrombocytopeniaassociated with thrombocytopeniaassociated with thrombocytopenia    

Here we describe the platelet-rich thrombi which develop in the hepatic venous system 

from day 5 post-infection. The severity of thrombosis peaks at day 21 and thrombi are 

largely resolved by day 35. Thus the development and resolution of thrombosis occurs in 

parallel with inflammatory lesion formation in the liver parenchyma. Furthermore, both 

phenotypes are most extensive at a time when the bacterial load of both the liver and the 

blood are under control. This suggested that both features are inflammatory responses 

which although initiated by the presence of bacteria, are exacerbated and persist due to 

the host immune system. 

Additionally we show that thrombocytopenia occurs in parallel with thrombus 

development. In other words, thrombi, composed largely of CD41+ platelets, form in the 

liver during the host inflammatory response, and at the same time, platelet numbers in the 

blood are severely reduced. As thrombosis resolves (which occurs alongside infiltrate 

dissolution in the liver), platelet numbers in the blood return to normal. Therefore this 

suggests that thrombocytopenia occurs due to platelet consumption in the liver. Other 

factors, including platelet synthesis and splenic haematopoiesis are likely to influence the 

dynamics of this relationship and are discussed further below (Jackson et al., 2010).  

5.11.2 5.11.2 5.11.2 5.11.2 InterferonInterferonInterferonInterferon----γ is required for thrombus development and γ is required for thrombus development and γ is required for thrombus development and γ is required for thrombus development and 

thrombocytopeniathrombocytopeniathrombocytopeniathrombocytopenia    

In Chapter 4 we illustrated that IFNγ signalling is necessary for hepatic inflammation during 

Salmonella infection. Here, we demonstrate an abrogation of thrombus development in 
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the absence of IFNγ, thus inflammation mediated by IFNγ is required for infiltration of 

leukocytes in the liver, the formation of inflammatory foci and the development of 

thrombosis. Furthermore, in the absence of IFNγ, we detect no significant 

thrombocytopenia during infection. Diminished thrombocytopenia in IFNγ-deficient mice 

has been previously reported during endotoxin shock (Car et al., 1994). In our study, the 

absence of these inflammatory phenotypes occur despite the elevated bacterial burden 

measured in the liver, relative to WT mice. Thus both thrombosis and thrombocytopenia 

only occur in the presence of inflammatory IFNγ signalling, and based on their parallel 

occurrence, thrombocytopenia is likely to be a consequence of thrombosis, and platelet 

consumption in the liver. 

5.11.3 5.11.3 5.11.3 5.11.3 Podoplanin expression is IFNγPodoplanin expression is IFNγPodoplanin expression is IFNγPodoplanin expression is IFNγ----mmmmediatedediatedediatedediated    

To identify the mechanism of thrombus development, we investigated potential 

inflammatory components which are known to play a role in platelet activation, including 

podoplanin (Astarita et al., 2012). In Chapter 3 we demonstrated the expression of 

podoplanin within the inflammatory lesions which develop in the liver parenchyma, thus 

we knew that podoplanin is up-regulated in the liver during infection. To demonstrate the 

inflammatory nature of this podoplanin up-regulation, we subsequently show here that 

podoplanin is not up-regulated in IFNγ-deficient mice during infection. Thus, inflammation 

driven by IFNγ is required for increased podoplanin expression. Of interest, in vitro culture 

of liver cells with IFNγ did not induce podoplanin expression (data not shown). Therefore, 

the activities of IFNγ are likely to be indirect, perhaps through the recruitment of other 

inflammatory cells or the activation of other cells and their promotion of podoplanin 

expression via other means (Honma et al., 2012, Ekwall et al., 2011). It is likely that 
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regulation of podoplanin expression may also differ between cell types (Astarita et al., 

2012, Hong et al., 2002). Considering the known capacity of podoplanin to activate 

platelets via CLEC-2, we therefore investigated thrombus development in mice which lack 

CLEC-2 on platelets and so cannot become activated by podoplanin (Finney et al., 2012). 

5.11.4 5.11.4 5.11.4 5.11.4 ThroThroThroThrombosis is mediated by CLECmbosis is mediated by CLECmbosis is mediated by CLECmbosis is mediated by CLEC----2 activation of platelets2 activation of platelets2 activation of platelets2 activation of platelets    

Thrombosis development is severely abrogated during Salmonella infection when CLEC-2 

expression on platelets and megakaryocytes is abolished. In these mice, inflammation is 

observed as in WT mice, with podoplanin expression abundant and inflammatory lesion 

formation intact, so lack of thrombosis is due to the absence of CLEC-2. Despite this, after 

infection, leukocyte cellularity is slightly below that of WT, as are numbers of podoplanin-

expressing cells. These data may highlight a reduced ability of cells to respond to infection 

or to regulate inflammation (less extensive) in the absence of CLEC-2 on platelets. 

In other studies, platelet CLEC-2 and GPVI expression are important for the maintenance 

of blood vessel integrity by the prevention of haemorrhage during induced inflammation 

(Boulaftali et al., 2013). When both these platelet receptors are absent, platelets are 

unable to contribute to vascular integrity. It is likely that our findings support these studies 

to some degree. Potentially, differential environmental factors, such as low shear in the 

portal vein, results in thrombosis in our system, which doesn’t necessarily occur in other 

sites/vessel types (Hughes et al., 2010a). 

Whilst thrombosis is severely abrogated in the absence of CLEC-2 expression on platelets, 

the phenotype is frequently not completely lost, suggesting that there could be low-level 

platelet activation by other mechanisms which is induced during Salmonella infection in 

WT mice. The close association between thrombi and the vascular endothelium raises the 
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possibility that thrombosis could additionally be mediated by activation of the collagen 

receptor GPVI, although studies on GPVI-deficient mice are required to test this. In this 

model, we hypothesise that damage to the endothelium caused by leukocyte infiltration 

may lead to exposure of collagen and platelet activation via platelet-expressed GPVI 

(Massberg et al., 2003). The necessity for both receptors could be tested using double 

transgenic mice whereby platelets lack expression of both CLEC-2 and GPVI (Boulaftali et 

al., 2013, Bender et al., 2013). We would expect thrombosis to be completely abrogated in 

these mice, as it is in IFNγ-deficient mice. 

5.11.5 5.11.5 5.11.5 5.11.5 Adaptive lymphocytes are not required for thrombosis or Adaptive lymphocytes are not required for thrombosis or Adaptive lymphocytes are not required for thrombosis or Adaptive lymphocytes are not required for thrombosis or 

thrombocytopeniathrombocytopeniathrombocytopeniathrombocytopenia    

Considering the requirement for inflammatory podoplanin in platelet activation via CLEC-

2, it was not surprising that thrombosis and thrombocytopenia occur in the absence of 

lymphocytes. Whilst podoplanin expression has been reported on Th17 cells, its expression 

is not detected on other T cell subsets or B cells, consistent with our own results in the liver 

(data not shown) (Peters et al., 2011, Miyamoto et al., 2013). Whilst T cells, and Th1 cells 

in particular, may play a role in the persistence of thrombosis (discussed below), 

lymphocytes are not required for initial thrombus development or the associated 

thrombocytopenia. Podoplanin is expressed on both CD45+ and CD45- populations during 

Salmonella infection and we demonstrate that the haematopoietic source of podoplanin 

expression in the liver is largely myeloid cells.  
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5.11.6 5.11.6 5.11.6 5.11.6 CD45CD45CD45CD45++++    podoplanin expression is primarily by CD11cpodoplanin expression is primarily by CD11cpodoplanin expression is primarily by CD11cpodoplanin expression is primarily by CD11c++++    F4/80F4/80F4/80F4/80++++    cellscellscellscells    andandandand    

expression is induced on CD11cexpression is induced on CD11cexpression is induced on CD11cexpression is induced on CD11c----    F4/80F4/80F4/80F4/80++++    cells postcells postcells postcells post----infectioninfectioninfectioninfection    

We used FACS to investigate which myeloid populations express podoplanin during 

infection, based on their expression of CD11c and F4/80. Kupffer cells express F4/80 and 

can additionally express CD11c (Beattie et al., 2010). However, it is important to note that 

Kupffer cells are not a homogenous population. They can be both tolerogenic and 

inflammatory, and can be fully tissue-resident or can differentiate from newly released 

bone marrow-derived precursors (Klein et al., 2007). Classification of these cells based on 

surface markers alone is not sufficient and functional studies are required to properly 

segregate cells into discrete groups. Therefore, with the gating strategies used here, it is 

likely that multiple cell types will be present in each group (Klein et al., 2007, Tacke et al., 

2009). For example, Kupffer cells are not the only F4/80+ CD11c+ cells found in the liver. 

Monocyte-derived dendritic cells are also positive for both markers and thus may 

contribute to the podoplanin-expressing milieu in this gate (Flores-Langarica et al., 2011, 

Segura and Amigorena, 2013).  

Although the greatest number of podoplanin-expressing cells are CD11c+ F4/80+ (and this 

was the case at any time studied during infection), it is CD11c- F4/80+ cells which are the 

most inducible expressers of podoplanin following infection. The number of CD11c- F4/80+ 

podoplanin+ cells increased approximately 80-fold in the first 24-hours of infection, to a 

total increase of 1000-fold by day 7. Although in total numbers, this is still less than CD11c+ 

F4/80+ podoplanin+ cells, it is the largest fold change in any population studied. This is 

supported by histological observation that podoplanin is expressed by CD11c- F4/80+ and 

CD11c+ F4/80+ cells. Thus our data comply with Kupffer cell (F4/80hi CD11blo) and monocyte 
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(F4/80+ CD11bhi) phenotypes described in the past, and demonstrate podoplanin 

expression by Kupffer cell populations, rather than by monocytes (Tacke et al., 2009). Other 

studies have shown increased podoplanin expression on macrophages in vivo during 

inflammation (Hou et al., 2010). Our data in the liver are in line with these observations, 

although we propose that both macrophages and other populations including MoDCs are 

at play. It will be important to further characterise podoplanin-expressing populations in 

the future.  

5.11.7 5.11.7 5.11.7 5.11.7 ClodronateClodronateClodronateClodronate----sensitive cells are necesensitive cells are necesensitive cells are necesensitive cells are necessary for thrombosis inductionssary for thrombosis inductionssary for thrombosis inductionssary for thrombosis induction    

We show that clodronate treatment prior to Salmonella infection abolishes thrombus 

formation in the liver. Absolute numbers of CD11c- F4/80+ podoplanin+ and CD11c+ F4/80+ 

podoplanin+ cells are reduced following treatment, thus clodronate depletes cells within 

both populations, either or both of which may be required for CLEC-2 activation. Whilst it 

is apparent that clodronate-sensitive cells are required for thrombosis, we do not have 

direct evidence that it is podoplanin expression by these cells which is required for 

thrombosis. Interestingly, in clodronate-treated mice, the bacterial burden of the liver is 

significantly less than in PBS-treated mice. However, it is unlikely that this is due to the 

absence of thrombosis because other mice which lack thrombi retain similar or greater 

bacterial loads compared to WT mice. Instead, the lower colonisation in clodronate-treated 

mice may be explained by loss of niche habitat for bacterial replication, and has been 

described elsewhere (Wijburg et al., 2000). 

5.11.8 5.11.8 5.11.8 5.11.8 Podoplanin in inflammatory orchestrationPodoplanin in inflammatory orchestrationPodoplanin in inflammatory orchestrationPodoplanin in inflammatory orchestration    

Additionally, podoplanin is likely to be important in other aspects of the inflammatory 

response in addition to platelet activation. Podoplanin up-regulation in the liver is detected 
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within 24 hours, and in CD11c- F4/80+ cells is up-regulated bimodally, whereby CD11c- 

F4/80+ podoplanin+ cells are elevated at both 24 hours and at day 7. This may reflect 

differing roles of podoplanin, including organising inflammation and activating platelets. 

The importance of podoplanin in inflammatory orchestration is evident in the literature 

(Acton et al., 2012, Peters et al., 2011, Bekiaris et al., 2007, Boulaftali et al., 2013, Herzog 

et al., 2013). Of particular interest, podoplanin contributes to the recruitment of DCs from 

the periphery and to DC motility within lymph nodes, by interacting with DC-expressed 

CLEC-2 (Acton et al., 2012). Podoplanin expression in the spleen plays a significant role in 

the segregation of T and B cells regions, which is necessary for the induction of normal 

adaptive immune responses, and it is likely that podoplanin expression by non-

haematopoietic cells is likely to be important in this organisation (Bekiaris et al., 2007, 

Withers et al., 2007). The up-regulation of podoplanin we detect on CD45- cells in this study 

suggests the likely importance of non-haematopoietic cells in our inflammation model. We 

also detect podoplanin up-regulation in the spleen despite the absence of thrombosis in 

this site. This further suggests podoplanin involvement in inflammation in a non-thrombus 

forming capacity, as is described elsewhere (Hou et al., 2010). 

5.11.9 5.11.9 5.11.9 5.11.9 Inflammatory thrombosis: Inflammatory thrombosis: Inflammatory thrombosis: Inflammatory thrombosis: a role for TNFαa role for TNFαa role for TNFαa role for TNFα    

Thrombosis is absent in IFNγ-deficient mice due to lack of inflammation. Here we 

demonstrate the absence of thrombosis in TNFαR-deficient mice, despite the maintenance 

of inflammation and podoplanin up-regulation. This suggests that both inflammation and 

an independent TNFαR-mediated signal are necessary for thrombus development. Whilst 

there is evidence for TNFαR expression by platelets (Limb et al., 1999, Pignatelli et al., 

2005), it is unlikely that this plays a role in the lack of thrombosis in these mice as there is 
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controversy regarding the functionality of platelet-expressed TNFαR (S. Watson, personal 

communication). Thus at this stage it is not apparent why mice lacking inflammatory TNFαR 

signalling lack thrombi whilst retaining leukocyte infiltrate and other aspects of hepatic 

inflammation. However, TNFαR-/- mice have a severe lack of inflammatory organisation in 

the spleen during Salmonella infection (data not shown). Further investigation of 

podoplanin expression in other inflammatory sites in these mice, together with 

determining the role of TNFαR signalling will be useful in future studies (Mastroeni et al., 

1995). 

5.11.10 5.11.10 5.11.10 5.11.10 Platelets: consumed or not producedPlatelets: consumed or not producedPlatelets: consumed or not producedPlatelets: consumed or not produced    

As mentioned above a general correlation between thrombosis and thrombocytopenia is 

observed during Salmonella infection. Both phenotypes are largely absent in IFNγ-deficient 

mice, yet thrombocytopenia is augmented when thrombosis is more severe, as in IL10-

deficient mice, suggesting a common mechanism. This relationship is generally mirrored 

by MPV, whereby the more severe the thrombosis, the greater the thrombocytopenia and 

the larger the MPV. Considering elevated MPV can be associated with increased platelet 

production by megakaryocytes and can be indicative of consumptive thrombocytopenia 

(Tsakiris et al., 1999), we would expect the detected increase in MPV to reflect accelerated 

platelet production. The increased numbers of megakaryocytes detected in the spleen 

during infection supports this assumption, and has been described previously 

(Serefhanoglu et al., 2003, Brown et al., 2010). 

During Salmonella infection, the bone marrow becomes colonised and haematopoiesis 

relocates in part to the spleen (Jackson et al., 2010, Kam et al., 1999, Hyland et al., 2005). 

Whether increased MPV is associated with increased platelet production in our model, or 
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whether it is a consequence of the shift to splenic platelet production remains to be seen. 

Additionally, sequestration of platelets in the spleen may contribute to loss of platelets in 

the blood; splenomegaly is a common feature of human and murine systemic Salmonella 

infection and splenic haematopoiesis is likely to account for this (Jackson et al., 2010). 

However, if newly formed platelets are unable to exit the spleen and thus pool in this site, 

this may explain both splenomegaly (to some extent) and thrombocytopenia (Aster, 1966). 

Our data suggest it is unlikely that thrombocytopenia is explained by a lack of platelet 

production, however future studies will include measurement of serum thrombopoeitin as 

an indication of the extent of platelet production. As an aside, splenic haematopoiesis and 

the associated increased megakaryocytes observed in the spleen, may disturb long-lived 

plasma cells in the bone marrow, which reside in unique micro-environmental niches in 

association with megakaryocytes (Winter et al., 2010). 

5.11.12 5.11.12 5.11.12 5.11.12 Thrombosis and thrombocytopenia do not always occur togetherThrombosis and thrombocytopenia do not always occur togetherThrombosis and thrombocytopenia do not always occur togetherThrombosis and thrombocytopenia do not always occur together    

We have described an association between thrombosis, thrombocytopenia and MPV. 

However, a marked reduction in thrombosis but not thrombocytopenia or MPV is seen 

during infection in mice which lack CLEC-2 expression on platelets. This demonstrates that 

the reduction in platelet count is not purely a consequence of platelet consumption during 

thrombosis in the liver. In their resting state, these mice can have slightly lower platelet 

numbers relative to littermate controls (Finney et al., 2012), although this alone cannot 

explain the extent of thrombocytopenia detected post-infection. Therefore, thrombosis in 

the liver cannot be the entire explanation behind thrombocytopenia, despite the 

relationship between these phenotypes in many of the mice we examined. To explain this, 

it is potentially possible that PF4.Cre.CLEC-2fl/fl mice may be thrombotic in other sites which 
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we have not yet detected. Alternatively, thrombosis and thrombocytopenia may be 

separately initiated in response to a common signal (such as IFNγ), but only thrombosis is 

CLEC-2/podoplanin mediated. It will be important to establish the mechanism of 

thrombocytopenia to further investigate this dissociation. Additionally, the shunt in 

haematopoiesis from the bone marrow to the spleen during Salmonella may contribute to 

thrombocytopenia. 

5.11.13 5.11.13 5.11.13 5.11.13 Platelets as mediators of innate immunityPlatelets as mediators of innate immunityPlatelets as mediators of innate immunityPlatelets as mediators of innate immunity    

Aside from haemostasis, reduced platelet numbers in the blood may have other 

consequences in terms of host response to infection. Platelets have been implicated as 

innate mediators of inflammation, for example, platelets can release antimicrobial proteins 

from their granules upon activation (Fitzgerald et al., 2006a, Semple et al., 2011). Platelet 

consumption in the liver may have important systemic repercussions at other sites of 

colonisation. Although the anti-bacterial capacity of a platelet may be small in comparison 

to that of a neutrophil or a macrophage, their numbers and other actions (communication 

with other innate populations) may be vital (Engelmann and Massberg, 2013). 

5.11.14 5.11.14 5.11.14 5.11.14 Thrombosis is an innate phenomenon, yet Thrombosis is an innate phenomenon, yet Thrombosis is an innate phenomenon, yet Thrombosis is an innate phenomenon, yet the adaptive system plays a the adaptive system plays a the adaptive system plays a the adaptive system plays a 

role in its regulationrole in its regulationrole in its regulationrole in its regulation    

Although thrombi develop independently of adaptive immune cells (including T cells), we 

describe the increased severity of vascular occlusion in Tbet-deficient mice, in which CD4+ 

Th1 cells are absent. This suggests there may be an inherent T cell mechanism of vascular 

protection, whereby thrombi are equivalent to those in WT mice in the absence of total T 

cells but vary in severity when specific T cell subsets are missing. Furthermore, thrombosis 
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tends to be less severe in the absence of IL4 (a Th2 effector cytokine), thus there may be a 

Th1 versus Th2 balance in thrombosis control, as there is in other aspects of immunity to 

Salmonella infection (Bobat et al., 2011). However, despite increased thrombosis in 

universally Tbet-deficient mice, thrombosis severity is equivalent to WT in mice whereby T 

cells are Tbet-deficient (data not shown). This may indicate that Tbet expression in a non-

T cell population may play a regulatory role in thrombus development. In support of this, 

thrombosis is particularly fierce in B cell-deficient mice. Tbet in B cells plays a role in 

germinal centre responses (R. Coughlan, personal communication), thus Tbet in B cells may 

be important in restriction of thrombosis and that Th2 cells contribute to this regulation in 

some capacity via IL4 signalling. Nevertheless, the relationship between T cell subsets and 

thrombosis severity remains unclear. 

5.11.15 5.11.15 5.11.15 5.11.15 Thrombosis is Thrombosis is Thrombosis is Thrombosis is a livera livera livera liver----specific host responsespecific host responsespecific host responsespecific host response    

One vital role of the liver is the sampling of and tolerogenicity towards non-pathogenic 

antigens, of which it is constantly exposed to because of its portal blood supply (Bilzer et 

al., 2006). Indeed the liver is the only organ which receives blood directly from the gut. The 

portal vein is likely to be the route of Salmonella entry into the liver in our i.p. infection 

model, although thrombosis is equivalent with i.v. infection. Thrombi develop in the portal 

vein, as identified by adjacency to the hepatic artery, bile duct and podoplanin+ lymphatic 

vessels. Whilst we cannot exclude additional thrombosis in the central venules, this 

phenotype is specifically venous, and is restricted to the liver. 

Whether or not platelets in portal regions may be particularly prone to becoming activated 

in a CLEC-2-dependent manner is unknown. Platelets may be important in immune-

surveillance, as was described recently in the context of ‘touch and go’ interactions with 
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Kupffer cells (Wong et al., 2013, Engelmann and Massberg, 2013). Potentially, a 

combination of antigen exposure, both in the portal circulation and directly via Kupffer cell 

interaction, in addition to a heightened predisposition to become activated due to “Kupffer 

cell kissing”, may provide adequate stimulus for inflammatory podoplanin expression to 

activate platelets. 

Although thrombosis has been described previously during murine Salmonella infections, 

evidence in the literature is limited (Mastroeni et al., 1995, Brown et al., 2010, Nakoneczna 

and Hsu, 1983) (R. Tsolis, personal communication). However, others have described 

thrombosis in multiple sites, including a DIC-like phenotype observed during chronic 

virulent Salmonella infection in Nramp non-susceptible mouse strains (Brown et al., 2010) 

(C. Detweiler, personal communication). Similarly, thrombi are also reported at other sites 

during virulent infection of Nramp-susceptible mouse strains (Mastroeni et al., 1995). In 

our study, thrombosis is a liver-specific phenotype and it is likely that discrepancy to 

previous reports may be accounted for by differing infection conditions. 

5.11.16 5.11.16 5.11.16 5.11.16 ConclusionConclusionConclusionConclusion    

The main implications of this chapter are that firstly, platelets are the main constituent of 

thrombi seen in the liver during Salmonella infection and in fact that the mechanism of 

thrombus development is driven by platelet activation. And secondly that this platelet 

activation is mediated by podoplanin up-regulation and its interaction with platelet-

expressed CLEC-2. This is the first account of CLEC-2-mediated platelet thrombus formation 

in an inflammatory environment. 
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CHAPTER CHAPTER CHAPTER CHAPTER 6666::::    

HAEMOSTASIS DURING HAEMOSTASIS DURING HAEMOSTASIS DURING HAEMOSTASIS DURING SALMONELLASALMONELLASALMONELLASALMONELLA    TYPHIMURIUMTYPHIMURIUMTYPHIMURIUMTYPHIMURIUM    

INFECTIONINFECTIONINFECTIONINFECTION    

6.1 6.1 6.1 6.1 IntroductionIntroductionIntroductionIntroduction    

In Chapter 5 we described the extensive thrombosis and thrombocytopenia which occur 

during systemic STm infection in mice and discussed the few references which have been 

made to these symptoms in human patients. Considering the striking phenotypes we 

observed, we were keen to explore additional haemostatic changes in our infection model, 

especially as there is a more profound awareness of such abnormalities in humans. 

6.1.1 6.1.1 6.1.1 6.1.1 Evidence of human haemostatic abnormalities during NTS infectionsEvidence of human haemostatic abnormalities during NTS infectionsEvidence of human haemostatic abnormalities during NTS infectionsEvidence of human haemostatic abnormalities during NTS infections    

In sub-Saharan Africa, severe anaemia is a common cause of illness and death in children 

due to loss of oxygen supply, yet the underlying cause of this anaemia is often unknown 

(Calis et al., 2008, Koram et al., 2000, Newton et al., 1997). In addition, anaemia is closely 

associated with NTS infections in sub-Saharan Africa (Graham et al., 2000a, Kurtzhals et al., 

1997, Burgmann et al., 1996). A previous case-control study of children in Malawi reported 

that bacteraemia was “strongly associated with severe anaemia”, and in the areas studied, 

NTS was the most common cause of bacteraemia (Calis et al., 2008). Thus, anaemia is 

common in patients with systemic infection and is frequently observed in conjunction with 

NTS bacteraemia in children in sub-Saharan Africa (Graham et al., 2000a).  
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Anaemia of infection is a phrase used to describe the hypo-proliferative anaemia 

associated with low serum iron concentrations, which is frequently linked with chronic 

infection (Means, 2000). The anaemia associated with systemic infection can also 

commonly be caused by the destruction of red blood cells, as occurs during malaria. 

Malarial anaemia is characterised by haemolysis of erythrocytes by phagocytic cells in the 

spleen (Mabey et al., 1987). Haemolytic anaemia has been associated with reduced 

bactericidal activity in macrophages, which may explain the prevalence of NTS bacteraemia 

seen with malaria (Cunnington et al., 2012, Greenwood et al., 1978, Kaye et al., 1967, 

Warren and Weidanz, 1976, Graham et al., 2000a). Although the mechanisms as to how 

anaemia dampens the bactericidal capability of macrophages has not yet been fully 

described, it is likely that the accumulation of malarial pigment and the interference of 

erythrocyte components with reactive oxygen metabolism within macrophages may 

contribute (Mabey et al., 1987, Morpeth et al., 2009). Reduced bactericidal activity is likely 

to have a significant impact on the host’s response to invasive Salmonella infection 

(Greenwood et al., 1978, Kaye et al., 1967, Warren and Weidanz, 1976, Graham et al., 

2000a). 

Another important mechanism which may contribute to anaemia is haemophagocytosis; 

the destruction of erythrocytes, (and leukocytes and platelets) by haemophagocytic 

macrophages in the bone marrow and spleen of infected individuals (Fisman, 2000, Fame 

et al., 1986). Haemophagocytosis has been a recognised clinical feature of typhoid fever 

for many years, whereby hyper-phagocytic macrophages have been referred to as 

typhoidal cells (Mallory, 1898). Nevertheless, although prognosis of systemic NTS infection 

is worse in individuals with anaemia, the condition has not been associated with cause of 

death (Calis et al., 2008, Graham et al., 2000a). 
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Altered peripheral leukocyte numbers have been previously reported in murine STm 

infections and this is primarily due to reduced lymphocyte numbers and neutrophil and 

monocyte populations decrease in the blood (Brown et al., 2010). There is far less data 

describing blood cell changes during human NTS infections. In typhoid fever, the white 

blood cell count is usually unchanged, however increased release of monocyte and 

granulocyte precursors from the bone marrow have been reported, which may indicate 

diminished peripheral mature leukocyte numbers (Mallouh and Sa'di, 1987, Pramoolsinsap 

and Viranuvatti, 1998, Udden et al., 1986). Therefore, whilst associations between systemic 

NTS infection and haematological abnormalities have been acknowledged, especially in 

reference to malarial anaemia and sickle cells disease, these have not been explored in 

detail. Furthermore, with the exception of reduced bacterial killing by macrophages during 

malarial anaemia, there is no indication in the literature as to how these complications may 

contribute to the overall host response to infection. Thus we were keen to characterise 

haemostatic complications during systemic NTS infection in mice with the view to 

understanding how these phenotypes may contribute to the host’s ability to ultimately 

control the infection. 

6.1.2 6.1.2 6.1.2 6.1.2 Aims of studyAims of studyAims of studyAims of study    

The link between the events observed in the liver and the vessels are likely to relate to the 

cellular nature of the blood. For ease of reference we have collated this information for all 

the events seen in the earlier results chapters into one chapter. Thus here we: 

• Quantitatively describe the anaemia and leukopenias associated with our mouse 

model; 
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• Characterise these features in genetically altered mice to determine how the host 

immune system may contribute to these phenotypes. 

 

RESULTRESULTRESULTRESULTSSSS    

6.2 Reference data for whole blood analysis6.2 Reference data for whole blood analysis6.2 Reference data for whole blood analysis6.2 Reference data for whole blood analysis    

To investigate leukopenia and anaemia during infection, mice were infected i.p. with 5 x 

105 attenuated bacteria as described in previous chapters, unless stated otherwise, and 

blood was analysed post-infection. For reference, normal values of haemostatic 

parameters in mice are provided in Table 6.1. As described in Chapters 3 and 5, bacterial 

colonisation of the liver peaks at day 7 post-infection, when bacterial numbers are 

approximately 106 CFU, and by day 50 the liver contains <103 bacteria. In the blood, 

bacterial numbers reach 102-103 by day 7 and are usually undetectable by day 14. 

 

Parameter Male Female 

White blood cells ( per mm3) 8.20 x103 6.55 x 103 

Red blood cells ( per mm3) 8.97 x 106 9.56 x 106 

Haemoglobin (g/dL) 13.10 14.30 

Hematocrit (%) 41.50 45.65 

Table 6.1. Median haematological parameters of C57BL/6J mice aged 3-7 months. Table 

is adapted from (Mazzaccara et al., 2008). 
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6.3 6.3 6.3 6.3 Leukopenia occurs during infectionLeukopenia occurs during infectionLeukopenia occurs during infectionLeukopenia occurs during infection    

In WT mice, total leukocyte numbers detected in the blood are diminished at day 7 post 

infection, and this diminution is exacerbated at day 21 (Fig 6.1 A). Leukopenia is resolving 

by day 28 and is near normal by day 50. This phenotype is primarily due to decreased 

lymphocytes; numbers drop by day 7 and this persists throughout infection, with numbers 

recovering only by day 50 (Fig 6.1 B). In contrast, the number of blood monocytes and 

neutrophils are generally the same or higher during infection, with monocyte numbers 

generally being elevated even at later times when tissue bacterial numbers are low (Fig 6.1 

C-D). Eosinophil and basophil numbers are similar to pre-infection levels except for day 21 

where they are consistently reduced (Fig 6.1 E-F). Taken together, these data indicate that 

when bacterial burdens are highest, blood lymphocyte numbers fall, and whilst blood 

monocytes increase, other myeloid cell numbers are generally more consistent. Despite 

this, leukopenia is observed which is resolved within 50 days. 

6.4 6.4 6.4 6.4 Infection is associated with anaemiaInfection is associated with anaemiaInfection is associated with anaemiaInfection is associated with anaemia----linked blood abnormalitieslinked blood abnormalitieslinked blood abnormalitieslinked blood abnormalities    

Leukopenia is accompanied by a severe anaemia during infection. A decreased erythrocyte 

count is observed in the blood between days 7 and 21 post-infection, which is resolving by 

day 28 (Fig 6.2 A). As expected, haemoglobin concentration and haematocrit resemble the 

pattern of erythrocyte numbers in the blood (Fig 6.2 B-C). Red cell distribution width (RDW) 

(reflecting variability in red cell size) is increased from day 7, is particularly pronounced at 

day 21, and is still elevated by day 50 (Fig 6.2 D). The mean corpuscular volume is stable or 

lower throughout infection, indicating the anaemia is normocytic (Fig 6.2 E). The mean 

corpuscular haemoglobin (MCH) (or mass of haemoglobin per erythrocyte) decreases by 

day 7 and this persists throughout the 50 days measured (Fig 6.2 F). 
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 This indicates a lasting defect in red cells, despite normalising erythrocyte counts and 

universal haemoglobin concentrations. The mean corpuscular haemoglobin concentration 

(MCHC), which describes the mean haemoglobin concentration per set volume of 

erythrocytes, is increased at day 7 (Fig 6.2G). Taken together, these data describe a 

normocytic anaemia which peaks at day 21 post-infection and is not entirely resolved 

within 50 days. 

6.5 6.5 6.5 6.5 Innate leukocytes accumulate in the absence of lymphocytesInnate leukocytes accumulate in the absence of lymphocytesInnate leukocytes accumulate in the absence of lymphocytesInnate leukocytes accumulate in the absence of lymphocytes    

Leukopenia and anaemia were measured in genetically modified mice which lack immune 

cells/molecules at day 7 post-infection. Reference values of all parameters examined for 

non-infected mice of each strain used are shown in Figure 6.3. Most parameters are 

comparable between strains, with the following exceptions. Mice deficient in Tbet and 

PF4.Cre.CLEC-2fl/fl mice have reduced monocyte numbers. Mice lacking B cells have 

elevated neutrophil counts while T cell-deficient mice have lower neutrophil numbers. 

Mice lacking IL6 or IL10 have reduced lymphocyte numbers but higher eosinophil numbers, 

and basophil numbers are increased in the absence of IFNγ and CD1d (Fig 6.3 A-J). 

Interestingly, leukocyte numbers are similar between WT and Rag-1-/- mice, despite the 

absence of lymphocytes (Fig 6.4 A-B). This is due to significantly elevated monocyte 

numbers in the blood in Rag-1-/- mice and there is also a tendency for increased neutrophils 

and eosinophils (Fig 6.4 C-F). The anaemia in these mice occurs to a similar extent to that 

seen in WT mice (Fig 6.4 G-J). Despite their lack of B cells, IgHκ-deficient mice have less 

severe leukopenia than WT mice (Fig 6.5 A). They have a similar lymphocyte number to 

WT, which suggests some compensatory accumulation of T cells in the absence of B cells 

(Fig 6.5 B).  
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Monocytes, neutrophils and eosinophils are all more prevalent in the blood relative to WT 

mice (Fig 6.5 C-F). Anaemia is heightened in B cell-deficient mice (Fig 6.5 G-J).  

In mice which lack T cells, lymphocyte numbers are similar or higher than WT, suggesting 

increased B cells in the blood (Fig 6.6 A-B). Monocytes and neutrophils are also increased 

but there are fewer eosinophils and basophils (Fig 6.6 C-F). Whilst anaemia is detected in 

TCRβδ-/- mice, it is less pronounced; both erythrocyte numbers and haemoglobin 

concentration are significantly greater than in WT mice (Fig 6.6 G-J). These data indicate 

that in the absence of both B cells and T cells and also of each lymphocyte set individually, 

there is a more marked presence of particularly innate leukocytes in the blood, yet anaemia 

severity correlates with a lack of B cells.    

6.6 6.6 6.6 6.6 Anaemia is associated with a lack of CD8 and CD1d but not Tbet or IL4Anaemia is associated with a lack of CD8 and CD1d but not Tbet or IL4Anaemia is associated with a lack of CD8 and CD1d but not Tbet or IL4Anaemia is associated with a lack of CD8 and CD1d but not Tbet or IL4    

To determine if there was a relationship with T cells or T helper cell-associated molecules 

which could contribute to these phenotypes, leukopenia and anaemia were measured in 

mice lacking Tbet (required for CD4+ Th1 differentiation), IL4 (signature of CD4+ Th2 

signalling), CD8, or CD1d (required for iNKT cell activation). 

Tbet-deficient mice have significantly increased numbers of leukocytes in the blood, which 

is especially apparent in monocyte and neutrophil numbers, and a reduced anaemia 

compared to WT (Fig 6.7). Both IL4-deficient and IL4Rα-deficient mice have similar 

leukocyte numbers (in exception to modestly increased neutrophils) and extent of anaemia 

to WT mice, albeit with a RDW similar to naïve mice (Fig 6.8). Mice lacking CD8 have similar 

leukocyte numbers to WT but anaemia is accentuated in these mice (Fig 6.9).  
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Finally, in CD1d-deficient mice, leukopenia is enhanced compared to WT (and this is 

detected in all cells except basophils), and anaemia is more pronounced, with a significantly 

increased RDW (Fig 6.10). 

6.7 6.7 6.7 6.7 LeuLeuLeuLeukopenia and anaemia are exacerbated by IFNγ and dampened by IL10kopenia and anaemia are exacerbated by IFNγ and dampened by IL10kopenia and anaemia are exacerbated by IFNγ and dampened by IL10kopenia and anaemia are exacerbated by IFNγ and dampened by IL10    

Blood cell parameters were assessed in mice lacking IFNγ, TNFαR, IL6 and IL10 to 

investigate how these inflammatory/anti-inflammatory mediators may affect leukopenia 

and anaemia. In IFNγ-/- mice, both leukopenia and anaemia are significantly less severe 

than in WT mice (Fig 6.11). In TNFαR-deficient mice leukocytes are generally similar or 

slightly elevated relative to WT, and anaemia is also comparable (Fig 6.12). With the 

exception of neutrophils, all leukocyte subsets in IL6-deficient mice are further decreased 

in the blood compared to WT, and anaemia is less severe (Fig 6.13). In the absence of anti-

inflammatory IL10, neutrophils are increased in the blood, although other leukocyte 

numbers vary, and anaemia is more pronounced in these mice (Fig 6.14). It must be noted 

that IL10-deficient mice (and the corresponding WT control group) were infected with a 

lower dose of Salmonella (as these mice are less able to survive the normal dose of 5 x 105 

organisms), hence WT parameters are not as extensive as they are with a normal bacterial 

dose. 
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6.8 6.8 6.8 6.8 Loss of CLECLoss of CLECLoss of CLECLoss of CLEC----2 2 2 2 and treatment with cand treatment with cand treatment with cand treatment with clodronate alterlodronate alterlodronate alterlodronate alter    blood cell numbersblood cell numbersblood cell numbersblood cell numbers    

Finally, to determine whether there was a connection between leukopenia, anaemia and 

the inability to develop thrombi due to a lack of CLEC-2 on platelets or a depletion of 

podoplanin-expressing macrophage cells, we looked in the blood of these mice at day 7 

post-infection. In PF4.Cre.CLEC-2fl/fl mice, leukopenia is not as severe as in WT mice (Fig 

6.15 A-F). Lymphocyte, monocyte, neutrophil and eosinophil numbers are significantly 

greater than WT, however, these parameters can be altered in non-infected mice, given 

the blood-lymphatic mixing (Finney et al., 2012). Severity of anaemia is comparable to WT 

in these mice (Fig 6.15 G-J). Leukocyte numbers are less severely reduced in clodronate-

treated mice relative to PBS-treated mice, and anaemia is generally absent in clodronate-

treated mice (Fig 6.16). 
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6.9 6.9 6.9 6.9 DiscussionDiscussionDiscussionDiscussion    

Here we describe the leukopenia and anaemia detected in the blood during systemic STm 

infection. 

6.9.1 6.9.1 6.9.1 6.9.1 Leukopenia is primarily due to reduction in circulating lyLeukopenia is primarily due to reduction in circulating lyLeukopenia is primarily due to reduction in circulating lyLeukopenia is primarily due to reduction in circulating lymphocytesmphocytesmphocytesmphocytes    

Leukopenia is most pronounced at day 21 post-infection, and resolves during the following 

weeks, thus the most severe leukopenia corresponds with the most extensive leukocyte 

infiltration in the liver. Reduced lymphocyte numbers account for most of the detected 

leukopenia, whereas myeloid cells, especially monocytes can increase in the blood, 

especially early after infection. Bacteraemia is only transient in this infection and is absent 

by day 14. Increased innate cells in the blood early post-infection may reflect differential 

activities in the bone marrow (E. Ross, personal communication) or innate immune control 

of bacterial persistence in the blood (Gondwe et al., 2010). The reduced lymphocyte 

frequency in the blood during infection is likely to be explained by the redistribution of 

these cells to lymphoid organs and to effector sites including the liver, especially as this has 

been shown to occur rapidly after infection (Ross et al., 2012, Cunningham et al., 2007). In 

addition, whilst STm colonises primary lymphoid sites, previous studies have indicated that 

lymphocyte output of these tissues is not markedly diminished (Ross et al., 2012). 

Haematopoiesis in the spleen may further contribute to lymphocyte production (Jackson 

et al., 2010). Furthermore, the expansion of haematopoietic stem cells during infection has 

been recently described, although not in the context of Salmonella infection (Scumpia et 

al., 2010). Thus lymphopenia is probably more due to a redistribution of lymphocytes than 

a reduction in production, or in the destruction of these cells during infection. 



349 

 

6.9.2 6.9.2 6.9.2 6.9.2 Circulating myeloid cells accumulate in the absence of lymphocytesCirculating myeloid cells accumulate in the absence of lymphocytesCirculating myeloid cells accumulate in the absence of lymphocytesCirculating myeloid cells accumulate in the absence of lymphocytes    

Leukopenia differed between strains of genetically modified mice, indicating the influence 

of specific leukocyte subtypes/molecular mediators in individual features of leukopenia. 

Furthermore, the assays used in this chapter just looked at the cell type and did not subset 

cells further based on differential expression of phenotypic markers. In addition, our data 

provides no indication as to the extent of differentiation of individual cell types and 

therefore their ability to contribute to the host response. If a large proportion of leukocytes 

produced are actually immature blasts, it may influence their functionality (Ceredig et al., 

2009, Cunnington et al., 2012). Despite a lack of lymphocytes in Rag-1-/- mice, total 

leukocyte numbers are equivalent to WT mice due to elevated numbers of innate cells in 

the blood of Rag-1-/- mice. These data could suggest lymphocytes play a role in regulating 

innate cell numbers in the blood, such as directing innate cells into tissues and thus 

preventing their accumulation in the circulation (Kaufmann, 1993). 

When leukopenia was measured in mice lacking either B cells or T cells specifically, we 

detect an accumulation in the respective other type of lymphocyte (if B cells are absent we 

see elevated T lymphocytes in the blood, and vice versa). The enhanced numbers of 

myeloid cells in the circulation in both T cell-deficient and B cell-deficient mice suggests 

that production or mobility of myeloid cells may be altered when one or more lymphocyte 

subset is absent. In addition, leukopenia is increased in the absence of iNKT cells. 

Considering we also detect decreased leukocytes in the liver at day 7 in CD1d-/- mice, it 

suggests a distinct phenotype is induced in the absence of iNKT cells, which should be 

suitably explored in the future (Emoto and Emoto, 2009). 
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6.9.3 6.9.3 6.9.3 6.9.3 LLLLeukopenia is absent in Ieukopenia is absent in Ieukopenia is absent in Ieukopenia is absent in IFFFFNNNNγγγγ----deficient but not TNFαRdeficient but not TNFαRdeficient but not TNFαRdeficient but not TNFαR----deficient micedeficient micedeficient micedeficient mice    

We showed in Chapter 5 that mice lacking components of the IFNγ and TNFα inflammatory 

cytokine signalling pathways do not develop thrombosis in the liver and that 

thrombocytopenia is either totally absent or significantly reduced in these mice. Here we 

show an absence of leukopenia in IFNγ-/- mice relative to WT at day 7, whereby total 

leukocytes in the blood are more similar to those in non-infected mice. In IFNγ-deficient 

mice, there is very little inflammation in the liver post-infection, so it is not surprising that 

leukopenia in the blood is also absent. This observation supports the inflammatory role of 

IFNγ during infection. 

However, in TNFαR-/- mice, the extent of leukopenia at day 7 is similar to that in infected 

WT mice. Hepatic inflammation is observed to a similar extent to WT mice by histology, 

although numbers of innate cells which accumulate in the liver are reduced relative to WT 

by flow analysis. Therefore, it is likely the leukopenia we detect in TNFαR-/- mice is 

associated with leukocyte infiltration into the liver and other sites at this time. However, 

in the absence of IL10, there are increased numbers of neutrophils in the blood. This may 

be explained by elevated IFNγ which is associated with these mice (Pie et al., 1997, 

Gazzinelli et al., 1996), and is likely to contribute to the extensive hepatic thrombosis and 

enhanced hepatic infiltration we observe. These data indicate that circulating leukocyte 

numbers do not always reflect the extent of tissue infiltration. 

6.9.4 6.9.4 6.9.4 6.9.4 AnaemiaAnaemiaAnaemiaAnaemia    

Multiple features of anaemia are observed during infection, including reduced erythrocyte 

count, haemoglobin concentration and haematocrit. These phenotypes peak in severity at 

day 21 and are generally resolved by day 50. This time-frame is significant as erythrocytes 
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survive for 3-4 months (Horky et al., 1978). Thus the kinetics of anaemia onset and 

resolution parallel those of leukopenia, thrombocytopenia, thrombosis and inflammatory 

lesion development. The red cell distribution width (RDW) provides a measure of the range 

in size of red cells produced in erythropoiesis and an increase in this parameter can indicate 

accelerated generation of new cells (Brown et al., 2010, Kurtzhals et al., 1997). Therefore 

our data suggest that red cell production is increased at days 7 and 21 and that this actually 

persists throughout the 50 days examined. However, altered RDW may also indicate 

variation in erythrocyte output due to the shunt of erythropoiesis to the spleen during 

infection (Jackson et al., 2010). Despite increased RDW, erythrocyte numbers are reduced 

in the blood, implying that production cannot always match utilisation/consumption. The 

maintenance of a heightened RDW throughout infection implicates a lasting effect of 

infection on erythrocytes.  

Whilst mean corpuscular volume oscillates, it remains generally constant which indicates 

the anaemia is normocytic. Therefore, the reduced haematocrit and haemoglobin 

concentration is likely to not be a consequence of reduced capacity for erythrocytes to 

carry haemoglobin. Rather, (and as erythrocyte numbers indicate), the reduction in 

haematocrit and haemoglobin is probably caused by reduced cell counts. This suggests that 

the quality of erythrocytes produced is maintained: the generated cells are functional. 

These data all indicate either consumption/usage of erythrocytes which cannot be 

matched by the production of new cells. So what happens to erythrocytes during 

Salmonella infection? Erythropoiesis occurs in the spleen during STm infection, and 

potentially, erythrocytes may not leave the spleen efficiently following production, 

accounting for both reduced blood erythrocyte counts and splenomegaly (Jackson et al., 

2010). 
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An alternative (or additional) explanation for reduced erythrocyte counts is the destruction 

of these cells during infection. Haemolytic anaemia is a common feature of malaria and 

could also explain the increased RDW detected when anaemia is most pronounced (Mabey 

et al., 1987). In addition, haemophagocytosis, the removal of erythrocytes (and other blood 

cells) by phagocytic cells, is well documented in typhoid fever (Mallouh and Sa'di, 1987, 

Mallory, 1898, Serefhanoglu et al., 2003, Fame et al., 1986, Veerakul et al., 2002). Either or 

both of these events could account for the observed phenotypes during STm infection (Nix 

et al., 2007). It is likely that bone marrow smears or further examination of the spleen will 

be required for detection of haemophagocytosis because these cells have been specifically 

reported in these sites in the past (Brown et al., 2010, Singh et al., 2005). Other groups 

have detected haemophagocytosis in the liver but we have not yet looked for this in our 

infection model (C. Detweiler, personal communication). 

6.9.4.1 6.9.4.1 6.9.4.1 6.9.4.1 Differential regulation of anaemia by lymphocyte populationsDifferential regulation of anaemia by lymphocyte populationsDifferential regulation of anaemia by lymphocyte populationsDifferential regulation of anaemia by lymphocyte populations    

Interestingly, despite an anaemia of equivalent extent to WT being measured in Rag-1-

deficint mice, severity of anaemia differs when either T or B cells alone are absent. In mice 

lacking B cells, anaemia is more severe than WT, yet when T cells are absent, anaemia is 

less severe than WT. These data may indicate either a role for B cells in erythrocyte 

homeostasis, or the presence of T cells may promote development of anaemia. Considering 

the dampening in leukopenia and hepatic infiltration in the absence of T cells, it seems 

likely that anaemia is less pronounced in these mice in correlation with reduced 

inflammation. This would suggest the extent of anaemia parallels T cell-driven 

inflammation. Interestingly, on examination of anaemia in mice deficient in specific T cell 

subsets, we identified that in fact anaemia in Tbet mice is less extensive than WT and in 
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IL4-/- and IL4Rα-/- mice is equivalent to WT. Thus the dampened anaemia detected in total 

T cell-deficient mice is accountable to lack of Tbet. The absence of anaemia in IFNγ-/- mice 

indicates the necessity for inflammation in anaemia, which is supported by the 

accentuated anaemic features of IL10-deficient mice. 

6.9.4.2 6.9.4.2 6.9.4.2 6.9.4.2 A role for clodronateA role for clodronateA role for clodronateA role for clodronate----susceptible cells in erythrocyte phagocytosis?susceptible cells in erythrocyte phagocytosis?susceptible cells in erythrocyte phagocytosis?susceptible cells in erythrocyte phagocytosis?    

The absence of anaemia in clodronate-treated mice would suggest that the inflammatory 

cells removed during treatment are required for anaemia development. Therefore this may 

indicate that these phagocytic cells play a role in erythrocyte destruction, probably due to 

their phagocytic capabilities. This is a really important observation as it identifies a 

potential haemophagocytosis phenotype in our infection model which is in line with 

previous reports both in mice and humans (Brown et al., 2010, Mallory, 1898). Thus our 

data would suggest that T cells drive expansion and accumulation of innate inflammatory 

cells which phagocytose erythrocytes during infection, resulting in anaemia. Whilst 

erythrocyte production shunts to the spleen, this is largely unable to prevent anaemia. 

Haemophagocytosis has been reported in both mouse and human NTS infections, and is a 

known clinical feature of typhoid fever (Mallory, 1898, Brown et al., 2010, Nix et al., 2007). 

Moreover, murine typhoid fever has been described as a model of hemophagocytic 

lymphiohistocytosis (HLH), an inflammatory syndrome which occurs in response to 

infection, characterised by over-activation of macrophages and T cells (Brown et al., 2010). 

Murine studies into haemophagocytosis during STm infection have been largely performed 

in mice strains which are not Nramp-susceptible (Brown et al., 2010). However, murine 

studies resembling human systemic NTS infections are largely undertaken in Nramp-

susceptible strains because of the likeness to the human infection (Monack et al., 2004a). 
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It is unclear in the literature the extent to which haemophagocytosis occurs in these mouse 

strains; the increased inflammation and cell death seen in Nramp-susceptible strains may 

camouflage haemophagocytosis (Nix et al., 2007). Therefore, it will be important to 

visualise these cells in future studies to confirm our observation histologically; bone 

marrow smears may be informative (C. Detweiler, personal communication). 

6.9.5 6.9.5 6.9.5 6.9.5 Outlook: towards human NTS infectionOutlook: towards human NTS infectionOutlook: towards human NTS infectionOutlook: towards human NTS infection    

Whilst we have identified that inflammation and potentially haemophagocytosis 

contribute to anaemia development during STm infection in mice, it is likely that these 

phenotypes will be complicated further in human NTS infections in sub-Saharan Africa. In 

the natural environment, additional co-infections such as malaria and fundamental 

problems including malnourishment are likely to play a role in host haemostasis, even in 

the absence of NTS infection (Graham et al., 2000b). Thus whilst we observe anaemia as a 

consequence of infection, in humans, anaemia is likely to be an underlying condition 

prevalent in malnourished children and frequently associated with malaria (Graham et al., 

2000a, Cunnington et al., 2012). In addition, whilst anaemia is common in systemic NTS 

infections in children in tropical Africa, and this can worsen the prognosis of bacterial 

infection, the condition has not been associated with cause of death (Graham et al., 2000a, 

Calis et al., 2008). 
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CHAPTER CHAPTER CHAPTER CHAPTER 7777::::    

FINAL DISCUSSIONFINAL DISCUSSIONFINAL DISCUSSIONFINAL DISCUSSION    

7.17.17.17.1    Host responsHost responsHost responsHost response to systemic infection involves e to systemic infection involves e to systemic infection involves e to systemic infection involves multiple systemsmultiple systemsmultiple systemsmultiple systems    

Systemic bacterial infections such as those caused by NTS require rapid and coordinated 

host responses to able to efficient control of bacterial replication and ultimately clear 

infection (Jones and Falkow, 1996, Mittrucker and Kaufmann, 2000). Whilst innate and 

adaptive immune mechanisms are essential in both pathogen recognition and active 

pathogen removal, they are not the only host systems at play. Inflammation and the 

directed infiltration of leukocytes into tissues is a prominent feature during immune 

responses to pathogen invasion. This system facilitates the proliferation of appropriate 

cells and their recruitment to the site of injury (Tam et al., 2008, Johansson et al., 2006, 

Wick, 2007). Many of the mediators which enable a co-ordinated inflammatory response 

are also sensitive and responsive to other host defence systems, including the coagulation 

system (Esmon, 2005, Esmon, 2004, Levi et al., 2004). 

Coagulation is one aspect of the haemostatic system, a tightly regulated host response 

which helps to prevent excessive blood loss at sites of injury, maintains blood vessel 

integrity, and recently has been shown to influence inflammation (Esmon, 2005). Platelets, 

the corpuscular cells which facilitate fibrin clot formation during vessel injury, are key to 

the interplay the coagulation and inflammation systems (Jenne et al., 2013, Fitzgerald et 

al., 2006a). Platelets are increasingly recognised as mediators of innate immunity for 

multiple reasons, including their expression of TLRs, their antimicrobial contents of α-

granules and their ability to respond to inflammatory stimuli and influence the recruitment 
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and activity of innate immune cells (Semple et al., 2011, Kerrigan and Cox, 2010). However, 

in recent years, it has become apparent that platelets may also be vital in the facilitation 

of adaptive lymphocyte activation and the establishment of cell-mediated host responses, 

in line with other cells of the innate system (Yeaman, 2010). A particularly exciting example 

of this, especially in relation to the work discussed here, is the interaction between 

platelets and Kupffer cells in the liver described by the group of Paul Kubes (Wong et al., 

2013). This, and the evident contribution of platelets in a variety of host responses, 

including that against cancer, make these cells particularly exciting mediators of host 

responses, and in particular in regard to communication between the components of these 

multiple host systems (Boulaftali et al., 2013, Honn et al., 1992, Lowe et al., 2012). 

7.2 7.2 7.2 7.2 Inflammation drives lesion development and thrombosis in the liverInflammation drives lesion development and thrombosis in the liverInflammation drives lesion development and thrombosis in the liverInflammation drives lesion development and thrombosis in the liver    

Here we have demonstrated the bacterial colonisation of the liver during Salmonella 

infection and have characterised leukocyte infiltration and formation of inflammatory 

lesions in the hepatic parenchymal tissue. We have extensively explored the thrombosis 

phenotype which has been previously observed during Salmonella infections, but has not 

been directly attributed to the host response against infection (Mastroeni et al., 1995). By 

determining the mechanism of thrombus development and identifying the molecular 

components required for this phenotype, we have been able to describe this inflammatory 

feature as an active host response to infection. Therefore, the most significant outcome of 

this study is the recognition that the development of inflammatory lesions and thrombosis 

in the liver are both part of the host inflammatory response to infection and thus share 

regulation. These findings are briefly summarised in Figures 7.1 and 7.2 below. 
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7.3 7.3 7.3 7.3 Inflammatory interferonInflammatory interferonInflammatory interferonInflammatory interferon----γ is required for podoplanin upγ is required for podoplanin upγ is required for podoplanin upγ is required for podoplanin up----regulation during regulation during regulation during regulation during 

infectioninfectioninfectioninfection    

Both leukocyte infiltration into the liver and the formation of thrombi in the liver 

vasculature require signalling by the inflammatory cytokine IFNγ. We have shown that IFNγ 

from both haematopoietic and non-haematopoietic sources is necessary in the 

recruitment of differential leukocyte populations into the liver and that haematopoietic 

IFNγ is required for the organised formation of lesions. One aspect of this infiltration which 

directly contributes to the formation of thrombi in the liver is the up-regulation of 

podoplanin expression, which is evident both on myeloid populations (in particular CD11c+ 

F4/80+ cells and CD11c- F4/80+ cells) and on non-haematopoietic cells. Whilst podoplanin 

expression is necessary for platelet activation via platelet-expressed CLEC-2 (and our 

demonstration of this in thrombosis is novel), podoplanin likely also coordinates multiple 

aspects of cellular infiltrate organisation within the liver and in other sites (Astarita et al., 

2012). Thus inflammatory podoplanin expression provides a shared molecular anchor 

between the immune response and platelet activation. 

Whilst these inflammatory phenotypes are initiated by the presence of bacteria, which 

drives the initial inflammatory signals, both phenotypes persist once bacterial loads are 

resolving, indicating that maintenance of inflammation is not dependant on high bacterial 

numbers. Furthermore, the absence of any inflammatory phenotype in IFNγ-deficient 

mice, which harbour significantly higher bacterial loads in the liver relative to WT mice, 

further supports the inflammatory nature of these phenotypes. 
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7.4 7.4 7.4 7.4 Thrombocytopenia may be differentially regulated to thrombosisThrombocytopenia may be differentially regulated to thrombosisThrombocytopenia may be differentially regulated to thrombosisThrombocytopenia may be differentially regulated to thrombosis    

In addition to hepatic inflammation and thrombus development, we observe severe 

thrombocytopenia, the extent of which parallels severity of liver thrombosis. Thus, it 

initially appeared that the relationship between these two platelet phenotypes is that 

thrombocytopenia is a consequence of thrombosis. This is demonstrated by the absence 

of thrombocytopenia in the absence of thrombosis (as seen in IFNγ-deficient mice) and the 

augmentation of thrombocytopenia when thrombosis is more severe (as in IL10-deficient 

mice). 

However, liver thrombosis and thrombocytopenia do not always share this balance, 

suggesting that thrombocytopenia is not always a direct consequence of platelet 

consumption in the liver. Mice which lack CLEC-2 expression on platelets do not form 

thrombosis to nearly the same extent as is seen in WT mice. Yet these mice present a 

similar thrombocytopenia to that in CLEC-2-sufficient mice, so platelet loss is not directly 

explained by hepatic thrombosis. Furthermore, the absence of thrombi at other sites 

indicates that the thrombocytopenia is unrelated to the reduction in platelet count. This 

suggests that the thrombocytopenia, whilst initiated by a common signal with thrombosis, 

is driven by a different mechanism. We would suggest that platelet production is increased 

during infection, as illustrated by increased platelet size and increased numbers of 

megakaryocytes in the spleen, and thus it would appear not to be due to a reduction in 

platelet production (Brown et al., 2010, Tsakiris et al., 1999). 
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7.5 7.5 7.5 7.5 Outlook: human nonOutlook: human nonOutlook: human nonOutlook: human non----typhoidal bacteraemiatyphoidal bacteraemiatyphoidal bacteraemiatyphoidal bacteraemia    

NTS infections place a significant clinical burden on young children and HIV-infected 

individuals in the developing world (Graham et al., 2000b, Graham and English, 2009). 

Essentially, the aim of this study was to identify potential mechanisms as to how infected 

individuals may die from these infections, which are associated with non-specific 

physiological symptoms (Graham et al., 2000c). Whilst, the co-existence between systemic 

NTS infections and anaemia is evident in the literature, and we support these findings here, 

anaemia is not thought to be the cause of death (Graham et al., 2000a). Evidence of liver 

pathology during human NTS bacteraemia is scarce, but is better described during typhoid 

and is associated with clinical complications in the outcome of infection (Pramoolsinsap 

and Viranuvatti, 1998). Thus, this provided a starting point for our work. The marked 

thrombosis in the liver provided a phenotype which could potentially explain the anecdotal 

“fading away during the night” observations that are frequently associated with death from 

NTS bacteraemia (C. MacLennan, personal communication). We hypothesise that if 

thrombosis such as we observe in the liver happens in other sites, this could explain how 

infected individuals die. 

7.6 7.6 7.6 7.6 A role for immunothrombosis in A role for immunothrombosis in A role for immunothrombosis in A role for immunothrombosis in host defencehost defencehost defencehost defence    

An outstanding question is whether or not the thrombosis we observe is a protective 

inflammatory host mechanism against systemic Salmonella, or if it is an aberrant pathology 

associated with overt inflammation and platelet activation. Indeed, immunothrombosis, 

the formation of thrombi during inflammatory immune responses to invading pathogens, 

has been recently described and is becoming increasingly recognised (Engelmann and 

Massberg, 2013). It is believed that thrombosis contributes to host defence in a multitude 
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of ways, including the limiting of bacterial dissemination, and the recruitment and co-

localisation of leukocytes with invading pathogens. Moreover, it appears that the many of 

the molecular mediators implicated in these thrombotic responses differ (or are 

dispensable) from those utilised during routine haemostasis, for example, the interplay 

between neutrophils, monocytes and platelets is integral to immunothrombosis, but not 

haemostasis (Engelmann and Massberg, 2013, von Bruhl et al., 2012). This poses 

immunothrombosis as an attractive therapeutic target, because many current 

antithrombotic agents are associated with increased risk of bleeding. Additional biological 

responses to bacterial invasion, including NETS, further contribute to the vascular response 

against pathogens, in a protective capacity (Clark et al., 2007). Our preliminary studies 

utilising anti-inflammatory or anti-coagulation agents have so far been inconclusive in 

determining the extent to which thrombosis is beneficial to the host, although these 

experiments are on-going. 

Using genetically-modified mice, we show that those mice which present the most 

extensive clinical features during infection and thus struggle to control infection (as far as 

is humanely appropriate) are frequently those which lack IFNγ, Tbet or IL10 and those 

which are treated with clodronate. However, the reasons for this are likely to differ 

between these strains. We and others have demonstrated the heightened bacterial burden 

of IFNγ-deficient mice at day 7, and thus these mice succumb to infection due to 

uncontrolled bacterial replication in the absence of IFNγ (Ross et al. manuscript in 

preparation) (Mastroeni et al., 1992, Nauciel and Espinasse-Maes, 1992). In contrast, 

clodronate- treated mice have significantly reduced bacterial numbers in the liver relative 

to PBS-treated mice at day 7, yet present severe clinical signs of infection (Wijburg et al., 

2000). However, the other two strains which present overt clinical signs are both 
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particularly susceptible to extensive thrombosis, more so than in WT mice. Thus these 

observations could suggest a putative association between thrombosis severity and clinical 

symptoms. Additionally, ascites, the build-up of fluid in the peritoneum, is common in 

these mice (data not shown). Therefore there may be a relationship between thrombus 

formation in the liver, extent of ascites and extent of clinical features of infection. 

7.7 7.7 7.7 7.7 Relevance of our findings to therapeutic interventionRelevance of our findings to therapeutic interventionRelevance of our findings to therapeutic interventionRelevance of our findings to therapeutic intervention    

Our findings here may be of potential relevance to systemic human infections in the 

developing world due to our care to recapitulate the physiological conditions of the human 

infection (Santos et al., 2001). Human NTS infections are commonly treated with 

antimicrobials and so far, there is no available vaccine (MacLennan et al., 2008). NTS is the 

most common bacterial isolate recovered from bacteraemic children in sub-Saharan Africa 

(Graham et al., 2000b). The use of antibiotics can be delayed, due to inappropriate 

diagnosis, and the emergence of multi-drug resistant strains is an extremely serious 

problem (in the treatment of NTS and more globally in the treatment of bacterial 

infections)(Graham, 2002). Thus the extrapolation of scientific finding from studies such as 

ours will be vital in informing local clinicians and in the universal treatment of these 

infections. 

Here we have demonstrated the general relationship between platelet count and 

thrombosis severity, which could be utilised by measuring platelet counts on patient arrival 

at clinic. This may provide a speedy indication as to the severity of the bacteraemia (de 

Jong et al. manuscript in preparation). However, our results also highlight that this 

association is more complex than purely platelet consumption during thrombosis and 

further work is required to determine the mechanism of thrombocytopenia. Despite this, 
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if we were to demonstrate that thrombosis either helps the host response against 

bacteraemia (or is damaging and could contribute to host death during bacteraemia), it is 

likely that regimes that increase or decrease platelet reactivity, respectively, may be useful 

in the treatment of bacteraemic individuals. A number of antiplatelet agents are already 

available clinically and cheaply, and appropriate use of these may intervene with the host 

thrombosis response whilst minimising the risk of associated bleeding (Engelmann and 

Massberg, 2013). By utilising the overlap between inflammation and platelet activation to 

our advantage, we may be able to preserve the time in which antimicrobials can be useful. 

7.87.87.87.8     Future workFuture workFuture workFuture work    

Whilst this study has provided a detailed characterisation of hepatic inflammation during 

systemic NTS infection and has identified much of the mechanism of platelet activation 

during the associated inflammatory thrombosis, it has also initiated multiple questions to 

be investigated in future work. These are briefly outlined below: 

• One of the most fundamental questions regards the site of platelet activation. We 

have clearly shown that platelet-expressed CLEC-2 and podoplanin are required for 

thrombosis but we have not yet determined whether this podoplanin exposure 

occurs at sites of damaged vascular endothelium or elsewhere. 

• Secondly, it is unclear exactly how TNFα contributes to thrombosis. We 

demonstrate that in the absence of signalling via the TNFα receptor, whilst 

inflammation and podoplanin expression remain intact, thrombosis is abolished. 

This finding therefore portrays a unique role of TNFα in the development of 

thrombosis which differs from the inflammatory signals provided by IFNγ. 
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• Thirdly, the thrombocytopenia which occurs in parallel to the thrombus 

development we observe in the liver vasculature must be driven by different means 

than purely the consumption of platelets during thrombosis. This is evidenced by 

the diminished blood platelet numbers in PF4.Cre.CLEC-2fl/fl mice despite the 

absence of thrombosis in these mice. 

• Fourthly, future work should seek to identify whether neutrophil extracellular traps 

(NETS) play a role in thrombus production during NTS infection. Whilst all other 

leukocyte populations identified localise to the periphery of thrombi, neutrophils 

(Ly6G+ cells) are found throughout the body of the thrombus, suggesting they are 

present as the structure develops. This could potentially indicate that NETS may be 

formed prior to or during thrombosis. However, this must be accurately determined 

using specific histological markers of NETs including neutrophil elastase and 

histones. 

7.97.97.97.9    ConclusionConclusionConclusionConclusion    

Cases describing clinical complications of a haemostatic nature during systemic infection 

have been available for many years (Huckstep 1962). Despite this, the overlap between the 

fields of coagulation and platelet haemostasis and infectious inflammation has been 

understated. The interplay between these systems is emerging quickly into a diverse, yet 

highly relevant field in today’s society where the challenges of antimicrobial resistance 

drive us to explore alternative solutions for infection control. 

This work aimed to investigate possible reasons why invasive NTS infections can be so 

devastating in a manner that does not focus on bacterial numbers. Although we 

concentrated on the liver for its role in host housekeeping and as a primary site of 
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colonisation, this was fortuitous as it allowed us to examine the role of infection on 

inflammation and haemostasis. The key finding is the close relationship between 

inflammation and thrombosis. Both these processes share a common platform of 

podoplanin and we have been able to show that thrombosis in this site requires CLEC-2. 

Therefore the study of one of these processes is likely to inform on the other and this 

provides a platform in which to study the multiple consequences of systemic infection on 

host function.  
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