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Based on generalized Riccati transformation and some inequalities, some oscillation results are established for a class of nonlinear
fractional difference equations with damping term. An example is given to illustrate the validity of the established results.

1. Introduction

During the past two decades, fractional calculus arose in
the field of viscoelasticity, electrochemistry, physics, control,
porous media, electromagnetism, and so forth; see [1–11] and
the references therein. Fractional differential equations and
difference equations can be used to describe some complex
systems more accurately, and we may get the corresponding
equations from those phenomena. However, as we all know,
it is usually difficult to find the exact solutions to fractional
differential or difference equations. In recent years, the study
on qualitative properties of solutions of fractional differential
equations, such as the existence, uniqueness, boundedness,
oscillation, and other asymptotic behaviors, attracted much
attention and some excellent results were obtained; we refer
the reader to see [12–29] and the references cited therein.

In [12], Marian et al. studied the oscillation of fractional
nonlinear difference equations of the form

Δ𝛼𝑥 (𝑡) + 𝑓1 (𝑡, 𝑥 (𝑡 + 𝛼)) = V (𝑡) + 𝑓2 (𝑡, 𝑥 (𝑡 + 𝛼)) ,𝑡 ∈ 𝑁0, 0 < 𝛼 ≤ 1. (1)

Sagayaraj et al. [13] and Selvam et al. [14] investigated
the oscillation of the following nonlinear fractional difference
equations:

Δ (𝑝 (𝑡) (Δ𝛼𝑥 (𝑡))𝛾)
+ 𝑞 (𝑡) 𝑓(𝑡−1+𝛼∑

𝑠=𝑡0

(𝑡 − 𝑠 − 1)(−𝛼) 𝑥 (𝑠)) = 0,
𝑡 ∈ 𝑁𝑡0+1−𝛼,Δ (𝑐 (𝑡) (Δ𝛼𝑥 (𝑡))𝛾) + 𝑝 (𝑡) (Δ𝛼𝑥 (𝑡))𝛾

+ 𝑞 (𝑡) (𝑡−1+𝛼∑
𝑠=𝑡0

(𝑡 − 𝑠 − 1)(−𝛼) 𝑥 (𝑠))𝛾 = 0,
𝑡 ∈ 𝑁𝑡0+1−𝛼,

(2)

where 0 < 𝛼 ≤ 1 and 𝛾 > 0 is a quotient of odd positive inte-
gers.

In [15], Sagayaraj et al. studied oscillatory behavior of the
following fractional difference equations:Δ (𝑝 (𝑡) Δ ([𝑟 (𝑡) Δ𝛼𝑥 (𝑡)]𝜂))

+ 𝐹(𝑡, 𝑡−1+𝛼∑
𝑠=𝑡0

(𝑡 − 𝑠 − 1)(−𝛼) 𝑥 (𝑠)) = 0,
𝑡 ∈ 𝑁𝑡0+1−𝛼,

(3)

where 0 < 𝛼 ≤ 1 and 𝜂 > 0 is a quotient of odd positive inte-
gers.
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In [16], Li investigated the oscillation of forced fractional
difference equations with damping term of the form

(1 + 𝑝 (𝑡)) Δ (Δ𝛼𝑥 (𝑡)) + 𝑝 (𝑡) Δ𝛼𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡))= 𝑔 (𝑡) , 𝑡 ∈ 𝑁0, (4)

with initial condition Δ𝛼−1𝑥(𝑡)|𝑡=0 = 𝑥0, where 0 < 𝛼 < 1.
In [24], Secer and Adiguzel established the oscillation

results for a class of nonlinear fractional difference equations
of the form

Δ (𝑎 (𝑡) [Δ (𝑟 (𝑡) (Δ𝛼𝑥 (𝑡))𝛾1)]𝛾2)
+ 𝑞 (𝑡) 𝑓(𝑡−1+𝛼∑

𝑠=𝑡0

(𝑡 − 𝑠 − 1)(−𝛼) 𝑥 (𝑠)) = 0,
𝑡 ∈ 𝑁𝑡0+1−𝛼,

(5)

where 0 < 𝛼 ≤ 1 and 𝛾1 and 𝛾2 are the quotients of two odd
positive numbers.

Motivated by the idea in [24], in this paper, we are con-
cerned with the oscillation of a class of nonlinear fractional
difference equations with damping term of the form

Δ (𝑐 (𝑡) [Δ (𝑟 (𝑡) Δ𝛼𝑥 (𝑡))]𝛾) + 𝑝 (𝑡) [Δ (𝑟 (𝑡) Δ𝛼𝑥 (𝑡))]𝛾
+ 𝑞 (𝑡) 𝑓(𝑡−1+𝛼∑

𝑠=𝑡0

(𝑡 − 𝑠 − 1)(−𝛼) 𝑥 (𝑠)) = 0,
𝑡 ∈ 𝑁𝑡0 ,

(6)

where 𝛾 ≥ 1 is a quotient of twooddpositive integers, 0 < 𝛼 ≤1 is a constant, Δ𝛼 denotes the Riemann-Liouville fractional
difference operator of order 𝛼, and𝑁𝑡0 = {𝑡0, 𝑡0+1, 𝑡0+2, . . .}.

By a solution of (6), we mean a real-valued sequence𝑥(𝑡) satisfying (6) for 𝑡 ∈ 𝑁𝑡0 . A nontrivial solution 𝑥(𝑡)
of (6) is called oscillatory if it is neither eventually positive
nor eventually negative; otherwise, it is called nonoscillatory.
Equation (6) is called oscillatory if all of its solutions are
oscillatory.

Throughout this paper, we assume that the following
conditions hold:

(A) 𝑐(𝑡), 𝑟(𝑡), 𝑝(𝑡), and 𝑞(𝑡) are positive sequences, 𝑐(𝑡) >𝑝(𝑡).
(B) 𝑓 is a monotone decreasing function satisfying𝑥𝑓(𝑥) > 0; 𝑓(𝑥)/𝑥𝛾 ≥ 𝐿 > 0 for 𝑥 ̸= 0.
For convenience, in the rest of this paper, we set

𝐺 (𝑡) = 𝑡−1+𝛼∑
𝑠=𝑡0

(𝑡 − 𝑠 − 1)(−𝛼) 𝑥 (𝑠) ,
𝛿 (𝑡, 𝑡1) = 𝑡−1∑

𝑠=𝑡1

1(𝑢 (𝑠) 𝑐 (𝑠))1/𝛾 .
(7)

2. Preliminaries and Lemmas

In this section, the definitions of the Riemann-Liouville
fractional sum and difference are given; then some basic
lemmas are presented, which will be used in the following
proof.

Definition 1 (see [28]). The 𝜐th fractional sum of 𝑓, for 𝜐 > 0,
is defined by

Δ−𝜐𝑓 (𝑡) = 1Γ (𝜐) 𝑡−𝜐∑𝑠=𝑎 (𝑡 − 𝑠 − 1)(𝜐−1) 𝑓 (𝑠) , (8)

where 𝑓 is defined for 𝑠 = 𝑎mod(1), Δ−𝜐𝑓 is defined for 𝑡 =(𝑎 + 𝜐)mod(1), and 𝑡(𝜐) = Γ(𝑡 + 1)/Γ(𝑡 + 1 − 𝜐). The fractional
sum Δ−𝜐 is a map from 𝑁𝑎 to 𝑁𝑎+𝜐, where 𝑁𝑡 = {𝑡, 𝑡 + 1, 𝑡 +2, . . .}.
Definition 2 (see [28]). Let 𝜇 > 0 and 𝑚 − 1 < 𝜇 < 𝑚, where𝑚 denotes a positive integer; 𝑚 = ⌈𝜇⌉. Set 𝜐 = 𝑚 − 𝜇; then𝜇th fractional difference is defined as

Δ𝜇𝑓 (𝑡) = Δ𝑚−𝜐𝑓 (𝑡) = Δ𝑚Δ−𝜐𝑓 (𝑡) . (9)

Lemma 3 (see [14]). Let 𝑥(𝑡) be a solution of (6), 𝐺(𝑡) =∑𝑡−1+𝛼𝑠=𝑡0 (𝑡 − 𝑠 − 1)(−𝛼)𝑥(𝑠), and then
Δ𝐺 (𝑡) = Γ (1 − 𝛼) Δ𝛼𝑥 (𝑡) . (10)

Lemma 4 (see [29]). The product and quotient rules of the
difference operator Δ are as follows:

Δ [𝑥 (𝑡) 𝑦 (𝑡)] = 𝑥 (𝑡 + 1) Δ𝑦 (𝑡) + Δ𝑥 (𝑡) ⋅ 𝑦 (𝑡) (11)

= Δ𝑥 (𝑡) ⋅ 𝑦 (𝑡 + 1) + 𝑥 (𝑡) Δ𝑦 (𝑡) , (12)

Δ[𝑥 (𝑡)𝑦 (𝑡)] = Δ𝑥 (𝑡) ⋅ 𝑦 (𝑡) − 𝑥 (𝑡) Δ𝑦 (𝑡)𝑦 (𝑡) 𝑦 (𝑡 + 1) (13)

= Δ𝑥 (𝑡) ⋅ 𝑦 (𝑡 + 1) − 𝑥 (𝑡 + 1) Δ𝑦 (𝑡)𝑦 (𝑡) 𝑦 (𝑡 + 1) , (14)

where Δ𝑥(𝑡) = 𝑥(𝑡 + 1) − 𝑥(𝑡).
Lemma 5. If 𝛾 ≥ 1 is a quotient of two odd positive integers,
then the following two inequalities are established:

if 𝐺 (𝑡 + 1) > 𝐺 (𝑡) > 0, then Δ𝐺𝛾 (𝑡) ≥ (Δ𝐺 (𝑡))𝛾 , (15)

if 𝐺 (𝑡 + 1) < 𝐺 (𝑡) < 0, then Δ𝐺𝛾 (𝑡) ≤ (Δ𝐺 (𝑡))𝛾 . (16)

Proof. Using the inequality (see [30])𝑥 − 𝑦𝑝 ≤ 𝑥𝑝 − 𝑦𝑝 where 𝑥 ≥ 0, 𝑦 ≥ 0, 𝑝 ≥ 1, (17)

we have the following results.
If 𝐺(𝑡 + 1) > 𝐺(𝑡) > 0, let 𝑥 = 𝐺(𝑡 + 1), 𝑦 = 𝐺(𝑡), and𝑝 = 𝛾; then 𝑥 > 𝑦 > 0; it follows from (17) that Δ𝐺𝛾(𝑡) =𝐺𝛾(𝑡+1) − 𝐺𝛾(𝑡) ≥ (𝐺(𝑡+1)−𝐺(𝑡))𝛾 = (Δ𝐺(𝑡))𝛾, soΔ𝐺𝛾(𝑡) ≥(Δ𝐺(𝑡))𝛾.
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If 𝐺(𝑡 + 1) < 𝐺(𝑡) < 0, then −𝐺(𝑡 + 1) > −𝐺(𝑡) > 0; let𝑥 = −𝐺(𝑡 + 1), 𝑦 = −𝐺(𝑡), and 𝑝 = 𝛾; then 𝑥 > 𝑦 > 0; by (17),
we obtain

(−𝐺 (𝑡 + 1))𝛾 − (−𝐺 (𝑡))𝛾 ≥ (−𝐺 (𝑡 + 1) + 𝐺 (𝑡))𝛾 . (18)

Since 𝛾 ≥ 1 is a quotient of two odd positive integers, then

(−𝐺 (𝑡 + 1))𝛾 − (−𝐺 (𝑡))𝛾 = −𝐺𝛾 (𝑡 + 1) + 𝐺𝛾 (𝑡)
= −Δ𝐺𝛾 (𝑡) ,

(−𝐺 (𝑡 + 1) + 𝐺 (𝑡))𝛾 = (−Δ𝐺 (𝑡))𝛾 = − (Δ𝐺 (𝑡))𝛾 .
(19)

Substituting (19) into (18), we have −Δ𝐺𝛾(𝑡) ≥ −(Δ𝐺(𝑡))𝛾,
which means Δ𝐺𝛾(𝑡) ≤ (Δ𝐺(𝑡))𝛾.
Lemma 6. Let 𝑎 > 0, 𝑏, 𝑋 ∈ 𝑅; then 𝑏𝑋 − 𝑎𝑋2 ≤ 𝑏2/4𝑎.
Proof.

𝑏𝑋 − 𝑎𝑋2 = 𝑏24𝑎 − (√𝑎𝑋 − 𝑏2√𝑎)2 ≤ 𝑏24𝑎 . (20)

We define the following sequence:

𝑢 (𝑡) = 𝑡−1∏
𝑠=𝑡0

𝑐 (𝑠)𝑐 (𝑠) − 𝑝 (𝑠) ; (21)

then 𝑢 (𝑡) > 0,
𝑢 (𝑡 + 1) = 𝑐 (𝑡)𝑐 (𝑡) − 𝑝 (𝑡)𝑢 (𝑡) ,
Δ𝑢 (𝑡) = 𝑢 (𝑡 + 1) − 𝑢 (𝑡) = 𝑝 (𝑡)𝑐 (𝑡) − 𝑝 (𝑡)𝑢 (𝑡) .

(22)

3. Main Results

Lemma 7. Assume that 𝑥(𝑡) is an eventually positive solution
of (6) and

∞∑
𝑠=𝑡0

1(𝑢 (𝑠) 𝑐 (𝑠))1/𝛾 = ∞, (23)

∞∑
𝑠=𝑡0

1𝑟 (𝑠) = ∞, (24)

∞∑
𝜉=𝑡0

1𝑟 (𝜉) ∞∑
𝜏=𝜉

[ 1𝑢 (𝜏) 𝑐 (𝜏) ∞∑𝑠=𝜏𝑢 (𝑠 + 1) 𝑞 (𝑠)]
1/𝛾 = ∞; (25)

then, there exists a sufficiently large 𝑇 ∈ 𝑁𝑡0 such thatΔ(𝑟(𝑡)Δ𝛼𝑥(𝑡)) > 0 on [𝑇,∞) and one of the following two
conditions holds: (i) Δ𝛼𝑥(𝑡) > 0 on [𝑇,∞) and (ii) Δ𝛼𝑥(𝑡) < 0
on [𝑇,∞) and lim𝑡→∞ 𝐺(𝑡) = 0.

Proof. Since 𝑥(𝑡) is an eventually positive solution of (6), then
there exists a sufficiently large 𝑡1 such that 𝑥(𝑡) > 0, 𝑡 ∈[𝑡1,∞). So 𝐺(𝑡) > 0, 𝑡 ∈ [𝑡1,∞). Noting assumption (B),
from (6) we obtain

Δ (𝑐 (𝑡) [Δ (𝑟 (𝑡) Δ𝛼𝑥 (𝑡))]𝛾)
+ 𝑝 (𝑡) [Δ (𝑟 (𝑡) Δ𝛼𝑥 (𝑡))]𝛾 = −𝑞 (𝑡) 𝑓 (𝐺 (𝑡))
≤ −𝐿𝑞 (𝑡) 𝐺𝛾 (𝑡) .

(26)

Therefore, it follows from the definition of 𝑢(𝑡) and the
product rule (11) of the difference operator Δ that

Δ (𝑢 (𝑡) 𝑐 (𝑡) [Δ (𝑟 (𝑡) Δ𝛼𝑥 (𝑡))]𝛾) = 𝑢 (𝑡 + 1)
⋅ Δ (𝑐 (𝑡) [Δ (𝑟 (𝑡) Δ𝛼𝑥 (𝑡))]𝛾) + Δ𝑢 (𝑡) ⋅ 𝑐 (𝑡)
⋅ [Δ (𝑟 (𝑡) Δ𝛼𝑥 (𝑡))]𝛾 = 𝑢 (𝑡 + 1)
⋅ Δ (𝑐 (𝑡) [Δ (𝑟 (𝑡) Δ𝛼𝑥 (𝑡))]𝛾) + 𝑝 (𝑡)𝑐 (𝑡) − 𝑝 (𝑡)
⋅ 𝑐 (𝑡) − 𝑝 (𝑡)𝑐 (𝑡) 𝑢 (𝑡 + 1) 𝑐 (𝑡) [Δ (𝑟 (𝑡) Δ𝛼𝑥 (𝑡))]𝛾
= 𝑢 (𝑡 + 1) [Δ (𝑐 (𝑡) [Δ (𝑟 (𝑡) Δ𝛼𝑥 (𝑡))]𝛾)
+ 𝑝 (𝑡) [Δ (𝑟 (𝑡) Δ𝛼𝑥 (𝑡))]𝛾] ≤ −𝐿𝑢 (𝑡 + 1) 𝑞 (𝑡)
⋅ 𝐺𝛾 (𝑡) < 0.

(27)

Then, 𝑢(𝑡)𝑐(𝑡)[Δ(𝑟(𝑡)Δ𝛼𝑥(𝑡))]𝛾 is strictly decreasing on[𝑡1,∞), and thus Δ(𝑟(𝑡)Δ𝛼𝑥(𝑡)) is eventually of one sign. For𝑡2 > 𝑡1 is sufficiently large, we claim that Δ(𝑟(𝑡)Δ𝛼𝑥(𝑡)) > 0
on [𝑡2,∞). Otherwise, assume that there exists a sufficiently
large 𝑡3 > 𝑡2 such that Δ(𝑟(𝑡3)Δ𝛼𝑥(𝑡3)) < 0; then, for 𝑡 ∈(𝑡3,∞), we get

𝑢 (𝑡) 𝑐 (𝑡) [Δ (𝑟 (𝑡) Δ𝛼𝑥 (𝑡))]𝛾
< 𝑢 (𝑡3) 𝑐 (𝑡3) [Δ (𝑟 (𝑡3) Δ𝛼𝑥 (𝑡3))]𝛾 = 𝐾 < 0, (28)

that is,

Δ (𝑟 (𝑡) Δ𝛼𝑥 (𝑡)) < [ 𝐾𝑢 (𝑡) 𝑐 (𝑡)]1/𝛾 < 0, 𝑡 ∈ (𝑡3,∞) ; (29)

Sowe can getΔ(𝑟(𝑡)Δ𝛼𝑥(𝑡)) < 0 on [𝑡3,∞). From these terms,
for 𝑡 ∈ [𝑡3,∞), we have

𝑟 (𝑡) Δ𝛼𝑥 (𝑡) − 𝑟 (𝑡3) Δ𝛼𝑥 (𝑡3)
= 𝑡−1∑
𝑠=𝑡3

(𝑢 (𝑠) 𝑐 (𝑠))1/𝛾 Δ (𝑟 (𝑠) Δ𝛼𝑥 (𝑠))(𝑢 (𝑠) 𝑐 (𝑠))1/𝛾
≤ (𝑢 (𝑡3) 𝑐 (𝑡3))1/𝛾 Δ (𝑟 (𝑡3) Δ𝛼𝑥 (𝑡3))
⋅ 𝑡−1∑
𝑠=𝑡3

1(𝑢 (𝑠) 𝑐 (𝑠))1/𝛾 .
(30)
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By (23), we obtain lim𝑡→∞ 𝑟(𝑡)Δ𝛼𝑥(𝑡) = −∞, which means,
for some sufficiently large 𝑡4 > 𝑡3, Δ𝛼𝑥(𝑡) < 0 on [𝑡4,∞). By
Lemma 3, we have

𝐺 (𝑡) − 𝐺 (𝑡4) = 𝑡−1∑
𝑠=𝑡4

Δ𝐺 (𝑠) = Γ (1 − 𝛼) 𝑡−1∑
𝑠=𝑡4

Δ𝛼𝑥 (𝑠)
= Γ (1 − 𝛼) 𝑡−1∑

𝑠=𝑡4

𝑟 (𝑠) Δ𝛼𝑥 (𝑠)𝑟 (𝑠)
≤ Γ (1 − 𝛼) 𝑟 (𝑡4) Δ𝛼𝑥 (𝑡4) 𝑡−1∑

𝑠=𝑡4

1𝑟 (𝑠) .
(31)

By (24), we obtain lim𝑡→∞ 𝐺(𝑡) = −∞, which contradicts𝐺(𝑡) > 0, 𝑡 ∈ [𝑡1,∞). Therefore, Δ(𝑟(𝑡)Δ𝛼𝑥(𝑡)) > 0, 𝑡 ∈[𝑡2,∞). Thus, Δ𝛼𝑥(𝑡) is eventually of one sign. There are two
possibilities: (i) Δ𝛼𝑥(𝑡) > 0 on [𝑇,∞) and (ii) Δ𝛼𝑥(𝑡) < 0 on[𝑇,∞), where 𝑇 is sufficiently large.

Now, we assume that Δ𝛼𝑥(𝑡) < 0, 𝑡 ∈ [𝑡5,∞), where𝑡5 > 𝑡4 is sufficiently large. Then, by Lemma 3, we haveΔ𝐺(𝑡) = Γ(1 − 𝛼)Δ𝛼𝑥(𝑡) < 0, 𝑡 ∈ [𝑡5,∞). Since 𝐺(𝑡) > 0, 𝑡 ∈[𝑡1,∞), we have lim𝑡→∞ 𝐺(𝑡) = 𝛽 ≥ 0.We claim that 𝛽 = 0.
Otherwise, assume that 𝛽 > 0. Then, 𝐺(𝑡) ≥ 𝛽, 𝑡 ∈ [𝑡5,∞).
By (27), we have

Δ (𝑢 (𝑡) 𝑐 (𝑡) [Δ (𝑟 (𝑡) Δ𝛼𝑥 (𝑡))]𝛾)
≤ −𝐿𝑢 (𝑡 + 1) 𝑞 (𝑡) 𝐺𝛾 (𝑡) ≤ −𝐿𝑢 (𝑡 + 1) 𝑞 (𝑡) 𝛽𝛾. (32)

Substituting 𝑡with 𝑠 in (32), a summation for (32)with respect
to 𝑠 from 𝑡 to∞ yields

∞∑
𝑠=𝑡

Δ (𝑢 (𝑠) 𝑐 (𝑠) [Δ (𝑟 (𝑠) Δ𝛼𝑥 (𝑠))]𝛾)
≤ −𝐿𝛽𝛾 ∞∑

𝑠=𝑡

𝑢 (𝑠 + 1) 𝑞 (𝑠) , (33)

which implies

− 𝑢 (𝑡) 𝑐 (𝑡) [Δ (𝑟 (𝑡) Δ𝛼𝑥 (𝑡))]𝛾
≤ − lim
𝑠→∞

𝑢 (𝑠) 𝑐 (𝑠) [Δ (𝑟 (𝑠) Δ𝛼𝑥 (𝑠))]𝛾
− 𝐿𝛽𝛾 ∞∑

𝑠=𝑡

𝑢 (𝑠 + 1) 𝑞 (𝑠) < −𝐿𝛽𝛾 ∞∑
𝑠=𝑡

𝑢 (𝑠 + 1) 𝑞 (𝑠) ;
(34)

therefore,

Δ (𝑟 (𝑡) Δ𝛼𝑥 (𝑡))
> 𝐿1/𝛾𝛽[ 1𝑢 (𝑡) 𝑐 (𝑡) ∞∑𝑠=𝑡𝑢 (𝑠 + 1) 𝑞 (𝑠)]

1/𝛾 . (35)

Substituting 𝑡 with 𝜏 in (35), a summation for (35) with
respect to 𝜏 from 𝑡 to∞ yields

∞∑
𝜏=𝑡

Δ (𝑟 (𝜏) Δ𝛼𝑥 (𝜏))
> 𝐿1/𝛾𝛽∞∑

𝜏=𝑡

[ 1𝑢 (𝜏) 𝑐 (𝜏) ∞∑𝑠=𝜏𝑢 (𝑠 + 1) 𝑞 (𝑠)]
1/𝛾 ; (36)

namely,− 𝑟 (𝑡) Δ𝛼𝑥 (𝑡)
> − lim
𝜏→∞

𝑟 (𝜏) Δ𝛼𝑥 (𝜏)
+ 𝐿1𝛾 𝛽∞∑

𝜏=𝑡

[ 1𝑢 (𝜏) 𝑐 (𝜏) ∞∑𝑠=𝜏𝑢 (𝑠 + 1) 𝑞 (𝑠)]
1𝛾

> 𝐿1𝛾 𝛽∞∑
𝜏=𝑡

[ 1𝑢 (𝜏) 𝑐 (𝜏) ∞∑𝑠=𝜏𝑢 (𝑠 + 1) 𝑞 (𝑠)]
1𝛾 ;

(37)

therefore,Δ𝛼𝑥 (𝑡)
< −𝐿1𝛾 𝛽 1𝑟 (𝑡) ∞∑𝜏=𝑡[ 1𝑢 (𝜏) 𝑐 (𝜏) ∞∑𝑠=𝜏𝑢 (𝑠 + 1) 𝑞 (𝑠)]

1𝛾 ; (38)

that is,

Δ𝐺 (𝑡) < −Γ (1 − 𝛼) 𝐿1/𝛾𝛽 1𝑟 (𝑡)
⋅ ∞∑
𝜏=𝑡

[ 1𝑢 (𝜏) 𝑐 (𝜏) ∞∑𝑠=𝜏𝑢 (𝑠 + 1) 𝑞 (𝑠)]
1/𝛾 . (39)

Substituting 𝑡 with 𝜉 in (39), a summation for (39) with
respect to 𝜉 from 𝑡5 to 𝑡 − 1 yields
𝑡−1∑
𝜉=𝑡5

Δ𝐺 (𝜉) < −Γ (1 − 𝛼) 𝐿1𝛾 𝛽 𝑡−1∑
𝜉=𝑡5

1𝑟 (𝜉)
⋅ ∞∑
𝜏=𝜉

[ 1𝑢 (𝜏) 𝑐 (𝜏) ∞∑𝑠=𝜏𝑢 (𝑠 + 1) 𝑞 (𝑠)]
1𝛾 ;

(40)

then

𝐺 (𝑡) − 𝐺 (𝑡5) < −Γ (1 − 𝛼) 𝐿1/𝛾𝛽 𝑡−1∑
𝜉=𝑡5

1𝑟 (𝜉)
⋅ ∞∑
𝜏=𝜉

[ 1𝑢 (𝜏) 𝑐 (𝜏) ∞∑𝑠=𝜏𝑢 (𝑠 + 1) 𝑞 (𝑠)]
1/𝛾 . (41)

By (25), it follows from (41) that lim𝑡→∞ 𝐺(𝑡) = −∞, which
contradicts 𝐺(𝑡) > 0, 𝑡 ∈ [𝑡1,∞). Then we get that 𝛽 = 0,
which is lim𝑡→∞ 𝐺(𝑡) = 0. This completes the proof of
Lemma 7.

By the same proof as above, if 𝑥(𝑡) is an
eventually negative solution of (6), we can obtainΔ(𝑢(𝑡)𝑐(𝑡)[Δ(𝑟(𝑡)Δ𝛼𝑥(𝑡))]𝛾) > 0 and Lemma 8 holds.
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Lemma 8. Assume that 𝑥(𝑡) is an eventually negative solution
of (6) and (23)–(25) hold. Then, there exists a sufficiently large𝑇 ∈ 𝑁𝑡0 such that Δ(𝑟(𝑡)Δ𝛼𝑥(𝑡)) < 0 on [𝑇,∞) and one of the
following two conditions holds: (i) Δ𝛼𝑥(𝑡) < 0 on [𝑇,∞) and
(ii) Δ𝛼𝑥(𝑡) > 0 on [𝑇,∞) and lim𝑡→∞ 𝐺(𝑡) = 0.
Lemma 9. Assume that 𝑥(𝑡) is an eventually positive solution
of (6) such that Δ(𝑟(𝑡)Δ𝛼𝑥(𝑡)) > 0, Δ𝛼𝑥(𝑡) > 0 on [𝑡1,∞),
where 𝑡1 ≥ 𝑡0 is sufficiently large. Then

Δ𝐺 (𝑡)
≥ Γ (1 − 𝛼) 𝛿 (𝑡, 𝑡1) (𝑢 (𝑡) 𝑐 (𝑡))1/𝛾 Δ (𝑟 (𝑡) Δ𝛼𝑥 (𝑡))𝑟 (𝑡) . (42)

Proof. Assume that 𝑥(𝑡) is an eventually positive solution of
(6); then we obtain that 𝑢(𝑡)𝑐(𝑡)[Δ(𝑟(𝑡)Δ𝛼𝑥(𝑡))]𝛾 is strictly
decreasing on [𝑡1,∞); by (27) we have,

𝑟 (𝑡) Δ𝛼𝑥 (𝑡) ≥ 𝑟 (𝑡) Δ𝛼𝑥 (𝑡) − 𝑟 (𝑡1) Δ𝛼𝑥 (𝑡1)
= 𝑡−1∑
𝑠=𝑡1

(𝑢 (𝑠) 𝑐 (𝑠))1/𝛾 Δ (𝑟 (𝑠) Δ𝛼𝑥 (𝑠))(𝑢 (𝑠) 𝑐 (𝑠))1/𝛾

≥ (𝑢 (𝑡) 𝑐 (𝑡))1/𝛾 Δ (𝑟 (𝑡) Δ𝛼𝑥 (𝑡)) 𝑡−1∑
𝑠=𝑡1

1(𝑢 (𝑠) 𝑐 (𝑠))1/𝛾
= 𝛿 (𝑡, 𝑡1) (𝑢 (𝑡) 𝑐 (𝑡))1/𝛾 Δ (𝑟 (𝑡) Δ𝛼𝑥 (𝑡)) .

(43)

By Lemma 3, we obtain

Δ𝐺 (𝑡)
≥ Γ (1 − 𝛼) 𝛿 (𝑡, 𝑡1) (𝑢 (𝑡) 𝑐 (𝑡))1/𝛾 Δ (𝑟 (𝑡) Δ𝛼𝑥 (𝑡))𝑟 (𝑡) . (44)

Then the proof is complete.

With the same proof as that in Lemma 9, we can obtain
the following.

Lemma 10. Assume that𝑥(𝑡) is an eventually negative solution
of (6) such that Δ(𝑟(𝑡)Δ𝛼𝑥(𝑡)) < 0, Δ𝛼𝑥(𝑡) < 0 on [𝑡1,∞),
where 𝑡1 ≥ 𝑡0 is sufficiently large. Then

Δ𝐺 (𝑡) ≤ Γ (1 − 𝛼) 𝛿 (𝑡, 𝑡1) (𝑢 (𝑡) 𝑐 (𝑡))1/𝛾 Δ (𝑟 (𝑡) Δ𝛼𝑥 (𝑡))𝑟 (𝑡)
< Γ (1 − 𝛼) 𝛿 (𝑡, 𝑡1) (𝑢 (𝑡 + 1) 𝑐 (𝑡 + 1))1/𝛾 Δ (𝑟 (𝑡 + 1) Δ𝛼𝑥 (𝑡 + 1))𝑟 (𝑡) . (45)

Theorem 11. Assume that (23)–(25) hold. If

lim sup
𝑡→∞

𝑡−1∑
𝑠=𝑇

(𝐿𝑢 (𝑠) 𝑞 (𝑠) − (Δ𝑢 (𝑠))24𝑢 (𝑠) 𝑢 (𝑠 + 1) 𝑅 (𝑠))
= ∞, (46)

where 𝑇 is sufficiently large, 𝑢(𝑡) is defined as in (21), and𝑅(𝑡) = [Γ(1−𝛼)𝛿(𝑡, 𝑡1)/𝑟(𝑡)]𝛾, then (6) is oscillatory or satisfies
lim𝑡→∞ 𝐺(𝑡) = 0.
Proof. Suppose to the contrary that (6) has a nonoscillatory
solution 𝑥(𝑡), 𝑡 ∈ 𝑁𝑡0 ; then 𝑥(𝑡) is either eventually positive
or eventually negative.

In the case when 𝑥(𝑡) is eventually positive, we assume
that 𝑥(𝑡) > 0 on [𝑡1,∞), where 𝑡1 ∈ 𝑁𝑡0 is sufficiently large;
then 𝐺(𝑡) > 0. By Lemma 7, we obtain Δ(𝑟(𝑡)Δ𝛼𝑥(𝑡)) > 0 on[𝑡2,∞), where 𝑡2 > 𝑡1 is sufficiently large, and either Δ𝛼𝑥(𝑡) >0 on [𝑡2,∞) or lim𝑡→∞ 𝐺(𝑡) = 0.

If Δ𝛼𝑥(𝑡) > 0 on [𝑡2,∞), then the conclusion of Lemma 9
holds.

Define the generalized Riccati function as follows:

𝑤 (𝑡) = 𝑢 (𝑡) 𝑐 (𝑡) [Δ (𝑟 (𝑡) Δ𝛼𝑥 (𝑡))]𝛾𝐺𝛾 (𝑡) , 𝑡 ∈ [𝑡2,∞) . (47)

It is clear that 𝑤(𝑡) > 0. By the product rule (12) and the
quotient rule (13), for 𝑡 ∈ [𝑡2,∞), we have

Δ𝑤 (𝑡) = Δ𝑢 (𝑡) ⋅ 𝑤 (𝑡 + 1)𝑢 (𝑡 + 1) + 𝑢 (𝑡) Δ(𝑐 (𝑡) [Δ (𝑟 (𝑡) Δ𝛼𝑥 (𝑡))]
𝛾

𝐺𝛾 (𝑡) )
= Δ𝑢 (𝑡) ⋅ 𝑤 (𝑡 + 1)𝑢 (𝑡 + 1) + 𝑢 (𝑡) Δ (𝑐 (𝑡) [Δ (𝑟 (𝑡) Δ

𝛼𝑥 (𝑡))]𝛾) ⋅ 𝐺𝛾 (𝑡) − 𝑐 (𝑡) [Δ (𝑟 (𝑡) Δ𝛼𝑥 (𝑡))]𝛾 Δ𝐺𝛾 (𝑡)𝐺𝛾 (𝑡) 𝐺𝛾 (𝑡 + 1)
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= Δ𝑢 (𝑡) ⋅ 𝑤 (𝑡 + 1)𝑢 (𝑡 + 1) + 𝑢 (𝑡) −𝑝 (𝑡) [Δ (𝑟 (𝑡) Δ𝛼𝑥 (𝑡))]
𝛾 − 𝑞 (𝑡) 𝑓 (𝐺 (𝑡))𝐺𝛾 (𝑡 + 1) − 𝑢 (𝑡) 𝑐 (𝑡) [Δ (𝑟 (𝑡) Δ𝛼𝑥 (𝑡))]𝛾 Δ𝐺𝛾 (𝑡)𝐺𝛾 (𝑡) 𝐺𝛾 (𝑡 + 1)

= Δ𝑢 (𝑡)𝑢 (𝑡 + 1)𝑤 (𝑡 + 1) − 𝑢 (𝑡) 𝑝 (𝑡) [Δ (𝑟 (𝑡) Δ𝛼𝑥 (𝑡))]𝛾𝐺𝛾 (𝑡 + 1) − 𝑢 (𝑡) 𝑞 (𝑡) 𝑓 (𝐺 (𝑡))𝐺𝛾 (𝑡 + 1)
− 𝑢 (𝑡) 𝑐 (𝑡) [Δ (𝑟 (𝑡) Δ𝛼𝑥 (𝑡))]𝛾 Δ𝐺𝛾 (𝑡)𝐺𝛾 (𝑡) 𝐺𝛾 (𝑡 + 1) .

(48)

From Δ(𝑟(𝑡)Δ𝛼𝑥(𝑡)) > 0 and Lemma 3, we have

𝑢 (𝑡) 𝑝 (𝑡) [Δ (𝑟 (𝑡) Δ𝛼𝑥 (𝑡))]𝛾𝐺𝛾 (𝑡 + 1) > 0, (49)

and Δ𝐺(𝑡) > 0; then 𝐺(𝑡 + 1) > 𝐺(𝑡) > 0; it follows from (B)
that

𝑓 (𝐺 (𝑡))𝐺𝛾 (𝑡 + 1) > 𝑓 (𝐺 (𝑡 + 1))𝐺𝛾 (𝑡 + 1) ≥ 𝐿, (50)

and Δ𝐺𝛾(𝑡) ≥ (Δ𝐺(𝑡))𝛾 by (15).
Using Lemma 9 and the fact that 𝑢(𝑡)𝑐(𝑡)[Δ(𝑟(𝑡)Δ𝛼𝑥(𝑡))]𝛾

is strictly decreasing, we have

𝑢 (𝑡) 𝑐 (𝑡) [Δ (𝑟 (𝑡) Δ𝛼𝑥 (𝑡))]𝛾 Δ𝐺𝛾 (𝑡)𝐺𝛾 (𝑡) 𝐺𝛾 (𝑡 + 1) ≥ 𝑢 (𝑡) 𝑐 (𝑡) [Δ (𝑟 (𝑡) Δ𝛼𝑥 (𝑡))]𝛾 (Δ𝐺 (𝑡))𝛾𝐺𝛾 (𝑡) 𝐺𝛾 (𝑡 + 1)
≥ 𝑢 (𝑡) 𝑐 (𝑡) [Δ (𝑟 (𝑡) Δ𝛼𝑥 (𝑡))]𝛾 [Γ (1 − 𝛼) 𝛿 (𝑡, 𝑡1) /𝑟 (𝑡)]𝛾 𝑢 (𝑡) 𝑐 (𝑡) [Δ (𝑟 (𝑡) Δ𝛼𝑥 (𝑡))]𝛾𝐺𝛾 (𝑡) 𝐺𝛾 (𝑡 + 1)
> (𝑢 (𝑡) 𝑐 (𝑡) [Δ (𝑟 (𝑡) Δ𝛼𝑥 (𝑡))]𝛾)2 𝑅 (𝑡)𝐺2𝛾 (𝑡 + 1) > (𝑢 (𝑡 + 1) 𝑐 (𝑡 + 1) [Δ (𝑟 (𝑡 + 1) Δ𝛼𝑥 (𝑡 + 1))]𝛾)2 𝑅 (𝑡)𝐺2𝛾 (𝑡 + 1) = 𝑅 (𝑡) 𝑤2 (𝑡 + 1) .

(51)

Now substituting (49), (50), and (51) into (48), we obtain

Δ𝑤 (𝑡) < Δ𝑢 (𝑡)𝑢 (𝑡 + 1)𝑤 (𝑡 + 1) − 𝐿𝑢 (𝑡) 𝑞 (𝑡)
− 𝑅 (𝑡) 𝑤2 (𝑡 + 1) . (52)

Taking 𝑎 = 𝑅(𝑡) > 0, 𝑏 = Δ𝑢(𝑡)/𝑢(𝑡 + 1), and𝑋 = 𝑤(𝑡 + 1) in
(52), using Lemma 6, we obtain

Δ𝑤 (𝑡) < −𝐿𝑢 (𝑡) 𝑞 (𝑡) + (Δ𝑢 (𝑡))24𝑅 (𝑡) (𝑢 (𝑡 + 1))2 . (53)

Substituting 𝑡with 𝑠 in (53), a summation for (53)with respect
to 𝑠 from 𝑡2 to 𝑡 − 1 yields
𝑡−1∑
𝑠=𝑡2

(𝐿𝑢 (𝑠) 𝑞 (𝑠) − (Δ𝑢 (𝑠))24𝑅 (𝑠) (𝑢 (𝑠 + 1))2) < − 𝑡−1∑
𝑠=𝑡2

Δ𝑤 (𝑠)
= 𝑤 (𝑡2) − 𝑤 (𝑡) < 𝑤 (𝑡2) < ∞. (54)

Since 𝑢(𝑠 + 1) > 𝑢(𝑠) > 0, it is clear that
(Δ𝑢 (𝑠))24𝑢 (𝑠) 𝑢 (𝑠 + 1) 𝑅 (𝑠) > (Δ𝑢 (𝑠))24 (𝑢 (𝑠 + 1))2 𝑅 (𝑠) ; (55)

therefore,
𝑡−1∑
𝑠=𝑡2

(𝐿𝑢 (𝑠) 𝑞 (𝑠) − (Δ𝑢 (𝑠))24 (𝑢 (𝑠 + 1))2 𝑅 (𝑠))
> 𝑡−1∑
𝑠=𝑡2

(𝐿𝑢 (𝑠) 𝑞 (𝑠) − (Δ𝑢 (𝑠))24𝑢 (𝑠) 𝑢 (𝑠 + 1) 𝑅 (𝑠)) , (56)

lim sup
𝑡→∞

𝑡−1∑
𝑠=𝑡2

(𝐿𝑢 (𝑠) 𝑞 (𝑠) − (Δ𝑢 (𝑠))24 (𝑢 (𝑠 + 1))2 𝑅 (𝑠))
≥ lim sup
𝑡→∞

𝑡−1∑
𝑠=𝑡2

(𝐿𝑢 (𝑠) 𝑞 (𝑠) − (Δ𝑢 (𝑠))24𝑢 (𝑠) 𝑢 (𝑠 + 1) 𝑅 (𝑠)) . (57)

From (46) and (57), we obtain that

lim sup
𝑡→∞

𝑡−1∑
𝑠=𝑡2

(𝐿𝑢 (𝑠) 𝑞 (𝑠) − (Δ𝑢 (𝑠))24 (𝑢 (𝑠 + 1))2 𝑅 (𝑠)) = ∞. (58)

Taking lim sup in (54) as 𝑡 → ∞, we have

lim sup
𝑡→∞

𝑡−1∑
𝑠=𝑡2

(𝐿𝑢 (𝑠) 𝑞 (𝑠) − (Δ𝑢 (𝑠))24𝑅 (𝑠) (𝑢 (𝑠 + 1))2)
≤ 𝑤 (𝑡2) < ∞, (59)

which contradicts (58).



Discrete Dynamics in Nature and Society 7

If Δ𝛼𝑥(𝑡) < 0 on [𝑡2,∞), then, from Lemma 7, we get that
lim𝑡→∞ 𝐺(𝑡) = 0.

In the case when 𝑥(𝑡) is eventually negative, we assume
that 𝑥(𝑡) < 0 on [𝑡1,∞), where 𝑡1 ∈ 𝑁𝑡0 is sufficiently large;
then 𝐺(𝑡) < 0. By Lemma 8, we obtain Δ(𝑟(𝑡)Δ𝛼𝑥(𝑡)) < 0 on[𝑡2,∞), where 𝑡2 > 𝑡1 is sufficiently large, and either Δ𝛼𝑥(𝑡) <0 on [𝑡2,∞) or lim𝑡→∞ 𝐺(𝑡) = 0.

IfΔ𝛼𝑥(𝑡) < 0 on [𝑡2,∞), then the conclusion of Lemma 10
holds.

Define 𝑤(𝑡) as in (47); since Δ(𝑟(𝑡)Δ𝛼𝑥(𝑡)) < 0, 𝐺(𝑡) < 0,
then 𝑤(𝑡) > 0.

Using the product rule (12) and the quotient rule (14), for𝑡 ∈ [𝑡2,∞), we get
Δ𝑤 (𝑡) = Δ𝑢 (𝑡)𝑢 (𝑡 + 1)𝑤 (𝑡 + 1)

− 𝑢 (𝑡) 𝑝 (𝑡) [Δ (𝑟 (𝑡) Δ𝛼𝑥 (𝑡))]𝛾𝐺𝛾 (𝑡)
− 𝑢 (𝑡) 𝑞 (𝑡) 𝑓 (𝐺 (𝑡))𝐺𝛾 (𝑡)
− 𝑢 (𝑡) 𝑐 (𝑡 + 1) [Δ (𝑟 (𝑡 + 1) Δ𝛼𝑥 (𝑡 + 1))]𝛾 Δ𝐺𝛾 (𝑡)𝐺𝛾 (𝑡) 𝐺𝛾 (𝑡 + 1) .

(60)

By Δ(𝑟(𝑡)Δ𝛼𝑥(𝑡)) < 0 and 𝐺(𝑡) < 0, we have
𝑢 (𝑡) 𝑝 (𝑡) [Δ (𝑟 (𝑡) Δ𝛼𝑥 (𝑡))]𝛾𝐺𝛾 (𝑡) > 0, (61)

and Δ𝐺(𝑡) < 0 by Lemma 3; then 𝐺(𝑡 + 1) < 𝐺(𝑡) < 0; from
(B) and (16), we obtain that𝑓 (𝐺 (𝑡))𝐺𝛾 (𝑡) ≥ 𝐿, (62)

Δ𝐺𝛾 (𝑡) ≤ (Δ𝐺 (𝑡))𝛾 . (63)

Proceeding the proof of Lemma 7, we have

Δ (𝑢 (𝑡) 𝑐 (𝑡) [Δ (𝑟 (𝑡) Δ𝛼𝑥 (𝑡))]𝛾)
≥ −𝐿𝑢 (𝑡 + 1) 𝑞 (𝑡) 𝐺𝛾 (𝑡) > 0, (64)

which implies 𝑢(𝑡)𝑐(𝑡)[Δ(𝑟(𝑡)Δ𝛼𝑥(𝑡))]𝛾 is strictly increasing.
By virtue of Lemma 10, Δ𝐺𝛾(𝑡) ≤ (Δ𝐺(𝑡))𝛾, and

𝑢 (𝑡) 𝑐 (𝑡 + 1) [Δ (𝑟 (𝑡 + 1) Δ𝛼𝑥 (𝑡 + 1))]𝛾𝐺𝛾 (𝑡) 𝐺𝛾 (𝑡 + 1) < 0, (65)

we have

𝑢 (𝑡) 𝑐 (𝑡 + 1) [Δ (𝑟 (𝑡 + 1) Δ𝛼𝑥 (𝑡 + 1))]𝛾 Δ𝐺𝛾 (𝑡)𝐺𝛾 (𝑡) 𝐺𝛾 (𝑡 + 1) ≥ 𝑢 (𝑡) 𝑐 (𝑡 + 1) [Δ (𝑟 (𝑡 + 1) Δ𝛼𝑥 (𝑡 + 1))]𝛾 (Δ𝐺 (𝑡))𝛾𝐺𝛾 (𝑡) 𝐺𝛾 (𝑡 + 1)
> 𝑢 (𝑡) 𝑢 (𝑡 + 1) (𝑐 (𝑡 + 1) [Δ (𝑟 (𝑡 + 1) Δ𝛼𝑥 (𝑡 + 1))]𝛾)2 [Γ (1 − 𝛼) 𝛿 (𝑡, 𝑡1) /𝑟 (𝑡)]𝛾𝐺𝛾 (𝑡) 𝐺𝛾 (𝑡 + 1)
= 𝑢 (𝑡) 𝑢 (𝑡 + 1) (𝑐 (𝑡 + 1) [Δ (𝑟 (𝑡 + 1) Δ𝛼𝑥 (𝑡 + 1))]𝛾)2 𝑅 (𝑡)𝐺𝛾 (𝑡) 𝐺𝛾 (𝑡 + 1) = 𝑢 (𝑡) 𝐺2𝛾 (𝑡 + 1) 𝑅 (𝑡)𝑢 (𝑡 + 1) 𝐺𝛾 (𝑡) 𝐺𝛾 (𝑡 + 1)𝑤2 (𝑡 + 1)
> 𝑢 (𝑡) 𝑅 (𝑡)𝑢 (𝑡 + 1) 𝑤2 (𝑡 + 1) ,

(66)

where 𝐺𝛾(𝑡 + 1) < 𝐺𝛾(𝑡) < 0 and 𝐺𝛾(𝑡 + 1)/𝐺𝛾(𝑡) > 1.
Combining (60), (61), (62), and (66), we can obtain

Δ𝑤 (𝑡) < Δ𝑢 (𝑡)𝑢 (𝑡 + 1)𝑤 (𝑡 + 1) − 𝐿𝑢 (𝑡) 𝑞 (𝑡)
− 𝑢 (𝑡) 𝑅 (𝑡)𝑢 (𝑡 + 1) 𝑤2 (𝑡 + 1) .

(67)

Taking

𝑎 = 𝑢 (𝑡) 𝑅 (𝑡)𝑢 (𝑡 + 1) > 0,
𝑏 = Δ𝑢 (𝑡)𝑢 (𝑡 + 1) ,𝑋 = 𝑤 (𝑡 + 1) ,

(68)

using Lemma 6, we have

Δ𝑤 (𝑡) < −𝐿𝑢 (𝑡) 𝑞 (𝑡) + (Δ𝑢 (𝑡))24𝑢 (𝑡) 𝑢 (𝑡 + 1) 𝑅 (𝑡) . (69)

Substituting 𝑡 with 𝑠 in (69), a summation for (69) with
respect to 𝑠 from 𝑡2 to 𝑡 − 1 yields
𝑡−1∑
𝑠=𝑡2

(𝐿𝑢 (𝑠) 𝑞 (𝑠) − (Δ𝑢 (𝑠))24𝑢 (𝑠) 𝑢 (𝑠 + 1) 𝑅 (𝑠))
< 𝑡−1∑
𝑠=𝑡2

− Δ𝑤 (𝑠) = 𝑤 (𝑡2) − 𝑤 (𝑡) < 𝑤 (𝑡2) < ∞. (70)
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Taking lim sup in (70) as 𝑡 → ∞, we have

lim sup
𝑡→∞

𝑡−1∑
𝑠=𝑡2

(𝐿𝑢 (𝑠) 𝑞 (𝑠) − (Δ𝑢 (𝑠))24𝑢 (𝑠) 𝑢 (𝑠 + 1) 𝑅 (𝑠))
≤ 𝑤 (𝑡2) < ∞, (71)

which contradicts (46).
If Δ𝛼𝑥(𝑡) > 0 on [𝑡2,∞), then, from Lemma 8, we get that

lim𝑡→∞ 𝐺(𝑡) = 0.
The proof of Theorem 11 is complete.

Theorem 12. Assume that (23)–(25) hold and there exists a
positive sequence𝐻(𝑡, 𝑠) such that

𝐻(𝑡, 𝑡) = 0 for 𝑡 ≥ 𝑡0,𝐻 (𝑡, 𝑠) > 0 for 𝑡 > 𝑠 ≥ 𝑡0,Δ 2𝐻(𝑡, 𝑠) = 𝐻 (𝑡, 𝑠 + 1) − 𝐻 (𝑡, 𝑠) < 0
for 𝑡 ≥ 𝑠 ≥ 𝑡0.

(72)

If

lim sup
𝑡→∞

1𝐻 (𝑡, 𝑡0)
⋅ 𝑡−1∑
𝑠=𝑡0

(𝐿𝑢 (𝑠) 𝑞 (𝑠)𝐻 (𝑡, 𝑠) − ℎ2 (𝑡, 𝑠) 𝑢 (𝑠 + 1)4𝐻 (𝑡, 𝑠) 𝑢 (𝑠) 𝑅 (𝑠))
= ∞,

(73)

where ℎ(𝑡, 𝑠) = Δ 2𝐻(𝑡, 𝑠) +𝐻(𝑡, 𝑠)Δ𝑢(𝑠)/𝑢(𝑠+1) and 𝑢(𝑡) and𝑅(𝑡) are the same as in Theorem 11, then (6) is oscillatory or
satisfies lim𝑡→∞ 𝐺(𝑡) = 0.
Proof. Suppose on the contrary that 𝑥(𝑡) is a nonoscillatory
solution of (6); then 𝑥(𝑡) is either eventually positive or
eventually negative.

In the case when 𝑥(𝑡) is eventually positive, we assume
that 𝑥(𝑡) > 0 on [𝑡1,∞), where 𝑡1 ∈ 𝑁𝑡0 is sufficiently large.
According to the proof of Theorem 11, if Δ𝛼𝑥(𝑡) > 0 on[𝑡2,∞), then (52) holds.

Substituting 𝑡 with 𝑠 in (52), multiplying both sides by𝐻(𝑡, 𝑠), and then summing with respect to 𝑠 from 𝑡2 to 𝑡 − 1
yield

𝑡−1∑
𝑠=𝑡2

𝐿𝑢 (𝑠) 𝑞 (𝑠)𝐻 (𝑡, 𝑠)
< − 𝑡−1∑
𝑠=𝑡2

𝐻(𝑡, 𝑠) Δ𝑤 (𝑠)
+ 𝑡−1∑
𝑠=𝑡2

𝐻(𝑡, 𝑠) Δ𝑢 (𝑠)𝑢 (𝑠 + 1)𝑤 (𝑠 + 1)
− 𝑡−1∑
𝑠=𝑡2

𝐻(𝑡, 𝑠) 𝑅 (𝑠) 𝑤2 (𝑠 + 1) .

(74)

Using summation by parts formula, we obtain

− 𝑡−1∑
𝑠=𝑡2

𝐻(𝑡, 𝑠) Δ𝑤 (𝑠) = −𝐻 (𝑡, 𝑠) 𝑤 (𝑠)|𝑡𝑠=𝑡2
+ 𝑡−1∑
𝑠=𝑡2

𝑤 (𝑠 + 1) Δ 2𝐻(𝑡, 𝑠)
= 𝐻 (𝑡, 𝑡2) 𝑤 (𝑡2)
+ 𝑡−1∑
𝑠=𝑡2

𝑤 (𝑠 + 1) Δ 2𝐻(𝑡, 𝑠) .
(75)

Therefore,
𝑡−1∑
𝑠=𝑡2

𝐿𝑢 (𝑠) 𝑞 (𝑠)𝐻 (𝑡, 𝑠) < 𝐻 (𝑡, 𝑡2) 𝑤 (𝑡2)
+ 𝑡−1∑
𝑠=𝑡2

[(Δ 2𝐻(𝑡, 𝑠) + 𝐻 (𝑡, 𝑠) Δ𝑢 (𝑠)𝑢 (𝑠 + 1) )𝑤 (𝑠 + 1)
− 𝐻 (𝑡, 𝑠) 𝑅 (𝑠) 𝑤2 (𝑠 + 1)] = 𝐻 (𝑡, 𝑡2) 𝑤 (𝑡2)
+ 𝑡−1∑
𝑠=𝑡2

(ℎ (𝑡, 𝑠) 𝑤 (𝑠 + 1) − 𝐻 (𝑡, 𝑠) 𝑅 (𝑠) 𝑤2 (𝑠 + 1)) .

(76)

Taking 𝑎 = 𝐻(𝑡, 𝑠)𝑅(𝑠) > 0, 𝑏 = ℎ(𝑡, 𝑠), and 𝑋 = 𝑤(𝑡 + 1) in
(76), using Lemma 6, we obtain

𝑡−1∑
𝑠=𝑡2

𝐿𝑢 (𝑠) 𝑞 (𝑠)𝐻 (𝑡, 𝑠)
< 𝐻 (𝑡, 𝑡2) 𝑤 (𝑡2) + 𝑡−1∑

𝑠=𝑡2

ℎ2 (𝑡, 𝑠)4𝐻 (𝑡, 𝑠) 𝑅 (𝑠) ,
(77)

which means
𝑡−1∑
𝑠=𝑡2

(𝐿𝑢 (𝑠) 𝑞 (𝑠)𝐻 (𝑡, 𝑠) − ℎ2 (𝑡, 𝑠)4𝐻 (𝑡, 𝑠) 𝑅 (𝑠))
< 𝐻 (𝑡, 𝑡2) 𝑤 (𝑡2) < 𝐻 (𝑡, 𝑡0) 𝑤 (𝑡2) ,

(78)

for 𝑡 > 𝑡2 > 𝑡1 > 𝑡0. Then

𝑡−1∑
𝑠=𝑡0

(𝐿𝑢 (𝑠) 𝑞 (𝑠)𝐻 (𝑡, 𝑠) − ℎ2 (𝑡, 𝑠)4𝐻 (𝑡, 𝑠) 𝑅 (𝑠))
= 𝑡2−1∑
𝑠=𝑡0

(𝐿𝑢 (𝑠) 𝑞 (𝑠)𝐻 (𝑡, 𝑠) − ℎ2 (𝑡, 𝑠)4𝐻 (𝑡, 𝑠) 𝑅 (𝑠))
+ 𝑡−1∑
𝑠=𝑡2

(𝐿𝑢 (𝑠) 𝑞 (𝑠)𝐻 (𝑡, 𝑠) − ℎ2 (𝑡, 𝑠)4𝐻 (𝑡, 𝑠) 𝑅 (𝑠))
< 𝑡2−1∑
𝑠=𝑡0

(𝐿𝑢 (𝑠) 𝑞 (𝑠)𝐻 (𝑡, 𝑠) − ℎ2 (𝑡, 𝑠)4𝐻 (𝑡, 𝑠) 𝑅 (𝑠))



Discrete Dynamics in Nature and Society 9

+ 𝐻 (𝑡, 𝑡0) 𝑤 (𝑡2)
< 𝐻 (𝑡, 𝑡0) 𝑡2−1∑

𝑠=𝑡0

𝐿𝑢 (𝑠) 𝑞 (𝑠) + 𝐻 (𝑡, 𝑡0) 𝑤 (𝑡2) ,
(79)

which means1𝐻 (𝑡, 𝑡0)
𝑡−1∑
𝑠=𝑡0

(𝐿𝑢 (𝑠) 𝑞 (𝑠)𝐻 (𝑡, 𝑠) − ℎ2 (𝑡, 𝑠)4𝐻 (𝑡, 𝑠) 𝑅 (𝑠))
< 𝑡2−1∑
𝑠=𝑡0

𝐿𝑢 (𝑠) 𝑞 (𝑠) + 𝑤 (𝑡2) .
(80)

Since 𝑢(𝑠 + 1) > 𝑢(𝑠) > 0, it is obvious thatℎ2 (𝑡, 𝑠) 𝑢 (𝑠 + 1)4𝐻 (𝑡, 𝑠) 𝑢 (𝑠) 𝑅 (𝑠) > ℎ2 (𝑡, 𝑠)4𝐻 (𝑡, 𝑠) 𝑅 (𝑠) ; (81)

therefore,1𝐻 (𝑡, 𝑡0)
𝑡−1∑
𝑠=𝑡0

(𝐿𝑢 (𝑠) 𝑞 (𝑠)𝐻 (𝑡, 𝑠) − ℎ2 (𝑡, 𝑠)4𝐻 (𝑡, 𝑠) 𝑅 (𝑠))
> 1𝐻 (𝑡, 𝑡0)
⋅ 𝑡−1∑
𝑠=𝑡0

(𝐿𝑢 (𝑠) 𝑞 (𝑠)𝐻 (𝑡, 𝑠) − ℎ2 (𝑡, 𝑠) 𝑢 (𝑠 + 1)4𝐻 (𝑡, 𝑠) 𝑢 (𝑠) 𝑅 (𝑠)) ,
(82)

lim sup
𝑡→∞

1𝐻 (𝑡, 𝑡0)
⋅ 𝑡−1∑
𝑠=𝑡0

(𝐿𝑢 (𝑠) 𝑞 (𝑠)𝐻 (𝑡, 𝑠) − ℎ2 (𝑡, 𝑠)4𝐻 (𝑡, 𝑠) 𝑅 (𝑠))
≥ lim sup
𝑡→∞

1𝐻 (𝑡, 𝑡0)
⋅ 𝑡−1∑
𝑠=𝑡0

(𝐿𝑢 (𝑠) 𝑞 (𝑠)𝐻 (𝑡, 𝑠) − ℎ2 (𝑡, 𝑠) 𝑢 (𝑠 + 1)4𝐻 (𝑡, 𝑠) 𝑢 (𝑠) 𝑅 (𝑠)) .

(83)

By (73) and (83), we have

lim sup
𝑡→∞

1𝐻 (𝑡, 𝑡0)
⋅ 𝑡−1∑
𝑠=𝑡0

(𝐿𝑢 (𝑠) 𝑞 (𝑠)𝐻 (𝑡, 𝑠) − ℎ2 (𝑡, 𝑠)4𝐻 (𝑡, 𝑠) 𝑅 (𝑠)) = ∞. (84)

Taking lim sup in (80) as 𝑡 → ∞, we obtain

lim sup
𝑡→∞

1𝐻 (𝑡, 𝑡0)
⋅ 𝑡−1∑
𝑠=𝑡0

(𝐿𝑢 (𝑠) 𝑞 (𝑠)𝐻 (𝑡, 𝑠) − ℎ2 (𝑡, 𝑠)4𝐻 (𝑡, 𝑠) 𝑅 (𝑠))
≤ 𝑡2−1∑
𝑠=𝑡0

𝐿𝑢 (𝑠) 𝑞 (𝑠) + 𝑤 (𝑡2) < ∞,
(85)

which contradicts (84).

If Δ𝛼𝑥(𝑡) < 0 on [𝑡2,∞), then, from Lemma 7, we have
lim𝑡→∞ 𝐺(𝑡) = 0.

In the case when 𝑥(𝑡) is eventually negative, it can be
proved similarly; here we omit it.

The proof of Theorem 12 is complete.

4. Applications

In this section, an example is shown to illustrate the validity
of the established results above.

Example 13. Consider the following fractional difference
equation:

Δ(𝑡2 [Δ (𝑡−1Δ𝛼𝑥 (𝑡))]3) + 𝑡 [Δ (𝑡−1Δ𝛼𝑥 (𝑡))]3
+ 𝑡2(𝑡−1+𝛼∑

𝑠=2

(𝑡 − 𝑠 − 1)(−𝛼) 𝑥 (𝑠))−1 = 0,
𝑡 ∈ 𝑁2,

(86)

where 0 < 𝛼 < 1 and𝑁2 = {2, 3, 4, . . .}. Comparing with (6),
we have 𝑐 (𝑡) = 𝑡2,𝑟 (𝑡) = 𝑡−1,𝑝 (𝑡) = 𝑡,𝑞 (𝑡) = 𝑡2,𝑓 (𝑥) = 𝑥−1,𝛾 = 3,𝑡0 = 2,𝑓 (𝑥)𝑥𝛾 = 1𝑥4 > 𝜀 = 𝐿 > 0, 𝑥 ̸= 0,

(87)

where 𝜀 is a certain positive number.
It is clear that (A) and (B) hold. Moreover, it follows from

(21) that

𝑢 (𝑡) = 𝑡−1∏
𝑠=𝑡0

𝑐 (𝑠)𝑐 (𝑠) − 𝑝 (𝑠) = 𝑡−1∏𝑠=2 𝑠2𝑠2 − 𝑠 = 𝑡 − 1,
Δ𝑢 (𝑡) = 𝑢 (𝑡 + 1) − 𝑢 (𝑡) = 1. (88)

Furthermore,
∞∑
𝑠=𝑡0

1(𝑢 (𝑠) 𝑐 (𝑠))1/𝛾 =
∞∑
𝑠=2

1((𝑠 − 1) 𝑠2)1/3 >
∞∑
𝑠=2

1𝑠 = ∞,
∞∑
𝑠=𝑡0

1𝑟 (𝑠) = ∞∑𝑠=2𝑠 = ∞,
∞∑
𝜉=𝑡0

1𝑟 (𝜉) ∞∑
𝜏=𝜉

[ 1𝑢 (𝜏) 𝑐 (𝜏) ∞∑𝑠=𝜏𝑢 (𝑠 + 1) 𝑞 (𝑠)]
1/𝛾

= ∞∑
𝜉=2

𝜉∞∑
𝜏=𝜉

[ 1(𝜏 − 1) 𝜏2 ∞∑𝑠=𝜏𝑠3]
1/3 = ∞,

(89)

which means (23), (24), and (25) hold.
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For a sufficiently large 𝑡1, we have
𝛿 (𝑡, 𝑡1) = 𝑡−1∑

𝑠=𝑡1

1(𝑢 (𝑠) 𝑐 (𝑠))1/𝛾 =
𝑡−1∑
𝑠=𝑡1

1((𝑠 − 1) 𝑠2)1/3 ,
𝑅 (𝑡) = [Γ (1 − 𝛼) 𝛿 (𝑡, 𝑡1)𝑟 (𝑡) ]𝛾

= [Γ (1 − 𝛼) 𝑡 𝑡−1∑
𝑠=𝑡1

1((𝑠 − 1) 𝑠2)1/3]
3 .

(90)

For 𝑡2 > 𝑡1,
𝑡−1∑
𝑠=𝑡2

(𝐿𝑢 (𝑠) 𝑞 (𝑠) − (Δ𝑢 (𝑠))24𝑢 (𝑠) 𝑢 (𝑠 + 1) 𝑅 (𝑠))
= 𝑡−1∑
𝑠=𝑡2

(𝜀 (𝑠 − 1) 𝑠2

− 14 (𝑠 − 1) 𝑠 [Γ (1 − 𝛼) 𝑠∑𝑠−1𝜉=𝑡1 (1/ ((𝜉 − 1) 𝜉2)1/3)]3)
= 𝑡−1∑
𝑠=𝑡2

(𝜀 (𝑠 − 1) 𝑠2

− 14 (𝑠 − 1) 𝑠4 [Γ (1 − 𝛼)∑s−1
𝜉=𝑡1

(1/ ((𝜉 − 1) 𝜉2)1/3)]3)
> 𝑡−1∑
𝑠=𝑡2

(𝜀 (𝑠 − 1) 𝑠2
− 14 (Γ (1 − 𝛼))3 (𝑠 − 1) 𝑠4 (1/ (𝑡1 − 1) 𝑡21))
= 𝑡−1∑
𝑠=𝑡2

(𝜀 (𝑠 − 1) 𝑠2 − (𝑡1 − 1) 𝑡214 (Γ (1 − 𝛼))3 (𝑠 − 1) 𝑠4) .

(91)

Hence,

lim sup
𝑡→∞

𝑡−1∑
𝑠=𝑡2

(𝐿𝑢 (𝑠) 𝑞 (𝑠) − (Δ𝑢 (𝑠))24𝑢 (𝑠) 𝑢 (𝑠 + 1) 𝑅 (𝑠))
≥ lim sup
𝑡→∞

𝑡−1∑
𝑠=𝑡2

(𝜀 (𝑠 − 1) 𝑠2
− (𝑡1 − 1) 𝑡214 (Γ (1 − 𝛼))3 (𝑠 − 1) 𝑠4) = ∞,

(92)

which implies that condition (46) is satisfied. Therefore, (86)
is oscillatory or satisfies lim𝑡→∞ 𝐺(𝑡) = 0 by virtue of
Theorem 11.
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