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This paper studies a new boundary control strategy for a flexible manipulator subject to unknown fast time-varying disturbances.
The flexible manipulator essentially is an infinite dimensional continuum. Hence, a continuous function of space and time can
be employed to describe the position of such a distributed parameter structure, the motion of which can be described by partial
differential equations (PDEs). To cope with fast time-varying external disturbances, a high order disturbance observer is adopted.
A control strategy based on such a disturbance observer is proposed for the rest-rest maneuvering of the flexible manipulator.
Moreover, a smooth hyperbolic function is included in the controller to satisfy the requirement of input saturation.The stability of
the boundary control is analyzed using LaSalle’s invariance principle. Finally, the performance of the presented boundary controller
is verified through comparison with that of employing a constant disturbance observer via numerical simulations.

1. Introduction

At present, flexible manipulators have increasingly wide
applications in industrial, agricultural, medical, and
aerospace fields. Tomeet the demand of higher performance,
the trend of development of space manipulators is towards
lightweight parts, low energy expenditure, and fastmovement
[1, 2]. Since the 1970s, many studies have been performed on
modeling theory and control scheme of flexible manipulators
[3]. However, the traditional studies on such distributed
parameter structures were based on ordinary differential
equations (ODEs) [4, 5]. Although the ODE dynamic model
has a simple form and is convenient for controller design, it
is difficult to accurately describe the distributed parameter
characteristic of the flexible structure, and spillover instability
problems may occur [6]. Compared with the ODE model,
the PDE model can reflect the dynamic characteristic of the
flexible structure more accurately; however, it will increase
the difficulty and challenge of controller design.

Significant attention has been attracted to the PDE
modeling and the controller design of flexible manipulators
during recent years; that is, the variational principle is allowed
to derive the differential equations [7]. For example, Smith

obtained the partial differential solutions via the method of
finite difference; this work laid the theoretical foundation
for the partial differential control method of flexible manip-
ulators [8]. Ge et al. built the PDE model of a distributed
parameter flexible manipulator that avoided the traditional
modal truncation error [9]. Jiang et al. studied a boundary
controller for a flexible arm applying the PDE robust observer
[10]. In addition to the studies of straight manipulators, Liu et
al. studied the vibration suppression of curved beams using
the PDE model [11].

In practice, the performance of the flexible manipulator
system is significantly affected by disturbances [12]. To
eliminate the influence of disturbances, researchers have
developed many solutions, of which the schemes based on
disturbance observers are especially effective. The control of
the flexible manipulator under distributed disturbances or
concentrated disturbances has been discussed in several prior
articles. The model of a flexible manipulator was established
via PDEs, and an infinite dimensional disturbance observer
was applied to estimate the external disturbances in [13].
Morales et al. proposed a nested Generalized Proportional
Integral (GPI) controller with a disturbance observer for the
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tip payload changing [14]. The studies with complex distur-
bances acting on manipulators are also available. Mahamood
presented an adaptive hybrid proportional integral derivative
control strategy for the two-link flexible manipulator under
step signal, square wave signal, white noise disturbance, and
sine wave disturbance [15]. Huang et al. studied the motion
of an underwater manipulator and developed a disturbance
observer for the restoring and coupling forces [16].

Notably, most of the previous studies have investigated
the control issue with slowly time-varying disturbances. For
example, Chen et al. derived an improved nonlinear distur-
bance observer that could effectively account for constant
disturbances [17]. Yang et al. presented a disturbance observer
in the case that the disturbances varied slowly and later
defined a lumped disturbance, including model uncertainty,
parametric uncertainty, and external disturbances [18]. To
optimize trajectory tracking performance, Lee proposed a
nonlinear disturbance observer for constant disturbances
[19]. In practice, however, the external disturbances are
often fast time-varying. To achieve a higher performance,
the disturbance observer must be improved. Moreover, it is
necessary to consider the condition of input saturation when
designing a controller. For example, Liu et al. presented an
antiwindup controller for a flexible manipulator in the case
of parametric uncertainty, unknown disturbances, and input
saturation [20]. Liu et al. investigated the PDE controller of a
flexible manipulator with unknown disturbances and input
saturation and showed that it worked better than the PD
control strategy via numerical simulations [21].

Although the boundary control issue of the flexible
manipulator has been discussed extensively, there are few
studies on the control problem of flexible manipulators
described via PDEs with input saturation and fast time-
varying disturbances. Thus, the objectives of this research
effort can be summarized as follows: (1) a control law with
smooth hyperbolic functions is proposed based on the PDE
model, and (2) the use of a higher order disturbance observer
to compensate for the fast time-varying disturbances to
reduce the disturbance effects.

The organization of this article is as follows: the flex-
ible manipulator is described using PDEs in Section 2; in
Section 3, a higher order disturbance observer, is presented
to compensate for external disturbances; the control law
with input saturation is exhibited in Section 4; numerical
simulations are given in Section 5 and a summary of this
paper and future perspectives are presented in Section 6.

2. Dynamic Modeling of the
Flexible Manipulator

The flexible manipulator of concern is shown in Figure 1. In
essence, the system is a flexible system that consists of three
parts: a motor at the shoulder, a flexible manipulator, and a
tip concentrated payload. Because the radius of the motor is
extremely small relative to the manipulator, it is ignored in
the subsequent analysis.

The manipulator rotates in the horizontal plane at a low
speed, driven by the input torque 𝑢(𝑡) of the motor. The
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Figure 1: Configuration of a flexible manipulator.

flexible manipulator is subject to small elastic deformation
and considered as an Euler-Bernoulli beam. As shown in
Figure 1, XOY and xoy are the global frame and the local
frame fixed on the body center, respectively; 𝑑1(𝑡) and 𝑑2(𝑡)
denote the input disturbances of the motor and the input
disturbances at the tip, respectively; 𝑢(𝑡) is the input torque
by the motor; 𝐹(𝑡) represents the control force acting on the
payload; 𝜃(𝑡) is the rotation angle of the motor; and 𝑦(𝑥, 𝑡)
denotes the elastic deflection at the 𝑥.

For simplicity, the symbols are introduced as follows:

𝜃 (𝑡) = 𝜃,
(∗)𝑥 = 𝜕 (∗)

𝜕𝑥 ,

(∗)𝑥𝑥 = 𝜕2 (∗)
𝜕𝑥2 ,

(∗)𝑥𝑥𝑥 = 𝜕3 (∗)
𝜕𝑥3 ,

(∗)𝑥𝑥𝑥𝑥 = 𝜕4 (∗)
𝜕𝑥4 ,

(∗̇) = 𝜕 (∗)
𝜕𝑡 ,

(∗̈) = 𝜕2 (∗)
𝜕𝑡2 ,

(∗)(3) = 𝜕3 (∗)
𝜕𝑡3 ,

(∗)(𝑛) = 𝜕𝑛 (∗)
𝜕𝑡𝑛 , 𝑛 = 1, . . . , +∞.

(1)

To facilitate the analysis, introduce the auxiliary variable
𝑧(𝑥, 𝑡) = 𝑥𝜃(𝑡) + 𝑦(𝑥, 𝑡). The PDE dynamic model is
established by applying Hamilton’s principle ∫𝑡2

𝑡1
(𝛿𝐸𝑘 − 𝛿𝐸𝑝 +

𝛿𝑊𝑐)d𝑡 = 0, where 𝛿(⋅) is the variation of (⋅); 𝛿𝐸𝑘, 𝛿𝐸𝑝,
and 𝛿𝑊𝑐 are the variation of the kinetic energy, the potential
energy, and the virtual work, respectively [22]. At an arbitrary
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moment, the deflection and the rotation angle are zero at the
origin; that is, 𝑦(0, 𝑡) = 𝑦𝑥(0, 𝑡) = 0 such that 𝑧(0, 𝑡) =
𝑦(0, 𝑡) = 0, 𝑧𝑥(0, 𝑡) = 𝜃, 𝜕𝑛𝑧/𝜕𝑥𝑛 = 𝜕𝑛𝑦/𝜕𝑥𝑛 (𝑛 ≥ 2).

The total kinetic energy of the flexible manipulator is

𝐸𝑘 = 1
2𝐼ℎ𝜃̇
2 + 1

2 ∫
𝐿

0
𝜌𝑧̇2 (𝑥, 𝑡) d𝑥 + 1

2𝑚𝑧̇
2 (𝐿, 𝑡) , (2)

where 𝐼ℎ is the rotor inertia, 𝜌 is themass of per unit length of
the flexible manipulator,𝑚 is themass of the tip concentrated
payload, and 𝐿 is the length of the manipulator.The potential
energy of the flexible manipulator is

𝐸𝑝 = 1
2 ∫
𝐿

0
EI𝑦2𝑥𝑥 (𝑥, 𝑡) d𝑥, (3)

where EI is the flexural rigidity.
The nonconservative work is given by

𝑊𝑐 = [𝑢 (𝑡) + 𝑑1 (𝑡)] 𝜃 + [𝐹 (𝑡) + 𝑑2 (𝑡)] 𝑧 (𝐿, 𝑡) . (4)

Thus, the PDE model of the flexible manipulator reads

𝜌𝑧̈ (𝑥, 𝑡) + EI𝑧𝑥𝑥𝑥𝑥 (𝑥, 𝑡) = 0, (5)

𝐼ℎ𝜃̈ − EI𝑧𝑥𝑥 (0, 𝑡) − [𝑢 (𝑡) + 𝑑1 (𝑡)] = 0, (6)

𝑚𝑧̈ (𝐿, 𝑡) − EI𝑧𝑥𝑥𝑥 (𝐿, 𝑡) − [𝐹 (𝑡) + 𝑑2 (𝑡)] = 0, (7)

𝑧𝑥𝑥 (𝐿, 𝑡) = 𝑦𝑥𝑥 (𝐿, 𝑡) = 0, (8)

𝑦 (0, 𝑡) = 𝑦𝑥 (0, 𝑡) = 0. (9)

Two assumptions about the dynamic model are made, as
given below.

Assumption 1. Theunknown input disturbances𝑑1 and𝑑2 are
bounded; that is, there exist two positive real numbers𝐷1 and𝐷2 such that |𝑑1| ≤ 𝐷1 and |𝑑2| ≤ 𝐷2.
Assumption 2. If the total kinetic energy of the flexible
manipulator is bounded for ∀𝑡 ∈ [0,∞), then both 𝜃̇(𝑡) and
𝑧̇(𝑥, 𝑡) are bounded for ∀(𝑥, 𝑡) ∈ [0, 𝐿] × [0,∞) according to
(2) [23].

3. Disturbance Observer Based Control

The unknown external disturbances have attracted the
attention of many researchers in the field of the control
engineering [24, 25]. The disturbances are induced by not
only the system environment but also the uncertainty of
the control system, such as the system model uncertainty
and parametric uncertainty [24]. Generally, it is difficult to
measure the external disturbances accurately; however, a
disturbance observer may compensate for the defect.

3.1. Constant Disturbance Observer. Considering the bound-
ary conditions (6) and (7), if the measurements of the state
variables 𝜃̇ and 𝑧̇(𝐿, 𝑡) are available and the initial state

conditions 𝜃̇0 and 𝑧̇0 are known, then the system can be
presented as [17]

𝜃̈ = 1
𝐼ℎ [𝐸𝐼𝑦𝑥𝑥 (0, 𝑡) + 𝑢 (𝑡)] + 1

𝐼ℎ 𝑑1 (𝑡) ,

𝜃̇ (0) = 𝜃̇0,
𝑧̈ (𝐿, 𝑡) = 1

𝑚 [𝐸𝐼𝑦𝑥𝑥𝑥 (𝐿, 𝑡) + 𝐹 (𝑡)] + 1
𝑚𝑑2 (𝑡) ,

𝑧̇ (𝐿, 0) = 𝑧̇0.

(10)

Theorem 3. Given two sets of constants 𝐾𝑖 > 0 and 𝐾𝑗 >0 (𝑖, 𝑗 = 1, . . . , 𝑛), the constant disturbance observer can be
expressed as [17]

𝑑̂1 = 𝐾𝑖 (𝐼ℎ𝜃̇ − 𝛾1) ,
𝛾̇1 = EI𝑦𝑥𝑥 (0, 𝑡) + 𝑢 (𝑡) + 𝑑̂1,
𝑑̂2 = 𝐾𝑗 [𝑚𝑧̇ (𝐿, 𝑡) − 𝛾2] ,
𝛾̇2 = EI𝑦𝑥𝑥𝑥 (𝐿, 𝑡) + 𝐹 (𝑡) + 𝑑̂2,

(11)

where 𝛾1 and 𝛾2 are the auxiliary variables with 𝛾1(0) = 𝐼ℎ𝜃̇0
and 𝛾2(0) = 𝑚𝑧̇0; 𝑑̂1 and 𝑑̂2 are the estimations of 𝑑1 and𝑑2, respectively. Denoting 𝑑̃1 = 𝑑1 − 𝑑̂1 and 𝑑̃2 = 𝑑2 − 𝑑̂2,
the disturbance estimation errors 𝑑̃1 and 𝑑̃2 converge to zero
exponentially.

Proof. According to the hypothesis 𝑑̇1 = 0 and 𝑑̇2 = 0,
one has ̇̃𝑑1 + 𝐾𝑖𝑑̃1 = 𝑑̇1 = 0, ̇̃𝑑2 + 𝐾𝑗𝑑̃2 = 𝑑̇2 = 0
from (11), the solutions of which are 𝑑̃1 = 𝑑̃1(0)𝑒−𝐾𝑖𝑡, 𝑑̃2 =𝑑̃2(0)𝑒−𝐾𝑗𝑡. Therefore, the disturbance estimation errors 𝑑̃1
and 𝑑̃2 converge to zero exponentially.
3.2. High Order Disturbance Observer. For the fast time-
varying disturbances, it is expected that the performance of
such constant disturbance observer will deteriorate because
the assumption of the slowly varying characteristic on the
disturbance is no longer valid [26]. To address the problem,
a high order disturbance observer is developed by modeling
the unknown time-varying disturbance as [27]

𝑑 (𝑡) =
𝑞

∑
𝑘=0

𝐷𝑘𝑡𝑘, (12)

where 𝐷𝑘 (𝑘 ∈ [0, 𝑞]) are unknown constants. Without the
loss of generality, the external disturbance approximated in
this work as a quadratic function in time such that

𝑑 (𝑡) = 𝐷0 + 𝐷1𝑡 + 𝐷2𝑡2. (13)

Denoting 𝑑̃ = 𝑑 − 𝑑̂, where 𝑑̂ and 𝑑̃ are the disturbance
estimation and the disturbance tracking error, respectively,
the disturbance estimation is constructed as

𝑑̂ (𝑡) = 𝜆0ℎ0 (𝑡) + 𝜆1ℎ1 (𝑡) + 𝜆2ℎ2 (𝑡) , (14)
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where ℎ̇0(𝑡) = 𝑑 − 𝑑̂ = 𝑑̃ and ℎ𝑘(𝑡) = ∫𝑡
0
ℎ𝑘−1(𝜏)d𝜏 for 𝑘 =

1, 2, 3. Accordingly, one obtains

𝑑̂1 = 𝜆0 ∫
𝑡

0
𝑑̃1 (𝜏) d𝜏 + 𝜆1 ∫

𝑡

0
∫𝛿
0
𝑑̃1 (𝜏) d𝛿 d𝜏

+ 𝜆2 ∫
𝑡

0
∫𝜎
0
∫𝛿
0
𝑑̃1 (𝜏) d𝜎 d𝛿 d𝜏,

𝑑̂2 = 𝜆0 ∫
𝑡

0
𝑑̃2 (𝜏) d𝜏 + 𝜆1 ∫

𝑡

0
∫𝛿
0
𝑑̃2 (𝜏) d𝛿 d𝜏

+ 𝜆2 ∫
𝑡

0
∫𝜎
0
∫𝛿
0
𝑑̃2 (𝜏) d𝜎 d𝛿 d𝜏.

(15)

From (15) and dℎ𝑘(𝑡)/d𝑡 = ℎ𝑘−1 for 𝑘 = 1, . . . , 3, it can be
derived that

𝑑̂1(3) = 𝜆0 ̈̃𝑑1 + 𝜆1 ̇̃𝑑1 + 𝜆2𝑑̃1,
𝑑̂2(3) = 𝜆0 ̈̃𝑑2 + 𝜆1 ̇̃𝑑2 + 𝜆2𝑑̃2.

(16)

Substituting 𝑑̃1 = 𝑑1 − 𝑑̂1, 𝑑̃2 = 𝑑2 − 𝑑̂2 into (16) yields
𝑑1(3) = 𝑑̃1(3) + 𝜆0 ̈̃𝑑1 + 𝜆1 ̇̃𝑑1 + 𝜆2𝑑̃1,
𝑑2(3) = 𝑑̃2(3) + 𝜆0 ̈̃𝑑2 + 𝜆1 ̇̃𝑑2 + 𝜆2𝑑̃2.

(17)

From (13), it can be seen that 𝑑1(3) = 0 and 𝑑2(3) = 0; thus,
one has

𝑑̃1(3) + 𝜆0 ̈̃𝑑1 + 𝜆1 ̇̃𝑑1 + 𝜆2𝑑̃1 = 𝑑1(3) = 0,
𝑑̃2(3) + 𝜆0 ̈̃𝑑2 + 𝜆1 ̇̃𝑑2 + 𝜆2𝑑̃2 = 𝑑2(3) = 0.

(18)

Consider the characteristic polynomial

𝑄 (𝑠) = 𝑠3 + 𝜆0𝑠2 + 𝜆1𝑠 + 𝜆2 (19)

which makes the disturbance error convergent to zero
through the Hurwitz stability criterion, if the coefficients of
𝑄(𝑠) = 0 are chosen properly such that 𝜆0, 𝜆1, 𝜆2 > 0 and
𝜆0𝜆1 > 𝜆2.

The auxiliary variables 𝜅̇1 and 𝜅̇2 are defined as

𝜅̇1 = EI𝑦𝑥𝑥 (0, 𝑡) + 𝑢 + 𝑑̂1,
𝜅̇2 = EI𝑦𝑥𝑥𝑥 (𝐿, 𝑡) + 𝐹 + 𝑑̂2,

(20)

where 𝜅1(0) = 𝐼ℎ𝜃̇0 and 𝜅2(0) = 𝑚𝑧̇0.
Combining (6) and (7) with (20), one obtains

𝐼ℎ𝜃̈ − 𝜅̇1 = 𝐼ℎ𝜃̈ − [EI𝑦𝑥𝑥 (0, 𝑡) + 𝑢 + 𝑑̂1]
= 𝑑1 − 𝑑̂1 = 𝑑̃1,

𝑚𝑧̈ (𝐿, 𝑡) − 𝜅̇2 = 𝑚𝑧̈ (𝐿, 𝑡) − [EI𝑦𝑥𝑥𝑥 (𝐿, 𝑡) + 𝐹 + 𝑑̂2]
= 𝑑2 − 𝑑̂2 = 𝑑̃2.

(21)

Integrating both sides from 0 to 𝑡 yields
𝐼ℎ𝜃̇ − 𝜅1 = ∫𝑡

0
𝑑̃1d𝜏,

𝑚𝑧̇ (𝐿, 𝑡) − 𝜅2 = ∫𝑡
0
𝑑̃2d𝜏.

(22)

By observing (15), (20), and (22), the high order disturbance
observers for the flexible manipulator can be formulated as
follows:

𝑑̂1 = 𝜆0 (𝐼ℎ𝜃̇ − 𝜅1) + 𝜆1 ∫
𝑡

0
(𝐼ℎ𝜃̇ − 𝜅1) d𝜏

+ 𝜆2 ∫
𝑡

0
∫𝛿
0
(𝐼ℎ𝜃̇ − 𝜅1) d𝛿 d𝜏,

𝜅̇1 = EI𝑦𝑥𝑥 (0, 𝑡) + 𝑢 + 𝑑̂1,
𝑑̂2 = 𝜆0 [𝑚𝑧̇ (𝐿, 𝑡) − 𝜅2] + 𝜆1 ∫

𝑡

0
[𝑚𝑧̇ (𝐿, 𝑡) − 𝜅2] d𝜏

+ 𝜆2 ∫
𝑡

0
∫𝛿
0
[𝑚𝑧̇ (𝐿, 𝑡) − 𝜅2] d𝛿 d𝜏,

𝜅̇2 = EI𝑦𝑥𝑥𝑥 (𝐿, 𝑡) + 𝐹 + 𝑑̂2,

(23)

where 𝜆0, 𝜆1, 𝜆2 > 0 and 𝜆0𝜆1 > 𝜆2.
4. Controller Design and Analysis

4.1. Control Scheme. The objective of the scheme is to drive
the angle of themotor at the shoulder to the desired value and
realize the vibration suppression of the elastic beam simulta-
neously. By employing the high order disturbance observer,
the control laws with input saturation are constructed as
follows:

𝑢 = −𝛼1𝑙1 tanh (𝑙1𝑒) − 𝛼2𝑙2 tanh (𝑙2 ̇𝑒) − 𝑘 sgn ( ̇𝑒)
− 𝑑̂1,

𝐹 = −𝛼3𝑙3 tanh [𝑙3𝑧̇ (𝐿, 𝑡)] − 𝑘 sgn [𝑧̇ (𝐿, 𝑡)] − 𝑑̂2,
(24)

where 𝛼1, 𝛼2, 𝛼3, 𝑙1, 𝑙2, and 𝑙3 > 0; 𝑘 ≥ max(|𝑑̃1|max, |𝑑̃2|max);𝑒 = 𝜃 − 𝜃𝑑, ̇𝑒 = 𝜃̇, ̈𝑒 = 𝜃̈, and 𝜃𝑑 is the desired angle.

Theorem 4. The control laws are given by (24) with the high
order disturbance observer.

(1) The boundary control is asymptotically stable: for 𝑥 ∈
[0, 𝐿] one has 𝜃 → 𝜃𝑑, 𝜃̇ → 0, 𝑦(𝑥, 𝑡) → 0, 𝑦̇(𝑥, 𝑡) → 0,
𝑧̇(𝐿, 𝑡) → 0, 𝑑̃1 → 0, 𝑑̃2 → 0 when 𝑡 → ∞.

(2) The inputs are bounded, such as

|𝑢| ≤ 𝛼1𝑙1 + 𝛼2𝑙2 + 𝑘 + 𝐷1,
|𝐹| ≤ 𝛼3𝑙3 + 𝑘 + 𝐷2.

(25)

Proof. (1) See Appendix for the details of the proof.
(2) For arbitrary 𝑥, the domain of the hyperbolic tangent

function 𝑦 = tanh(𝑥) is [−1, 1]. For 𝑥 increasing from 0 to
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Table 1: Physical parameters of the manipulator.

Parameter Physical significance Value
EI (N⋅m2) Flexural rigidity of the beam 2
𝜌 (kg/m) Mass of per unit length 0.2
𝐼ℎ (kg⋅m2) Inertia of the motor 0.5
𝐿 (m) Length of the flexible beam 1
𝑚 (kg) Mass at the tip 2

+∞, 𝑦 increases very rapidly at the beginning, and finally
𝑦 → 1. According to the property of the odd function
tanh(𝑥), 𝑦 → −1 for 𝑥 decreasing from 0 to −∞. Therefore,
the hyperbolic tangent function can well simulate the process
of input saturation, and the absolute value | tanh(𝑥)| ≤ 1.

Based on the above analysis, one has |−𝛼1𝑙1 tanh(𝑙1𝑒)| ≤|−𝛼1𝑙1| = 𝛼1𝑙1, |−𝛼2𝑙2 tanh(𝑙2𝑒)| ≤ |−𝛼2𝑙2| = 𝛼2𝑙2, and|−𝛼3𝑙3 tanh[𝑙3𝑧̇(𝐿, 𝑡)]| ≤ |−𝛼3𝑙3| = 𝛼3𝑙3. As is known,
|𝑘 sgn( ̇𝑒)| ≤ 𝑘, |𝑑̂1| ≤ 𝐷1, and |𝑑̂2| ≤ 𝐷2; therefore,
|𝑢|
= 󵄨󵄨󵄨󵄨󵄨−𝛼1𝑙1 tanh (𝑙1𝑒) − 𝛼2𝑙2 tanh (𝑙2 ̇𝑒) − 𝑘 sgn ( ̇𝑒) − 𝑑̂1󵄨󵄨󵄨󵄨󵄨
≤ 𝛼1𝑙1 + 𝛼2𝑙2 + 𝑘 + 𝐷1,
|𝐹| = 󵄨󵄨󵄨󵄨󵄨−𝛼3𝑙3 tanh [𝑙3𝑧̇ (𝐿, 𝑡)] − 𝑘 sgn [𝑧̇ (𝐿, 𝑡)] − 𝑑̂2󵄨󵄨󵄨󵄨󵄨
≤ 𝛼3𝑙3 + 𝑘 + 𝐷2,

(26)

where 𝐷1 and 𝐷2 denote the boundaries of disturbance
estimations. The above |𝑢| and |𝐹| can satisfy the condition
of input saturation by changing the parameters 𝛼1, 𝛼2, 𝛼3, 𝑙1,𝑙2, 𝑙3, and 𝑘.
5. Numerical Simulation Examples

Numerical simulations are presented in this section to verify
the boundary control based on the high order disturbance
observer with input saturation. For comparison purposes,
the simulations under the control scheme employing the
constant disturbance observer are also given in this section.
The physical parameters of the manipulator are listed in
Table 1.

The aim of all the simulations is to drive the angle
of the motor to the desired value; that is, 𝜃𝑑 = 0.5 rad,
without residual vibration of the elastic beam. The external
disturbances are hybrid wave signals.

The parameters in the control scheme proposed in this
paper are chosen as 𝛼1 = 80, 𝛼2 = 10, 𝛼3 = 100, 𝑙1 = 0.4,
𝑙2 = 1, 𝑙3 = 0.2, 𝑘 = 0.075, 𝜆0 = 120, 𝜆1 = 60, and 𝜆2 = 60.

In the control strategy employing the constant distur-
bance observer, the parameters are chosen as 𝛼1 = 80, 𝛼2 =10, 𝛼3 = 100, 𝑙1 = 0.4, 𝑙2 = 1, 𝑙3 = 0.2, 𝐾𝑖 = 5, and 𝐾𝑗 = 5.

As indicated in Figure 2(a), under the proposed control
scheme, the angle of themotor arrives at the specified location
in approximately 12 seconds and later stops steadily. The
response curves in Figure 2(a) are quite smooth in shape.
However, under the control scheme employing the constant

disturbance observer, Figure 2(b) shows that there exist
significant positioning errors, even in the last part of the
angular response.

Figure 3 depicts the deflections at the tip and at the
middle of the flexible manipulator. As shown in Figure 3(a),
the amplitude of the elastic vibration under the proposed
control law with the high order observer gradually decreases
to zero in 12 seconds. By contrast, under the control scheme
employing the constant disturbance observer, the residual
vibration of the flexible manipulator does not vanish, even
after a long time.

The disturbance estimates by the two types of disturbance
observers are compared in Figures 4 and 5 (zoom-in view).
The simulation results indicate that the high order distur-
bance observer outperforms the constant one in terms of the
disturbance estimation errors, especially for the disturbances
of fast time-varying or transient. The constant disturbance
observer leads to a relatively poor performance in the
scenario and is suitable to estimate the slow time-varying
disturbances or smooth signals.

6. Conclusions

The motion of the flexible manipulator was described via
PDEs to overcome the problems caused bymodel truncation,
and a high order disturbance observer was proposed there-
after to estimate the external disturbances for counteracting
the disturbance effects. The physical requirement of input
saturation was considered in the proposed control law using
smooth hyperbolic functions. The stability of the boundary
control system was demonstrated using LaSalle’s invariance
principle. Finally, numerical simulations illustrated that the
boundary controller works notably well. By contrast with
the constant disturbance observer, the high order distur-
bance observer can accurately estimate the fast time-varying
disturbances or the transient signals. In the future, the
vibration suppression of multilink flexible manipulators will
be discussed.

Appendix

Demonstration of Theorem 4(1)

Proof. The parameters 𝜃̇, 𝑧̇(𝐿, 𝑡), 𝑦𝑥𝑥(0, 𝑡), and 𝑦𝑥𝑥𝑥(𝐿, 𝑡) can
be measured by the experiment instrument.

The Lyapunov function is defined as

𝑉 = 𝐸1 + 𝐸2 + 𝐸3, (A.1)
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Figure 2: Responses inmotor angle and angular velocity for (a) the boundary control schemewith the high order observer and (b) the control
scheme employing the constant disturbance observer.

where

𝐸1 = 1
2 ∫
𝐿

0
𝜌𝑧̇2 (𝑥, 𝑡) d𝑥 + 1

2EI∫
𝐿

0
𝑦2𝑥𝑥 (𝑥, 𝑡) d𝑥,

𝐸2 = 1
2𝐼ℎ ̇𝑒
2 + 𝛼1 ln [cosh (𝑙1𝑒)] + 1

2𝑚𝑧̇
2 (𝐿, 𝑡) ,

𝐸3 = 𝜆2𝜆02𝑑̃21 + 2𝜆2𝜆0𝑑̃1 ̇̃𝑑1 + (𝜆1𝜆0 + 𝜆03) ̇̃𝑑1
2

+ 2𝜆02 ̇̃𝑑1 ̈̃𝑑1 + 𝜆0 ̈̃𝑑1
2 + 𝜆2𝜆02𝑑̃22

+ 2𝜆2𝜆0𝑑̃2 ̇̃𝑑2 + (𝜆1𝜆0 + 𝜆03) ̇̃𝑑2
2

+ 2𝜆02 ̇̃𝑑2 ̈̃𝑑2 + 𝜆0 ̈̃𝑑2
2,

(A.2)

where 𝐸1 represents the sum of the kinetic energy and the
elastic energy of the manipulator, 𝐸2 represents the payload

energy and the control error index, and 𝐸3 represents the
error of the observer.

According to hypothesis (18),

𝑉̇ = 𝐸̇1 + 𝐸̇2 + 𝐸̇3, (A.3)

where

𝐸̇1 = ∫𝐿
0
𝜌𝑧̇ (𝑥, 𝑡) 𝑧̈ (𝑥, 𝑡) d𝑥

+ EI∫𝐿
0
𝑦𝑥𝑥 (𝑥, 𝑡) 𝑦̇𝑥𝑥 (𝑥, 𝑡) d𝑥

= −EI∫𝐿
0
𝑧̇ (𝑥, 𝑡) 𝑧𝑥𝑥𝑥𝑥 (𝑥, 𝑡) d𝑥

+ EI∫𝐿
0
𝑦𝑥𝑥 (𝑥, 𝑡) 𝑦̇𝑥𝑥 (𝑥, 𝑡) d𝑥

= −EI [𝑧̇ (𝐿, 𝑡) 𝑧𝑥𝑥𝑥 (𝐿, 𝑡)
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Figure 3: Deflections at the tip and at the middle for (a) the boundary control scheme with the high order observer and (b) the control
scheme employing the constant disturbance observer.

− ∫𝐿
0
𝑧̇𝑥 (𝑥, 𝑡) 𝑧𝑥𝑥𝑥 (𝑥, 𝑡) d𝑥] + EI [−𝑧𝑥𝑥 (0, 𝑡) 𝜃̇

− ∫𝐿
0
𝑧̇𝑥 (𝑥, 𝑡) 𝑧𝑥𝑥𝑥 (𝑥, 𝑡) d𝑥] = −EI𝑧̇ (𝐿, 𝑡)

⋅ 𝑦𝑥𝑥𝑥 (𝐿, 𝑡) − EI𝑦𝑥𝑥 (0, 𝑡) 𝜃̇,
𝐸̇2 = 𝐼ℎ ̇𝑒 ̈𝑒 + 𝛼1𝑙1 tanh (𝑙1𝑒) ̇𝑒 + 𝑚𝑧̇ (𝐿, 𝑡) 𝑧̈ (𝐿, 𝑡)

= ̇𝑒 [𝐼ℎ ̈𝑒 + 𝛼1𝑙1 tanh (𝑙1𝑒)] + 𝑚𝑧̇ (𝐿, 𝑡) 𝑧̈ (𝐿, 𝑡) ,
𝐸̇3 = (2𝜆0𝜆2 − 2𝜆1𝜆02) ̇̃𝑑1

2 + (2𝜆0𝜆2
− 2𝜆1𝜆02) ̇̃𝑑2

2,
(A.4)

where

𝑉̇ = 𝐸̇1 + 𝐸̇2 + 𝐸̇3
= 𝑧̇ (𝐿, 𝑡) [𝐹 + 𝑑2 − 𝑚𝑧̈ (𝐿, 𝑡)]

+ ̇𝑒 [𝐼ℎ ̈𝑒 + 𝛼1𝑙1 tanh (𝑙1𝑒) − EI𝑦𝑥𝑥 (0, 𝑡)]

+ 𝑚𝑧̇ (𝐿, 𝑡) 𝑧̈ (𝐿, 𝑡) + (2𝜆0𝜆2 − 2𝜆1𝜆02) ̇̃𝑑1
2

+ (2𝜆0𝜆2 − 2𝜆1𝜆02) ̇̃𝑑2
2

= 𝑧̇ (𝐿, 𝑡) (𝐹 + 𝑑2) + ̇𝑒 [𝑢 + 𝑑1 + 𝛼1𝑙1 tanh (𝑙1𝑒)]

+ (2𝜆0𝜆2 − 2𝜆1𝜆02) ̇̃𝑑1
2

+ (2𝜆0𝜆2 − 2𝜆1𝜆02) ̇̃𝑑2
2

= ̇𝑒 [𝑢 + 𝑑1 + 𝛼1𝑙1 tanh (𝑙1𝑒)] + 𝑧̇ (𝐿, 𝑡) (𝐹 + 𝑑2)
+ (2𝜆0𝜆2 − 2𝜆1𝜆02) ̇̃𝑑1

2

+ (2𝜆0𝜆2 − 2𝜆1𝜆02) ̇̃𝑑2
2

= −𝛼2𝑙2 ̇𝑒 tanh (𝑙2 ̇𝑒) − 𝛼3𝑙3𝑧̇ (𝐿, 𝑡) tanh [𝑙3𝑧̇ (𝐿, 𝑡)]
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Figure 4: Disturbance estimates for (a) the boundary control scheme with the high order observer and (b) the control scheme employing
the constant disturbance observer.

+ (𝑑̃1 ̇𝑒 − 𝑘 | ̇𝑒|) + [𝑑̃2𝑧̇ (𝐿, 𝑡) − 𝑘 |𝑧̇ (𝐿, 𝑡)|]

+ (2𝜆0𝜆2 − 2𝜆1𝜆02) ̇̃𝑑1
2

+ (2𝜆0𝜆2 − 2𝜆1𝜆02) ̇̃𝑑2
2.

(A.5)

Because 𝑥 tanh(𝑥) ≥ 0, 𝜆0, 𝜆1, 𝜆2 > 0, 𝜆0𝜆1 > 𝜆2, and 𝑘 ≥
max(|𝑑̃1|max, |𝑑̃2|max), thus 𝑉̇ ≤ 0.

LaSalle’s invariance principle is applied to analyze the
stability of the controller (𝑉̇ ≡ 0 → 𝑦(𝑥, 𝑡) ≡ 0).

The stability of the controller when 𝑉̇ ≡ 0 is verified as
follows:

𝑉̇ ≡ 0 󳨀→

̇𝑒 ≡ 𝑧̇ (𝐿, 𝑡) ≡ ̇̃𝑑1 ≡ ̇̃𝑑2 ≡ 0;
(A.6)

thus, it can be seen that

̈𝑒 = 𝑧̈ (𝐿, 𝑡) = 0 󳨀→

𝜃̇ ≡ 𝜃̈ ≡ ̈̃𝑑1 ≡ ̈̃𝑑2 ≡ 𝑑̃(3)1 ≡ 𝑑̃(3)2 ≡ 0.
(A.7)
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Figure 5: Comparison of the disturbance estimations.

According to (18), one obtains

𝑑̃1 ≡ 𝑑̃2 ≡ 0. (A.8)

Substituting 𝑧̈(𝑥, 𝑡) = 𝑥𝜃̈(𝑡) + 𝑦̈(𝑥, 𝑡) into 𝜌𝑧̈(𝑥) =
−EI𝑧𝑥𝑥𝑥𝑥(𝑥) yields

𝜌𝑦̈ (𝑥, 𝑡) = −EI𝑦𝑥𝑥𝑥𝑥 (𝑥, 𝑡) ; (A.9)
thus

𝜌𝑧̈ (𝐿, 𝑡) = −EI𝑦𝑥𝑥𝑥𝑥 (𝐿, 𝑡) = 0 󳨀→
𝑦𝑥𝑥𝑥𝑥 (𝐿, 𝑡) = 0. (A.10)

The variable separation method is adopted as
𝑦 (𝑥, 𝑡) = 𝑋 (𝑥) 𝑇 (𝑡) , (A.11)

𝜌𝑦̈ (𝑥, 𝑡) = −EI𝑦𝑥𝑥𝑥𝑥 (𝑥, 𝑡) 󳨀→
𝑦𝑥𝑥𝑥𝑥 (𝑥, 𝑡) = − 𝜌

EI
𝑦̈ (𝑥, 𝑡) , (A.12)

𝑦𝑥𝑥𝑥𝑥 (𝑥, 𝑡) = 𝑋(4) (𝑥) ⋅ 𝑇 (𝑡) ,
𝑦̈ (𝑥, 𝑡) = 𝑋 (𝑥) ⋅ 𝑇̈ (𝑡)

↓
𝑋(4) (𝑥)
𝑋 (𝑥) = − 𝜌

EI
𝑇̈ (𝑡)
𝑇 (𝑡) = 𝜇

↓
𝑋(4) (𝑥) − 𝜇𝑋 (𝑥) = 0.

(A.13)

Letting 𝜇 = 𝑠4, the solution of (A.13) is
𝑋 (𝑥) = 𝑐1 cosh 𝑠𝑥 + 𝑐2 sinh 𝑠𝑥 + 𝑐3 cos 𝑠𝑥

+ 𝑐4 sin 𝑠𝑥.
(A.14)

Because 𝑦(0, 𝑡) = 0, 𝑦𝑥(0, 𝑡) = 0, 𝑦𝑥𝑥(𝐿, 𝑡) = 0, and
𝑦𝑥𝑥𝑥𝑥(𝐿, 𝑡) = 0, the following can be obtained:

𝑋 (0) = 𝑋𝑥 (0) = 𝑋𝑥𝑥 (𝐿) = 𝑋𝑥𝑥𝑥𝑥 (𝐿) = 0. (A.15)

Then

𝑐1 + 𝑐3 = 0,
𝑐2 + 𝑐4 = 0,

𝑐1 cosh 𝑠𝐿 + 𝑐2 sinh 𝑠𝐿 − 𝑐3 cos 𝑠𝐿 − 𝑐4 sin 𝑠𝐿 = 0,
𝑐1 cosh 𝑠𝐿 + 𝑐2 sinh 𝑠𝐿 + 𝑐3 cos 𝑠𝐿 + 𝑐4 sin 𝑠𝐿 = 0;

(A.16)

the equations are simplified as 𝑐4(sinh 𝑠𝐿 ⋅ cos 𝑠𝐿 − sin 𝑠𝐿 ⋅
cosh 𝑠𝐿) = 0, and the solutions are 𝑐𝑖 = 0 (𝑖 = 1, 2, 3, 4) for all
𝑠. Accordingly, one obtains𝑋(𝑥) = 0, 𝑦(𝑥, 𝑡) = 0, 𝑦̇(𝑥, 𝑡) = 0,
and 𝑦𝑥𝑥(0, 𝑡) = 0.

Because 𝑧𝑥𝑥(0, 𝑡) = 𝑦𝑥𝑥(0, 𝑡) = 0, by observing (A.6),
(A.7), (A.8), and

𝐼ℎ𝜃̈ − EI𝑧𝑥𝑥 (0, 𝑡) − [𝑢 (𝑡) + 𝑑1 (𝑡)] = 0,
𝑢

= −𝛼1𝑙1 tanh (𝑙1𝑒) − 𝛼2𝑙2 tanh (𝑙2 ̇𝑒) − 𝑘 sgn ( ̇𝑒)
− 𝑑̂1,

(A.17)

the following can be obtained: −𝛼1𝑙1 tanh(𝑙1𝑒)+𝑑̃1 = 0 → 𝑒 =
0.

Therefore, the PDE boundary control in this paper is
asymptotically stable by applying the extended LaSalle’s
invariance principle; that is, for 𝑥 ∈ [0, 𝐿] one has 𝜃 → 𝜃𝑑,𝜃̇ → 0, 𝑦(𝑥, 𝑡) → 0, 𝑦̇(𝑥, 𝑡) → 0, 𝑧̇(𝐿, 𝑡) → 0, 𝑑̃1 → 0,
𝑑̃2 → 0, when 𝑡 → ∞.
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