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To isolate the problem source degrading the control loop performance, this work focuses on how to incorporate background
knowledge into Bayesian inference. In an effort to reduce dependence on the amount of historical data available, we consider a
general kind of background knowledge which appears in many applications. The knowledge, known as response information, is
about what faults can possibly affect each of the monitors. We show how this knowledge can be translated to constraints on the
underlying probability distributions and introduced in the Bayesian diagnosis. In this way, the dimensionality of the observation
space is reduced and thus the diagnosis can be more reliable. Furthermore, for the judgments to be consistent, the set of posterior
probabilities of each possible abnormality that are computed from different observation subspaces is synthesized to obtain the
partially ordered posteriors. The eigenvalue formulation is used on the pairwise comparison matrix. The proposed approach is
applied to a diagnosis problem on an oil sand solids handling system, where it is shown how the combination of background
knowledge and data enhances the control performance diagnosis even when the abnormality data are sparse in the historical
database.

1. Introduction

Fault diagnosis is a topic of practical significance in process
industries. In complex control loop systems, the control
performance could be degraded due to various reasons [1].
Sensors and instrumentation problems are usually revealed as
the systematic errors inmass or energy balance equations [2].
Poor control loop performance might also be due to changes
in the model or modeling error [3].

One challenge of control loop diagnosis is that some
similar evidences could be shared among different faults [4].
In a complex industrial control loop system, there may be
lots of observations. For example, a large-scale industrial
process includes thousands of process measurements [5].
Many diagnostic algorithms are often designed to identify
specific components, while the faults may propagate and
influence other components which are not to be detected
[6]; thus, the methods could be influenced by possible faults
in other components [7]. Moreover, all processes may run
subject to uncertainty due to missing information, noise, and

so on.Therefore, the occurrence of one faultmay lead to flood
of abnormal measurements and alarms and make it difficult
to distinguish true underlying source.

Fault diagnosis methods for control loop systems may
be classified into three categories, qualitative model-based
methods, quantitative model-based methods, and data-
driven methods [8–13]. However, these methods result in
problems when multiple abnormalities have the same influ-
ence on the measurements. To deal with these problems,
the methods were extended based on qualitative information
about signs, magnitudes, and so on, to consider the direction
and the magnitude of change [14, 15]. Also, Bayesian method
has been proposed; for example, a Bayesian network was
constructed from expert knowledge [16]. However, in these
methods, themodels are assumed to be known. Besides, fuzzy
logic methods were proposed [17]. All these previous works
rely on prior knowledge only.

To overcome the drawbacks of both quantitative and
qualitative model-based diagnosis approaches, data-driven
methods are developed [18]. For example, the support
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vector machine (SVM) methods were proposed that take
the diagnosis problem as a classification one [19]. Besides,
multivariate statistical processmonitoringmethodswere sug-
gested [20]. Nevertheless, the problem sources of abnormality
may not be explicitly identified by means of the variable
contribution methods [21].

Then, a systematic probabilistic approach based on
Bayesian inference was proposed that considers all possible
abnormal observations. A Bayesian framework for control
loop performance diagnosis was developed in [4]. The
measurements from plenty of monitors are synthesized to
generate a probabilistic result to diagnose the fault. Pernestal
[22] proposed using Bayesian approaches to isolate faults
in diesel engines. In a similar way, a data-based Bayesian
approach is suggested in [23], to diagnose underlying sources
of control performance degradation.

The main disadvantage with the data-driven or statistical
approaches in diagnosis is that their performance relies
heavily on the amount of available historical data. However,
the requirement of sufficient training data is hardly met in
diagnosis applications since faults are rare in normal pro-
cesses. On the one hand, in their general form, they require
sufficient historical samples from all faulty cases. However,
in practical applications, there is only a limited amount
of data available. On the other hand, the large number of
monitors is a principle challenge for Bayesian diagnosis to
be applied in industries. It is required in Bayesian inference
to estimate the joint likelihood probability density of the
observations from allmonitors. In previousworks, it is shown
that the computational effort in estimating the probabilities
grows exponentially with respect to the number of monitors
[24, 25] That phenomenon is also regarded as the curse of
dimensionality. It makes it difficult to correctly estimate the
likelihood probability in more than five dimensions with
practical sample sizes. These works using Bayesian methods
are based on training data only, and no explicit background
knowledge is integrated about the process under diagnosis.

There is also a general type of background knowledge
available. In this paper, we consider incorporating the back-
ground knowledge together with the training data under
the Bayesian framework in order to improve the diagnosis
even if the historical data are insufficient with respect to
the monitors number. Regarding the process knowledge, it is
possibly known that one measurement in observation vector
is equally distributed given different abnormalities. This type
of knowledge is very general and can be formulated as con-
straints on the underlying likelihood probability distributions
[22, 27]. It can express several types of process knowledge and
appear in many diagnosis applications naturally.

In this paper, the background information is expressed in
terms of response signaturematrix (RSM).With a translation
from RSM to the constraints of the marginal probability of
the likelihoods, the background knowledge is explicitly taken
into account in Bayesian control loop diagnosis. Moreover,
we also suggest using a moving window method to consider
a sequence of observation rather than a single observation in
the diagnosis. In order to evaluate the proposed approach, we
applied it to an oil sand solid handling system in such a case
where only a few samples from abnormalities are available.

The rest of this paper is organized as follows. A descrip-
tion of the Bayesian control performance diagnosis problem
is introduced first, and in Section 2 some terminologies
are reviewed. In Section 3, the problem studied in this
paper is stated formally, and in Section 4 Bayesian diagnosis
evaluating multiple consecutive observations is presented.
The computations of the posterior probabilities for different
modes considering historical data only are presented first,
and, the approach is extended to incorporate process knowl-
edge in Section 5. In Section 6, the proposed approach is
evaluated on the diagnosis problem on the oil sand solids
handling system, using training and background knowledge.
The conclusion is given in Section 7.

2. Preliminaries: Bayesian Diagnosis for
Control Loop Systems

Before going into the details of the Bayesian diagnosis,
some terminologies are introduced based on the definition
proposed in [23].

Component. Assume that the process under diagnosis consists
of some components which is possible to fail or not fail. In
a typical control loop, the components can be sensors, actu-
ators, controllers, process models, and so on [28]. Assume
there are 𝑃 components of interest. Each component may
have several different states. For example, a sensor may
consist of three states: unbiased, moderate biased, and severe
biased.

Mode. A mode of the process is defined as an assignment of
the states of all the components. It indicates the state of the
system. For example, a mode can be as follows: {controller is
normal, activator has severe stiction, process model has no
error, and sensor has moderate bias}. Each mode represents
the status under which the process is operating. It can be
normal state or abnormal state. Assume the total number
of the modes is 𝐽. If each component has 𝑛 states, 𝐽 = 𝑛𝑃.
The mode can be considered as a random scalar variable
described by𝑀 with values {𝑚𝑗}, 𝑗 = 1, . . . , 𝐽.
Observation. There are some monitors, sensors, or add-on
indirect measurements such as “ad hoc tests” conducted
by engineers, model-based diagnostic tests, and monitoring
algorithms that are designed to measure certain parameters.
They can be represented by a general designation, monitors.
the 𝑞th monitor is denoted by 𝜋𝑞. Assume there are 𝐿
monitors; then 𝑞 = 1, . . . , 𝐿. Each monitor output or
measurement signal can be represented by a discrete value;
for example, low, medium, and high are 3 possible values.
Define that observation is a 𝐿-dimension vector composed
of the discrete values of all monitor outputs. These outputs
may be preprocessed, for example, in diagnostic tests. The
observation vector X = (𝑋1, . . . , 𝑋𝐿) with the domain X =
X1×⋅ ⋅ ⋅×X𝐿. Denote an assignment of the observation vector
by X = 𝑥𝑘, 𝑘 = 1, . . . , 𝐾, where 𝐾 is the number of different
observations. If the 𝑙th monitor output has𝐾𝑙 discrete values,𝐾 = ∏𝐿𝑙=1𝐾𝑙. Each value𝑥𝑘 (𝑘 = 1, . . . , 𝐾) is an𝐿-dimensional
vector, and we write 𝑥𝑘 = (𝑥𝑘[1], . . . , 𝑥𝑘[𝐿]) to explicitly
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denote the elements. Consider the observation as a random
variable.

Training Data. A training sample at time 𝑡 consists of simul-
taneous values of the mode variable 𝑀 and the observation
vector 𝑋 at that time. The value is denoted by 𝑑𝑡 = (𝑥𝑡, 𝑚𝑡).
All training samples collected from different modes of the
system form the training dataset. A realization of training
data is denoted by𝐷. And𝐷𝑚𝑗 denotes the subset of training
data entries where the underlying mode is𝑚𝑗.
2.1. Bayesian Diagnosis. The Bayesian control loop diagnosis
proposed in [23] is briefly reviewed in this section. Each
component is possible to suffer from some abnormal oper-
ating conditions that may degrade the control performance.
Also, any fault in one component may influence the monitors
for the other components [4]. Consider there are certain
probabilistic interconnections between problem causes and
monitor outputs [4]. Bayesian inference is applied to compute
the probability of mode variable𝑀 given a current observa-
tion𝑋 and the training observation data set𝐷. The posterior
probability of every operating mode can be computed based
on Bayes’ rule.

𝑝 (𝑀 | 𝑋,𝐷) ∝ 𝑝 (𝑋 | 𝑀,𝐷) 𝑝 (𝑀) , (1)

where 𝑝(𝑋 | 𝑀,𝐷) is the likelihood probability and 𝑝(𝑀)
is the probability of mode 𝑀 which is typically specified
by a priori knowledge. The mode with the highest posterior
probability can be determined as the underlying mode based
on themaximumaposteriori (MAP) principle, and the related
abnormality is generally regarded as the fault source.

Thus, the main issue to construct a Bayesian diagnostic
system is estimating the likelihood in line with the training
observation data 𝐷. Following the results of [22, 23], a
Bayesian algorithm is presented for the likelihood estimation
for control loop diagnosis.

3. Formal Problem Formulation

Consider that there is a general type of background infor-
mation and multiple consecutive observations available. The
task is to determine which fault(s) which has caused the
measurements, given consecutive observations 𝑋, training
data 𝐷, and background knowledge 𝑄 that is described as
follows.

Background Knowledge in Terms of Probability Constraints.
Background information usually comes from expert or pro-
cess knowledge. It can be described as𝑄. It can be considered
to consist of two parts of information. One specifies the
prior probability for the modes, and the other defines that
there are elements, representing the monitor outputs, in
the observation vector which are equally distributed under
different modes.

In addition, rather than considering a single observation
as [23], assume that 𝑟 consecutive observations are recorded
and that the same fault is present during collection of these

observations. Now, the fault diagnosis problem studied in this
work can be stated formally as to compute𝑝 (𝑀𝐽𝑟 = 𝑚𝑗 | 𝑋𝐽1 = 𝑥𝑘1 , . . . , 𝑋𝐽𝑟 = 𝑥𝑘𝑟 , 𝐷, 𝑄) , (2)

that is, to compute the probabilities that each mode 𝑚𝑗 is
present at a time instant 𝐽𝑟, given the training dataset 𝐷,
the background knowledge 𝑄, and the observation values𝑋𝐽1 = 𝑥𝑘1 , . . . , 𝑋𝐽𝑟 = 𝑥𝑘𝑟 from the control loop process
under diagnosis. The subscripts on 𝐽 are used to denote
observation vectors from consecutive instants and those on𝑘 to enumerate the observation values.

In the following, the posterior probabilities of each
mode given consecutive observations are calculated with the
training data only.

4. Bayesian Inference Using
Training Data Only

To solve the stated problem (2), a new method is proposed
for learning the likelihood probability distribution. Before
going into the details, first let us present a previous result on
inference based on training data only.

According to Bayes’ rule, to compute (2), the likelihood
probability needs to be calculated:𝑝 (𝑋𝐽1 = 𝑥𝑘1 , . . . , 𝑋𝐽𝑟 = 𝑥𝑘𝑟 | 𝑀𝐽𝑟 = 𝑚𝑗, 𝐷)= 𝑝 (𝑋𝐽1 = 𝑥𝑘1 , . . . , 𝑋𝐽𝑟 = 𝑥𝑘𝑟 | 𝑀𝐽𝑟 = 𝑚𝑗, 𝐷𝑚𝑗) , (3)

where𝐷𝑚𝑗 denotes the training data under mode𝑀 = 𝑚𝑗.
Assume that the likelihood of all possible values of

observation under mode𝑚𝑗 is parameterized by Θ𝑚𝑗 ,𝑝 (𝑥𝑘 | 𝑚𝑗, Θ, 𝑄) = 𝜃𝑘|𝑚𝑗 ,Θ𝑚𝑗 = {𝜃1|𝑚𝑗 , . . . , 𝜃𝐾|𝑚𝑗} ,
𝜃𝑘|𝑚𝑗 > 0, 𝐾∑

𝑘=1

𝜃𝑘|𝑚𝑗 = 1. (4)

LetΩ𝑚𝑗 denote the space of all the likelihood parameters
when the mode𝑀 = 𝑚𝑗. Also, the prior probability of these
parameters is Dirichlet distributed

𝑓(Θ𝑚𝑗 | 𝑄) = Γ (∑𝐾𝑘=1 𝛼𝑘|𝑚𝑗)∏𝐾𝑘=1Γ (𝛼𝑘|𝑚𝑗) 𝐾∏𝑘=1𝜃𝛼𝑘|𝑚𝑗−1𝑘|𝑚𝑗
, 𝛼𝑘|𝑚𝑗 > 0. (5)

It can be shown that the Dirichlet distribution is the only
possible choice for 𝑓(Θ𝑚𝑗 | 𝑄) under certain, not very re-
strictive assumptions [29]. One attractive property of Dirich-
let distribution is that it is conjugate to the multinomial dis-
tribution [30], and the distribution for the training samples
is proportional to the multinomial distribution. This makes
the computations particularly simple. Further, the parameters𝛼1|𝑚𝑗 , . . . , 𝛼𝐾|𝑚𝑗 of the distribution are required. Γ(⋅) is the
gamma function. For real number 𝑥, Γ(𝑥) = (𝑥 − 1)!.
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By marginalizing over all the likelihood parameters, we
have 𝑝 (𝑋𝐽1 = 𝑥𝑘1 , . . . , 𝑋𝐽𝑟 = 𝑥𝑘𝑟 | 𝑀𝐽𝑟 = 𝑚𝑗, 𝐷𝑚𝑗)= ∫

Ω𝑚𝑗

𝑝 (𝑋𝐽1 = 𝑥𝑘1 , . . . , 𝑋𝐽𝑟 = 𝑥𝑘𝑟 | 𝑀𝐽𝑟
= 𝑚𝑗, Θ𝑚𝑗 , 𝐷𝑚𝑗)𝑓 (Θ𝑚𝑗 | 𝑚𝑗, 𝐷𝑚𝑗) 𝑑𝜃𝑚𝑗 .

(6)

For the first factor of the integral (6), given the likelihood
parameters Θ𝑚𝑗 and assuming that these observations from
mode𝑚𝑗 are independent,𝑝 (𝑋𝐽1 = 𝑥𝑘1 , . . . , 𝑋𝐽𝑟 = 𝑥𝑘𝑟 | 𝑀𝐽𝑟 = 𝑚𝑗, Θ𝑚𝑗 , 𝐷𝑚𝑗)= 𝑝 (𝑥𝑘1 | 𝑚𝑗, Θ𝑚𝑗) ⋅ . . . ⋅ 𝑝 (𝑥𝑘𝑟 | 𝑚𝑗, Θ𝑚𝑗)= 𝜃𝑘1|𝑚𝑗 × ⋅ ⋅ ⋅ × 𝜃𝑘𝑟|𝑚𝑗 .

(7)

And for the second factor, following the derivation of [23], we
can write 𝑓(Θ𝑚𝑗 | 𝑚𝑗, 𝐷𝑚𝑗)

= 𝑝 (𝐷𝑚𝑗 | Θ𝑚𝑗 , 𝑚𝑗)𝑓 (Θ𝑚𝑗 | 𝑚𝑗)𝑝 (𝐷𝑚𝑗 | 𝑚𝑗) . (8)

Further, the likelihood of training data subset 𝐷𝑚𝑗 related to
the operating mode𝑚𝑗 can be calculated as

𝑝 (𝐷𝑚𝑗 | Θ𝑚𝑗 , 𝑚𝑗) = 𝐾∏
𝑘=1

𝜃𝑛𝑘|𝑚𝑗
𝑘|𝑚𝑗

, (9)

where 𝑛𝑘|𝑚𝑗 is the number of training data samples with the
observation 𝑥𝑘 from the mode𝑚𝑗.

Then combining (7)–(9) and substituting in (6), likeli-
hood (3) can be obtained.

To introduce the consecutive observations, first some
notations are needed. Let 𝜀obs ⊂ X denote the set of distinct
values present in consecutive observations X𝐽1:𝑟 = (𝑋𝐽1 ,. . . , 𝑋𝐽𝑟), and let 𝑁𝑥𝑘 be the total number of observations
in X𝐽1:𝑟 with the value 𝑥𝑘. Following [31], the likelihood
probability is given by the expression𝑝 (𝑋𝐽1 = 𝑥𝑘1 , . . . , 𝑋𝐽𝑟 = 𝑥𝑘𝑟 | 𝑀𝐽𝑟 = 𝑚𝑗, 𝐷, 𝑄)

= ∏𝑥𝑘∈𝜀obs∏𝑁𝑥𝑘−1𝑚=0 (𝑛𝑘|𝑚𝑗 + 𝛼𝑘|𝑚𝑗 + 𝑚)∏𝑟−1𝑚=0 (𝑁𝑚𝑗 + 𝐴𝑚𝑗 + 𝑚) , (10)

where𝑁𝑚𝑗 = ∑𝐾𝑘=1 𝑛𝑘|𝑚𝑗 is the count of the hypothetical sam-
ples and 𝐴𝑚𝑗 = ∑𝐾𝑘=1 𝛼𝑘|𝑚𝑗 is the count of training samples.
Theorem A.1 in the appendix can be referred to for the
derivation of (10).

Table 1: A priori response information.

Monitor 𝑀 = 𝑚0 (no
fault) 𝑀 = 𝑚1 𝑀 = 𝑚2 𝑀 = 𝑚3 𝑀 = 𝑚4 ⋅ ⋅ ⋅𝜋1 — 0 0 𝑟 0𝜋2 — 𝑟 0 0 𝑟𝜋3 — 0 𝑟 0 0

5. Bayesian Diagnosis
Incorporating RSM and Data

To combine the background knowledge with training data,
first, the problem dimensionality needs to be reduced uti-
lizing the probability constraints implied in the available
background information, and in the dimension-reduced
subspaces, estimate the likelihoods with Bayesian inference.
In this way, the estimation accuracy can be improved in the
case of small amount of available historical samples that is
often encountered in real applications since abnormalities
are rare in normal process operations. Then, from the set
of posterior probabilities that might be inconsistent as they
are computed from different subspaces, derive the partially
ordered posteriors that are consistent in the original proba-
bility space.

5.1. Background Knowledge Expressed as RSM. In many
applications, there are only a few historical samples available.
Therefore, the process knowledge must be explicitly handled.
We consider a general type of process knowledge about what
abnormalities can possibly affect each of the monitors. It can
be expressed in terms of the following: “observation 𝑋𝑘 has
the same but maybe unknown probability distribution under𝑀 = 𝑚𝑠 and𝑀 = 𝑚𝑡.”

Table 1 gives an example of such knowledge. “𝑟” at the𝑙th row and the 𝑗th column represents a response signature
meaning that the 𝑙th element of the observation that is
from the 𝑙th monitor is affected under abnormal mode 𝑚𝑗,
compared with that under the normal mode. The likelihood
distribution of the 𝑙th observation element given 𝑀 = 𝑚𝑗
is different from that under the normal mode 𝑀 = 𝑚𝑗. In
other words, the 𝑙th monitor output would respond when the
operatingmode turns into the 𝑗th abnormal operatingmode.
And “0” in the table indicates that the likelihood probability
distribution is the same as that under the fault free mode. Or
to say, the 𝑙th monitor measurement shows zero response to
the 𝑗th abnormal mode.

The matrix corresponding to the response information
table is the Response Signature Matrix (RSM), denoted by𝑅 = (𝑟𝑙𝑗)𝐿×𝐽, and use “1” for “𝑟” in the matrix. For example,
the RSM according to Table 1 is

𝑅 = (0 0 0 1 0 ⋅ ⋅ ⋅0 1 0 0 1 ⋅ ⋅ ⋅0 0 1 0 0 ⋅ ⋅ ⋅) . (11)
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5.2. Dimensionality Reduction. Using training data only, the
Bayesian diagnosis would suffer from the curse of dimen-
sionality. In statistics, the phrase reflects the sparsity of data
in multiple dimensions. That phenomenon is an inevitable
problem in Bayesian diagnosis. For instance, when a process
employs 20 monitors, each one having the same three states
that are low, medium, and high, the total number of possible
observation values is 320 = 3.497×109.This large observation
space requires substantially more data to estimate.

Consider any two operating modes 𝑚𝑠 and 𝑚𝑡, and the
domain of discourse consists only of these two modes.𝑝 (𝑚𝑠) + 𝑝 (𝑚𝑡) = 1. (12)

For the 𝑙th monitor 𝜋𝑙, 𝑟𝑙𝑠 = 𝑟𝑙𝑡 = 0 indicates that the
marginal probability distributions of the 𝑙th monitor output
under the two modes are equal; that is,𝑝 (𝑋 [𝑙] = 𝑥𝑘 [𝑙] | 𝑚𝑠, 𝑄) = 𝑝 (𝑋 [𝑙] = 𝑥𝑘 [𝑙] | 𝑚𝑡, 𝑄) . (13)

Therefore, the 𝑙th monitor readings can be ignored, and it is
possible to reduce the dimension by one. Whereas if 𝑟𝑙𝑠 = 1
or 𝑟𝑙𝑡 = 1, (13) does not hold. Thus, this measurement must
be taken into account in the probability computation. Define𝛾𝑠𝑡 = {𝑙 ∈ {1, . . . , 𝐿} : 𝑟𝑙𝑠 = 1 or 𝑟𝑙𝑡 = 1} (14)

as a set of numbers of monitors whose readings are affected
by the 𝑠th or the 𝑡th abnormality, and 𝑑𝑠𝑡 is the dimension of𝛾𝑠𝑡, or to say, the number of the elements of set 𝛾𝑠𝑡. Given the
background knowledge in terms of response information, 𝑑𝑠𝑡
is usually smaller than𝐿. Take the response information given
in Table 1 as an example, we can obtain 𝛾12 = {2}, 𝛾13 = {3},𝛾14 = {1}, 𝛾15 = {2}, 𝛾23 = {2, 3}, 𝛾24 = {1, 2}, 𝛾25 = {2}, 𝛾34 ={1, 3}, 𝛾35 = {2, 3}, and 𝛾45 = {1, 2}.

Define 𝑍𝑠𝑡𝑟 ≜ (𝑍[𝑙1], . . . , 𝑍[𝑙𝑑𝑠𝑡]), where 𝑙1, . . . , 𝑙𝑑𝑠𝑡 ∈ 𝛾𝑠𝑡
is the observation element vector, each element of which
represents a monitor output whose distribution is affected
under mode 𝑚𝑠 or 𝑚𝑡. 𝑍𝑠𝑡𝑟 is with the domain Z𝑠𝑡 = X𝑙1 ×⋅ ⋅ ⋅ × X𝑙𝑑𝑠𝑡

that is a 𝑑𝑠𝑡-dimensional observation space, a
subspace of X. Also, define 𝑍𝑠𝑡−𝑟 as the observation vector
whose probability is unaffected. For instance, 𝑍12𝑟 = (𝑍[2])
and 𝑍12−𝑟 = (𝑍[1], 𝑍[3]). From (13), we have𝑝 (𝑍𝑠𝑡−𝑟 | 𝑚𝑠, 𝑄) = 𝑝 (𝑍𝑠𝑡−𝑟 | 𝑚𝑡, 𝑄) . (15)

Combining (12), it can be obtained that𝑝 (𝑍𝑠𝑡−𝑟 | 𝑄) 𝑝 (𝑚𝑗 | 𝑄) = 𝑝 (𝑍𝑠𝑡−𝑟, 𝑚𝑗 | 𝑄) , 𝑗 = 𝑠, 𝑡. (16)

(16) indicates that when only two modes instead of all 𝐽
modes are considered, 𝑍𝑠𝑡−𝑟 is independent of mode variable.
Then, it is easy to prove𝑝 (𝑋 | 𝑚𝑠, 𝑄)𝑝 (𝑋 | 𝑚𝑡, 𝑄) = 𝑝 (𝑍𝑠𝑡𝑟 | 𝑚𝑠, 𝑄)𝑝 (𝑍𝑠𝑡𝑟 | 𝑚𝑡, 𝑄) . (17)

Therefore, while comparing the likelihoods of the obser-
vation under two modes, the monitor outputs corresponding

to 𝑍𝑠𝑡−𝑟 can be ignored, and only those related to 𝑍𝑠𝑡𝑟 are
needed to be taken into the probability computation. In this
way, given the background information, the dimension of
observation space can be reduced from𝐿 to𝑑𝑠𝑡. Let𝐾𝑠𝑡 denote
the total count of different observations in Z𝑠𝑡. Note that in
the following, 𝑍𝑠𝑡𝑟 is written as 𝑍 for simplicity.

In the 𝑑𝑠𝑡-dimensional subspace Z𝑠𝑡, the likelihood can
also be obtained applying Bayesian inference as follows.

First, consider the likelihood estimation given one obser-
vation. We want to compute𝑝 (𝑍 = 𝑧𝑘 | 𝑚𝑗, 𝐷, 𝑄) ,𝑧𝑘 = (𝑧𝑘 [𝑙1] , . . . , 𝑧𝑘 [𝑙𝑑𝑠𝑡]) ∈ Z𝑠𝑡, 𝑗 = 𝑠, 𝑡. (18)

Assume that the likelihood of all possible values of 𝑑𝑠𝑡-
dimensional observation under mode 𝑚𝑗 is parametrized by
a set of parameters Θ𝑚𝑗 ,𝑝 (𝑧𝑘 | 𝑚𝑗, Θ, 𝑄) = 𝜃𝑘|𝑚𝑗 ,Θ𝑚𝑗 = {𝜃1|𝑚𝑗 , . . . , 𝜃𝐾𝑠𝑡|𝑚𝑗} ,

𝑧𝑘 ∈ Z𝑠𝑡, 𝜃𝑘|𝑚𝑗 > 0, 𝐾𝑠𝑡∑
𝑘=1

𝜃𝑘|𝑚𝑗 = 1, 𝑗 = 𝑠, 𝑡. (19)

Also, the prior probability of these parameters is assumed to
be Dirichlet distributed.

𝑓(Θ𝑚𝑗 | 𝑄) = Γ (∑𝐾𝑠𝑡
𝑘=1

𝛼𝑘|𝑚𝑗)∏𝐾𝑠𝑡
𝑘=1

Γ (𝛼𝑘|𝑚𝑗)
𝐾𝑠𝑡∏
𝑘=1

𝜃𝛼𝑘|𝑚𝑗−1
𝑘|𝑚𝑗

,
𝛼𝑘|𝑚𝑗 > 0, 𝑧𝑘 ∈ Z𝑠𝑡, 𝑗 = 𝑠, 𝑡. (20)

Then, applying Bayesian inference, the likelihood (18) can be
obtained as this expression

𝑝 (𝑍 = 𝑧𝑘 | 𝑚𝑗, 𝐷, 𝑄) = 𝑛𝑘|𝑚𝑗 + 𝛼𝑘|𝑚𝑗𝑁𝑚𝑗 + 𝐴𝑚𝑗 , 𝑗 = 𝑠, 𝑡, (21)

where 𝑁𝑚𝑗 = ∑𝐾𝑠𝑡
𝑘=1

𝑛𝑘|𝑚𝑗 and 𝐴𝑚𝑗 = ∑𝐾𝑠𝑡
𝑘=1

𝛼𝑘|𝑚𝑗 are the count
of hypothetical samples and training samples, respectively.

Now consider we have 𝑟 consecutive observations 𝑧𝑘1 , . . . ,𝑧𝑘𝑟 ∈ Z𝑠𝑡, define 𝜔obs ⊂ Z𝑠𝑡 as the set of distinct values
presenting in the consecutive 𝑑𝑠𝑡-dimensional observations
Z𝐽1:𝑟 = (𝑍𝐽1 , . . . , 𝑍𝐽𝑟), and 𝑁𝑧𝑘 is the total number of obser-
vations in Z𝐽1:𝑟 with value 𝑧𝑘. The sought likelihood can be
obtained as𝑝 (𝑍𝐽1 = 𝑧𝑘1 , . . . , 𝑍𝐽𝑟 = 𝑧𝑘𝑟 | 𝑀𝐽𝑟 = 𝑚𝑗, 𝐷, 𝑄)

= ∏𝑧𝑘∈𝜔obs∏𝑁𝑧𝑘−1𝑚=0 (𝑛𝑘|𝑚𝑗 + 𝛼𝑘|𝑚𝑗 + 𝑚)∏𝑟−1𝑚=0 (𝑁𝑚𝑗 + 𝐴𝑚𝑗 + 𝑚) , 𝑗 = 𝑠, 𝑡. (22)
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Given the prior probabilities for the modes, the posterior
probability can also be computed.𝑝 (𝑚𝑗 | 𝑍𝐽1 = 𝑧𝑘1 , . . . , 𝑍𝐽𝑟 = 𝑧𝑘𝑟 , 𝐷, 𝑄)

= 𝑝 (𝑍𝐽1 = 𝑧𝑘1 , . . . , 𝑍𝐽𝑟 = 𝑧𝑘𝑟 | 𝑀𝐽𝑟 = 𝑚𝑗, 𝐷, 𝑄) 𝑝 (𝑚𝑗 | 𝑄)𝑝 (𝑍𝐽1 = 𝑧𝑘1 , . . . , 𝑍𝐽𝑟 = 𝑧𝑘𝑟 | 𝐷, 𝑄) ,
𝑗 = 𝑠, 𝑡.

(23)

5.3. Consistent Partially Ordered Posteriors. For 𝐽 modes,
there are totally (1/2)𝐽(𝐽 − 1) pairs of modes. As discussed
in the last section, for each pair, the posteriors of each of the
two modes can be obtained. However, the probability space
contains only those two modes, not all the 𝐽 modes; thus,
these pairs of computed posteriors might be inconsistent.

Construct a pairwise comparison matrix C. To simplify
the notation, write the posterior probability of mode𝑚𝑗; that
is, 𝑝(𝑚𝑗 | 𝑍𝐽1 = 𝑧𝑘1 , . . . , 𝑍𝐽𝑟 = 𝑧𝑘𝑟 , 𝐷, 𝑄) as 𝑝𝑗. Let C be the
set of (𝐽 × 𝐽) positive reciprocal matrix

C = (𝑐𝑠𝑡)𝐽×𝐽 = (𝑝𝑠𝑝𝑡)𝐽×𝐽 , (24)

where each entry 𝑐𝑠𝑡 is the ratio of the posteriors of modes𝑚𝑠
and𝑚𝑡. Therefore, the matrix is of the form

C = (((((
(

1 𝑝1𝑝2 ⋅ ⋅ ⋅ 𝑝1𝑝𝐽𝑝2𝑝1 1 ⋅ ⋅ ⋅ 𝑝2𝑝𝐽... d𝑝𝐽𝑝1 𝑝𝐽𝑝2 ⋅ ⋅ ⋅ 1
)))))
)

, (25)

where 𝑐𝑠𝑡 = 1/𝑐𝑡𝑠, 𝑐𝑠𝑠 = 1, 𝑐𝑠𝑡 > 0, 𝑠, 𝑡 ∈ {1, . . . , 𝐽}. This
comparisonmatrix consists of paired reciprocal comparisons
based on (17). By definition (25), C is a positive reciprocal
matrix.

Combining (22) and (23), we have

𝑐𝑠𝑡 = 𝑝𝑠𝑝𝑡
= 𝑝 (𝑍𝐽1 = 𝑧𝑘1 , . . . , 𝑍𝐽𝑟 = 𝑧𝑘𝑟 | 𝑀𝐽𝑟 = 𝑚𝑠, 𝐷, 𝑄) × 𝑝 (𝑚𝑠 | 𝑄)𝑝 (𝑍𝐽1 = 𝑧𝑘1 , . . . , 𝑍𝐽𝑟 = 𝑧𝑘𝑟 | 𝑀𝐽𝑟 = 𝑚𝑡, 𝐷, 𝑄) × 𝑝 (𝑚𝑡 | 𝑄)

(26)

or in an equivalent form

𝑐𝑠𝑡 = ∏𝑧𝑘∈𝜔obs∏𝑁𝑧𝑘−1𝑚=0 (𝑛𝑘|𝑚𝑠 + 𝛼𝑘|𝑚𝑠 + 𝑚)∏𝑧𝑘∈𝜔obs∏𝑁𝑧𝑘−1𝑚=0 (𝑛𝑘|𝑚𝑡 + 𝛼𝑘|𝑚𝑡 + 𝑚)
× ∏𝑟−1𝑚=0 (𝑁𝑚𝑡 + 𝐴𝑚𝑡 + 𝑚)∏𝑟−1𝑚=0 (𝑁𝑚𝑠 + 𝐴𝑚𝑠 + 𝑚) × 𝑝 (𝑚𝑠 | 𝑄)𝑝 (𝑚𝑡 | 𝑄) .

(27)

What are the priorities of the modes with respect to the
posterior probability? Consider the consistency of the matrix

C. C is consistent if 𝑐𝑖𝑗𝑐𝑗𝑘 = 𝑐𝑖𝑘, ∀𝑖, 𝑗, 𝑘. The original matrix
C itself may be inconsistent. In order to determine which
mode has the maximum probability, we need to derive a
consistent partially ordered relationship set of all the modes{𝑚1, . . . , 𝑚𝐽} from the paired comparisons of the posteriors
(maybe inconsistent) given in C.

There is a number of ways to obtain the vector of
priorities.With emphasis on consistency,we suggest adopting
an eigenvalue formulation [32]. Using this formulation, our
problem becomes

Cw = 𝜆maxw, (28)

where 𝜆max is the principal or largest eigenvalue of C. The
principal eigenvector w = (𝑤1, . . . , 𝑤𝐽); 𝑤1 > ⋅ ⋅ ⋅ > 𝑤𝐽 is
the partially ordered vector for all 𝐽 modes with respect to
their posterior probabilities. It is easy to prove that, for any
estimate x,

lim
𝑘→∞

1𝜆𝑘max
C𝑘x = 𝑎w, (29)

where 𝑎 > 0 is a constant and w is principal eigenvector
of C. The formula can be interpreted roughly as follows: “if
we begin with an estimate and operate on it successively
by C/𝜆max to get new estimates, the result converges to a
constant multiple of the principal eigenvector.”

Therefore, the mode corresponding to the largest element𝑤1 is the sought operatingmode based on theMAP principle.
To sum up, following is the algorithm of the proposed

diagnosis method for complex control loops that incorpo-
rates training data and background knowledge of response
information.

(a) Based on process knowledge expressed as RSM, for
each pair of modes𝑚𝑠 and𝑚𝑡, obtain 𝛾𝑠𝑡 according to
(14).

(b) For each pair of modes, in an observation subspace
Z𝑠𝑡 with respect to 𝛾𝑠𝑡, compute the likelihood of each
possible observation 𝑧𝑘 under𝑚𝑠 and𝑚𝑡, respectively,
with (22).

(c) Construct the pairwise comparison matrix C with
(25), (26), or (27).

(d) Compute the eigenvector w using (28), and the mode
corresponding to the largest element 𝑤1 is the sought
operating mode.

6. Evaluation Results for Oil Sand Solids
Handling System Diagnosis

6.1. Diagnostic Settings. We now consider solids handling
system for evaluation. This system is the first stage of the
oil sands process, which is a typical setup used for oil sands
mining operations. The flowchart is presented in Figure 1
that is based on the industrial application [26]. From the
flowchart, the mass of each truckload of the oil sand solid
and the time when it was dumped into the dump hopper
are available in a database. After being crushed, the solid is
transported into the surge pile through the conveyor belt.
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Figure 1: Oil sand solid slurry preparing system [26].

Table 2: Modes considered.

Mode Mix box density
model error

WENCO system
instrument bias Weightometer bias Slurry flow meter

bias Density meter bias Water valve stiction𝑚1 — — — — — —𝑚2 ∗ — — — — —𝑚3 — ∗ — — — —𝑚4 — — ∗ — — —𝑚5 — — — ∗ — —𝑚6 — — — — ∗ —𝑚7 — — — — — ∗
A level indicator gives a reading, from 0% to 100%, of the
relative level of the surge pile. A weightometer is on themixer
feed conveyor which feed oil sand from the surge pile to the
slurry mixer. The slurry is prepared in this mixer by adding
water to the oil sand. The amount of water is controlled
by a slurry density controller. The controller output is the
volumetric flow rate of water. A slurry flow meter and a
density meter give the readings of the volumetric flow rate
and the density of the effluent slurry, respectively.

In our simulation, four instruments 𝑌1 (database), 𝑌3
(weightometer), 𝑌4 (slurry flow meter), and 𝑌5 (density
meter) are subject to possible bias. The control valve that
is used to manipulate the water flow may suffer from
stiction, and due to linearization, themodel for slurry density
controller is subject to error.

The system is designed to run under seven modes as
shown in Table 2. The first mode 𝑚1 is the No Fault mode.
Each of the other sixmodes is under a fault of one component.
Mode 𝑚2 represents the density model error due to the
linearization, 𝑚3, 𝑚4, 𝑚5, and 𝑚6 consider bias in each of
the four instruments 𝑌1, 𝑌3, 𝑌4, and 𝑌5, and 𝑚7 considers
stiction of thewater valve. In this table, a “—” denotes that the

corresponding component is fault free and a “∗” represents
that the component has fault. Nine monitors are available
for diagnosis, as shown in Table 3. 200 simulation runs were
performed for each case, aswell as 60 runs used for validation.
As there are totally 9monitors, the generic Bayesian diagnosis
using training data only is a 9-dimensional problem. In other
words, each likelihood probability given each underlying
mode that is needed in the inference is a 9-dimensional joint
probability. It is obvious that the available historical samples
are very far from sufficient to generate accurate likelihood
estimation.

The process knowledge of response information is given
(Table 3). From this table, the corresponding RSM can be
written that represents the implied probability constraints.
According to (14), all 𝛾𝑠𝑡 sets for each value of 𝑠 and 𝑡
(𝑠, 𝑡 ∈ {1, 2, 3, 4, 5, 6, 7}) can be obtained. For instance, 𝛾23 ={2, 4, 5, 6, 7}with a reduced dimension 𝑑𝑠𝑡 = 5.Then, for each
pair of modes, the likelihood of each possible observation
under each mode is computed, respectively, in a subspace
with respect to 𝛾𝑠𝑡. Finally, through the pairwise comparison
matrix C, the underlying operating mode can be determined
using the eigenvalue formulation.
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Table 3: Monitors and a priori response information.

Monitor Description 𝑚1 𝑚2 𝑚3 𝑚4 𝑚5 𝑚6 𝑚7𝜋1 Slurry model validation — 0 0 𝑟 𝑟 0 𝑟𝜋2 Density flow model validation — 𝑟 0 𝑟 0 𝑟 0𝜋3 Slurry density disturbance model validation — 0 0 𝑟 𝑟 𝑟 𝑟𝜋4 Data reconciliation residuals for 𝑌1 — 0 𝑟 𝑟 𝑟 0 0𝜋5 Data reconciliation residuals for 𝑌3 — 0 𝑟 𝑟 𝑟 0 0𝜋6 Data reconciliation residuals for 𝑌4 — 𝑟 0 𝑟 0 𝑟 0𝜋7 Data reconciliation residuals for 𝑌5 — 0 𝑟 𝑟 0 0 0𝜋8 Data reconciliation residuals for the control valve input — 0 0 𝑟 𝑟 𝑟 𝑟𝜋9 Valve stiction monitor — 0 0 0 0 𝑟 0
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Figure 2: The underlying and diagnosed modes for each validating sample. (a) Underlying mode; (b) modes diagnosed using training data
only; (c) modes diagnosed incorporating training data and response information.

6.2. Bayesian Diagnosis Using RSM and Historical Data. In
order to evaluate diagnosis performance, two criteria are
used. One is the false negative rate, which can be obtained
using the simple quotient𝐹𝑁 = 𝑛inc𝑛inc + 𝑛cor , (30)

where 𝑛inc is the number of validating samples that are
incorrectly diagnosed and 𝑛cor is the number of samples
that are correctly diagnosed. The misdiagnosis rate is related
to mode number. In order to exclude the influence of the
mode number, we define a relative misdiagnosis rate (RMR),
and the aforementioned misdiagnosis rate will be referred
to as absolute misdiagnosis rate (AMR). Assume that the
underlying mode of a validating sample is 𝑚𝑗; calculate
posteriors of all 𝐽modes. If there are 𝑡 posteriors that are less
than the posterior of the underlying mode 𝑝(𝑚𝑗 | 𝑒𝑘), the
correct diagnosis number for this sample will be 𝑡/(𝐽 − 1),
and the incorrect diagnosis number be 1−𝑡/(𝐽−1).Then 𝑛cor
and 𝑛inc are obtained by adding up the correct and incorrect

number of all validating samples, respectively. Finally, the
RMR is obtained using the same quotient in (30). By such
definition, when 𝑝(𝑚𝑗 | 𝑥𝑘) is larger than posteriors of all
other modes, it will be counted as one correct diagnosis; also,
when 𝑝(𝑚𝑗 | 𝑥𝑘) is larger than some other posteriors, still a
positive fraction will be added to 𝑛cor.

In order tomimic the background knowledge of response
information, we obtained 10000 samples through 10000 runs
of simulation and established the response information table
based on the distribution of these samples.

The diagnosis performance of the proposed approach is
evaluated in comparison with diagnosis using training data
only.

In Figure 2, the horizontal axis represents the sample
number. The underlying mode of the 1–60, 61–120, 121–180,
181–240, 241–300, 301–360, and 361–420 sample is 𝑚1, 𝑚2,𝑚3, 𝑚4, 𝑚5, 𝑚6, and 𝑚7, respectively. In Figure 2(a), the
true underlying modes for each validating sample are shown,
while in Figures 2(b) and 2(c), the modes diagnosed without
and with incorporating of background knowledge are shown,
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Figure 3: Average AMR and RMR from diagnosis with or without
incorporating background knowledge.

respectively. Green points represent the samples that are
correctly diagnosed, and pink points represent those incor-
rectly diagnosed. Not surprisingly, the proposed diagnosis
approach incorporating background knowledge expressed as
response information results in the better performance, while
without use of the background knowledge, the diagnosis
performs worse in the percentage of mode diagnosed.

The average AMR and the RMR from diagnosis with
or without incorporating response information are shown
in Figure 3. It is clearly observed that when combining
the background knowledge together with the training data,
diagnosis results are much better than when only training
data is incorporated.

7. Conclusions

Theobjective is to isolate the problem source that is degrading
the control performance. In order to reduce dependence on
the amount of data available, our approach is to emphasize
the use of background information and incorporate the
background knowledge of response information into the
diagnosis. The knowledge in general terms of RSM can
be translated to constraints on the underlying probability
distribution. We introduce the constraints in the Bayesian
inference such that the dimensionality of the observation
space is reduced, and thus the diagnosis can be enhanced.
Moreover, for the comparative judgments to be consistent,
the set of posterior probabilities computed from different
observation subspaces is synthesized by using the eigenvalue
formulation on pairwise comparison matrix; therefore, we
can obtain the partially ordered posteriors and then deter-
mine the state of the process under diagnosis.The approach is
applied to a diagnosis problem on an oil sand solids handling

system. The advantage of combining background knowledge
and data is achieved even when the amount of training
data is limited. To sum up, training data and background
knowledge are used for solving different parts of the control
performance diagnosis problems. When both are used, the
optimal diagnosis is achieved.

Appendix

Theorem A.1 (see [31]). Let 𝜀obs and 𝑁𝑥𝑘 be defined as in
Section 4. Let 𝑀𝐽𝑑 and 𝑋𝐽𝑙 , 𝑙 = 1, . . . , 𝑟, be discrete variable,
and let {1, . . . , 𝐾} be the domain of 𝑋𝐽𝑙 . Let 𝐷 denote training
data. Introduce parameters Θ according to (4), and let the
density 𝑓(Θ) be given by (5). Then it holds that𝑝 (𝑋𝐽1 = 𝑥𝑘1 , . . . , 𝑋𝐽𝑟 = 𝑥𝑘𝑟 | 𝑀𝐽𝑟 = 𝑚𝑗, 𝐷, 𝑄)

= ∏𝑥𝑘∈𝜀𝑜𝑏𝑠∏𝑁𝑥𝑘−1𝑚=0 (𝑛𝑘|𝑚𝑗 + 𝛼𝑘|𝑚𝑗 + 𝑚)∏𝑟−1𝑚=0 (𝑁𝑚𝑗 + 𝐴𝑚𝑗 + 𝑚) , (A.1)

where 𝑛𝑘|𝑚𝑗 is the number of samples in training data where the
observation is𝑋𝑗 = 𝑥𝑘 when𝑀𝑗 = 𝑚𝑗,𝑁𝑚𝑗 = ∑𝐾𝑘=1 𝑛𝑘|𝑚𝑗 , and𝐴𝑚𝑗 = ∑𝐾𝑘=1 𝛼𝑘|𝑚𝑗 .
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