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The noninvasive peripheral oxygen saturation (SpO2) and the pulse rate can be extracted from photoplethysmography (PPG)
signals. However, the accuracy of the extraction is directly affected by the quality of the signal obtained and the peak of the
signal identified; therefore, a hybrid wavelet-based method is proposed in this study. Firstly, we suppressed the partial motion
artifacts and corrected the baseline drift by using a wavelet method based on the principle of wavelet multiresolution. And then, we
designed a quadratic spline wavelet modulus maximum algorithm to identify the PPG peaks automatically. To evaluate this hybrid
method, a reflective pulse oximeter was used to acquire ten subjects’ PPG signals under sitting, raising hand, and gently walking
postures, and the peak recognition results on the raw signal and on the corrected signal were compared, respectively. The results
showed that the hybrid method not only corrected the morphologies of the signal well but also optimized the peaks identification
quality, subsequently elevating the measurement accuracy of SpO2 and the pulse rate. As a result, our hybrid wavelet-basedmethod
profoundly optimized the evaluation of respiratory function and heart rate variability analysis.

1. Introduction

Photoplethysmography (PPG) signals are often obtained by
using a pulse oximeter. The noninvasive peripheral oxygen
saturation (SpO2) can be calculated by applying the Lambert-
Beer law on the PPG signals and generate the pulse rate
simultaneously. SpO2 is an important physiological parame-
ter to assess the respiratory function [1, 2]. Previous studies
have shown that the pulse rate and pulse-to-pulse interval
from PPG are highly correlated with the heart rate and R-R
interval from ECG, which indicates that heart rate variability
(HRV) analysis can be alternated by pulse rate variability
(PRV) analysis [3, 4]. We also did an experiment to obtain
the PPG and ECG simultaneously, and the results showed
that the alternate is feasible. In other words, themeasurement
of PPG can obtain not only SpO2 and pulse rate, but the
PRV analysis, which are the key criteria for the assessment of
human respiratory and cardiac autonomic nervous function.
Moreover, the pulse sensor is more easily wearable than the
ECG sensor.

To date, many experts have made great progress in the
domain of PPG denoising and peak detection or heart rate
extraction. Since PPG signal is relatively indiscernible and
nonstationary, whose collection is inevitable to bemixedwith
noise and interference, such as high frequency noise, motion
artifacts, random noise, and baseline drift [5], high frequency
noise and power frequency interference can be effectively
suppressed via hardware filter circuit. In this circumstance,
the PPG signal denoising mainly focused on the motion
artifacts reduction [6–10]. In the field of PPG peak automatic
detection, the traditional detection methods were based on
derivative approach to locate the local maximum point of
the pulse wave [11–13]. Fu et al. [14] indicated that 6-level
multiresolution analysis obtained from wavelet transform
can effectively extract the heart rate in comparison to that
of a moving average approach. Shin et al. [15] developed
an improved peak detection algorithm based on adaptive
threshold in PPG waveforms. Liu et al. [16] designed a
heart rate determination algorithm using the fuzzy logic
discriminator to improve the accuracy of the peak detection
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Figure 1:Themonitoring scene using the reflective pulse oximeter. (a)The reflective pulse oximeter; (b) the PPG signals collection using the
reflective pulse oximeter.

of the PPG signals. Sun et al. [17] proposed a heartbeat
extracting method based on empirical mode decomposition
(EMD) and obtained 84.68% detection accuracy of heart rate
using PPG signals from PhysioNet database. Kavsaoqlu et
al. [18] proposed a peak detection algorithm using adaptive
segmentation in raw PPG signals to estimate the heart rate
and HRV by comparing with maximum points in these
segments.

Although the peaks detection on raw PPG signals will
directly reduce the calculation time in the subsequent estima-
tion of SpO2 or HRV, the peaks detection includes not only
the position but also the amplitude information. Breathing
and body movements can cause severe baseline drift and
motion artifacts, leading to amplitude changes, resulting in
signals with a dispersed, nonstationary, and low-frequency
distribution.Therefore, this study focuses on the suppression
of the low-frequency noise causing the amplitude changes
and on the improvement of the accuracy of the peak iden-
tification.

Based on wavelet multiresolution analysis (MRA) prin-
ciple [19], the signal can be decomposed into a series of
details and approximations.The energies of baseline drift and
of the partial motion artifacts are mainly concentrated in
the approximation component corresponding to the high-
level wavelet decomposition of the PPG signal. Therefore, it
is feasible to estimate it according to MRA and to get the
amplitude more precisely.

The peak identification of PPG can be regarded as the
singularity detection problem. Due to the fact that the sin-
gularity detection and the quadratic spline wavelet modulus
maximum are of great relevance [20], the peak can be
identified by using modulus maximum at the decomposition
level corresponding to the energy of primary peak wave
concentrated.

This study will first introduce the pulse oximeter oper-
ation, followed by the subjects’ raw signals collection, then
describe the principle of the hybrid wavelet-based method
and its implementation steps, finally illustrate the evaluation
experiment, compare the peak recognition results on the raw
signal and on the corrected signal through the ten subjects of
PPG signals acquired under sitting, raising hand, and gently

walking postures, respectively, and discuss the effectiveness of
the proposed method according to the experimental results.

2. Materials and Methods

2.1.The SpO2 Calculation. The calculation of SpO2 is derived
from Lambert-Beer’s law, as shown in

SpO2 = 𝐴 ⋅ lg (1 − Δ𝐼

max/𝐼max)

lg (1 − Δ𝐼max/𝐼max) + 𝐵

≈ 𝐴 ⋅ Δ𝐼max/𝐼maxΔ𝐼max/𝐼max
+ 𝐵,

(1)

where 𝐴, 𝐵 are certain coefficients which can be determined
by calibration experiments; Δ𝐼max and Δ𝐼max correspond
to the difference between the pulse wave peak and trough
under the two kinds of wavelengths of light (generally used
660 nm and 940 nm wavelengths), respectively; 𝐼max and𝐼max correspond to the pulse wave peak under the above
wavelengths of light, respectively. Thus, the peak identifica-
tion definitely associates with the SpO2 calculation, and the
accurate positioning of the peak will improve the accuracy of
the SpO2 calculation.

2.2. Device and PPG Signal Acquisition. The pulse oximeter
used to collect the PPG signals was developed by Tianjin
Jingfan Technology Co., Ltd. (see Figure 1(a)). The oximeter
is designed based on the reflective photoelectric sensor.
Figure 1(b) shows the monitoring scene using the device.

In this study, 10 healthy volunteers (5males and 5 females)
participated in the experiment, shown in Table 1. The mean
age (mean ± std) was 28.7 ± 7.17, the mean body mass index
(BMI ± std) was 21.43 ± 3.1. The volunteers were informed
about the study before the data was obtained.

When the subject puts his/her fingertip on the sensor of
the device, the raw PPG signals are obtained and recorded.
Figure 2 shows a fraction of the obtained data which has 1024
samples, approximately in 10 s. The amplitude is normalized
in the range of 0 and 1. It can be seen from the figure that
the high frequency noise in the signal is well suppressed by
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Table 1:The basic personal information of the subjects participated
in the experiment.

Subject Gender Age (year) Height (cm) Weight (Kg) BMI
(1) Female 45 161 58 22.4
(2) Female 24 158 41 16.4
(3) Male 25 162 52 19.8
(4) Male 26 162 70 26.7
(5) Female 26 170 60 20.8
(6) Male 38 170 62 21.5
(7) Female 24 162 55 21.0
(8) Female 24 160 45 17.6
(9) Male 30 178 78 24.6
(10) Male 25 169 67 23.5
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Figure 2: The raw signal of PPG obtained by the reflective probe.

the hardware filtering, but the signal still has noise due to
respiration and movement, affecting the morphologies of the
signal.

Thequality of PPG signal is relatively goodwhen obtained
at rest; however, in dynamic state, the quality will influenced
by random noise, motion artifacts, and baseline drift, causing
the peak positioning error. Therefore, we will collect volun-
teers’ raw signals in sitting, raising hand, and gently walking
postures to test the hybrid peak detection method.

2.3. The Hybrid Wavelet-Based Method. The hybrid wavelet-
based methodmainly includes the suppression and the peaks
identification.

2.3.1.The SuppressionMethod. The suppression aims to lower
down the low-frequency noise of PPG signals and to improve
the amplitude changing problem caused by baseline drift and
partial motion artifacts.

In general, the energy of pulse wave is concentrated in
1–10Hz. The feature of baseline drift and partial motion
artifacts is a kind of nonstationary low-frequency noise, with
its energy mainly concentrating in the frequency range less
than 1Hz,which can be approached by applyingwaveletMRA
theory. Consequently, we can successively decompose the
PPG signal to approach the low-frequency noise using the

approximation component at the high decomposition level.
The method comprises the following steps.

(1) The Mother Wavelet Selection. Symlets [21] are compactly
supported orthogonal wavelets with the least asymmetry
and the highest number of vanishing moments for a given
supporting width, and the waveform of sym8’s scale function
is close to that of the PPG signal; thus the sym8 was chosen
as the mother wavelet.

(2) The Decomposition Level Determination. The determi-
nation of the decomposition level is related to the mother
wavelet, sampling rate, and the length of the signal. Since the
baseline drift and partial motion artifacts are classed as the
nonstationary low-frequency noise, themaximumdecompo-
sition level 𝐿max is regarded as the optimal decomposition
level.

𝐿max = fix[(log (𝑁/ (lw − 1)))log 2 ] , (2)

where 𝑁 is the samples of the signal and lw is the length of
the wavelet filter. In this application, the sampling rate was
100Hz and the processing data had 1024 samples each time;
the data could be decomposed using sym8 wavelet with 6
decomposition levels.

(3) The Noise Estimation. The energy of baseline drift and
partial motion artifacts mainly concentrates in the frequency
range less than 1Hz. We can successively decompose the
PPG signal to approach the low-frequency noise using the
approximation component at level 6 whose frequency range
is approximately 0–0.9Hz.

(4) The Signal Reconstruction. The low-frequency noise can
be estimated by using the approximation at level 6, and the
signal can be corrected by removing the estimated noise from
the original PPG signal.

2.3.2. The Peaks Identification Algorithm. The spline wavelet
has a better detection effect on the sharp variation points [20],
and therefore the peak identification algorithm is designed
based on the quadratic spline wavelet modulus maximum
algorithm. At the 100Hz sampling rate, by analyzing the
power spectra of the decomposed levels of the quadratic
spline wavelet, the energy of the pulse wave was found to be
mainly concentrated in level 4 and level 5, and thus the PPG
signal was decomposed into 5 levels. The specific detection
algorithm steps are as follows.

(1)Wavelet Decomposition.The decomposition formula of the
signal by using the quadratic spline wavelet is shown as

𝐴 𝑖𝑓 (𝑥) = ∑
𝑛∈𝑍

ℎ (𝑛)𝐴 𝑖−1𝑓 (𝑥 − 2𝑖−1𝑛)
𝐷𝑖𝑓 (𝑥) = ∑

𝑛∈𝑍

𝑔 (𝑛)𝐴 𝑖−1𝑓 (𝑥 − 2𝑖−1𝑛) , (3)

where 𝑖 corresponds to the decomposition level, 𝑛 is the
length of the signal, 𝐴 𝑖𝑓(𝑥) are the approximations, 𝐷𝑖𝑓(𝑥)
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are the details, ℎ(𝑛) and 𝑔(𝑛) are the filtering coefficients
of quadratic wavelet, and their initial values are (0.125√2,0.375√2, 0.375√2, 0.125√2) and (√2, −√2), respectively. In
this application, 𝑖 = 1, 2, . . . , 5, the signal was decomposed
into 5 levels: 𝑛 = 1, 2, . . . , 1024, the length of the signal; that
is, the data points analyzed each time were 1024.

(2)TheThreshold Setting. To avoid the signal abnormality, the
samples processed each time were divided into 𝑁 segments,
and the threshold 𝜀 was updated according to the value
calculated every segment:

𝜀 = 0.5 ∗mean(∑
𝑁

max (sig𝑗∗𝑡:((𝑗+1)∗𝑡−1))) ,
𝑗 = 0, 1 . . . 𝑁 − 1,

(4)

where 𝑁 = int(𝐿/𝑡), 𝐿 is length of the signal processed in
iteration, and 𝑡 is the number of samples to compute the
threshold.

In this application, in the signal processed in iteration,𝐿 had 1024 samples, 𝑡 was selected as 256 samples due to
containing at least one heartbeat, and𝑁was 4.Themaximum
values of each segment were calculated, and then the half of
the average value was taken as the threshold value 𝜀.
(3) Modulus Maximum Sequences Calculation. The positive
and negative modulus maximum sequences at level 4 and
level 5 were extracted, respectively, by using 𝜀, and then the
modulus maximum sequences which existed on both two
levels were retained.

(4)TheModulusMaximumPairs Selection. Artifacts generally
produced isolated maximum points rather than positive and
negative maximum pairs, thus removing isolated maximum
points from the modulus maximum sequences. In addition,
Two pairs of maximum points during 200ms appearing is
not feasible, thereby retaining the pair with largest amplitude.
Given all these, the modulus maximum pairs were selected
from the modulus maximum sequences.

(5) The Peak Identification. The zero-crossing position of
the pair relates to the peak position, so we can identify the
peak by searching the maximum value around the zero-
crossing position in the original signal and the maximum
value corresponds to the peak.

3. Results and Discussions

In this study, ten subjects’ data were collected by the reflective
pulse oximeter to evaluate the hybrid method.

3.1. The Results of Suppression. Sym8 wavelet with 6 decom-
position levels was applied for the low-frequency noise
suppression in PPG signals. To illustrate the method in detail
and to see the waveform clarity, a fraction of measured
data randomly is set up as ppg10s, shown in Figure 3(a).
The decomposition process had 6 iterations. After the first
decomposition, ppg10s was separated into detail at level 1

Table 2: An example of the total peaks detection error computed.

Iteration RB Raw signal Corrected signal
FP FN Error (%) FP FN Error (%)

(1) 12 0 0 0.00 0 0 0.00
(2) 11 1 0 9.09 1 0 9.09
(3) 12 0 1 8.33 0 0 0.00
(4) 12 0 1 8.33 0 0 0.00
(5) 11 0 0 0.00 0 0 0.00
(6) 12 0 0 0.00 0 0 0.00
Total 70 1 2 4.29 1 0 1.43

and approximation at level 1, with successive approximations
being decomposed subsequently, so that ppg10swas separated
into level 1 to level 6 details (see Figures 3(b)–3(g)) and level 6
approximation (see Figure 3(h)). Comparing Figures 3(a) and
3(i), we can see that the amplitude affecting the low-frequency
noise is well corrected using level 6 approximation.

3.2. Peaks Identification. Thepeakswere identified on the raw
and the corrected PPG signals using the method described in
Section 2.3.2, respectively. We recorded the real beats whilst
we were doing each experiment, and the reference peaks
are positioned by the expert from the First Hospital of Jilin
University according to the clinical experience. Figures 4(a),
4(b), and 4(c) were selected volunteers’ raw signals collected
in sitting, raising hand, and gently walking postures, respec-
tively. Figures 4(d), 4(e), and 4(f) were the corresponding
corrected signals in the same postures, respectively. Red stars
marked the recognition results of peaks in Figure 4.

However, in raising hand and gently walking postures,
the raw signals were seriously affected by baseline drift
and motion artifacts, and the recognition accuracy would
be affected accordingly. By comparing the peak recognition
before correction (see Figures 4(b) and 4(c)) and after
correction (see Figures 4(e) and 4(f)), the results indicated
that the suppression method played a vital role in improving
the recognition accuracy.

Each experiment on the (10) subjects was repeated for
6 times, and each time collected approximately 10 s data of
the above three postures. For example, selecting the gently
walking posture, Table 2 showed the total peaks detection
error (see (5)) of subject (1) on the raw data and on the
corrected data, respectively:

Error = FP + FN
RB
× 100%, (5)

where RB is the real beats recorded, FP is the false numbers
detected, and FN is the lost numbers.

In Table 2, the detection algorithm on the raw signal
produced a total of 3 errors (4.29%) and that on the corrected
signal produced a total of 1 error (1.43%). Figure 5 illustrated
the error locations detected by the algorithm.

Table 3 listed the comparison of the total peaks identifi-
cation results under the three postures. We can see in sitting
posture (total real beats were 761) that the peaks identification
results were good whether on the raw signal (100.0%) or
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Figure 3: Wavelet decomposition process of PPG signal by using sym8 wavelet at 6 levels. (a) 10-second measured signal of PPG (ppg10s),
(b) level 1 details, (c) level 2 details, (d) level 3 details, (e) level 4 details, (f) level 5 details, (g) level 6 details, (h) level 6 approximation, and (i)
the corrected signal.

Table 3: The total peaks identification results.

Subject Sitting Raising hand Gently walking
RB Err R (%) Err C (%) RB Err R (%) Err C (%) RB Err R (%) Err C (%)

(1) 68 0.00 0.00 69 0.00 0.00 70 4.29 1.43
(2) 62 0.00 0.00 70 1.43 0.00 90 0.00 0.00
(3) 74 0.00 0.00 79 5.06 1.27 83 10.84 4.82
(4) 78 0.00 0.00 80 1.25 0.00 83 10.84 2.41
(5) 74 0.00 0.00 77 0.00 0.00 94 1.06 0.00
(6) 70 0.00 0.00 75 1.33 0.00 79 0.00 0.00
(7) 88 0.00 0.00 85 4.71 1.18 89 3.37 1.12
(8) 103 0.00 0.00 104 1.92 0.96 115 0.00 0.00
(9) 78 0.00 0.00 92 3.26 1.09 78 3.85 1.28
(10) 66 0.00 0.00 70 1.43 0.00 77 10.39 3.90
Total 761 0.00 0.00 801 2.12 0.50 858 4.20 1.40
Note. Err R represents the detection error on the raw signals; Err C means the detection error on the corrected signals.

on the corrected signal (100.0%); however in raising hand
(total real beats were 801) and gently walking (total real beats
were 858) postures, the peak recognition accuracies after
correction (99.50% and 98.60%) outperformed compared to
that before correction (97.88% and 95. 80%).

InTable 3, the detection errors of subjects (3), (4), and (10)
whilst under gently walking posture were recorded as high;
this is mainly due to the big lateral movements whilst walking

or heavy breathing during the PPG signal collection. Figures
6(a), 6(b), and 6(c) showed the detection results on the raw
PPG signals; we can see the severe distortion in Figure 6(c),
causing many detection errors. Figures 6(d), 6(e), and 6(f)
were the detection results on the corresponding corrected
signals; through the suppression of the low-frequency noise,
the morphologies were significantly improved, and hence the
detection errors were correspondingly reduced.
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Figure 4:The peak identification results of (a) the raw signal collected in sitting posture, (b) the raw signal collected in raising hands posture,
(c) the raw signal collected in gently walking posture, (d) the corrected signal of sitting posture, (e) the corrected signal of raising hands
posture, and (f) the corrected signal of gently walking posture.
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Figure 5:The detection error produced of subject (1) whilst under gently walking posture. (a)The FP produced using the raw data for the 2nd
time, (b) the FN produced using the raw data for the 3rd time, (c) the FN produced using the raw data for the 4th time, (d) the FP produced
using the corrected data for the 2nd time, (e) no error using the corrected data for the 3rd time, and (f) no error using the corrected data for
the 4th time.

4. Conclusions

A hybrid wavelet method was proposed to automatically
identify PPG peaks. (1) To reduce the influence of low-
frequency noise on the signal morphologies, we applied the
principle of wavelet multiresolution analysis and determined
the mother wavelet and the decomposition level according
to the characteristic of the PPG signal and the empirical

formula andused the approximate component corresponding
to the highest decomposition level to estimate the low-
frequency noise of the PPG signal and then obtained the
corrected signal. (2) When the PPG signal was decomposed
by quadratic spline wavelet, the dominant energy of PPG
concentrated in level 4 and level 5 and the high frequency
noise mainly in level 1 and level 2. This implied that the
modulus maximum pairs generated by peaks can achieve
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Figure 6: The comparison of the detection results of subject (3) under gently walking posture. (a) The error produced using the raw data for
the 1st time, (b) the error produced using the raw data for the 5th time, (c) the FN produced using the raw data for the 6th time, (d) the error
produced using the corrected data for the 1st time, (e) no error using the corrected data using the corrected data for the 5th time, and (f) the
error produced using the corrected data for the 6th time.

good resolution at the fourth and fifth level; on these grounds,
we have designed the identification method which can get
better detection accuracy, coupledwith the insensitive to high
frequency noise. (3) We employed a reflective pulse oximeter
developed by Tianjin Jingfan Technology Co., Ltd., to collect
the PPG signals under three postures (sitting, raising hand,
and walking gently) and compared the peak error detection
results on the raw signal (0.0%, 2.12%, and 4.20%) and on
the corrected signal (0.0%, 0.50%, and 1.40%), respectively.
The results showed that the hybridmethod can achieve better
identification accuracy and indicated that the method is
helpful to improve the accuracy of calculation of SpO2 and
extraction of PPI subsequently and laid the foundation for the
subsequent evaluation of human respiration and the analysis
of HRV based on PPG signal.
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