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This study deals with the dynamical evolutions exhibited by a simple mechanical model of building, comprising a parallelepiped
standing on a horizontal plane. The main goal is the introduction of a pendulum in order to reduce oscillations. The theoretical part
of the work consists of a Lagrange formulation and Galerkin approximation method, and dry friction has also been considered.
From the analytical/numerical simulations, we derive some important conclusions, providing us with the tools suitable for the

design of absorbers in practical cases.

1. Statement of the Problem

This work deals with the dynamical evolutions played by
a simple mechanical model. The model comprises a paral-
lelepiped standing on a horizontal plane. As the plane per-
forms vibrational displacements, the parallelepiped begins
to evolve its position and these “parallelepiped movements”
constitute the subject of our concern. It is worth noting that
this study has to be ascribed to the “applied mathematical
sphere of searches.” Nevertheless, its motivations firmly
belong to the “technical sphere of investigation.” Hence, in
this introduction, a brief description of the underlying tech-
nical problem is presented.

The technical scenarios that provoke these studies orig-
inate from earthquakes. Interactions between buildings and
earthquakes have been studied for a long time and there is
much literature about them. In Figure 1, examples of collapses
due to earthquakes are reported. These collapses evidence a
rocking-block behavior of the structures, namely, rigid move-
ment of the block with respect to the ground, as illustrated
in the scheme of Figure 2. When vibrations of buildings may
be assumed (and proved) to be elastic and linear, one may
think to reduce them by applying some “appropriate mass”
[1]. Itis in fact possible to absorb energy at certain frequencies

(or ranges) by coupling an oscillator with the main structure.
This oscillator is often coupled by a spring-damper system,
in order to sink energy from the system. However, when
considering masonry buildings or no-tension structures in
general, the situation changes considerably. Consider, for
example, a slender tower, such as the masonry chimney
illustrated in Figure 3. When the tower oscillates, for example,
under the forcing of an earthquake, a plausible model for its
motion is that of a rigid parallelepiped tilting back and forth
on a horizontal plane. In this situation, oscillations are no
longer linear.

Following the seminal work by Housner in 1963 [2], the
problem of the motion of an oscillating parallelepiped-
shaped rigid body, the so-called “rocking-block” model, has
been widely investigated. The main issue investigated in this
and other earlier studies [3-11] was the performance and
the overturning of a rigid body against the base motion
dynamics, for example, an earthquake, assuming the block to
be a building model. The work by Housner was devoted to the
explanation of the collapse of many bulky structures during
the catastrophic Chilean earthquake of May 1960. From the
solution of the free oscillation problem of a rigid rocking
block bouncing on its vertices, it was demonstrated that tall
slender structures show a better stability than expected.
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FIGURE I: Catastrophic collapses due to earthquakes.

Block movement

T
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FIGURE 2: Scheme of a rocking block under excitation of the base.

In subsequent years, the works by Hogan [12-15] refined
the pioneering study by Housner, assuming a similar rocking-
block model and analyzing in depth its dynamics under
harmonic forcing. Here, the simple block model is shown
to possess extremely complicated dynamics, including chaos.
The existence and the form of subharmonic and asymmetric
responses are explained and validated by experimental works
by Wong and Tso [16]. A rocking-block model has also
been employed to study the response of structures, such as
columns or monumentary walls subjected to frictionless
multiple impacts [17], showing that one may have single
and/or simultaneous multiple collisions at the surface contact
points. Furthermore, recently, the dynamic response of the
rocking block subjected to base excitation has been revisited
to offer new closed-form solutions and original similarity
laws that shed light on the fundamental aspects of the original
model [18].

Finally, similar to the concern of the present work, the
problem of vibration control is investigated in [19, 20].

FIGURE 3: An old masonry chimney.

In these works, a systematic theoretical investigation of
control/anticontrol of the nonlinear dynamics of a rocking
block has been made through the analysis of two curves:
the heteroclinic bifurcation and the immediate overturning
thresholds, characterizing the system response in excitation
parameters space in terms of overturning behavior.

Now, in line with previous investigations, the preliminary
questions addressed by the present work are as follows. (i) Is it
possible to give some parameterization of these oscillations?
(ii) Is it possible to tune a pendulum with this tower so that
oscillations are reduced and controlled? (iii) Is it possible to
give some sort of frequency response (with all the limitations
imposed by nonlinearity)? The simple model studied in the
following sections partially answers these questions. The
model is somewhat simplified. Plane movement is assumed
and, therefore, we name it a parallelepiped and the structure
is actually schematized as a “physical rectangle.” From this
simple model and its elaboration through adding a planar
physical pendulum and some damping between the paral-
lelepiped and the ground surface, some interesting results
have been achieved.
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FIGURE 4: The rocking block with the added pendulum, scheme of notations.

2. Equations of Motion

The model of block with the pendulum we take into account
for the study is shown in Figure 4. With the nomenclature
reported in Figure 4, we can write the following geometrical
relations of a block of mass M rocking on its corners, to which
a pendulum of mass m is added:

rg =a’ + 17,
2_ 2 2
ri=a +4b°,
, b
sinf, = —,
To
a 1
cosl, = —, M
To
, 2b
sinf; = —,
1
a
cos0, = —.
81

Note that we have two different situations depending on the
sign of ¢ angle (¢ > 0, ¢ < 0). We assume that the surface
on which the block is oscillating moves in accordance with a
sinusoidal law:

x = asin (wt), (2)

hence forcing the block oscillations with amplitude & and
frequency w. The kinetic and potential energies of the block
and of the pendulum can be written as

Ty = 5 {[x — ro@ sin (¢ + 90)]2

+ [rog cos (¢ + 60)]2} + g(j)z,

3
x(t)
—
(b) ¢ <0
m e, - . 2
T, = > {[x —r@sin(+¢ +60,) + Iy cos y]
+ [ry¢ cos (¢ + 6,) + Iy sin 1//]2} ,
Vy = Mg [asin (2¢) + beos¢],
V,, = mg[asin (x¢) + 2bcosp — I cosy],
€)

in which J is the moment of inertia around the axis of
rotation. The signs + are valid for both conditions of oscil-
lation. After Lagrangian derivation, we obtain the equations
of motion:

(Mrg +mrf +])¢
il [xasin (p - y) + 2bcos (g~ y)]
+ml [+acos (¢ —y) - 2bsin (¢ - y)]
7+ aw® [£ (M +m) asin@ + (M + 2m) b cos ¢]
- sin (wt) (4)
+g[t(M+m)acosg— (M +2m)bsing| =0
~ [2asin (¢ - y) + 2bcos (p - y)| ¢ + Iy
~ [xacos (¢ —y) - 2bsin (¢ - y)] ¢* ~ aw’

-sin (wt) cosy + gsiny = 0.

Equations (4) can be solved numerically to obtain angles
¢ and y defining the oscillations of the block and of the

pendulum in time.



3. Oscillations without/with Damping

3.1. No Damping Problem. In order to study our block-
pendulum system, it is interesting at first to consider the
motion of the parallelepiped after the end of short exci-
tation given by the base movement (nonforced linearized
undamped case) and during excitation of the base and steady
motion (forced linearized damped case). Viscous damping
is introduced in order to take into account generic damping
effects, for example, impact dissipation, internal damping of
the material, and air drag. We underline that impact dissipa-
tion, which is sometimes considered via the introduction of a
coefficient of restitution, has been here considered embedded
into viscous damping. A sort of correspondence between
the two, that is, damping and coefficient of restitution, can
be heuristically carried out from real observations of the
oscillation decay.

The calculation of this section gives us results that are in
accordance with [2] and validate our nondimensional model.
We underline that we obtained these results following an
approach that is quite different from [2].

When, after short forcing excitation at the base, the fol-
lowing conditions are satisfied (T is the period of oscillation):

2 9a
> i
ow b
1 ga ®)
T>— i ,
> ® arcsin bo?

the parallelepiped will have nonzero velocity and nonhar-
monic oscillations will start. The equation of motion takes the
form

¢ - w(z) sing = 1(0(2)1/ cos ¢, (6)

where w, = 1/bg/(a? + b* + ¢?) is the “natural” frequency of a

parallelepiped pinned at the center of the base, c is the radius
of inertia of the parallelepiped (//M), and v = a/b indicates
the dimensionless “width” of the parallelepiped.

From a simple geometrical consideration, the boundary
of nonoverturning of the block is defined by the expression
¢ < arctan(v). Our study considers a slender parallelepiped
(a < b) and very small angles of motion (¢ < 1).

If it is rewritten in dimensionless time 7 = tw,, then
linearized equation (6) takes the form

§-g=7v %)

Let us now introduce the quantity @ indicating the amplitude
of the natural oscillations of the block and €, its frequency.
Also, consider that, at time ¢ = 0, the following conditions are
satisfied:

e0)=Dd>0
¢ (0) = 0.

Then, at time interval t € [0,t;], where ¢t; = 7/(2Q)) is a
quarter of the oscillation period, the motion can be described
by the equation

(8)

p-p=- )
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FIGURE 5: Amplitude of oscillation versus frequency of oscillation at
various v = a/b ratios.

The solution of (9), with the initial conditions (8), becomes
@) =7+ (®—-v)cosh(t), (10)

which also satisfies the condition ¢(t;) = 0, from which the
following dependence of the amplitude of oscillation from its
frequency can be derived:

<D=v<1—cosh71%>. (11)

0

This function is plotted in Figure 5 for different values of the
parameter v (solid lines). Points in the plot of Figure 5 report
the results of the numerical integration of the equations of
motion (4). For large values of v, that is, for wide blocks, the
plot of (11) and the results of the numerical integration are in
agreement only in the field of small amplitudes.

These results are somewhat in accordance with those
reported in previous works [2, 14].

Let us notice that, from (10), it is possible to find the
angular velocity ¢; = ¢(t;) of the block in correspondence
with the sign change in the equation of oscillations (7) and to
proceed with the second quarter of the period of oscillation,
integrating the equation ¢ — ¢ = +v with the new entry
condition ¢(t,) = 0, ¢(t,) = ¢;.

3.2. Steady-State Problem. Now, let us consider the problem
of the steady motion of the parallelepiped on a vibrating
surface. Such a regime of motion originates in the real world
during earthquakes and, therefore, we introduce dissipation
into the model, as described in the previous section, in order
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to make the model more realistic. For example, dissipation
can be considered in the following equation of motion:

(a2 +b+ c2) $ + aw’ [+asin @ + b cos @] sin (wt)
(12)
+g(xacosg —bsing) =0,

by adding the term k sgn(¢), with k = «/w], where « is the
constant of “dry friction.” In dimensionless time, the equation
of motion of the parallelepiped results as

¢+ ksgn(¢) —sing — fvsing cosé&t
(13)
=Fvcos¢ + f cosgcosét,

where f = aw’/g is the dimensionless amplitude of the
exciting force and & = w/w, is the dimensionless frequency
of oscillation.

If parameter v is small enough, and angle ¢ is conse-
quently small as well, the last term in the left part of (13),
namely, vsin(¢), is of the second order of infinitesimal and,
hence, negligible. The linearized equation (13) becomes

¢ +ksgn(¢) —¢ =Fv+ f cosit. (14)

As the aim of the present work is to investigate the worst
cases of forcing conditions, such as the source of resonance
provided by earthquakes, let us assume that the frequency of
the block oscillations Q) coincides with the frequency of the
exciting force; that is, Q = &. Let the initial conditions at ¢ = 0
be

0)=d>0
¢ (0) =05

then, in the time interval ¢t € [0, ¢,], where t; = 7/(2€)), the
equation of motion becomes

(15)

$-—@=-v+k+ fcos(ét-y) (16)

and in the time interval ¢ € [t, 2t,]

G-p=v+k+ fcos(&t-7y). (17)

Here, y denotes the phase difference between the oscillation
of the parallelepiped and the motion of the base.

The equation of motion (16) with the initial conditions
expressed by (15) can be written as

(p(t)=v—k+<<D—v+k+fcos)})cosht

1+&
&f si f "
siny
+ e smht—1+H2cos(ft—y),

where the dimensionless parameter 4 = m/M is introduced.
From this law of motion, it is possible to find out the
angular velocity ¢, = ¢(t;) at which the block changes in
sign. Integrating (17) with the initial conditions ¢(¢,) = 0
and ¢(t;) = ¢, we will determine the motion of the
parallelepiped during the second interval t € [t},2¢],

depending on the amplitude ® and on the phase y of steady-
state oscillations.

Additionally, because in the steady-state motion the
equalities ¢(2t,) = —® and ¢(2t;) = 0 hold, the amplitude
and the phase of oscillations can be determined, depending
on the excitation parameters, as follows:

k(1 + &) sinh (7/20)

siny =

f cosh (1/2Q))
_ ., Jcosy
O=v-k e (19)
—v+k+ (f sin yp/ (1 + EZ)) (1 - Esinh (77/2Q))
" cosh (71/2Q)) ’

Note that (19) tends to (11) when k = & = f = 0. From
(19), using as nondimensional parameters v = 0.2, k = 0.05,
and f = 0.1, we can obtain the curves displayed in
Figures 6(a) and 6(b). In ® — & graph of Figure 6(a), the
bold solid curves in blue represent the amplitude-frequency
and the phase-frequency characteristics corresponding to the
resonance condition O = &; the same curves extrapolated for
very small & are drawn in grey color. In the same plots, the
thin curves represent the same characteristics corresponding
to the frequency of excitation Q = &/3, obtained for a bigger
initial tilt angle. The dashed line is the free vibration curve,
equation of motion (11), included as a reference. In the same
figure, points designate the results obtained via the numerical
integration of the equations of motion, validating (19). Also,
illustrated in Figure 6(a) is y — & graph, which represents the
phase characteristics. Figure 6(b) encloses the behavior just
described above, for initial conditions leading to Q = £/2 and
Q=¢/4

It is clear that formula (19) greatly supports the design
of a block, by giving a clear insight of the amplitude of
motion when in the presence of oscillations of the base.
The identification of the most dangerous components in
earthquakes might not be a straightforward task; however, the
range of frequencies never goes out of the range of validity of
this formula.

3.3. Resolution by Bubnov-Galerkins Method. Now, we
present a short development of the previously treated prob-
lem via Bubnov-Galerkin’s method. The quantities » and ¢
no longer need to be very small. In order to simplify the
calculations, we will use an unknown phase of oscillation y
and we will write (13) in the form F(¢) = 0, where

E(9) = ¢" +ksgn(g') - frpcos(§r+y)xv (20)
— feos(ér+7y).

Using one term of the Fourier series, we will determine the
motion in the form

¢ = ®cos (£1). (21)



(a)

FI1GURE 6: Amplitude- and phase-frequency characteristics of the system at different ratios Q/&.

Applying the procedure of orthogonalization of basic func-
tions, that is, from the conditions

21t/w
J F(¢)sin (wt)dr =0,
i (22)
21 /w
J F () cos (wt) dr =0,
0
and taking into account (21), it is possible to obtain the
equations of the phase y of the system in the form
4y — 1@ (1 + EZ)
f (m+(8/3)v®)’
4k
f(m+(4/3)v®)’

Here, conditions (22) have been used with the following
equalities:

cosy =
(23)

siny =

2n/w
J sgn [sin (wT)] cos (wT) dt = 0,
0

27 /w
J sgn [cos (wT)] sin (wT) dT = 0,
0
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&
— Q=§/2
— Q=¢&/4

(®)

27 /w
J sgn [sin (wt)] sin (w7) dT = —4,
0

27/ w
J sgn [cos (wT)] cos (wT) dT = 4,
0

21 /w s 8
J sgn [cos (wT)] cos” (wT) dt = 3
0

2n/w
J sgn [cos (wT)] sin’ (wt) dr = 0,
0

2n/w
J sgn [cos (wT)] sin (wT) cos” (wr)dr = 0,
0

21/w ) 4
J sgn [cos (wT)] sin” (wt) dt = 3
0

(24)

The characteristics of amplitude-frequency and of phase-
frequency are shown in Figures 7(a) and 7(b), respectively,
for the parameters v = 0.2 and f = 0.1 and various
friction coeflicients k. From Figure 7, it can be seen that,
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FIGURE 7: (a) Amplitude-frequency and (b) phase-frequency characteristics of the system at various friction coefficients k, for v = 0.2 and

f=0.l.

with the increasing of the dry friction coefficient k, a branch
of the amplitude-frequency characteristic appears, reflecting
in the phase-frequency characteristic around the value y =
7r/2. On the other hand, when the friction coeflicient is
high enough, the oscillations are absent. Figure 7 synthetizes,
with a different degree of approximation, the results already
plotted in Figure 6.

4. Rocking Block with the Pendulum

The main object of this study is to investigate some device or
system suitable for reducing oscillations during earthquakes.
Hence, using most of the results calculated in the previous
sections, we now consider a system, which includes a pen-
dulum of mass m. In the following approach, we will use
Bubnov-Galerkin’s method and, at this stage, we will not
consider friction.

The linearized equations of oscillation of such a system in
dimensionless time are

[1+up(4+9°)] 9" - 2updy” - (1+ 2u) ¢
+(1+u)y
+ flE(+p)vp+ (1+2p)]sin(§7) =0
—2p¢ + Apy + fsin (§7) +y = 0,

(25)

where the following dimensionless parameters are intro-
duced: A = I/band p = b*/].

Let us apply Bubnov-Galerkin’s method and we will
obtain the solution in the form

¢ = ®cos (§1),
(26)
v =Ycos(é1).

FIGUre 8: Amplitude of free oscillation of the block (bold red line),
of the pendulum (thin grey line), and of the block without the
pendulum (dashed line) for v = 0.2, 4 = 0.01,and A = 0.1.

The set of equations describing the oscillation amplitude ©
of the block and the oscillation amplitude ¥ of the pendulum
are, respectively,

[1 +2u+ (1+up)& + gvf(l +y)] ® + 2Apué’¥

= FQ+H) - v (1+p) @)

—2p8 0+ (1-ApE") ¥ = - f.

In the case of f = 0, (27) describes the dependence of
the natural oscillation amplitude of the rocking block with
pendulum versus frequency. This dependence is plotted in
Figure 8 for the parameters v = 0.2, u = 0.01,and A = 1.



The bold solid curve in Figure 8 represents the amplitude
of the oscillation of the block, while the solid thin curve is
the amplitude of the pendulum oscillations. The dotted curve
shows the dependence of the block amplitude from frequency
in the case of no pendulum, as already shown in Figure 6.
Hence, it is shown that the presence of the pendulum can
drastically reduce the amplitude of the oscillation of the
parallelepiped when its frequency of oscillations does not lie
within the pendulum resonance area.

Similar curves can be plotted for the case of forced oscilla-
tions; for example, for f = 0.1, the system behaves as depicted
in Figures 9(a) and 9(b). Here, the dotted curves represent
the two branches of the amplitude-frequency characteristics
of the parallelepiped without the addition of a pendulum (see
Figure 7(a)). From these plots, it is deduced that the presence
of the pendulum can reduce the amplitude of the oscillation
of the block, even under forced oscillations at the base, when
the pendulum’s natural frequency of oscillation is marginally
excited.

In order to better support the theory contained in this
work, we have carried out a realistic simulation via a research
level multibody dynamic simulator specifically developed by
one of the authors, and this simulation has been addressed
to a real rocking-block case that is reported in the next
section.

5. A Case Study

In this section, we present numerical simulations of rocking
blocks equipped with pendulums and we compare the out-
come of the simulations with the prediction of the analytical
approach discussed in this paper.

From a numerical point of view, a model of a rocking
block connected with a pendulum leads to a multibody prob-
lem involving both bilateral constraints (the hinge between
the pendulum and the block) and unilateral contacts that
might experience impacts and stick-slip phenomena and,
thus, requires numerical schemes for nonsmooth dynamic
problems. A conventional strategy for the solution of such

Shock and Vibration

(b)
FIGURE 9: Amplitude of forced oscillation of the block for different slenderness: (a) » = 0.15, 4 = 0.01, A = 0.1, and f = 0.1; (b) » = 0.40,
p=0.01,A=0.1,and f = 0.1.

a class of problems is based on the regularization of dis-
continuous terms, which are approximated by Lipschitz-
continuous mollifiers. This casts the original problem into
conventional Ordinary Differential Equations (ODEs) or
Differential Algebraic Equations (DAEs) that can be solved
by well-known numerical integrators. However, a drawback
of such regularization approaches is that regularization could
lead to extremely stiff functions that hinder the efficiency
of ODE/DAE solvers; consequently, very short time steps
or sophisticated implicit integrators are required. Therefore,
as an alternative to regularization, we use a more advanced
mathematical framework that deals directly with the dis-
continuous nature of friction and contacts, expressing the
multibody problem with the tools of Differential Variational
Inequalities (DVIs) [21]. In our Chrono::Engine multibody
simulation software, we endorse the DVI formulation and,
thus, obtain high computational efficiency, good robust-
ness, and numerical stability when simulating problems of
multibody frictional contacts. The DVI problem is solved
by means of a time-stepping scheme, which requires the
solution of a convex second-order Cone Complementarity
Problem (CCP) at each time step. In general, CCP problems
include the more popular Linear Complementarity Problems
(LCPs) as subcases; as for LCPs, there are theoretical results
for the existence and uniqueness of the solution under mild
assumptions [22]. We solve the CCPs using either a fixed-
point iteration [23] or a Spectral Projected Gradient (SPG)
Barzilai-Borwein method.

Impacts between rigid shapes can be handled via the
introduction of restitution coeflicients, but, if preferred, our
software can also handle the case of nonrigid frictional
contacts, which fit in the broad context of DVIs. More details
on this can be found, for instance, in [24].

The three-dimensional simulation of the rocking block
has been performed by introducing three rigid bodies,
namely, the moving floor, the block (with dimensions 0.1 m,
0.2m, and 0.4 m), and the pendulum, this being connected
by a spherical joint placed at the top of the block. In addition,
two box collision shapes have been assigned to the block
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FIGURE 10: Multibody model and base-block relative motion amplitude (z) under forced oscillations for cases C1,..., C5 of Table 1.
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TABLE 1: Cases studied in the multibody simulations.

Case Mass ratio y = m/M (%) Length ratio A = [/2b
Cl 5 0.1-0.4-0.6

C2 10 0.1-0.4-0.6

C3 20 0.1-0.4-0.6

C4 30 0.1-0.4-0.6

C5 40 0.1-0.4-0.6

and to the fixed floor. A collision detection algorithm finds
the contact points at each time step and feeds them into the
CCP solver, for advancing the DVI integration. A friction
model of Amontons-Coulomb type is associated with each
contact point, thus automatically taking into account the
stick-slip effects. In the presented simulations, we used static
and dynamic friction coefficients y; = y; = 0.6.

The density of the simulated blocks is 2028 kg/m?, and the
motion of the floor is defined via a rheonomic constraint that
imposes a harmonic horizontal motion along the horizontal
Z-axis.

In this case, we used a cosine wave with frequency f, =
2.5Hz and amplitude A, = 0.015m. Various ratios of pen-
dulum lengths, masses, and horizontal frequency have been
simulated, obtaining results that, although not exhibiting a
perfectly steady-state periodic pattern in all cases because
of the numerical nature of the simulation, can confirm the
prediction of the analytical model regarding the beneficial
effect of the pendulum. This accordance emphasizes the
importance of preliminary analysis of real situations using the
results of our analytical approach.

Table 1 summarizes this set of cases, and Figure 10 illus-
trates the main results, that is, the block-table relative motion
during the simulation. It is shown that the two heaviest
pendulums (mass over 20% of the block mass) are able to
prevent the rocking of the block, whereas in the absence
of the pendulum the block would oscillate noticeably. It is
a matter of fact that heavy pendulums dramatically reduce
oscillations; we point out that these simulations, done taking
into account damping and slender structures, are quite new
in the rocking-block literature.

Moreover, the simulations show that for a low mass
pendulum (i.e., up to 20% of the block mass) no oscillations
reduction occurs despite the pendulum length. It is worth
noticing that the effect of length of the pendulum is nearly
negligible, with the pendulum mass being the most important
parameter for this frequency of “table” oscillation. Note that,
due to friction sensitivity of the system, case C2 presents the
overturning of the block.

We finally remark that the numerical method is able to
simulate transient phenomena that are not considered in the
analytical model and that, optionally, accelerograms can be
assigned to all three directions of the floor, thereby simulating
a real earthquake.

6. Conclusions

The rocking-block problem has been investigated under
different points of view, as discussed in Section 1.

Shock and Vibration

Before plotting a synthesis of the obtained results, it is
important to state that this is a first step into a field that
is not yet well explored. In fact, while several works deal
with the “rocking-block” problem, none of them explores the
possibility of adding a pendulum to the rocking block with
the aim of controlling the oscillations.

We followed two main steps. First and of great interest
in this work are the forced oscillations of a block with a
pendulum but without friction. Second, as a first step towards
general damping, we studied free and forced oscillations of a
block without a pendulum but in the presence of dry friction.

Analyzing the problem of the forced oscillations of a rock-
ing block connected with a pendulum, Bubnov-Galerkin’s
method was applied and the analytical results are exposed in
terms of gain-frequency and phase-frequency characteristics.
It is of great interest to notice that the presence of the
pendulum greatly reduces the amplitude of vibrations in
those cases, when the frequency of excitation is not within
the resonance area of pendulum. This means that it would be
possible to study some passive tuned pendulum to be added
to real “rocking blocks” like ancient towers, and so forth, in
order to reduce oscillations induced by wind, earthquakes,
and so on.

Adding damping, we investigated two situations, both
with no pendulum. At first, the case of the free oscillations
of a block with dry friction is analytically solved. This
solution has been carried out considering small tilt angles.
The main results, amply reported in this work, are presented
in graphs where the amplitude of the free oscillations is
plotted versus frequency. It has to be remarked that, for
blocks presenting low base/highness ratios, the theoretical
and numerical results are in good accordance. When forcing
is added, given by the movement of the base, we still apply
Bubnov-Galerkin’s method. Starting from certain amplitude,
we can define a pseudo resonant frequency and we investigate
the block motion in terms of gain-frequency and phase-
frequency characteristics, as reported in Figures 8 and 9,
which give a good scenario for the influence of an added
pendulum on the frequency response of the system. Also in
this case, there is good accordance between the theoretical
and numerical results.

Finally, a multibody dynamical simulation has been com-
pared against theoretical numerical results on a real case, giv-
ing a very satisfactory reduction of oscillations.
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