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This paper develops a mobile sensing system, the first system used in adaptive resolution urban air quality monitoring. In
this system, we employ several taxis as sensor carries to collect original PM

2.5
data and collect a variety of datasets, including

meteorological data, traffic status data, and geographical data in the city. This paper also presents a novel method AG-PCEM
(Adaptive Grid-Probabilistic Concentration Estimation Method) to infer the PM

2.5
concentration for undetected grids using

dynamic adaptive grids. We gradually collect the measurements throughout a year using a prototype system in Xiasha District
of Hangzhou City, China. Experimental data has verified that the proposed system can achieve good performance in terms of
computational cost and accuracy. The computational cost of AG-PCEM is reduced by about 40.2% compared with a static grid
method PCEM under the condition of reaching the close accuracy, and the accuracy of AG-PCEM is far superior as widely
used artificial neural network (ANN) and Gaussian process (GP), enhanced by 38.8% and 14.6%, respectively. The system can
be expanded to wide-range air quality monitor by adjusting the initial grid resolution, and our findings can tell citizens actual air
quality and help official management find pollution sources.

1. Introduction

Fine particulate matter (PM
2.5
) has been identified as the

most health-damaging particles to public health [1]. In partic-
ular, urban areas of developing countries such as Beijing and
New Delhi are suffering from this threat seriously. Due to the
intricateness of structures and diversity of functional areas
in urban, traditional monitoring urban particulate matter
method based on sparely fixed stations (e.g., the testing region
of our work covering a 64 km2 area only had one official air
quality monitoring station [2]) is far away to tell citizens the
actual air quality they breath in.

Recently, inferring fine-grained urban air quality has
gainedmuch attention. In AirCloud proposed by Cheng et al.
[3], they use ANN andGP to infer PM

2.5
concentration based

on amounts of sensors which are built on several points of
interest (POIs). U-air [4] proposes a semisupervised learning
approach based on air quality data reported by a few official
monitor stations and meteorological data, POIs data, road
networks, and taxi trajectory to infer air quality information
throughout a city. These two systems’ inference accuracy
and resolution of concentration distribution highly relied

on the number of POIs and selection of POIs. To improve
data coverage and distribution resolution, several systems
resort to collected urban pollutants data with mobile, low-
cost sensors. In [5], authors collected themeasurements using
mobile sensor nodes installed on top of transport vehicles
and develop land-use regression (LUR) models to infer the
pollution concentration distributionwith a high resolution of
100m × 100m. Similarly, in the paper proposed by Hu et al.
[6], the authors collect the data samples bymobile sensors and
proposed a Probabilistic Concentration Estimation Method
(PCEM) to infer regional PM

2.5
concentration distribution

with 200m × 200m resolution. These methods’ scalability
can be easily challenged given a large monitoring area since
too high resolution produces huge computational cost.

Overall, inferring pollutant concentration distribution
with adaptive resolution is of great importance. A large grid
size can lead to unacceptable errors for many pollutants
formed via nonlinear chemical reactions, while too high res-
olution can lead to high computational complexity. Adaptive
grid method used in air quality modeling has been explored
for many years. Tomlin et al. [7] used adaptive unstructured
triangular grids to model air pollution transport.They solved

Hindawi Publishing Corporation
Journal of Sensors
Volume 2016, Article ID 7901245, 15 pages
http://dx.doi.org/10.1155/2016/7901245



2 Journal of Sensors

the discretized atmospheric diffusion equation using a finite-
volume approach and applied the concentration gradient
as refinement criteria. They kept the original grid nodes
fixed and refinement of the grids by splitting each triangle
into 4 smaller, similar triangles when concentration gradient
exceeded a threshold. The method developed by Tomlin et
al. was applied to model nuclear contamination dispersion
[8] and air pollution formation [9] and used in vertical
domain [10, 11] as well. Srivastava et al. [12] propose a new
adaptive grid algorithm (mesh movement) for simulating
reactive atmospheric pollutants. They employ a constant
number of grid nodes to keep the computational time man-
ageable and calculated grids weight (spatial error) by a linear
combination of curvatures of different chemical species. The
grid nodes are clustered in area of high weight to improve
simulating accuracy. Garcia-Menendez et al. [13] developed
an adaptive grid version of the Community Multiscale Air
Quality Modeling System (AG-CMAQ) using the adaptive
grid algorithm proposed by Srivastava et al. Lagzi et al. [9]
reported an assessment approach for AG-CMAQ, showing
AG-CMAQ has better simulating results compared to fixed
grid CMAQ [14]. Constantinescu et al. [15] develop an
adaptive resolution system (mesh enrichment) for modeling
regional air pollution based on the Sulfur Transport and
dEposition Model (STEM) [16]. Refinement is achieved by
dividing a block into smaller blocks based on the curvature in
concentration fields. The authors claim that the adaptive grid
algorithm required only a quarter of the time spent compared
to static fine grid under the condition of reaching the close
accuracy.

Above adaptive grids methods are all model based
approaches used in reginal-to-global air pollution modeling.
They fail to provide a fine-grained and precision air pollution
concentration distribution as the data is collected by sparely
deployed monitoring sites. Furthermore, their concentration
gradient or concentration curvature based refinement criteria
require inferring each grid air pollution concentration before
refining grids, which bring modeling delay and poor effi-
ciency. So far, there is no effective adaptive resolutionmethod
used in fine-grained air quality inferring.

To this end, we develop a mobile sensing system for fine-
grained urban PM

2.5
monitoring with adaptive resolution.

We divide the testing area into amounts of initial 500m ×
500m grids and let mobile sensors randomly collect PM

2.5

concentration in the testing area and collect meteorological
data, traffic status data, and geographical data in the city.
We also propose AG-PCEM: an adaptive grid method to
infer the fine-grained urban distribution. We develop novel
refinement criteria to refine grids before inferring PM

2.5

concentration using (historical and real-time) PM
2.5

concen-
tration data collected by several mobile sensors and a variety
of datasets we observed in the city; we also define several
refinement levels and grid resolutions to adaptively adjust
grid resolution. The evaluation results show the computa-
tional cost of AG-PCEM is reduced by about 40.2% compared
with a static grid method PCEM under the condition of
reaching the close accuracy, and the accuracy of AG-PCEM
is far superior as widely used artificial neural network (ANN)

and gaussian process (GP), enhanced by 38.8% and 14.6%,
respectively.

Our contributions can be summarized as follows:

(i) The proposed AG-PCEM provides a fine-grained
PM
2.5

concentration distribution which can be
expanded to wide-range air quality monitor by
adjusting the initial grid resolution.

(ii) Novel refinement criteria and refining method are
used to refine grids before inferring PM

2.5
concentra-

tion distribution which assure inferring efficiency.

(iii) Inferring PM
2.5

concentration distribution using
dynamic adaptive grids reduces computation cost
obviously and ensures algorithm accuracy, and finer-
grained PM

2.5
concentration distribution tell citizens

actual air quality and help official management find
pollution sources.

(iv) We develop a system using mobile, low-cost sensors
to collect original data over one year and validate that
our method AG-PCEM has a good performance in
terms of accuracy and computational cost.

The rest of this paper is organized as follows. Section 2
introduces several definitions used in this work and the
framework of our system. In Sections 3–6, the proposed
AG-PCEM algorithm is presented in detail. A prototype
experimental system is developed in Section 7 to validate
AG-PCEM. The performance of the proposed algorithm is
evaluated in Section 8. Finally, the conclusions of this paper
are discussed in Section 9.

2. System Overview

2.1. Preliminaries

Definition 1 (air quality index and individual air quality
index). AQI is a number that describes the status of air
quality. People are more likely to experience health risks as
the AQI increases; AQI is calculated from 6 kinds of main
pollutant concentrations; they are fine particulate matter
(PM
2.5
), particulate matter (PM

10
), sulfur dioxide (SO

2
),

nitrogen dioxide (NO
2
), ozone (O

3
), and carbon monoxide

(NO).

IAQI is calculated for each pollutant whose value varies
among different pollutants; in the above 6 pollutants, PM

2.5

has the biggest impact on human and environment, so
PM
2.5

IAQI value is the most important index to assess air
quality. PM

2.5
IAQI values are divided into ranges, and their

standards differ in different countries. Considering the real
testing environment, in this paper, we use the standard issued
by Chinese Environmental Protection Administration [17] as
shown in Table 1.

Definition 2 (POI). A point of interest (POI) is a place (like
a school and factory) in the physical world that we are
interested in.
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Table 1: PM
2.5

IAQI range of Chinese standard.

PM
2.5

IAQI 24-hour average (𝜇g/m3) Air quality ranges
0–50 0–35 I (optimal)
50–100 35–75 II (good)
100–150 75–115 III (light pollution)
150–200 115–150 IV (moderate pollution)
200–300 150–250 V (high pollution)
300–500 250–500 VI (severe pollution)
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Figure 1: Mobile sensing scenario. The grids denoted by D mean
that PM

2.5
concentration was not detected for them.

Definition 3 (grid and mobile sensing). The testing region
would be divided into grids with 500m × 500m initial
resolution. As shown in Figure 1, a testing car with built-in
particle sensor collected PM

2.5
data along the route noted by

blue arrow. Grids which are not in this route imply that PM
2.5

concentration in these areas is not detected directly. A grid
𝑠
𝑖𝑗
with a resolution of hundred meters would be regarded as

a point in terms of geography and the PM
2.5

concentration
𝑥
𝑖𝑗
in a grid is uniform, where 𝑠

𝑖𝑗
means that the location of

current grid is in the 𝑖th row and 𝑗th column in the grid map
of testing area and 𝑥

𝑖𝑗
means the PM

2.5
concentration value

in the 𝑖th row, 𝑗th column in the grid map.

Definition 4 (refining and derefining). Refining is a process
to divide a grid into 4 or 16 small and same-sized grids, while
derefining means merging 4 adjacent grids into one grid, and
the process of refining and derefining the gridmap of a region
is termed as regriding.

Definition 5 (grid resolution and refinement level). Grid
resolution denotes grid size. In this work, the initial grid
resolution is 500m × 500m with four levels of refinement
(i.e., −1, 0, 1, and 2) and four matched grid resolutions (i.e.,
1000m × 1000m, 500m × 500m, 250m× 250m, and 125m ×
125m). As shown in Figure 2, grid with green border, red
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si+1j si+1j+1

Figure 2: Different grid resolution.
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Figure 3: PM
2.5

diffusion scenario.

border, and blue border denotes gird at levels −1, 1, and 2,
respectively, and the rest of grids denotes grid at level 0. A
gird (𝑠

𝑖𝑗
) at level −1 denotes that the grid (𝑠

𝑖𝑗
) and its right grid

(𝑠
𝑖𝑗+1

), lower grid (𝑠
𝑖+1𝑗

), and lower right grid (𝑠
𝑖+1𝑗+1

) should
be merged into one coarser grid with a 1000m × 1000m
resolution; a gird at level 0 means the initial grid should keep
its initial resolution with a 500m × 500m resolution, a gird
at level 1 denotes the initial grid should be split into four grids
with a 250m × 250m resolution, and a gird at level 2 denotes
the initial grid should be split into sixteen grids with a 125m×
125m resolution.

Definition 6 (random walk and transition probabilities). The
term random walk was first introduced by Pearson in 1905
[18] and is a mathematical formalization of a path that
consists of a sequence of successive random steps. In our
work, we simulate the particle (PM

2.5
) diffusion referring

to the concept of random walk, as shown in Figure 3, and
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Figure 4: Framework of our system.

particles in center grid 𝑐 will move to adjoining neighbors
(1, 2, . . . , 𝑛) with different transition probabilities influenced
by numerous variables, such as wind direction, geographical
conditions, and factors, where 𝑝

𝑖𝑗
represents the probability

from location 𝑖 to its nearest neighbor 𝑗.

Definition 7 (false positive rate and false negative rate). In
this work, FPR and FNR are used to demonstrate the error
of ANN training results. FPR denotes that the rate of grids,
supposed to be at level −1, is instead derefined at 0, 1, or 2,
which will increase computational cost. FNR denotes that the
rate of grids, supposed to be at level 1 or 2, is instead derefined
at 0 or −1, which will reduce inferring accuracy.

2.2. Framework. As shown in Figure 4, the framework of our
system consists of two parts, offline learning and online infer-
ence, which generate three kinds of data flows: preprocessing,
inference, and learning data flows.

Preprocessing Data Flow. In this data flow (denoted by broken
black arrows), we employ severalmobile sensors to collect the
original PM

2.5
concentration data in the testing region and

store them in server for processing. The processed historical
PM
2.5

concentration data is used for offline learning, and
the processed real-time PM

2.5
concentration data is used for

online inference and evaluates the inference results.

Learning Data Flow. In this data flow (represented by broken
blue arrows), we extract features for each grid from a variety
of data pieces as the input of ANN training model and
calculate refinement level from POIs data and processed

mobile sensing data as output. Among the features, tem-
perature, humidity, weather, and wind power are extracted
from meteorological data; traffic and location are extracted
from traffic status data and geographic data. To improve the
training accuracy, we also set some POIs to extract accurate
features and refinement levels to supplement training dataset,
as detailed in Section 7.3, POIs data is also used to evaluate the
inference results; this process is also performed offline.

Inference Data Flow. In this data flow (denoted by red solid
arrows), we first calculate the real-time features for each grid
from meteorological data, traffic status data, and geographic
data and feed the features into ANN model to get output
refinement level of each grid. Then the grid map of testing
area would be regriding according to each grid’s refinement
level. After regriding the map, the grid PM

2.5
concentration

of the testing region would be inferred, detailed in Section 6.

3. Refinement Criteria

Increments of PM
2.5

concentration with value of 5𝜇g/m3
and 10 𝜇g/m3 are considered as vital boundaries. European
Study of Cohorts for Air Pollution Effects (ESCAPE) used
data from 17 cohort studies based in nine European countries.
Prospective analysis shows that long-term exposure to PM

2.5
,

even with low concentration, will significantly increase lung
cancer risk: PM

2.5
concentrations increase every 5𝜇g/m3

and lung cancer and lung adenocarcinoma risk increased
by 18% and 55%, respectively [19]. The research carried out
by American Cancer Society (ACS) shows the relative risk
of lung cancer mortality is in correlation with 10 𝜇g/m3
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changing of PM
2.5
. The risk increased by 8% using PM

2.5

concentration data from 1979 to 1983, by 13%using PM
2.5

data
collected from 1999 to 2000 [20, 21].

According to the PM
2.5

IAQI and the change of PM
2.5

concentration, the refinement criteria are as follows.

Level −1. A grid and its adjacent grids PM
2.5

concentrations
are all within 75𝜇g/m3 (air quality range is “good”), which is
within the range of “good” air quality. Those grids could be
merged.

Level 1. A grid PM
2.5

concentration is more than 115 𝜇g/m3
(air quality range is “moderate pollution”) and the mean
difference value (MDV) about such grid and its surrounding
grids is more than 5 𝜇g/m3 but not more than 10 𝜇g/m3; this
grid PM

2.5
concentration is unhealthy and there may be a

pollution source in the grid; this grid should be refined to the
finer level (level 1).

Level 2. A grid PM
2.5

concentration is more than 115 𝜇g/m3
(air quality range is “moderate pollution”) and the mean
difference value about such grid and its surrounding grids is
more than 10 𝜇g/m3; this grid’s PM

2.5
concentration is very

unhealthy and there is a high possibility that a pollution
source is in the grid; this grid should be refined to the finest
level (level 2).

Level 0. Other grids.
There is the calculation of refinement criteria as the

following equations show where 𝐿 denotes grid refinement
level:

MDV

=

(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖𝑗
− 𝑥
𝑖−1𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖𝑗
− 𝑥
𝑖+1𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖𝑗
− 𝑥
𝑖𝑗−1

󵄨
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖𝑗
− 𝑥
𝑖𝑗−1

󵄨
󵄨
󵄨
󵄨
󵄨
)

4

,

𝐿

=

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

−1, if max [𝑥
𝑖𝑗
, 𝑥
𝑖+1𝑗
, 𝑥
𝑖𝑗+1
, 𝑥
𝑖+1𝑗+1

] ≤ 75 𝜇g/m3,

1, if 𝑥
𝑖𝑗
> 115 𝜇g/m3, 5 𝜇g/m3 < MDV ≤ 10 𝜇g/m3,

2, if 𝑥
𝑖𝑗
> 115 𝜇g/m3, MDV > 10 𝜇g/m3,

0, else.

(1)

4. Features Extraction

In this work, we determined a grid’s refinement level by its
PM
2.5

concentration feature as depicted in Section 3, while
many previous researches have proved that the concentration
of air pollutants is influenced by some features like tempera-
ture, humidity, and traffic flow [22]; the PM

2.5
concentration

data and features data we collected span one year and
also verified such conclusions, detailed in Section 7.2. That
is, grid refinement levels are influenced by those features.
Accordingly, we identify six grid features as follows.

(1) Temperature feature (𝐹
𝑡
): this feature denotes the

temperature of a grid with initial resolution, and it is
acquired by public data and POIs data.

(2) Humidity feature (𝐹
ℎ
): this feature denotes the

humidity of a grid with initial resolution; this feature
is acquired by public data and POIs data.

(3) Weather feature (𝐹
𝑤
): this feature denotes the weather

condition of a grid with initial resolution; it is divided
into being sunny (denoted by numeral 1), being
cloudy (denoted by numeral 2), light rain (denoted by
numeral 3), heavy rain (denoted by numeral 4), and
being snowy (denoted by numeral 5); this feature is
acquired by public data.

(4) Wind power feature (𝐹
𝑤
−

𝑝
): this feature denotes the

wind power of a grid with initial resolution; this
feature is acquired by public data and POIs data.

(5) Traffic feature (𝐹
𝑡𝑟
): this feature denotes the road

traffic status in a grid with initial resolution; it is
divided into being smooth (denoted by numeral 1),
being slow (denoted by numeral 2), being crowded
(denoted by numeral 4), and being heavily crowded
(denoted by numeral 8); this feature is acquired by
public data.

(6) Location feature (𝐹
𝑙
): this feature denotes the geo-

graphic location of a grid with initial resolution in the
grid map of testing area; this feature is acquired by
geographic data.

Among the features, location feature is spatially related,
extracted from geographical data offline since the feature
does not change with time; other features (including tem-
perature, humidity, weather, wind power, and traffic) are
temporally related, extracted from POIs data and public data
(traffic status data and meteorological data), and updated
every hour, detailed in Section 7.3.

5. Offline Learning

We propose a grid refinement level inference model based on
ANN, as Figure 5 depicted. Here, the model consists of input,
hidden, and output layers, and there are six nodes in input
layer while output layer only has one node, where 𝐹𝑘

𝑡
, 𝐹𝑘
ℎ
,

𝐹
𝑘

𝑤
, 𝐹𝑘
𝑤
−

𝑝
, 𝐹𝑘
𝑡𝑟
, 𝐹𝑘
𝑙
, and 𝐿𝑘 denote the temperature, humidity,

weather, wind power, traffic, location, and refinement level of
grid 𝑘. The function of the hidden layer is to modify weights
in the training procedure for the error minimization [23].

6. Online Inference

In this work, we dynamically adapt grid resolution and infer
fine-grained PM

2.5
concentration distribution hourly. We

first regrid grid map according to the real-time grid features
extracted from meteorological data, traffic status data, and
geographical data and then infer urban PM

2.5
concentration

distribution based on the data collected by mobile sensors
within an hour.

6.1. Regriding. As Figure 6 shows, in the regriding process,
the real-time grid features of each grid at initial resolution
would be input to the ANN network generated by Section 5,
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Figure 5: Grid refinement level inference model.

and then the grid map of testing area would be regriding
according to the output grid refinement levels.

After regriding grid map, the original data collected by
several vehicles would be processed and merged into each
grid based on their geographic information, while some grids
have no data since the vehicles have not passed such areas; the
method to infer the PM

2.5
concentration in undetected areas

is introduced as follows.

6.2. Calculating Transition Probability Matrix. We assumed
that the PM

2.5
concentration of each grid remains the same

in a certain interval. PM
2.5

concentration of a random grid 𝑐
can be identified by the particles transited from surrounding
neighbors (affecting region) [4]. In (2), we define the transi-
tion probability matrix 𝑃:

𝑃 =

[
[
[
[
[
[
[
[
[
[

[

𝑃
1

.

.

.

𝑃
𝑐

.

.

.

𝑃
𝑁

]
]
]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[
[
[

[

𝑝
11
𝑝
21
⋅ ⋅ ⋅ 𝑝

𝑛1

.

.

.

.

.

. d
.
.
.

𝑝
1𝑐
𝑝
2𝑐
⋅ ⋅ ⋅ 𝑝

𝑛𝑐

.

.

.

.

.

. d
.
.
.

𝑝
1𝑁
𝑝
2𝑁
⋅ ⋅ ⋅ 𝑝
𝑛𝑁

]
]
]
]
]
]
]
]
]
]

]

𝑛

∑

𝑖=1

𝑝
𝑖𝑗
= 1; 0 ≤ 𝑝

𝑖𝑗
≤ 1,

1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑁, 𝑐 ≤ 𝑁,

(2)

where𝑁 is the number of all grids and 𝑃
𝑐
= (𝑝
1𝑐
, 𝑝
2𝑐
, . . . , 𝑝

𝑛𝑐
)

denotes the particle transport probability between grid 𝑐 and
its nearest neighbors.

As a result, addressing the problem of particle transport is
equal to resolving the transition probabilities for each certain
grid.We also assume that the geographic feature is similar and

hourly weather condition is equivalent in the testing region
that means different grids in the same testing area follow the
same transition probabilities, but for a certain grid 𝑐, different
directions have different transition probabilities due to the
influence of numerous meteorological factors; in this work,
we assume the particle will diffuse in four directions, 𝑛 = 4;
that is, 𝑃

1
= 𝑃
2
= ⋅ ⋅ ⋅ = 𝑃

𝑁
and 𝑝

1𝑐
̸= 𝑝
2𝑐

̸= 𝑝
3𝑐

̸= 𝑝
4𝑐
.

Therefore, the problem of modeling particle transport can be
simplified as estimating the parameters in𝑃

𝑐
.We calculate the

transition probability matrix 𝑃
𝑐
using initial resolution grids

as (3) shows and then infer the concentration for uncollected
area based on it:

min 𝑓 (𝑃
𝑐
) = (

4

∑

𝑖=1

(𝑝
𝑖𝑐
× 𝑥
𝑖
) − 𝑥
𝑐
)

2

s.t. 0 ≤ 𝑝
𝑖𝑐
≤ 1, 1 ≤ 𝑖 ≤ 4

𝑝
𝑐𝑐
= 1 −

4

∑

𝑖=1

𝑝
𝑖𝑐

0 ≤ 𝑝
𝑐𝑐
< 1, 𝑐 ≤ 𝑁.

(3)

6.3. Inferring. After regriding process, there are four kinds
of grids (coarser, initial, finer, and finest) in the grid map. In
this sectionwe introduce themethod for estimating the PM

2.5

concentration of undetected grids.
The PM

2.5
concentration of an undetected initial grid 𝑐

can be estimated as follows:

𝑥
𝑐
=

([𝑝
∗

1𝑐
, 𝑝
∗

2𝑐
, 𝑝
∗

3𝑐
, 𝑝
∗

4𝑐
] ⋅ [𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
]
𝑇

)

𝑝
∗

𝑐𝑐

, (4)

where 𝑥
𝑐
and (𝑥

1
, 𝑥
2
, 𝑥
3
, 𝑥
4
) denote the PM

2.5
concentration

of a certain grid 𝑐 and its neighbors.
While a certain grid’s neighbor may appear, the following

four scenarios are as follows as Figure 7 shows.
(1) A center grid’s neighbors were split into 4 grids after

regriding process, for example, grid 1 in the figure. For this
circumstance, we calculate its PM

2.5
concentration as follows:

𝑥
1
=

(𝑥
11
+ 𝑥
12
+ 𝑥
13
+ 𝑥
14
)

𝑘

, (5)

where (𝑥
11
, 𝑥
12
, 𝑥
13
, 𝑥
14
) denotes the PM

2.5
concentration of

four small grids and 𝑘 represents nonzero number among𝑥
11
,

𝑥
12
, 𝑥
13
, and 𝑥

14
, that is, the number of detected grids among

the four grids.
(2) A center grid’s neighbors were split into 16 grids after

regriding process, for example, grid 2 in the figure. Similarly,
we calculate 𝑥

2
,

𝑥
2
=

16

∑

𝑖=1

𝑥
2𝑖

𝑚

, (6)

where (𝑥
21
, . . . , 𝑥

216
) denotes the PM

2.5
concentration of

sixteen small grids and𝑚 represents nonzero number among
(𝑥
21
, . . . , 𝑥

216
).
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(3) A center grid’s neighbor keeps its initial resolution
after regriding process, for example, grid 3 in the figure. For
this circumstance, 𝑥

3
keeps its value.

(4) A center grids neighbor is derefined to a coarser grid
after regriding process, that is, grid 4 in the figure. For this
circumstance, 𝑥

4
= 𝑤
4
, where 𝑤

4
denotes the coarser grid’s

PM
2.5

concentration.
The PM

2.5
concentration of undetected coarser, finer, and

finest grids is estimated by the samemethod of an undetected
initial grid used.

7. Experiments

7.1. Mobile Data Collection

7.1.1. System Prototype. We select a low-cost sensor,
DN7C3CA006 [24] by SHARP as the built-in sensors;
it continually samples the air every 10ms and provides
relative consistent readings. For the sensor calibration and
system evaluation, we choose an advanced sensor Lighthouse
3016IAQ [25] as the reference. Lighthouse 3016IAQ is an

advanced portable sensor with 0.1𝜇g/m3 estimated error. We
employ urban taxis as sensors carriers to collect the mobile
data in real-time; it has been verified that mobile sensing
can overcome the coverage and granularity problem with
its larger coverage and fast movement speed [26]. To cope
with complex measuring conditions caused by changeable
vehicle speed, sensor nodes are installed on the top of taxis
to avoid the physical damaging and keep work even in the
worst environmental condition as shown in Figure 8(a); an
urban area nearly of 64 km2 is covered by 5 taxis in an hour
with built-in sensor nodes.

The inner view of a sensor node is shown in Figure 8(b).
The sensor nodes are equipped with low-cost PM

2.5
sensors

DN7C3CA006, GPS (Global Position System), control and
transmission modules, and the power interface. This sensor
node can be charged directly by vehicle igniter.

7.1.2. Testing Area. As shown in Figure 9(a), we choose a
local region Xiasha in Hangzhou City of China as the testing
region which suffered from air pollution especially PM

2.5
for

more than 70% days of 15 months (from January 1, 2014, to
March 25, 2015); the PM

2.5
level of this region was identified

as threatened for sensitive groups according to the Chinese
standard of PM

2.5
level. Apart from the serious hazy days, it

also has some comprehensive elements including universities,
residential areas, a block of industrial zone, an expressway
junction, and a bankside of the Qiantang River. Universities
and several parks locate in the northwest. Near the riverbank,
there are several residential areas. Industrial zone is in the
southeast and the expressway crossing with heavy traffic is in
the northeast. PM

2.5
concentrations of different locations are

collected while taxis are driving randomly in the monitoring
area as shown in Figure 9(b), and the prototype system is kept
working over a year to monitor local PM

2.5
concentration.

7.1.3. Sensor Calibration. Mobile sensing systems normally
require high sensor consistency. Therefore, low-cost sensor
calibration shall not be carried out only in laboratory with
different environmental conditions but also be verified in
real world. In our system, the sensor calibration consists
of two parts. On one hand, we focus on exploring the
relationship between standard values and low-cost sensor
reading in the laboratory to eliminate the initial hardware
variations. On the other hand, we identify different system
compensations through practical experiments. The system
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Figure 8: Sensors deployment and their inner view.
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Figure 10: Experiment for calibration.

compensations mainly consider a possible vibration caused
by intermittent moving, high wind, temperature, and com-
plex testing environment. Characteristic of gross errors is
also studied based on outdoor samples. Figure 10 shows the
detail of testing environment both for laboratory and in real
world.

To improve DN7C3CA006 sensors’ sensibility for con-
centration change and stability for same environmental con-
dition, we develop embedded software and design a process
for sensor calibration, as shown in Figure 11.

After testing all sensors with different environmental
conditions, we find that accidental error follows Gaussian
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distribution and is independent from sensor to sensor.
Systematic error is predictable. It is an inherent bias 𝛿 in
the system [27], which could be caused by testing conditions
or the organization of hardware modules. These two errors
can be minimized by calibration. The relationship between
the reference value and detected concentration is described
in (7). 𝑋∗ = [𝑥

∗

1
, . . . , 𝑥

∗

𝑛
] is an observed value of PM

2.5

concentration and 𝑋 = [𝑥
1
, . . . , 𝑥

𝑛
] stands for the reference

value which is obtained by Lighthouse 3016IAQ. For a
sensor 𝐼, accidental deviations are unpredictable and have no
expected value [27]. 𝜀 is a set which describes random errors:

𝑋
∗
= 𝑋 + 𝛿 + 𝜀, 𝜀 ∼ 𝑁 (0, 𝜎

2
) . (7)

In laboratory, we focus on optimizing data redundancy
to obtain an acceptable range of random errors. Hardware
parameters are also estimated to minimize the systematic
errors. To minimize accidental deviations, we change the
detection period of DN7C3CA006 from 10ms to 10 s achieve
intensive sampling. This strategy still can be adopted with a
certain movement speed. Based on this data piece, we find
that the calibrated sample is within 𝛼 = 10 𝜇g/m3 of actual
value with 85% confidence level, according to (8) deriving
from Chebyshev’s Inequality,

𝑃 {
󵄨
󵄨
󵄨
󵄨
𝑋
∗
− 𝑋 − 𝛿

󵄨
󵄨
󵄨
󵄨
< 𝛼} ≥ 1 −

𝜎
2

𝛼
2
. (8)

In mobile sensing scene, gross error detection is per-
formed under real-time experimental condition. For mobile
data, gross errors are eliminated once samples are sniffed
by sliding window technique which is verified in dynamic
systems [28, 29].We normalize time variable into 10 s interval
in each window. The maximum number of windows is 𝑛

𝑀

and current number is 𝑛
𝐶
; for a mobile sensor 𝑖, if system

sniffs a possible error at the 𝑡th interval, the size of current
window will be extended and recalculate the fault tolerant
Δ
𝑖
(𝑡) according to (9). As a result, samples corrupted by gross

error will be eliminated; otherwise, it will be uploaded to
database when it turns to left from window:

Δ
𝑖
(𝑡)

=

∑
min{𝑛

𝐶

,𝑛
𝑀

}

𝑗=1,𝑗 ̸=𝑡

󵄨
󵄨
󵄨
󵄨
𝑡 − 𝑗

󵄨
󵄨
󵄨
󵄨
×
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡) − 𝑥

𝑖
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/mean (𝑥
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𝐶
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}

𝑗=1,𝑗 ̸=𝑡

󵄨
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𝑡 − 𝑗
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󵄨
󵄨

𝑛
𝐶
=

{
{

{
{

{

𝑛
𝐶
+ 1 if Δ

𝑖
(𝑡) > threshold,

⌈

𝑛
𝑀

2

⌉ else.

(9)

Systematic error is either constant bias or related to the
actual value. To explore the relationship between referenced
concentration𝑌 collected by 3016IAQ and corrupted value𝑋
detected by DN7C3CA006, we refer to the linear dependence
𝑋𝐵 ≈ 𝑌 provided by [24]. Then, the singular value
decomposition Σ is computed for [𝑋𝑌] = 𝑈Σ𝑉𝑇 and the
partitioning definition is described as follows:

𝑉 = [

𝑉
11
𝑉
12

𝑉
21
𝑉
22

] . (10)

According to the total least square [30], the parameter
matrix 𝐵 can be estimated as 𝐵tls = −𝑉12𝑉

−1

22
.

In particular, for moving samples, we also consider the
possible influences from external conditions, such as tem-
perature, wind speed, wind direction, humidity, and traffic
volumes. We denote each possible influence factor as 𝑓

𝑖
and

the difference between 3016IAQ and DN7C3CA006 as 𝜗.
Then factor analysis (𝜗 = 𝑤

0
+ 𝑤
1
𝑓
1
+ ⋅ ⋅ ⋅ + 𝑤

𝑚
𝑓
𝑚
) is used

to estimate different influence factors to minimize systematic
error.

After calibration process, the performance under dif-
ferent testing conditions is shown in Figure 12. Compared
with the concentration detected by 3016IAQ, Figure 12(a)
describes the calibration result of DN7C3CA006 sensors
over 1058 samples in laboratory. It shows that two datasets
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Figure 12: Sensor calibration.

Table 2: Performance of AG-PCEMwith different initial resolution.

Initial resolution Computational cost(s) Accuracy (%)
250m × 250m 1.44 0.907
500m × 500m 0.622 0.863
1000m × 1000m 0.215 0.412

have a similar trend. Furthermore, it reflects good Pearson
correlations of 𝑟 = 0.864 between calibrated DN7C3CA006
and 3016IAQ. Figure 12(b) shows that samples collected in
practical experimental conditions have a lower correlation
of 𝑟 = 0.673, but it is still considered as an acceptable
one.

7.1.4. Suitable Resolution. In the real testing region, there are
various functional areas and complex geographic structures,
and the region suffered from air pollution badly in most
days of a year, which result in great difference of PM

2.5

concentration between different locations (in real test, the
maximum value is nearly twice minimum value in real
test). To find out the most suitable initial resolution for
our algorithm, we analyze the performance of AG-PCEM
with different initial resolutions. As Table 2 shows, generally,
higher initial resolution for AG-PCEM is beneficial for
accuracy improvement and brings more computational cost.
Taking computational cost and accuracy into account, we
adopt an initial resolution with 500m × 500m and a coarser
resolution with 1000m × 1000m and two finer resolutions
with 250m × 250m and 125m × 125m to dynamically adapt
the grid size.The initial resolution can be easily adjusted to fit
different application environment.

7.1.5. Detection Strategy. Current official monitoring systems
take the hourly detection strategy. It means PM

2.5
concen-

tration, temperature, wind power, and other meteorological
factors will be refreshed once in an hour. All of the analysis
in meteorology is built on such basis.Therefore, in this paper,
we also assume that influencing features remain stable in an
hour. To verify the assumption, we detect the hourly variation

of PM
2.5

concentration at certain location, by an advanced
sensor 3016IAQ. It shows that the hourly detection strategy
can be adopted in this method as it only has around 10%
variation in an hour, as Figure 13(a) has shown. We also
analyze the impact of vehicle number and find out that 5
testing taxis have 98.8% coverage of all main streets which
generate 86.3% accuracy, and the improvement of coverage
and accuracy is very little by adding more testing cars,
depicted in Figure 13(b).

As a result, hourly samples collected by 5 mobile carriers
can be seen as the data acquisition from a large-scale
distributed sensor network configured in the area. In this
way, we dramatically increase the concentration samples
of monitoring area at an extremely low expense; sensing
the air every 10ms provides large amounts of original
data under the premise that guarantees the stability of the
sensors.

7.2. PM2.5 Concentration Influenced by Meteorological Fea-
tures. We use a dataset including meteorological conditions
data and PM

2.5
concentration data which span a year (from

December 10, 2014, to December 30, 2015) to figure out the
correlation between them and results as shown in Table 3.

Through the analysis of experiment results, we find
that meteorological features and PM

2.5
concentration have

significant correlation; in particular, relative humidity has a
great positive impact on PM

2.5
concentration. Furthermore,

the partial correlation coefficient of a meteorological feature
(except temperature) and PM

2.5
concentration obviously

increased by controlling the influence of other variables; it
demonstrates that meteorological features have integrated
impacts on PM

2.5
concentration and they cannot be analyzed

one to one.

7.3. Dataset

7.3.1. POIs Data. Wecollect the PM
2.5

concentration, temper-
ature, humidity, and wind power data of POIs to supplement
training datasets and use measured PM

2.5
concentration to
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Table 3: The correlation between meteorological features and PM
2.5

concentration.

Meteorological feature Correlation coefficient Partial correlation coefficient Controlled variable
Temperature 0.153 0.159 Relative humidity, wind power, weather
Relative humidity 0.435 0.509 Temperature, wind power, weather
Wind power −0.202 −0.267 Relative humidity, temperature, weather
Weather −0.110 −0.216 Relative humidity, wind power, temperature
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Figure 14: POIs data collection.

evaluate the inference accuracy offline. To ensure the diversity
of samples, we deliberately select some representative places
in the testing region as POIs, including universities (1),
residential areas (2), commercial district (3), industrial zone
(4), and expressway junction (5) as shown in Figure 14(a).
We select four 3016IAQ advanced sensors with tempera-
ture/relative humidity probe and four wind power sensors

[31] as Figures 14(b) and 14(c) show and employ them for
four places in the same time where their location is four
neighboring grids in the grid map (denoted by red dot in
Figure 14(a)).

7.3.2. Traffic Status Data. We collect traffic status data using
web crawler from a public traffic status website.
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Table 4: Comparison between AG-PCEM and PCEM with different resolution.

Model Data coverage (%) Computational cost(s) Accuracy (%)
AG-PCEM 41.6 0.622 0.863
PCEM with 100m × 100m resolution 8.71 8.86 0.815
PCEM with 200m × 200m resolution 19.4 2.19 0.911
PCEM with 250m × 250m resolution 24.7 1.44 0.876
PCEM with 500m × 500m resolution 42.2 0.473 0.725
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Figure 15: ANN performance.

7.3.3. Meteorological Data. We collect meteorological data,
consisting of temperature, humidity, weather, and wind
power, from a public website monitored by nearest official
station [32] every hour.

7.3.4. Geographical Data. Geographical data is mainly used
to map the original PM

2.5
concentration data collected by

mobile sensors to grids online and calculate location feature
offline.We collected geographical data used as aGPSmodule;
thismodule has the same sampling frequency as PM

2.5
sensor.

Controller module combines geographical data and PM
2.5

concentration data as data for transmission.

8. Experimental Results

In this section, we evaluate the performance of AG-PCEM
on its offline learning accuracy and online inferring compu-
tational cost and accuracy.

8.1. Performance of Offline Learning. We randomly choose
512 grid samples from a large amount of historical
data; each sample was described by a set of attributes
𝐴 = {𝑟𝑒𝑓𝑖𝑛𝑒𝑚𝑒𝑛𝑡 𝑙𝑒V𝑒𝑙, 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦, 𝑤𝑒𝑎𝑡ℎ𝑒𝑟,
𝑤𝑖𝑛𝑑 𝑝𝑜𝑤𝑒𝑟, 𝑡𝑟𝑎𝑓𝑓𝑖𝑐, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛}. We use {𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒,
ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦, 𝑤𝑒𝑎𝑡ℎ𝑒𝑟, 𝑤𝑖𝑛𝑑 𝑝𝑜𝑤𝑒𝑟, 𝑡𝑟𝑎𝑓𝑓𝑖𝑐, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛} as the
input of ANN network and compare the output to
{𝑟𝑒𝑓𝑖𝑛𝑒𝑚𝑒𝑛𝑡 𝑙𝑒V𝑒𝑙}.

Figure 15 shows ANN has a good performance in
learning grid refinement level. The accuracy of learning

result is 93% and FPR and FNR are 11.1% and 19.5%,
respectively.

8.2. Performance of Online Inference. To validate the per-
formance of our algorithm, we choose the original PM

2.5

concentration data detected by sensors on August 26, 2015, as
the evaluating sample and randomly choose 100 monitoring
locations as the testing points. Algorithm was tested on a 64-
bit serverwith aCore� 3.30GCPUand 4GBRAM.We adopt
two parallel experiments to analyze the performance between
AG-PCEM and PCEM with different fixed grid resolutions
and the accuracy between AG-PCEM and other widely used
methods.

AG-PCEM and PCEM. Table 4 resolution shows the perfor-
mance of AG-PCEM and PCEM with different fixed grid
resolution. The results demonstrate AG-PCEM has good
performance in terms of accuracy and computational cost.
Comparing AG-PCEM and PCEM with the same initial
(500m × 500m) resolution, AG-PCEM performs much
better in inferring accuracywith an acceptable computational
cost. Comparing AG-PCEM and PCEM with 250m × 250m
resolution, the computational cost of AG-PCEM is reduced
by about 40.2% under very close accuracy. Though high res-
olution with 200m × 200m of PCEM can improve inferring
accuracy, the increment is too little compared to multiple
computational cost; we also find that too high resolution of
PCEM with 100m × 100m reduces the accuracy instead due
to bad data coverage (only 8.71% of grids have original data
in this situation).

Accuracy of AG-PCEM. We also compare our system to
some widely used methods, such as classical multivariable
linear regression (MLR), artificial neural network (ANN),
and Gaussian process (GP). Figure 16 shows the inference
accuracy for each of them; result shows that average esti-
mated error of our system can be reduced by about 42.9%,
38.8%, and 14.6% compared with MLR, ANN, and GP,
respectively.

Visualization. Figure 17 shows the heat map of PM
2.5

con-
centration in testing area; it demonstrates that, at the same
time, PM

2.5
concentration is highly different at different
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concentration heat map.

location in the testing region, and it is valuable for offi-
cial management of locating pollution sources. Also, cit-
izens can acquire the information of immediate environ-
ment conveniently through the applications, as shown in
Figure 18.

9. Conclusions

In this paper, we have proposed a mobile sensing system
to collect PM

2.5
data in the city and present AG-PCEM to

infer the PM
2.5

concentration for undetected grids using
dynamic adaptive grids. Our system can provide a precision
PM
2.5

concentration distribution for citizens and help official
management find pollution sources.

A prototype system has been prepared and implemented
in real world over a year and has been tested by employing 5
taxis fromOctober 11, 2014, to November 25, 2015.The results
show that the proposed system presents low computational
cost and high accuracy.

As the first systemproviding urban air qualitymonitoring
with adaptive resolution, our system can provide deeper
understanding of PM

2.5
concentration, and it can be easily

expanded to wide-range air quality monitor.
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[27] K. Schäfer, “Introduction to the theory of error, von Yardley
Beers. Addison-Wesley Publish. Comp. INC., Cambridge 42
Mass. 1953. 1. Aufl.VI, 65 S., brosch. $ 1.25,”Angewandte Chemie,
vol. 67, no. 16, pp. 432–432, 1955.

[28] P. Vachhani, R. Rengaswamy, and V. Venkatasubramanian, “A
framework for integrating diagnostic knowledgewith nonlinear
optimization for data reconciliation and parameter estimation
in dynamic systems,” Chemical Engineering Science, vol. 56, no.
6, pp. 2133–2148, 2001.

[29] D.M. Prata,M. Schwaab, E. L. Lima, and J. C. Pinto, “Simultane-
ous robust data reconciliation and gross error detection through
particle swarm optimization for an industrial polypropylene
reactor,” Chemical Engineering Science, vol. 65, no. 17, pp. 4943–
4954, 2010.

[30] I.Markovsky and S. VanHuffel, “Overview of total least-squares
methods,” Signal Processing, vol. 87, no. 10, pp. 2283–2302, 2007.

[31] Wind Power Sensor, http://www.smartsensor.cn.
[32] China Weather Reuters, http://www.weather.com.cn.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


