View metadata, citation and similar papers at core.ac.uk

Hindawi Publishing Corporation

Mobile Information Systems

Volume 2016, Article ID 7462821, 7 pages
http://dx.doi.org/10.1155/2016/7462821

Research Article

brought to you by .{ CORE

provided by Crossref

Hindawi

Energy-Reduction Offloading Technique for

Streaming Media Servers

Yeongpil Cho,' Oparin Mikhail,! Yunheung Paek,' and Kwangman Ko*

! Department of Electrical and Computing Engineering, Seoul National University, Seoul, Republic of Korea
2School of Computer and Information Engineering, Sangji University, Seoul, Republic of Korea

Correspondence should be addressed to Kwangman Ko; kkman@sangji.ac.kr

Received 16 August 2015; Revised 25 November 2015; Accepted 26 November 2015

Academic Editor: Javid Taheri

Copyright © 2016 Yeongpil Cho et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Recent growth in popularity of mobile video services raises a demand for one of the most popular and convenient methods of
delivering multimedia data, video streaming. However, heterogeneity of currently existing mobile devices involves an issue of
separate video transcoding for each type of mobile devices such as smartphones, tablet PCs, and smart TVs. As a result additional
burden comes to media servers, which pretranscode multimedia data for number of clients. Regarding even higher increase of
video data in the Internet in the future, the problem of media servers overload is impending. To struggle against the problem an
offloading method is introduced in this paper. By the use of SorTube oftfloading framework video transcoding process is shifted from
the centralized media server to the local offloading server. Thus, clients can receive personally customized video stream; meanwhile

the overload of centralized servers is reduced.

1. Introduction

Smartphones popularity in past few years has grown increas-
ingly. According to Strategy Analytics, a market research
company specializing in digital products and electronics, end
users have bought around 1 billion smartphones in the third
quarter of 2012 compared to 700 million units which had been
sold in 2011. The popularity can be explained by increasing
abilities of mobile devices, where these days smartphones are
mostly used for games, social networks, and videos. One of
the most promising and convenient ways for users to deliver
multimedia content in the Internet is multimedia streaming.
Already today multimedia streaming takes up about 80%
of video data traffic and engages for even bigger share in
future. Heterogeneity of modern mobile devices, that is the
difference in screen size and computational power of each
concrete model of mobile devices along with their energy
limitations, necessitates customized video transcoding for
all end user devices with the unique parameters [1, 2].
Also, different devices can have different Internet bandwidth,
which imposes additional requirements upon the quality of
streaming video and therefore customized transcoding [3].

The abovementioned can lead to several issues in work
of media servers, namely, network overload, storage space
shortage, and computational overload of media servers. The
first problem, caused by increasing amount of clients trying
to access a media server, can be solved by organizing the
network in decentralized or distributed manner. Various
approaches to solve this issue have been suggested, among
which most notable are the decentralization concerning
subscribers [4] and an approach with the use of proxy servers
[5]. The objective of this paper is to address the problem of
computational overload of media servers. So far, the existing
researches concern moving of the transcoding process, the
most computation-intensive part of video streaming, to other
accessible resources. In [2] transcoding is done by adaptation
engine which is a solution for multimedia data customization
problem rather than the media server overload problem.
In [6, 7] adaptive transcoding performed at proxy servers
or video adaptation nodes located on the edges of fixed
networks, while in [8, 9] transcoding is fairly spread among
existing neighbor servers. Although those approaches reduce
the overload of media servers, they still might encounter
difficulties in case huge number of video files need to be

https://core.ac.uk/display/205352710?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

transcoded. Another drawback of these studies is that if
a user has several heterogeneous devices and needs the
video for each of them, the only way to get customized
video files is to access the media server several times, which
again emphasizes the media server overload problem. Thus,
the more efficient way to address the problem would be
to perform transcoding not at server side but at client
side. However, in view of the client side being a portable
device with limited power and energy resources this solution
does not seem viable. Therefore, to reduce the overload of
media servers while keeping the transcoding process at client
side a novel mobile offloading approach inspired by cloud
computing is introduced in this paper.

Mobile offloading [10, 11] is a powerful technique help-
ing to move most power-consuming computations from
resource-constrained portable devices to more powerful
ones. The main difference between mobile offloading and
client-server approaches is that in case of the second one a
client always migrates some part of work to the server [12],
while in case of mobile offloading it is decided dynamically
which parts of code should be run at the server side. One
of notable studies on offloading is [13], where a solution for
optimal profile-based partitioning of source code for sensor
network application is demonstrated. Another revealing work
is [14]. It demonstrates partitioning of graphical applications
with the use of adaptive offloading decisions.

To implement the above-described idea, a SorMob
oftfloading framework [15] along with SorTube multimedia
streaming cross-platform application has been used. SorMob
framework does mobile offloading with the use of Aspect-
Oriented Programming (AOP) paradigm for separation,
weaving, and reuse of the code marked by cross-cutting con-
cerns [16]. It makes the offloading implementation flexible
and fully intuitive for a programmer. SorTube’s job is to adapt
a video file for the end device and then stream it to the client
and view it at the client side. All of these should be done
simultaneously so that the user can view the video with the
least delay.

The rest of the paper is organized as follows. Sections 2
and 3 demonstrate the architectures of SorMob and SorTube.
In Section 4 the results of experiments are shown. And
Section 5 concludes and traces a course of future studies.

2. SorMob

SorMob is an AOP-implemented source-level offloading
framework, which moves part of computation to the cloud,
based on source code profiling [17]. It calls the methods
placed at the offloading server through the Remote Procedure
Calls (RPC) so that a programmer does not need to explicitly
code the details for this interaction. In what follows, prelimi-
nary introduction of AOP basics along with the architecture
and implementation of SorMob is introduced.

2.1. Aspect-Oriented Programming. One of the first and major
works on AOP programming technique was done in [16],
where aspects and a new way of clear expressing program-
ming involving such aspects were introduced. Basically, AOP
is a code injection; only it deals with concerns that cut across

Mobile Information Systems

Advices

Core concerns

T [Weaving

Weaving]

— -

Weaving |
/|

~o Y
N
~ s

Pointcuts

A Y @ Joinpoints

F1GURE 1: AOP concept.

the whole application. Base units in AOP concept are advices.
Advices are the parts of the code which are able to be added
to specified points in the program when it executes. The
specified points in the program are called joinpoints (JPs)
and normally are located before or after the methods in
the code. Matching of JPs to the advices is determined by
pointcuts which itself appears as a set of JPs. The process of
adding advices to the source code is called weaving or cross-
cutting and it can be done during compilation, loading, or
execution time. Key points of AOP technique are represented
in Figure 1, where various advices are weaved into the source
code at the moments specified by joinpoints within pointcuts.

Because of its clear concept, the use of AOP in SorMob
makes the implementation of the offloading framework sim-
pler and more flexible. It also makes SorMob fully indepen-
dent of applications specificity as long as these applications
are written in Java. Additionally, before, we could choose
one of two ways to implement offloading for Android appli-
cations: either to modify Dalvik Virtual Machine (DVM)
and make the offloading process automated or to manually
modify each application adding the code for offloading to it.
Both ways are painful compared to AOP, which also provides
automated offloading without any need to modify target
applications. With AOP adding offloading functionality to an
Android application is as easy as adding SorMob library to
this application.

Algorithm 1 shows an example of marking the parts of the
code for migration. A doGame method which is needed to be
migrated is marked with @Migratable annotation in front of
it. Therefore, when the annotated method is called, migration
starts executing automatically to offload the method. Also,
additional serialization mechanisms are needed in case of
Java automatic serialization.

2.2. SorMob Architecture. An architecture and workflow of
SorMob are shown in Figure 2. It consists of a migrator,
profiler, solver, classloader, and offloader for server and client
sides. Migrator serves to extract the annotated methods from
the application source code. Profiler measures the execution
time and appearance frequency of each method in the source

Mobile Information Systems

Smartphone
AOQP description \

/ Program code

Server

/
®

(Offloader

T
i
|
i
I
I
Annotated [i
(Rnnotaie YD) (Migraton)

4

Serializer)

Android application (for ARM)

/

Android application (for x86)

- /

FIGURE 2: SorMob architecture and workflow.

public class MainActivity {
GAME g = new GAME();
public void onClick(View v) {
g.doGame(“attack”);

}
public class GAME implements Serializable {

Object [] enemies;
@Migratable
public Object doGame(String cmd) {

}

ALGORITHM 1: Aspect-Oriented Programming methods annotation.

code, size of the state needed to be transmitted to offload
the method, round-trip delay time (RTT), and network
bandwidth. Solver makes a decision on the migration of
each annotated method based on the information received
from the profiler. Selected methods are sent to the server by
client-side oftloader, which in effect performs serialization
of the data for transmission. The states needed to be sent
to the server consist of classes, objects, and arguments of
target methods as well as names of target objects. To serialize
the data SorMob uses Kryo open-source serialization library,
which helps to avoid the abovementioned inconvenience of
Java built-in serialization.

When the offloader at server side receives the offloaded
states, it keeps waiting until the classloader dynamically loads
all the classes required for target methods. Those classes have
to be installed at the server side in advance. After execution
of the methods at server side, the offloader collects only
the states which have been changed, thereby reducing the
amount of redundant data needed to be sent back to the client.
At client side, sent and received byte arrays are compared
using difference algorithm, and the result is passed to the
application, which then can continue executing.

3. SorTube

3.1. SorTube Architecture. SorTube is a cross-platform
streaming media player application with video customization
for heterogeneous devices. The workflow of SorTube is shown
in Figure 3. The application consists of a server and client
parts, which are identical, apart from the fact that they are
built for different platforms. Server-side SorTube is built for
x86 architecture, while client-side SorTube is built for ARM
architecture. Inner structure of SorTube application contains
three main elements: transcoding module, streaming
module, and video player. Because all three modules need to
run at the same time, each of them is organized as a separate
thread.

As opposed to general case when a video file is simply
streamed from media server to client, in case of SorTube
implementation, the offloading server is also involved. At
first, the video is streamed from remote media server to
the offloading server. There, video goes through transcoding
module, which adjusts its parameters such as video format, bit
rate, resolution, and pixel format, to make the video finely fit
the end user device. After getting customized video passes to
streaming module, which sends it to the client. When client-
side SorTube receives the video stream, video player starts
viewing it right away. All the above-described steps go on
simultaneously allowing the user to view the video without
waiting for completion of video data transfer.

Implementation of SorTube is based on open-source
projects. Transcoding module is based on FFmpeg, a
cross-platform multimedia converting library containing the
majority of existing codecs. Transcoder also contains H.264
encoder to be able to produce end video supported by
Android operation system. The encoder is implemented
based on x264 library. Output of the transcoder is a flow
of video chunks, where the length of chunks determines
the granularity of video streaming. The less the length,
the less the delay between the request and viewing of the
video. Streaming module is implemented with the use of
Netty, event-driven network application framework. Chunks
transfer between offloading server and mobile device is
organized using client-server model and HTTP protocol.
When chunks reach client side, they are put together and
stored as one video file, which imitates progressive download

/ Offloading server \

(desktop PC, near server, etc.)

Mobile Information Systems

Streaming

Transcoding

module
Media server
(private file server,

YouTube, etc.) Streaming

module
Videos

Transcoding
module

Video player

Streaming

Normal scheme
Offloading scheme

F1GURE 3: SorTube workflow.

—

thread #1
Offloader

Streaming from
media server

thread #1 | thread #2
Transcoder]

(FFmpeg) !
Video i

Chunk Streamer

=

1

1

1

1

1

1

. :
1

SorTube ! SorTube !
1

1

1

1

1

1

1

1

1

(Netty)

Offloading server
SorMob

Streaming Client
(smartphone, etc.)
,/ ______________ \\
| |
T di
Offloading i ranrllgfi(l)ﬂéng i
i i
; Streaming !
| module]
\\\ //I
Video player
Smartphone
SorMob | SorTube 1 SorTube
thread #1 | thread #2| thread #3
1 1
@migratable ! !
Device and transcoder ! !
service properties Migrator || !
(SorMob) | |
i i
I I
1 1
1 1
I I
Sequence of ' '
chunks ! Streamer |
/ i (Netty) |
I T
' 1 Video player
| 1 (FFmpeg +
_ ' ' SDL)

FIGURE 4: Integration of SorTube and SorMob.

method for media data transfer. Video player is implemented
with SDL, a cross-platform multimedia library for MPEG
playback software, added to FFmpeg. The player continuously
accesses the file streamed by offloading server and as soon as
new chunks arrive, it views them.

3.2. SorTube-SorMob Integration. Application-level integra-
tion of SorTube and SorMob is demonstrated in Figure 4. At
client side SorMob runs as a separate thread, which can be
accessed by SorTube in case the annotation for migration is
met in SorTube’s source code. SorTube passes the address of
possible offloading server to SorMob framework and if the
connection between the mobile device and the server can be
established, migration of transcoding occurs. Along with the
object states needed for running transcoding module at the
offloading server, required parameters of the end video file
are sent at migration time.

At the offloading server side, SorMob is organized as the
main thread which initiates SorTube’s modules in case migra-
tion request from SorTube occurs. If there is no migration
request from SorTube, SorMob processes migration requests
from other applications or stays in idle state.

4. Experiments

4.1. Methodology and Configurations. To evaluate the efficacy
of SorTube-SorMob solution several questions need to be
answered. First, the relation between the growth of number of
clients accessing a media server and the overload of the media
server needs to be estimated. Also, how the overload of the
media server affects the quality of service for the clients needs
to be evaluated. To support the idea of using offloading server
for transcoding, inviability of performing it at the mobile
device side should be demonstrated. Finally, an improvement

Mobile Information Systems

120 -
100
80 -

60

Time (s)

40

20 The video length: 30s

0 T T T T 1
0 2 4 6 8 10

Number of transcodings

FIGURE 5: Transcoding execution time for changing number of
clients.

in power consumption, achieved due to video customization,
needs evaluation.

To conduct the experiments, a smartphone with 1.2 Ghz
CPU and 1 GB RAM running Android 4.0.3 version was used
as the end user device. Two desktop PCs, with 3.1 GHz quad-
core CPU and 8 GB RAM each, represented the media and
offloading servers. Both desktops used Linux OS, while the
offloading server also ran Android environment in a virtual
machine (VM).

4.2. Measurement of Media Server Overload. For quantitative
assessment of possible media server overload, several VMs
ran at the desktop representing offloading server. All VMs
performed transcoding of the same video file simultaneously.
Depending on the number of active VMs, the change in time
required to finish transcoding was measured. In the course
of the experiment, a 30-second-long video precoded with
H.264/MPEG-4 AVC video codec at 1.8 Mbps bitrate was
transcoded. A resolution of the video was changed from 1280
x 720 to 480 x 272 pixels. Figure 5 depicts the results of the
experiment for a range of clients varying from 2 to 10.

It can be seen from the plot that when the number of
devices becomes more than two, the time needed to finish
transcoding is getting longer than the time length of the
video file itself. Although transcoding time depends on the
performance of the media server, even for most powerful
ones, there exists the number of clients, so that the time
required for transcoding will be greater than the length of the
video. In this case, noticeable delays during video viewing will
occur affecting the quality of media streaming service.

4.3. Transcoding by Mobile Device. A straightforward solu-
tion for relieving media servers can be to localize transcoding
of a video to the client side, that is, to move it from a
media server to the mobile device requesting the video.
As a result, media servers do not need to do transcoding
anymore and can send the requested video to the client right
away. However, computational power of the mobile device is
much lower compared to the one of the media server, what
makes transcoding last significantly longer (Table 1). Besides,
transcoding process consumes a great amount of energy. For
example, to transcode the original video file to the resolution
of 480 x 272 pixels took about 20 mAh. Extending the results

5
TABLE 1: Mobile device transcoding.
Avg. power Energy
Video parameters Time (s) consumption consumption
(mW) (mAh)
480 x 272.2Mbps 123.84 2311.81 21.49
960 x 5452 Mbps 243.48 2206.07 40.33
240 x 186.2 Mbps 53.16 2586.28 10.32
480 x 272.4 Mbps 149.07 2119.70 23.72
480 x 2721Mbps 105.79 2353.33 18.69

for 1-hour-long video, apparently the capacity of the mobile
device battery will not be enough to finish such transcoding.

4.4. Transcoding by Offloading Server. An alternative to the
mobile device transcoding, which also keeps the process
localized at client side, is to perform it on the offloading
server. In this case, total energy consumed by mobile device
can be separated into three parts: the energy spent to
request a video file, the energy spent to migrate transcoding
and to receive streamed video file, and the video viewing
energy. Experimental results, showing energy consumption
for each part as well as total energy consumption of SorTube
application, are given in Table 2. This table shows that total
energy consumption in case of offloading is substantially
less than the one spent to perform only transcoding on the
mobile device. Also, the energy consumed during streaming
or offloading is relatively small compared to the energy
spent for playing back. Since playback energy consumption
decreases considerably over worsening of video resolution,
it can be inferred that the use of the offloading server as
a transcoder is more energy efficient than viewing video
without customizing its parameters.

5. Conclusions and Discussion

In this paper a solution, called SorTube-SorMob, for reducing
the overload of media servers was presented. It was shown
that not only is the solution more effective compared to the
previous studies in the area, but also it gives an improvement
in a mobile device energy consumption while viewing videos
on the Internet. To demonstrate the achievements of this
work, three experiments were conducted. They corroborated
that the overload of servers badly affects the quality of
Internet media services and causes significant delays for
clients to access the data; the most time and resource con-
suming process of transcoding cannot be migrated to mobile
devices because of their limited computational and energy
resources; the efficacy of using offloading server compared to
simple viewing of video files with improper resolution was
demonstrated.

SorTube-SorMob also has its drawbacks. One of them
is that offloading framework uses annotated source code,
because of which it cannot be applied to any application
downloaded from the market. Also, for now, any annotated
code is migrated to the offloading server if possible. As
a future work dynamic decision-making mechanism on

TaBLE 2: Offloading server transcoding.

(a) Summary values of energy, average power, and time consumption for
offloading, streaming, and viewing

Avg. power Energy
Video parameters Time (s) consumption consumption
(mW) (mAh)
480 x 272.2 Mbps 35.03 2005.88 528
960 x 545.2 Mbps 75.54 2171.14 12.31
240 x 186.2 Mbps 33.51 1965.72 4.95
480 x 272.4 Mbps 35.83 2114.71 5.69
480 x 272.1 Mbps 33.16 1988.58 4.95

(b) Values of energy, average power, and time consumption for video
streaming only

Avg. power Energy
Video parameters Time (s) consumption consumption
(mW) (mAh)
480 x 272.2 Mbps 17.04 1076.11 1.47
960 x 545.2 Mbps 34.07 1148.08 2.54
240 x 186.2 Mbps 16.67 991.28 1.50
480 x 272.4 Mbps 23.31 1201.35 2.22
480 x 272.1 Mbps 16.49 1268.12 1.39

(c) Values of energy, average power, and time consumption for video viewing
only

Avg. power Energy
Video parameters Time (s) consumption consumption
(mW) (mAh)
480 x 272.2 Mbps 30.00 1523.14 3.75
960 x 545.2 Mbps 70.94 2036.18 9.72
240 x 186.2 Mbps 30.00 1429.71 3.39
480 x 272.4 Mbps 30.00 1511.93 3.41
480 x 272.1 Mbps 30.00 1529.93 3.87

(d) Values of energy, average power, and time consumption for state
offloading. Keeps the same over videos with different parameters

Avg. power Energy
Time (s) consumption consumption
(mW) (mAh)
3.87 104730 0.06

migration, considering the cost of offloading and possible
outcomes, will be implemented. Additionally, if a user has
several heterogeneous devices at home, the functionality
to request customized video for each of them through
the smartphone with preinstalled SorTube application can
be added. Finally, current implementation does not deal
with possible changes in network bandwidth during video
streaming (Figure 6). Since video from the offloading server
to the client is streamed by chunks, there is also a way for
adaptive streaming realization.

Mobile Information Systems

Offloading server
[Transcoding \

Video module

High | . Low
2 Middle 5
quality quality quality

E Chunk Chunk

Streaming

K module

Streaming

i

Choose chunks according to
network bandwidth

FIGURE 6: SorTube adaptive streaming.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was partly supported by Institute for Information
& Communications Technology Promotion (IITP) grant
funded by the Korea government (MSIP) (no. R0190-15-2010,
Development on the SW/HW Modules of Processor Monitor
for System Intrusion Detection), the National Research Foun-
dation of Korea (NRF) grant funded by the Korea government
(MSIP) (no. 2014R1A2A1A10051792), IDEC, the Brain Korea
21 Plus Project in 2015, Inter-University Semiconductor
Research Center (ISRC), and ICT at Seoul National Univer-
sity and MSIP, Korea, under the ITRC (Information Technol-
ogy Research Center) support program (IITP-2015-R0992-
15-1006) supervised by the IITP (Institute for Information &
Communications Technology Promotion).

References

(1] S. Rho, J. Cho, and E. Hwang, “Adaptive multimedia content
delivery in ubiquitous environments,” in Web Information Sys-
tems Engineering— WISE 2005 Workshops: WISE 2005 Interna-
tional Workshops, New York, NY, USA, November 20-22, 2005.
Proceedings, vol. 3807 of Lecture Notes in Computer Science, pp.
43-52, Springer, Berlin, Germany, 2005.

[2] T. Repantis, Y. Drougas, and V. Kalogeraki, “Adaptive compo-
nent composition and load balancing for distributed stream
processing applications,” Peer-to-Peer Networking and Applica-
tions, vol. 2, no. 1, pp. 60-74, 2009.

[3] K. Curran and S. Annesley, “Transcoding media for bandwidth
constrained mobile devices,” International Journal of Network
Management, vol. 15, no. 2, pp. 75-88, 2005.

[4] A. K. W. Yim and R. Buyya, “Decentralized media streaming
infrastructure (DeMSI): an adaptive and high-performance
peer-to-peer content delivery network,” Journal of Systems
Architecture, vol. 52, no. 12, pp. 737-772, 2006.

[5] R.Rejaie, H. Yu, M. Handley, and D. Estrin, “Multimedia proxy
caching mechanism for quality adaptive streaming applications

Mobile Information Systems

(6]

(8]

(10]

(11]

(16]

(17]

in the internet,” in Proceedings of the 19th Annual Joint Con-
ference of the IEEE Computer and Communications Societies
(INFOCOM *00), vol. 2, pp. 980-989, 2000.

S. Dogan, A. Cellatoglu, M. Uyguroglu, A. H. Sadka, and
A. M. Kondoz, “Error-resilient video transcoding for robust
internetwork communications using GPRS,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 12, no. 6, pp.
453-464, 2002.

T. Warabino, S. Ota, D. Morikawa et al., “Video transcoding
proxy for 3Gwireless mobile Internet access,” IEEE Communi-
cations Magazine, vol. 38, no. 10, pp. 66-71, 2000.

Y. Drougas, T. Repantis, and V. Kalogeraki, “Load balancing
techniques for distributed stream processing applications in
overlay environments,” in Proceedings of the 9th IEEE Inter-
national Symposium on Object and Component-Oriented Real-
Time Distributed Computing (ISORC ’06), pp. 33-42, IEEE,
Gyeongju, Republic of Korea, April 2006.

J. Noh, M. Makar, and B. Girod, “Streaming to mobile users
in a peer-to-peer network,” in Proceedings of the 5th Inter-
national ICST Mobile Multimedia Communications Conference
(MOBIMEDIA °09), pp. 24:1-24:7, Institute for Computer Sci-
ences, Social-Informatics and Telecommunications Engineer-
ing (ICST), London, UK, September 2009.

B.-G. Chun, S. IThm, P. Maniatis, M. Naik, and A. Patti,
“Clonecloud: elastic execution between mobile device and
cloud,” in Proceedings of the 6th Conference on Computer Systems
(EuroSys 1), pp. 301-314, ACM, Salzburg, Austria, April 2011.

E. Cuervoy, A. Balasubramanian, D.-K. Cho et al., “MAUL
making smartphones last longer with code offload,” in Pro-
ceedings of the 8th Annual International Conference on Mobile
Systems, Applications and Services (MobiSys ’10), pp. 49-62, San
Francisco, Calif, USA, June 2010.

K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A survey of
computation offloading for mobile systems,” Mobile Networks
and Applications, vol. 18, no. 1, pp. 129-140, 2013.

R. Newton, S. Toledo, L. Girod, H. Balakrishnan, and S.
Madden, “Wishbone: profile-based partitioning for sensornet
applications,” in Proceedings of the 6th USENIX Symposium on
Networked Systems Design and Implementation (NSDI "09), pp.
395-408, USENIX Association, Boston, Mass, USA, April 2009.

M.-R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall,
and R. Govindan, “Odessa: enabling interactive perception
applications on mobile devices” in Proceedings of the 9th
International Conference on Mobile Systems, Applications, and
Services (MobiSys ’I11), pp. 43-56, ACM, New York, NY, USA,
July 2011.

S.Yang, Y. Kwon, Y. Cho et al., “Fast dynamic execution offload-
ing for efficient mobile cloud computing,” in Proceedings of
the 11th IEEE International Conference on Pervasive Computing
and Communications (PerCom ’13), pp. 20-28, IEEE, San Diego,

Calif, USA, March 2013.

G. Kiczales, J. Lamping, A. Mendhekar et al., “Aspect-oriented
programming,” in ECOOP—Object-Oriented Programming, pp.
220-242, Springer, 1997.

H.-Y. Chen, Y.-H. Lin, and C.-M. Cheng, “Coca: computa-
tion offload to clouds using aop,” in Proceedings of the 12th
IEEE/ACM International Symposium on Clustet, Cloud and Grid
Computing (CCGrid ’12), pp. 466-473, IEEE, Ottawa, Canada,
May 2012.

= _'A'. ' N - -
Advances in b ,“ . e industal Engineering
iR, ARINE - -
L& s S . Applied
. - o Computational

Intelligence and Soft
Ep/mputing—'

The Scientific ISR —
World Journal Sensor Networks

Advances in

Fuzzy

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Computer Networks
and Communications P eEsl

Artificial
Intelligence

Advances in
iomedical Imaging. M Artificial
‘ol Neural Systems

s

International Journal of
Computer Games 5 in
Technology oy re Engineering

Reconfigurable
Computing

Computational o
Journal of ¢ Hu;jja[)TCOrjj|3L|tey‘ \ntengence and 2 Electrical and Computer
Robotics Interaction Neuroscience Engineering

SN

