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Many indoor localization techniques that rely on received signals fromWi-Fi access points have been explored in the last decade.
Recently, crowdsourced Wi-Fi fingerprint attracts much attention, which leads to a self-organized localization system avoiding
painful survey efforts. However, this participatory approach introduces new challenges with no previously proposed techniques
such as heterogeneous devices, short measurement time, and multiple values for a single position. This paper proposes an efficient
localization method combating the three major technical issues in the crowdsourcing based systems. We evaluate our indoor
positioning method using 5 places with different radio environment and 8 different mobile phones. The experimental results show
that the proposed approach provides consistent localization accuracy and outperforms existing localization algorithms.

1. Introduction

Navigation ability of smart phones and tablets at indoor
environment becomes a challenge as recent mobile Location
Based Services (LBSs) [1–3] require more accurate and seam-
less positioning at both indoor and outdoor environment.
Outdoor localization had been provided reasonably by global
satellite positioning systems using Global Positioning System
(GPS), GLObal NAvigation Satellite System (GLONASS),
Galileo, and so forth.On contrary, the indoor localization still
continues to a challenge even though it has been exploited
during last several years. Several techniques for the indoor
localization have been proposed [4–6]. In a survey of indoor
localization techniques [7], many techniques are compared
such as GPS, RFID, WLAN, and Bluetooth in terms of accu-
racy, complexity, and scalability. Some of previous works uses
a specially designed hardware like a beacon installed on walls
or ceilings such as RFID, ultrasound, and infrared technolo-
gies [8–10]. Other systems use a combination of different
sensors to increase accuracy [11, 12]. Those which use the
hardware of short range communication technologies are

costly to deploy on a large area, even though those systems
provide fine-grained accuracy in indoor localization.

In contrast, Wi-Fi based positioning systems are very
common and easily achieved as shown that Internet map
services of Google, Apple, Microsoft, and so forth already
use received signals frommany deployed access points (APs)
for localization. Recently, Wi-Fi is becoming more popular
and ubiquitous with countless Wi-Fi-enabled smart devices.
Accordingly, indoor localization using theWi-Fi APs receives
much attention frommobile computing research area, which
has the advantage of avoiding the cost of specialized hardware
deployment.

Typically, Wi-Fi based localization estimates the loca-
tion based on observed and stored “fingerprints” which are
composed of a MAC address and corresponding Received
Signal Strength (RSS) value from a Wi-Fi AP [10, 13]. While
previous researches mainly dealt with localization algorithms
to improve accuracy based on the fingerprint database, recent
studies focus on building the database with less effort.
“Crowdsource” Based Indoor Localization (CIL) [14–19] by
autonomous users is one of cost efficient approaches, which
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reduces the map building and maintenance expense com-
pared to an expert surveyor based approach. The CIL is
driven by normal mobile users who participate in the Wi-
Fi AP survey as a contributor, a user, or both. Also, this
multiple-surveyor-multiple-usermodel has the advantages of
fast radio map building and quick update.

Figure 1 shows an example of the CIL, which consists of
two phases: “training phase” (or “offline phase”) and “local-
ization phase” (or “online phase”). In the training phase,
fingerprint data of locations have been captured to establish
a radio map. After then, mobile phones inquire their location
with measured fingerprint data to a remote server that holds
the radio map in the localization phase. In the figure, the five
users (i.e., A, B, C, D, and E) are untrained normal people
who are carrying different types of mobile phones. Users A,
D, and E are surveyors for Room 101, Room 102, and Room
103 whomeasure RSS ofWi-Fi APs and upload the measured
data with corresponding AP information to a local DB server.
The uploaded data is processed on the server and converted
to fingerprint data.When user B inquires the current location
information, the server returns to Room 101 if user B’s RSS
measurement matches one from the user A.

However, the CIL also introduces a new set of challenges.
First, the CIL has to extract accurate fingerprint values from
short measurement time for Received Signal Strength (RSS)
because the mobile users as voluntary surveyors probably
provide short-term RSS measurements. Second, the CIL
has to support calibration-free indoor localization across
different devices. Typically, users as surveyors carry various
types of devices in terms of hardware and software, for exam-
ple, Wi-Fi chipsets, antenna pattern, and operating systems.
The RSS measurement results in different values across the
heterogeneous devices even at exactly the same positions.

This crowdsourcing approach has been considered in
many recent researches [14–19]. However, many of them
address those challenges in the CIL. In [20] about survey-
free localization, several researches [21–23] dealt with het-
erogeneous devices for CIL using difference of RSS samples
from APs instead of absolute RSS values to combat measure-
ment variance from heterogeneous devices. Previously, we
proposed “Freeloc” [24] that uses a list of APs ordered by RSS
for the fingerprint instead of the RSS itself. Thus, the Freeloc
consistently results in robust and reliable outcomes resolving
those challenges. In this paper, we compare the Freeloc with
existing practical indoor localization algorithms for the CIL
in terms of accuracy. In addition, we investigate how to
decide a gap between sample RSSs for difference localization
environment and conductmeasurement study for the Freeloc
in variance of wireless channel because of interference from
dense Wi-Fi APs, deep fading from many pedestrians, and
path loss from short distance.

The remainder of this paper is organized as follows:
we introduce background knowledge with related works on
indoor localization schemes in Section 2. Section 3 intro-
duces existing localization algorithms for CIL. Section 4
describes our system and algorithm together with the three
major challenges covered in the CIL. We show the perfor-
mance evaluation and comparison with existing localiza-
tion algorithms from Sections 5 to 7. In Section 5, Freeloc
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Figure 1: Crowdsource Based Indoor Localization (CIL) approach
which collects RSS values of Wi-Fi APs measured by multiple users,
users A–E at different positions of Rooms 101, 102, and 103, together
with corresponding AP information, which is finally converted to
fingerprint data of each location.

performance is compared according to various localization
environment.We compare Freeloc with other CIL algorithms
in Section 6. In Section 7, Freeloc performance is investigated
with varying delta values.We conclude the paper in Section 8.

2. Background

2.1. Indoor Localization Techniques. Many indoor localiza-
tion techniques have been proposed over the past decade.
Some indoor localization techniques require special hard-
ware to determine the devices location like active badge [9]
and active bat [25] that are attached on ceilings and walls of
buildings and transmits out infrared and ultrasound pulses
for proximity estimation.The cricket and cricket compass [8,
26] used a combination of RF and ultrasound technologies.
Techniques using active RFID were also proposed [27, 28].

Recently, Wi-Fi based indoor localization receives much
attention asWi-Fi APs become used for outdoor localization.
Like the outdoor localization in cellular networks, triangu-
lation using time difference of signal arrival from neighbour
APs can be considered [13, 29]. This time of arrival (TOA)
based approach could suffer from timely varying signal path
at complex indoor environment. Instead, Received Signal
Strength (RSS) can be used. RADAR [10] adopts this RF signal
intensity first for the purpose of indoor localization. Now,
many researchers concentrate on techniques that use Wi-Fi
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RSS data. Studies like [30] analyzed the properties of Received
Signal Strength values reported by wireless network interface
cards. References [5, 31] show that the Wi-Fi fingerprint (i.e.,
a basic service set identification (BSSID) and its RSS value)
methods can fulfil accuracy required for many indoor LBS
applications.

2.2. Crowdsourced Indoor Localization. Survey-free localiza-
tion [16–19] orCrowdsource Based Indoor Localization (CIL)
[14, 15] has rigorously been explored in order to reduce effort
and cost involved in expert surveyor based system as smart
hand-held devices are deployed widely. The CIL is a self-
organized participatory system where normal mobile users
contribute measurement of Wi-Fi fingerprints at various
locations for localization. Reference [15] carried out experi-
ments in indoor environments and have discussed encourag-
ing results. Teller et al. in [16] have designed and deployed an
organic location system and achieved position accuracy that
is comparable to the accuracy achieved by a survey driven
system. A crowdsourcing based approach by Ledlie et al.
models the world as a tree of hierarchical namespaces and
provides an algorithm that explicitly accounts for temporal
variations in signal space [19]. Recently, accelerator assisted
dead-reckoning techniques are adopted for enhancing accu-
racy of crowdsourced indoor localization [11, 12].

A main issue with the CIL is the heterogeneity of
hardware devices, usually a variety of mobile phones, to
collect Wi-Fi fingerprints during the training phase. This
leads to variation in the values of observed signal strength
measurements due to the different chipsets present on differ-
ent devices. Park et al. explore this issue in [17] and compare
various methods used to mitigate this problem. The main
parameters that are used are signal strength values and access
point detection.TheKernel function based estimation, which
predicts user location using a naive Bayes classifier, has been
proposed to obtain better results than linear transformation
based approaches [32]. Tsui et al. proposed an unsupervised
learning method that automatically tries to solve hardware
variance problem in Wi-Fi localization [33]. Wu et al. pro-
posed site survey-free indoor localization with off-the-shelf
devices, which needs complex conversion from virtual to
physical space based on measurement [21]. References [22–
24] show that robust fingerprints can be derived using signal
strength difference (SSD), instead of absolute RSS values in
the heterogeneous mobile devices for measurement.

3. Localization Algorithm for CIL

Although several localization algorithms were proposed for
CIL, most of them use log-distance or similarity of RSSs
[20]. We introduce several practical approaches that are less
complicated and easy to apply for the fingerprint based
indoor localization to compare performance with Freeloc.

First, Euclidean distance of RSSs of 𝑘-nearest neighbours
(𝑘-NN) is calculated to find a location with minimum value
of summation of the distance values. Here we consider
unweighted 𝑘-NN in which distance values are equally added
at the summation. Second, similarity based on the Tanimoto
coefficient is considered. Third, we evaluate the𝑁-gram that

compares BSSID subsequences between two fingerprints to
calculate probability of appearance of the same contiguous
subsequence. With these four algorithms, we apply the same
experiment environment that is used for “Freeloc” evaluation
for the comparison:

(i) k-nearest-neighbour (𝑘-NN) is a popular localization
method to analyze RSS pattern from 𝑘 neighbour APs
using some recognition techniques. For instance, it
can simply calculate Euclidean distance of two finger-
prints’ RSS values that are measured and stored in a
remote server. Like this, 𝑘-NN estimates a location
with the distance values of most frequently appeared
𝑘 neighbour APs:

arg min
𝑓𝐿𝑖∈𝐹

√∑

𝑖=1

𝑘
󵄩󵄩󵄩󵄩󵄩
𝑓𝑖 − 𝑓𝐿 𝑖

󵄩󵄩󵄩󵄩󵄩
, (1)

where 𝐿 𝑖 is locations {𝐿0, 𝐿1, . . . , 𝐿𝑛} and 𝑓𝑖 is a
measured fingerprint and 𝑓𝐿 𝑖 is a stored fingerprint
of location 𝑖. That is to say, 𝑘-NN selects a location
that has minimum sum of distance of most strong 𝑘
fingerprints between the measured and stored values.

(ii) Two fingerprint similarities can be evaluated by Tan-
imoto coefficient, which is widely used for estimating
similarity ofWi-Fi fingerprints. Reference [34] shows
that place detection can be achieved by similarity of
radio environment using Tanimoto coefficient. As in
below equation, location 𝐿 𝑖 with maximum Tanimoto
coefficient can be chosen:

arg max
𝑓𝐿𝑖∈𝐹
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. (2)

(iii) 𝑁-gram algorithm is a different approach compared
to above two approaches, which calculates likelihood
of two subsequences of the measured and stored fin-
gerprints [35]. 𝑁-gram only concerns strength order
of the fingerprints while 𝑘-NN and Tanimoto con-
siders signal strength itself. The order of fingerprint
strength does not change probably even if the signal
strength of the fingerprints changes dynamically. For
this, 𝑁-gram sorts the fingerprints in descending
order of the RSS and compares subsequences of
the fingerprints. For instance, subsequence 𝑁-gram
(𝑓𝑠) = {𝑓𝑠, 𝑓𝑠+1, . . . , 𝑓𝑠+𝑛−1} is a fingerprint sequence
from a 𝑠th fingerprint to a 𝑖 + (𝑛 − 1)th fingerprint
with size of 𝑛. Here we can find a location, 𝐿 𝑖 that
maximizes a following equation:

arg max
𝑓𝐿𝑖∈𝐹

∏

𝑠

𝑃 (𝑁-gram (𝑓𝑠) | 𝐿 𝑖) 𝑃 (𝐿 𝑖) . (3)

That is to say, the algorithm selects a location with
maximum probability that a set of the subsequences
𝑓𝑠 appears in the location 𝐿 𝑖. 𝑁-gram motivates us
to improve it for crowdsourced localization in which
measured fingerprints are varying with locations and
devices as described in a following subsection.
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4. Freeloc: Calibration-Free
Indoor Localization

In this section, we briefly describe our localization algorithm,
Freeloc, with a usage scenario in Figure 1. Freeloc solves fol-
lowing three critical challenges in fingerprint derivation
based on the RSSs captured by untrained mobile users:

(i) RSS measurement for short duration: it is well known
that multipath fading in an indoor environment
causes RSS to fluctuate over time even if the receiver
is absolutely fixed [36]. One simple method to reduce
RSS variance is to record the RSS data for a long
time. As the number of RSS samples increases it is
easier to identify one single fingerprint value which
ensures construction of a more robust and accurate
radio map. However, it is almost impossible to have
normal users collect RSS data for such a long time in
the crowdsourcing based model. We believe that the
RSS survey time at each location will not exceed one
minute assuming all the surveyors are usual mobile
users. Therefore, a technique that extracts accurate
fingerprint data from short-time measurement is
necessary.

(ii) Device heterogeneity in CIL system: it is inevitable
that diverse devices get involved in establishing the
radio map database. Since there is no expert surveyor
who uses specially designed hardware, it is highly
likely that the RSS data gathered from each user
varies even though it is collected at the exact same
position. Different chipsets and antenna designs of
the Wi-Fi devices cause varying RSS records per
each device and make it difficult to calibrate them.
This device heterogeneity is another key problem for
crowdsourced localization.

(iii) Multiple measurements for one location: another
problem is that more than one user can upload one’s
own fingerprint data with the same location label,
but it is obtained at different measurement points.
This results in multiple fingerprint data sets for one
location, which leads to inefficientmemory usage and
more time to estimate the current location. None
of the previous studies take this into account even
though this is also a principal cause of localization
accuracy degradation.

4.1. Fingerprint Value Extraction. This section presents how a
RSS value of each fingerprint can be extracted at a particular
location with variation in response rate and RSS values. In
contrast RSS can bemeasured for a long time (e.g., frommore
than one hour to a month) to get average value in the expert
surveyor system [37]; CIL has short measurement duration
to extract robust fingerprint. We propose a practical and
resilient RSS abstraction method for the fingerprint based on
the experimental results we conducted:

(i) AP response rate: in our experiments, we observed
strong correlation between AP response rate and RSS.
Ledlie et al. [19] thought that the correlation between

the response rate and RSS is rather weak, which led
to using the response rate as fingerprint information
with RSS. However, our results show that APs with
RSS values of greater than −70 dBm provide over
90% of response rate and APs with RSS between
−70 dBm and −85 dBm provide over 50% of response
rate. APs with RSS of less than −90 dBm present very
poor response rate.Therefore, we decide to give lower
weights to weak RSS values, which reflects the lower
AP response rate naturally for fingerprint.

(ii) RSS variance: RSS of a particular AP is varying over
time due to shadowing andmultipath fading, and RSS
fluctuation could be higher in indoor environment
rather than outdoor, which degrades the localization
accuracy. For CIL that requires short measurement
duration, probabilistic methods based on Gaussian
distribution were proposed in several studies pro-
posed [16, 19, 32] to obtain the average value, which
are however feasible only in ideal environment.
Instead, we propose a simple yet effective method
based on our experiment results that show the most
frequently capturedRSS in short duration is very close
to the most RSS in the long-duration measurement
case. In other words, most frequent RSSs can be
obtained regardless of the duration of measurement
time. The proposed method extracts fingerprint RSS
values by ignoring RSS records that are far away
from themost frequent RSS and giving the maximum
weight to the RSSs with peak value as shown in (4),
which provides tolerance to the RSS variation over
time.𝑉fp is the fingerprint value for anAP andRSSpeak
is the RSS value of highest frequency during the
measurement.Thewidth of the range is set by𝜔𝐿𝑇 and
𝜔𝑅𝑇:

𝑉fp

=
∑
𝜔𝐿𝑇
𝑛=1 (RSSpeak − 𝑛) + RSSpeak + ∑

𝜔𝑅𝑇
𝑚=1 (RSSpeak + 𝑚)

𝜔𝐿𝑇 + 𝜔𝑅𝑇 + 1
.

(4)

4.2. Online Localization Algorithm

4.2.1. Relative RSS Comparison. Most of previous localization
techniques estimate a location with an absolute RSS value
based on the radio map built during the offline phase. How-
ever, CIL where surveyors carry heterogeneous hardware
devices can have different fingerprint data sets even for the
same location because RSS values measured by those devices
are different from each other.

In this section, we explain a novel localization technique,
Freeloc, instead of modifying existing techniques for the
heterogeneous device environment that is aligned with our
target indoor usage scenarios. Thanks to the proliferation of
Wi-Fi technology, some office or university buildings have
more than 50 APs installed for personal purpose or for
offloading of wireless cellular networks. RSS values of those
APs are widely distributed (e.g., −40 dBm to −100 dBm),
which is good to abstract relative RSS strength among APs.
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Input: fingerprint data Fpunknown
Output: estimated location Loc
(1) score ← 0, scoreMAX ← 0

(2) bssidMAP ← {}

(3)
(4) for each possible FpLoc𝑥 in the radio map do
(5) for each AP𝑖 in Fpunknown do
(6) if AP𝑖 is found in FpLoc𝑥 at𝑚th AP then
(7) bssidMAP ← 𝐿(AP𝑗,𝛿(𝑚)) vector where AP𝑖 = AP𝑚
(8) for each BSSID in AP𝑗,𝛿(𝑖) do
(9) if BSSID is found in bssidMAP then
(10) score ← score + 1
(11) end if
(12) end for
(13) end if
(14) end for
(15) if score > scoreMAX then
(16) scoreMAX ← score
(17) Loc ← Loc𝑥
(18) end if
(19) end for
(20) return Loc

Algorithm 1: Estimate the location.

Table 1: RSS measurement results from each user.

AP User A User B User C User D
AP1 −50 −65 −65 −92
AP2 −55 −68 −51 −80
AP3 −67 −74 −53 −67
AP4 −72 −52 −66 −75
AP5 −88 −91 −82 −58
AP6 −90 −87 −85 −54

In contrast to several approaches using RSS difference of
APs for fingerprints, Freeloc generates fingerprints using an
AP order instead of RSS value itself as shown in

Fp (Loc𝑥) = {Loc𝑥, [AP𝑖, 𝐿 (AP𝑗,𝛿(𝑖))]}

𝑖, 𝑗 ∈ APs of Loc𝑥, 𝑖 ̸= 𝑗

RSS (AP𝑖) − RSS (AP𝑗) ≥ 𝛿.

(5)

Each fingerprint data element Fp of location Loc𝑥 has a
location label Loc𝑥 (e.g., room number) where measurement
is taken, and a detected AP’s BSSID (AP𝑖) that has the 𝑖th
strongest 𝑉fp. 𝐿(AP𝑗,𝛿) is an order of other detected APs’
BSSIDs of which RSS is weaker than RSS of the AP𝑖 by
more than 𝛿 value. Our proposed method adopts the delta
(𝛿) as a marginal value for varying RSS which is different
from 𝑁-gram [35] that considers only similarity between
two continuous subsequences of the ordered fingerprint even
though both schemes focus on relationship between detected
APs in terms of RSS, rather than RSS value itself. The
delta value keeps the relationship consistent under wireless

Table 2: Fingerprint data of each location.

(a)

Room 101
AP𝑖 AP𝑗,𝛿(𝑖)
AP1∗ {AP3, AP4, AP5, AP6}
AP2∗ {AP3, AP4, AP5, AP6}
AP3 {AP5, AP6}
AP4 {AP5, AP6}
AP5 {}

AP6 {}

(b)

Room 102
AP𝑖 AP𝑗,𝛿(𝑖)
AP6∗ {AP1, AP2, AP3, AP4}
AP5∗ {AP1, AP2, AP4}
AP3 {AP1, AP2}
AP4 {AP1}
AP2 {AP1}
AP1 {}

channel fading and enables ourmethod to dealwith heteroge-
neous devices without calibration efforts and alsomultiple Fp
elements for the same location from many different devices.

For example, suppose that usersA andDare the surveyors
and users B and C want to know their positions in Figure 1,
and the measurement of user A–D is presented in Table 1;
the fingerprints of Rooms 101 and 102 can be defined in
Table 2. For instance, AP1 with −50 dBm RSS value has 4
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Figure 2: Floorplans for evaluation.

other detected APs nearby (AP3–AP6 dBm) that show lower
signal strength by more than 10 dBm (i.e., the 𝛿 value).

From now on, we describe details of Freeloc localization
algorithm in Algorithm 1. In the aforementioned scenario,
users B and C request their positions to a localization server
with own fingerprint values in Table 2, and then the finger-
print values are compared with the stored fingerprint map

that is created by users A and D. First, AP4 as the strongest
AP of user B is searched in Room 101 map. AP4 in the map
has other APs, AP5, and AP6 that are weaker by the delta.
Since AP5 and AP6 are commonly found in both the user B’s
fingerprint and the location map, Room 101 earns two points.
Like this, our algorithm finally acquires 8 points for Room
101 but only 1 for the 102. For the user C, the scores are 9 and
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Figure 3: Impact of device heterogeneity experiment at 5th floor of Gachon IT building.
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2 for Room 101 and 102, respectively. Therefore we conclude
that both users B and C are in Room 101.

In order to achieve fast retrieval (line 4 in Algorithm 1),
we utilize an “importance flag,” a one-bit flag in fingerprint
data, Table 2. The flag is set if the AP𝑖 ranks high with strong
RSS. When the localization server receives such location
request, it selects fingerprint data with flagged AP𝑖 in themap
which matches the flagged AP𝑖 in the request data.

For example, in the same aforementioned scenario, the
flagged AP𝑖s are {AP1 and AP2} for Room 101 and {AP6
and AP5} for Room 102 if we set the criterion for the flag as

the top two APs. The flagged AP𝑖s are marked with asterisk
in Table 2. When users B and C request their positions, at
least one flagged AP∗𝑖 in their fingerprint data is found in the
fingerprint data of Room 101 (i.e., AP1 for user B and AP2
for user C) while no matching flagged AP is found in the
fingerprint data of Room 102. Therefore, only Room 101 is
considered for the possible location in this example.However,
we can be bothered from high rank AP∗𝑖 s if adjacent locations
have high probability of receiving strong RSS from the same
APs. If no matches are found, we regard the position where
the measurement is taken as an unlabeled location.
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Table 3: Measured fingerprint data for localization.

(a)

User B
AP𝑖 AP𝑗,𝛿(𝑖)
AP4∗ {AP1, AP2, AP3, AP5, AP6}
AP1∗ {AP5, AP6}
AP2 {AP5, AP6}
AP3 {AP5, AP6}
AP6 {}

AP5 {}

(b)

User C
AP𝑖 AP𝑗,𝛿(𝑖)
AP2∗ {AP1, AP4, AP5, AP6}
AP3∗ {AP1, AP4, AP5, AP6}
AP1 {AP5, AP6}
AP4 {AP5, AP6}
AP5 {}

AP6 {}
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Figure 5: Localization accuracy comparison between laboratory
and third floor in UCLA building [24].

4.2.2. Fingerprint Update. In CIL, mobile users as surveyors
upload continuously different fingerprints for the same loca-
tion with their heterogeneous devices, which increases the
number of RSS data sets for the same location label in the
map database and time to compare all sets for localization.

Freeloc can provide a simple update procedure that
builds a unique fingerprint without any calibration, which
just mergesmultiple fingerprints into a single fingerprint. For
example, the new fingerprint data will be established as in
Table 4 if B uploads its RSS measurements with the same
location label as shown in Table 3 and they merge with an
existing Room 101 fingerprint in Table 2 created by user A.
The proposed {AP𝑖, 𝐿(AP𝑗,𝛿(𝑖))} fingerprint data structure and
the 𝛿 value increase the similarity amongmultiple fingerprint
data although they aremeasured at slightly different locations
with different devices.

Table 4: Merged fingerprint data for Room 101.

Room 101: user A + B
AP𝑖 AP𝑗,𝛿(𝑖)
AP1 {AP3, AP4, AP5, AP6}
AP2 {AP3, AP4, AP5, AP6}
AP3 {AP5, AP6}
AP4 {AP1, AP2, AP3, AP5, AP6}
AP5 {}

AP6 {}

Table 5: Devices used for data collection.

Device MFR Wi-Fi chipset Android
Bionic (B) Motorola TI WL1285C 2.3.4
Galaxy S2 (G) Samsung BCM4330 2.3.4
Galaxy S3 (S) Samsung M2322007 4.3
Galaxy Note 4 (N) Samsung BCM4358 5.1
Desire HD (D) HTC BCM4329 4.1.2
Vega Iron 2 (V) Pantech 4.4.2
Nexus One (NO) HTC BCM4329EKUBG 2.3.3
Nexus S (NS) Samsung BCM4329GKUBG 2.3.6

5. Performance Comparison at
Different Environment

From this section, we evaluate the Freeloc with 8multivendor
smart phones in Table 5 which have differentWi-Fi hardware
chipsets and mobile OSs. For evaluation, we varied the num-
ber and type of devices which participate in the fingerprint
map for each user device.The same device was never used for
both generating fingerprinting map and localization.

5.1. Building Floor. First, 5th floor of the IT building at
Gachon University and 3rd floor of the UCLA engineering
building as office/school building environment where long
corridors and surrounded meeting rooms and laboratories
exist as shown in Figures 2(a) and 2(b). The width of the
corridor is approximately 2m, and some APs are visible with
line-of-sight.Their floor plan is similar to each other, butWi-
Fi AP density is different; Gachon IT building has more than
300 detected APs while the UCLA building captures about
50 APs. We measured RSSs at 36 different positions at the
third floor of the engineering buildings in UCLA campus and
35 positions at the IT building of Gachon University. Small
dots in figure indicate the locations where RSSmeasurements
were taken. The data collected at these points were used
for experiments. The adjacent points are approximately 6m
apart.

In the experiment, Freeloc localization algorithm is
demonstrated for feasibility of CIL with heterogeneous mul-
tiple devices at corridor based office buildings. Localization
results from the heterogeneous devices at the Gachon Uni-
versity are shown in Figure 3. First three bars are the cases
when only one device was used for the fingerprinting. The
next three bars are the cases when the fingerprint maps were
generated from two different devices and these fingerprint
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Figure 6: Localization scores at measurement locations of UCLA laboratory and 3rd floor.

maps were merged to form one fingerprint map. The last bar
denotes the case when fingerprint maps have been generated
from three different devices and merged.

Figure 3 shows that the accuracy did not degrade
mostly when more than one fingerprint data from different
devices are merged. Particularly, HTC Desire HD (D) results
in higher distance error to any fingerprint created by other
phones. The distance error has been observed exceeding 4m
with the Desire HD. But the distance error decreases with
additional fingerprints combined by other heterogeneous
devices to less than 1m. Herein we can conjecture that more
additional measurements from other heterogeneous devices
contribute to reduce the distance error. Furthermore, the
distance error will decrease considerably as the homogeneity
of devices increase in the crowdsourced system.

Experiment results in Gachon and UCLA buildings [24]
show that Freeloc can provide consistent performance among
heterogeneous devices. According to our observation in
Figure 5 [24], error distance in Gachon IT building is less
than UCLA engineering building, about 1 versus 3m, which
implies that the number of APs and degree of their distribu-
tion can affect localization performance in the Freeloc.

5.2. Residential Area. Next localization experiment for small
residential area had been conducted at UCLA laboratory
and a residential house, which have many different types of
furniture and only a few residential people stay. However,
the UCLA laboratory is partitioned by thin plywood for
rooms and the partitions do not reach to ceiling while the
residential house has rooms separated by thick concretewalls,
for example, a living room, a kitchen, and a restroom. In the
residential house and UCLA laboratory, 29 and 34 positions
are measured, respectively. Each of the measurement points
is approximately 1.5m apart.

Figure 4 depicts distance errors of a resident house with
three heterogeneous devices (D, S, and V). Cross-device
error exceeds 1.5m that is a distance between measurement
positions in case of localization with a single fingerprint.
However, the distance error becomes less than the 1.5m
with two fingerprints given by heterogeneous devices. In all
cases of the figure, the accuracy did not degrade when more
than one fingerprint data from different devices are merged.
This reaffirms that the Freeloc can be a feasible solution for
the CIL.

The localization performance at the resident house shows
better than UCLA laboratory in Figure 5 even though their
sizes are similar. We can conclude that the residential house
can obtain unique and stable fingerprints rather than the
UCLA laboratory since the rooms of the resident house are
separated by the concrete walls and channel variation caused
by residential people is smaller (e.g., more than 10 students in
the UCLA laboratory and 2 residents in the house).

Figure 5 shows that the average distance error at the
UCLA laboratory compared to the third floor of UCLA
engineering building. The distance error at the UCLA labo-
ratory is higher the third floor where the measurement point
interval is longer than the laboratory (1.5 versus 6m).

The reason for this observation of degraded accuracy in
the laboratory can be difficulty to have a unique fingerprint
compared to the third floor that hasmore unique fingerprints
formed with thick concrete walls of the building due to path
loss while the laboratory ismade of thin plywoodmaterial for
rooms inside.

Figure 6 shows score distribution derived from
Algorithm 1 at the measurement position from 1 to 3,
where localization error occurs at positions 2 and 3 of the
laboratory and position 3 of the third floor. As can be seen
in the figure, the scores of the laboratory are very similar to
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Figure 7: Analysis of localization performance at small region. Distance errors of Bionic user device with a reduced number of APs and
measurement positions.

each other among measurement locations compared to the
third floor, which leads to wrong prediction with higher
probability than the third-floor case.

According to our analysis on the laboratory fingerprints,
we observed that the similarity of the fingerprints is caused by
similar order of the fingerprints.That is to say, fingerprints in
the laboratory have almost the same sequence of AP BSSIDs
due to plywood walls except several of the strongest APs
that should be highlighted. To see impact of measurement
distance and number of APs for a fingerprint, twofold is
revisited as inputs for fingerprints as shown in Figure 7.

Since the short measurement distance at the small area
like a laboratory may increase localization error probabil-
ity compared to the corridor based office buildings, we exper-
imented our localization algorithm with smaller number of
measurement spots. With many APs in similar order, a long

list of measured APs increases the score value and make the
fingerprint undistinguishable.Thus, we tested with a reduced
number of APs, for example, the strongest 15, 20, and 25 APs
from more than 40 captured APs in the laboratory.

In Figure 7(a), 20 APs are most preferable for the finger-
print of the laboratory. The distance error decreases to 2.4
and 2.5m from 2.8 and 3.2m in NexusS (NS) and Galaxy
(G), respectively. This error decreases more if the number of
measured sites decreases by a half. The distance error of the
NexusS and Galaxy decreases to 1.39 and 2.28m as shown in
Figure 7(b). The distance error decreases more with smaller
measurement sites in Figure 7(c). Table 6 shows average
distance error with a number of APs for the fingerprints.
Without resizing a list of captured APs, the average distance
error was not decreased only by reducing the number of
measurement sites (little bit increase in case of All). On
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Table 6: Average distance error with a reduced number of APs.

APs 34 sites 17 sites 8 sites
15 2.58 2.5 2.61
20 2.5 2.01 1.45
25 2.31 1.98 1.6
All 2.77 3.01 3.08

contrary, the average distance error decreases from 2.5 to
1.45mwith 20 APs if themeasurement sites are reduced from
34 to 8 sites. Such reduction of AP sequence can also decrease
location estimation time that is proportional to the number
of fingerprint data to be compared, in addition to give a
highlight to the strong APs for a fingerprint.

Localization with fine granularity is still challenge espe-
cially in small open space where similar fingerprints are
captured. Accordingly, measurement position distance or a
number of APs used for fingerprints should be adjusted
according to the localization environment, especially for the
small area. However, we argue that Freeloc is still feasible for
home localization as one of key technologies for Internet of
Things (IoT).

5.3. Indoor Shopping Center. Wi-Fi channels at indoor envi-
ronment are varying with moving objects, especially, people,
which leads to variance in measured fingerprints. We can
conjecture that the fingerprint abstraction based on (4) can
deal with this problem. However, largely distributed RSSs can
still mislead the localization with inconsistent fingerprints.

In order to demonstrate this problem, we experimented
our localization method at the crowd indoor shopping mall,
the Coex, one of the biggest indoor shopping centers in south
Korea, which holds large convention rooms for exhibitions
and conferences, many restaurants, and stores (Figure 2(e)).

The Wi-Fi fingerprint data were collected at 40 positions
for different Wi-Fi channel environment and each position
is about 6m apart the same as in the school buildings. We
measured RSSs from more than 200 APs installed by Coex,
stores, and Internet service providers.

We used four smart phones, Desire HD (D), Vega Iron
(V), Galaxy S3 (S), and Note 4 (N) and measured RSSs with
each phone at different time to experience different channels.
To investigate degree of fading effect from pedestrians, RSS
variation of two different places, Gachon IT building and
Coex mall, is compared in Figure 8. The RSS variation in the
Coexmall is higher than the IT building probably due tomore
pedestrians; RSS difference is almost about 10 dB in some
of APs. However, the RSS distribution of strong APs is very
similar in both locations.

Figure 9 shows error distance of pairwise experiments of
those heterogeneous devices at the Coex mall. The distance
error is bigger than the Gachon IT andUCLA building due to
varying channel status even though more APs were captured
for fingerprints. Also, measurement by Desire HD leads to
increase distance error. However, the error distance decreases
with fingerprints gathered by other three heterogeneous
devices up to less thanmeasurement distance, 6m.According
to this experiment results, localization performance for CIL is
affected more by device characteristics, that is, heterogeneity
rather than fading channel status because RSS value abstrac-
tion based on multiple measurement samples (e.g., more or
less 10 samples) reduces the fading effect. Thus, Freeloc can
be robust even in the crowd indoor environment that suffers
from severe channel fading due to pedestrians.

6. Performance Comparison of
Localization Algorithms

First, localization performance is compared when using a
Bionic device and three fingerprints built by others. Figure 10
shows CDF of error distance at the laboratory for each
different fingerprint. Error distance is slightly different from
the fingerprints but comparable except 𝑘-NN. Maximum
error distance is however very different from the localization
techniques. Tanimoto approach shows biggest error, about 12
meters, among the four localization schemes since similarity
between RSS fingerprints is undistinguishable to each other
at the narrow laboratory environment. Figure 11 shows CDF
of error distance at the third floor. 𝑘-NN and Tanimoto
approaches show considerable error compared to the𝑁-gram
and Freeloc. 𝑁-gram and Freeloc show only about 5-meter
error at more than 80% fingerprints error distance while 𝑘-
NN and Tanimoto have more than 30-meter distance error.
Accordingly, algorithms using relative information for the
fingerprint outperform ones using the absolute vale of the
RSS, especially for third-floor environment. Comparing the
Freeloc and𝑁-gram, the Freeloc shows better accuracy since
Freeloc candetect uniqueBSSID subsequence effectively even
under varying radio condition.

Figure 12 shows total average error distance of four
localization schemes using 4 user devices used in above
experiment at the laboratory and third floor. “Single” indi-
cates an average distance error of single pairwise evaluations.
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Figure 9: Localization error at a crowd indoor place with many pedestrians.

At the laboratory, most algorithms show competitive results
that error distance is below 5meters.However, signal strength
based localization techniques result in serious outcomes at
the third floor. At the laboratory, RSSs of many fingerprints
can help in elaborating localization accuracy but can mislead
in wide area like third floor. Considering typical room size,
it could be challenge in localization performance. Freeloc
achieves competitive localization performance in both areas.
Average error distance of localization based on heteroge-
neous multiple devices (i.e., 2 or 3 devices) indicates bars
with the label “multiple” in Figure 12. When using multiple
heterogeneous devices for building a radio map, 𝑁-gram
and Freeloc that use relative information obtain notable gain
compared to the single device surveying. On the contrary,
distance error of 𝑘-NN and Tanimoto gets even worse
than single device case. In 𝑁-gram and Freeloc, merged
fingerprint data do not affect localization results because they
only concern relative information of them. As some omitted
fingerprints from a single device are filled by others appro-
priately, the accuracy is improved. However, in 𝑘-NN and
Tanimoto, the same fingerprint is not merged properly and
newly added values from other devices canmislead outcomes
because heterogeneous surveying devices without calibration
can get different RSS values for the same location. Error
ratio that is a success rate of localization against trials at all
measurement points is shown in Figure 12(c). Error ratio at
the laboratory is higher than at 3rd floor because distance
between measurement points is too small to detect exact
location.

Figures 13 and 14 illustrate distribution of error distance at
the laboratory and third floor, respectively. Error distribution

indicates stability of the localization algorithms. Although 𝑘-
NN shows lower error ratio at the laboratory in Figure 12(c),
distance error is widely spread (max error distance is almost
11meters) compared to the Freeloc. At the third floor, distance
error of the Freeloc is also distributed within very short
range than others including the 𝑁-gram of which error
ratio is similar in Figure 12(c). Consequently, Freeloc can
estimate a location with relatively low error variance rather
than other localization schemes. In case of using multiple
devices for fingerprint surveying, improvement compared to
the single device case is not very notable. The heterogeneous
devicemade fingerprints contribute to reducing error ratio in
Figure 12(c), but not to reducing distribution of error distance
much.

7. Performance with Varying Delta Value

In this section, we describe how to derive the delta value for
Freeloc fingerprints, which was not handled in our previous
work [24]. Practically, two delta value acquisition methods
can be considered for Freeloc implementation; one is an
instant derivation that occurs occasionally with several stored
fingerprints and the other is an accumulated evaluation that
occurs every time a new measurement is received.

7.1. Delta Derivation with Instant Fingerprints. To find out the
optimal 𝛿 value for subsequent localization, the distance error
of pairwise devices is calculated with 𝛿 values varied from 1 to
15 for all devices. From this, we can find the optimal empirical
𝛿 value which minimizes average distance error. Here, the
error distance of the pairwise devices is calculated for the
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Figure 10: Localization of a Bionic device at laboratory.

cases where the predicted location of the user was different
from the real location. For instance, if fingerprints measured
at point 1 in Figure 2(b) are regarded as fingerprints of point 2
by our localization algorithm, then error distance is an actual
distance between those two measurement points.

For example, the instant average of each distance error
from pairwise evaluation of four phones at the UCLA
laboratory decreases until 𝛿 = 12 as shown in Figure 15(a).

Accordingly, optimal delta value can be set around 12 dBm
as noted in the average line in Figure 15. Practically, the
localization server holds RSSs reported by several survey-
ors for the 𝛿 evaluation time and derives the optimal 𝛿
internally. This instant derivation can be performed peri-
odically or occasionally to adapt to changed environment
such as newly installed Wi-Fi APs and new type mobile
devices.
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Figure 11: Localization of a Bionic device at 3rd floor.

7.2. Delta Derivation with Accumulated Fingerprints. With
accumulated fingerprints, the localization server derives a
new optimal 𝛿with a newly reported RSS from a phone based
on the current fingerprint. For example, an initial fingerprint
from the Bionic (B) is compared by the Galaxy (G) RSS that is
reported later. With two, a first 𝛿 value is derived. After then,
NexusS (NS) andNexusOne (NO) can update 𝛿, sequentially.
Whenever the fingerprint is reported, it is used to derive
𝛿 combined to a single fingerprint per each location. Here,

the localization server does not need to maintain raw RSS
values of the reported fingerprints to derive 𝛿. The server
only updates the current 𝛿 value based on fingerprints newly
reported by surveyors. In Figure 15(b), for example, first the
B/G pair has an optimal 𝛿 in 14 dBm, and 𝛿 is updated to
12 dBm by the NS. Finally, 𝛿 is set as 13 dBm by the NO.

Figure 16 shows localization errors of the HTC Desire
HD (D) with varying 𝛿 values at Gachon IT building. A
merged fingerprint of two different devices does not show
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Figure 12: Comparison of different localization schemes.

better performance than a single device fingerprint in some
of 𝛿 values. However, the most robust fingerprint has been
formed from three different devices even though distance
error is varying according to the 𝛿 value. This experiment
justifies that ourmethod can achieve impressive performance
among heterogeneous devices in crowdsourced environment.
We believe that error will decrease considerably as the
homogeneity of devices increase in the crowdsourced system.

In this study, considering general performance in terms
of total distance error, 10 dBm 𝛿 value is used for the UCLA
engineering building and the Coex mall, and 2 dBm is used

for the Gachon IT building and the resident house in the rest
of the evaluations.

8. Conclusion

FreeLoc is a novel, calibration-free indoor localization
scheme that uses existingWi-Fi infrastructure.The proposed
radio map building and localization techniques are based on
the overall relationship among RSS by APs. Our techniques
provide robust localization accuracy in a crowdsourced
environment in which device heterogeneity and multiple
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Figure 13: Error distributions at laboratory.
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Figure 14: Error distributions at 3rd floor.

untrained surveyors mainly cause performance degradation.
The main contribution of our work is a novel approach to
fingerprint data management and a localization algorithm
that are capable of handling diverse users and their devices
without complicated calibrations or transformations. Exper-
iments using heterogeneous devices in two sites that have
different environments have confirmed that our novel scheme
is reliable and feasible and achieve better performance than

localization algorithms using RSS absolute values. We will
then expand the scale of our experiments to cover the entire
university and perform long-term usability testing.
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Figure 15: 𝛿 derivation using instant or accumulated fingerprints at UCLA laboratory.
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Figure 16: Localization performance of a Desire HD fingerprint at
5th floor of the Gachon IT building with varying delta value.
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