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Schrödinger equation is considered within position-dependent mass formalism with a quasi-oscillator interaction term. Wave
functions and energy spectra have been obtained analytically.Thermodynamic properties, information entropy, and uncertainty in
coordinate and momentum spaces are calculated. To provide a better physical insight into the solutions, some figures are included.

1. Introduction

The position-dependent mass (PDM) approach has a wide
range of applications in various areas of science [1–8] and
has motivated many recent researches [9–17]. A very notable
application of the field is in the micro fabrication techniques
such as molecular-beam epitaxy and nanolithography [18–
20]. In quantum mechanics, the PDM Schrödinger equation
has been already studied via path integral approach [21],
supersymmetric quantummechanics [22], Darboux transfor-
mation [23], de Broglie-Bohm technique [24], and Hamil-
tonian factorization [25]. On the other hand, in a search
for possible alternatives ordinary entropy, some authors
have investigated Shannon and Fisher information entropies.
There are also attempts which connect the PDMwith alterna-
tive entropies. Sun et al. [26] presented the Shannon entropy
for the position and momentum eigenstates of the PDM
Schrödinger equation for a particle with a nonuniform soli-
tonic mass density in the case of a hyperbolic-type potential.
Falaye et al. [27] considered a particle in PDM formalismwith
a nonuniform solitonic mass density and a special squared
hyperbolic cosecant interaction. Amir and Iqbal [28] quan-
tized the classical oscillator by considering the symmetric
ordering of operator equivalents of momentum and PDM,
respectively, and obtained a quantum Hamiltonian which
was manifestly Hermitian in the configuration space. With
inspiration of above points, we consider the Schrödinger

equation within PDM formalism with a quasi-harmonic
interaction term. We investigate this system by obtaining the
wave function, energy spectra, Shannon information entropy,
and corresponding thermodynamics properties.

We have organized this article as follows. We first intro-
duce the PDM Schrödinger equation and consider it with
a quasi-oscillator in detail in Section 2. We next obtain the
corresponding exact analytical solutions. Having calculated
the energy spectra and the wave functions, in Section 3,
we obtain the thermodynamic properties of the system. In
Section 4, some discussions regarding the associated infor-
mation entropy are included. In Section 5, some expectation
values are reported and the related uncertainty principle is
investigated. The results are discussed via various figures
throughout the text.

2. One-Dimensional Schrödinger Equation
with Position-Dependent Mass

Toobtain Schrödinger equation,we first define the Lagrangian
density as in [29]

L = 𝑖ℎ2 Φ (𝑥, 𝑡) 𝜕𝑡Ψ (𝑥, 𝑡)
+ ℎ28 [ 𝑑𝑑𝑥 ( 1𝑚 (𝑥))]Φ (𝑥, 𝑡) 𝜕𝑥Ψ (𝑥, 𝑡)
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+ ℎ24𝑚 (𝑥)Φ (𝑥, 𝑡) 𝜕2𝑥Ψ (𝑥, 𝑡)
− 12𝑉 (𝑥)Φ (𝑥, 𝑡) Ψ (𝑥, 𝑡)
− 𝑖ℎ2 Φ∗ (𝑥, 𝑡) 𝜕𝑡Ψ∗ (𝑥, 𝑡)
+ ℎ28 [ 𝑑𝑑𝑥 ( 1𝑚 (𝑥))]Φ∗ (𝑥, 𝑡) 𝜕𝑥Ψ∗ (𝑥, 𝑡)
+ ℎ24𝑚 (𝑥)Φ∗ (𝑥, 𝑡) 𝜕2𝑥Ψ∗ (𝑥, 𝑡)
− 12𝑉 (𝑥)Φ∗ (𝑥, 𝑡) Ψ∗ (𝑥, 𝑡) ,

(1)

whereΨ(𝑥, 𝑡) andΦ(𝑥, 𝑡) are fields withΨ∗(𝑥, 𝑡) andΦ∗(𝑥, 𝑡)
being their conjugates, ℎ is the Planck constant, and 𝑚(𝑥)
denotes a position-dependent mass. On the other hand, the
Euler-Lagrange equation can be written as

𝜕L𝜕Φ − 𝜕𝜕𝑥 ( 𝜕L𝜕 (𝜕𝑥Φ)) −
𝜕𝜕𝑡 ( 𝜕L𝜕 (𝜕𝑡Φ)) = 0 (2)

or in generalized form

𝜕L𝜕Φ − 𝜕𝜕𝑥 ( 𝜕L𝜕 (𝜕𝑥Φ)) −
𝜕𝜕𝑡 ( 𝜕L𝜕 (𝜕𝑡Φ))

+ 𝜕2
𝜕𝑥2 (

𝜕L𝜕 (𝜕2𝑥Φ)) = 0.
(3)

Therefore, the position-dependent mass Schrödinger equa-
tion appears as

− ℎ22𝑚 (𝑥) 𝜕
2Ψ (𝑥, 𝑡)
𝜕𝑥2 − 3ℎ24 [ 𝑑𝑑𝑥 ( 1𝑚 (𝑥))] 𝜕Ψ (𝑥, 𝑡)𝜕𝑥

+ (𝑉 (𝑥) − ℎ24 [ 𝑑
2

𝑑𝑥2 (
1𝑚 (𝑥))])Ψ (𝑥, 𝑡)

= −𝑖ℎ 𝑑𝑑𝑡Ψ (𝑥, 𝑡) ,
(4)

where

𝐻̂ = − ℎ22𝑚 (𝑥) 𝜕
2

𝜕𝑥2 −
3ℎ24 [ 𝑑𝑑𝑥 ( 1𝑚 (𝑥))] 𝜕𝜕𝑥

− ℎ24 [ 𝑑
2

𝑑𝑥2 (
1𝑚 (𝑥))] + 𝑉 (𝑥)

(5)

with the atomic units ℎ = 1 and 𝑐 = 1 being used. Performing
the following transformations in (4)

Ψ (𝑥) = 𝑚 (𝑥)1/2𝜙 (𝑦 (𝑥)) , (6a)

𝑑𝑦𝑑𝑥 = 𝑚 (𝑥)1/2, (6b)

𝑚(𝑥) = 𝑚0(1 + 𝛾𝑥2)2 , (6c)

we have [30–32]

𝑦 (𝑥) = √𝑚0√𝛾 arctan (𝑥√𝛾) . (7)

Thus, we have to deal with

−12
𝑑2𝜙 (𝑦)
𝑑𝑦2 + 𝑉 (𝑦) 𝜙 (𝑦) = 𝐸𝜙 (𝑦) . (8)

We now consider

𝑉 (𝑥) = 𝑉0 (arctan (𝑥√𝛾))2 . (9)

The Taylor expansion of the potential is

𝑉 (𝑥) = 𝑉0𝑥2𝛾 − 23𝑉0𝑥4𝛾2 + 2545𝑉0𝑥6𝛾3 + ⋅ ⋅ ⋅ ; (10)

when 𝛾 tends to zero, the higher order terms can be neglected
and we may write

𝑉 (𝑥) = 𝑉0𝛾𝑥2, (11)

or, in terms of 𝑦,
𝑉 (𝑦) = 𝑉0 𝛾𝑚0𝑦

2. (12)

By considering 𝜔 = √2𝑉0𝛾/𝑚0, the potential is more famil-
iarly written as

𝑉 (𝑦) = 12𝑚0𝜔2𝑦2, (13)

where 𝛾 is the mass deformation parameter and 𝑉0 denotes
the potential parameter. In Figure 1, we have plotted the
potential versus 𝑥 for some different 𝛾 values.
3. The Wave Function and Energy for
Oscillator Term

Substituting (13) into (8), we have Weber’s differential equa-
tion as

𝑑2𝜙 (𝑦)
𝑑𝑦2 + (2𝐸 − 𝜔2𝑦2) 𝜙 (𝑦) = 0. (14)

The change of variable 𝑠 = 𝜔𝑦2 brings (14) into the form
𝑠𝑑2𝜙 (𝑠)𝑑𝑠2 + 12 𝑑𝜙 (𝑠)𝑑𝑠 + ( 𝐸2𝜔 − 𝑠4) 𝜙 = 0. (15)

For further convenience, we apply the gauge transformation𝜙(𝑠) = 𝑒−𝑠/2𝜒(𝑠) which leads to

𝑠𝑑2𝜒 (𝑠)𝑑𝑠2 + (12 − 𝑠) 𝑑𝜒 (𝑠)𝑑𝑠 + ( 𝐸2𝜔 − 14)𝜒 = 0. (16)

We identify the above equation as the Kummer differen-
tial equation (16) and its eigenfunctions may be expressed
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Figure 1: 𝑉(𝑥) versus 𝑥.

in terms of regular confluent hypergeometric functions𝑀(𝑎, 𝑐, 𝑠) as [33]
𝜒 (𝑠) = 𝐴̃𝑀(𝑎, 12 , 𝑠) + 𝐵̃𝑠1/2𝑀(𝑎 + 12 , 32 , 𝑠) , (17)

where 𝐴̃ and 𝐵̃ are arbitrary constants and

𝑎 = −( 𝐸2𝜔 − 14) . (18)

In terms of variable 𝑦, the wave functions can be written as

𝜙 (𝑦) = 𝐴̃𝑒−(1/2)𝜔𝑦2𝑀(𝑎, 12 , 𝜔𝑦2)
+ 𝐵̃ (𝜔𝑦2)1/2𝑀(𝑎 + 12 , 32 , 𝜔𝑦2) .

(19)

Recalling (6a), (6c), and (7), Ψ(𝑥) becomes [33]

Ψ (𝑥) = √ 𝑚0(1 + 𝛾𝑥2)2 (𝐴̃𝑒−(𝜔𝑚0/2𝛾) arctan
2(𝑥√𝛾)𝑀(𝑎,

12 , 𝜔𝑚0𝛾 arctan2 (𝑥√𝛾)) + 𝐵̃√𝜔𝑚0√𝛾 arctan (𝑥√𝛾)
⋅ 𝑀(𝑎 + 12 , 32 , 𝜔𝑚0𝛾 arctan2 (𝑥√𝛾))) .

(20)

The confluent Hypergeometric function are related to the
Hermit polynomials via

𝐻𝑛even (𝜉) = (−1)𝑛 (2𝑛)!𝑛! 𝑀(−𝑛, 12 , 𝜔𝑦2) ,
𝐻𝑛odd (𝜉) = (−1)𝑛 2 (2𝑛 + 1)!𝑛! 𝑀(−𝑛, 32 , 𝜔𝑦2) .

(21)

In view of the above equations, the even and odd eigenfunc-
tions may be, respectively, expressed as

Ψeven = 𝑁𝑛√ 𝑚0(1 + 𝛾𝑥2)2 𝑒−𝜔𝑦
2/2𝐻𝑛 (𝑦√𝜔) , (22a)

Ψodd = 𝑁𝑛√ 𝑚0(1 + 𝛾𝑥2)2 𝑒−𝜔𝑦
2/2𝐻𝑛 (𝑦√𝜔) , (22b)

where 𝑁𝑛 is the normalization constant. However, the even
odd eigenfunctions may be combined and the stationary
states of the relativistic oscillator are
Ψ𝑛 (𝑥)
= 𝑁𝑛√ 𝑚0(1 + 𝛾𝑥2)2 𝑒−(𝜔𝑚0/2𝛾) arctan

2(𝑥√𝛾)𝐻𝑛 (√𝜔𝑚0√𝛾
⋅ arctan (𝑥√𝛾)) .

(23)

The energy eigenvalues of spin-zero particles bound in this
oscillator potential may be found using (14). Therefore, the
energy for Even and odd states can be written as

𝐸𝑛 = (𝑛 + 12)𝜔 = √2𝑉0𝛾 (𝑛 + 12) . (24)

4. Thermodynamic Properties

In order to consider the thermodynamic properties of a
neutral particle, we concentrate, at first, on the calculation of
the partition function [34]

𝑄1 = ∞∑
𝑛=0

𝑒−𝛽𝐸𝑛 = 𝑒−𝛽𝜔/2 + 𝑒−3𝛽𝜔/2 + ⋅ ⋅ ⋅

= 1𝑒𝛽𝜔/2 − 𝑒−𝛽𝜔/2 = (2 sinh
√2𝑉0𝛾𝛽2 )−1 ,

(25)

where 𝛽 = 1/𝐾𝑇. The partition function for noninteracting
N-body system is

𝑄𝑁 = (𝑄1)𝑁 = (2 sinh √2𝑉0𝛾𝛽2 )−𝑁 , (26)

where

ln𝑄𝑁 = −𝑁 ln(2 sinh √2𝑉0𝛾𝛽2 ) . (27)

In Figure 2, 𝑄1(𝛽) is plotted in terms of 𝛽 by setting different
constant values for 𝑚0, 𝑉0, and 𝛾. As it can be seen, by
increasing 𝛾 and 𝛽, 𝑄1(𝛽) decreases as in a, somehow, the
same manner.

Once the Helmholtz free energy is obtained, the other
statistical quantities are obtained in a straightforwardway.We
therefore start from

𝐴 = − 1𝛽 ln𝑄𝑁 = 𝑁𝛽 ln(2 sinh √2𝑉0𝛾𝛽2 ) . (28)
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Figure 2: 𝑄1(𝛽) versus 𝛽.
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Figure 3: 𝑈(𝛽)/𝑁 versus 𝛽.

The chemical potential is obtained from (28) by a simple
differentiation as

𝜇 = 𝜕𝐴𝜕𝑁 = 𝐾𝑇 ln(2 sinh √2𝑉0𝛾𝛽2 ) . (29)

The mean energy is obtained from

𝑈 = − 𝜕𝜕𝛽 ln𝑄𝑁 = √2𝑉0𝛾𝑁2 coth
√2𝑉0𝛾𝛽2 . (30)

We have plotted 𝑈(𝛽)/𝑁 in terms of 𝛽. In Figure 3, for small
values of 𝛽, we face with convergences, but as 𝛽 grows up,
a small smooth divergence is observed. 𝑈(𝛽)/𝑁, as 𝛾 and 𝛽
have higher values, gains higher values as well.
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Figure 4: 𝑆(𝛽)/𝐾𝑁 versus 𝛽.
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Figure 5: 𝐶(𝛽)/𝐾𝑁 versus 𝛽.

Themain statistical quantity, that is, the entropy, is related
to other quantities via

𝑆𝐾 = 𝛽2 (𝜕𝐴𝜕𝛽 )
= −𝑁 ln(2 sinh √2𝑉0𝛾𝛽2 )
+ √2𝑉0𝛾𝛽𝑁2 coth

√2𝑉0𝛾𝛽2 .

(31)

In Figure 4, 𝑆(𝛽)/𝐾𝑁 is shown as 𝛽 varies. Although a
divergent behavior is seen at initial values of 𝛽, the curves
tend to zero at large values. The specific heat capacity at
constant volume is obtained from

𝐶𝐾 = −𝛽2 (𝜕𝑈𝜕𝛽 ) = 2𝑉0𝛾𝛽
2𝑁4 (csch √2𝑉0𝛾𝛽2 )2 . (32)

In Figure 5, we have plotted 𝐶(𝛽)/𝐾𝑁 versus 𝛽. In this
figure, somehow, like the last figure, we have convergence but
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depending on the value of 𝛾, values of 𝐶(𝛽)/𝐾𝑁 plunge into
zero values with different slops.

5. Information Entropy

The position space Shannon and Fisher information
entropies for a one-dimensional system can be
calculated as 𝑆𝑥 = −∫ |Ψ𝑛(𝑥)|2 ln |Ψ𝑛(𝑥)|2𝑑𝑥 and 𝐹𝑥 =−∫ |Ψ𝑛(𝑥)|2[(𝑑/𝑑𝑥) ln |Ψ𝑛(𝑥)|2]𝑑𝑥. In general, explicit deriva-
tion of the Shannon information entropy is quite difficult. In
particular the derivation of analytical expression for the 𝑆𝑥 is
almost impossible. We represent the position Shannon and
Fisher information entropy densities, respectively, by 𝜌𝑆(𝑥) =|Ψ𝑛(𝑥)|2 ln(|Ψ𝑛(𝑥)|2) and 𝜌𝐹(𝑥) = |Ψ𝑛(𝑥)|2[(𝑑/𝑑𝑥) ln |Ψ𝑛(𝑥)|2]
[35–40]. In our case, these quantities are obtained as

𝜌𝑆(𝑥)
= 𝑚0𝑒

−𝜔𝑦2𝐻𝑛 (𝑦√𝜔)2 ln (𝑚0𝑒−𝜔𝑦2𝐻𝑛 (𝑦√𝜔)2/ (1 + 𝛾𝑥2)2)
(1 + 𝛾𝑥2)2 ,

𝜌𝐹(𝑥) = −4𝑚0𝑒−𝜔𝑦
2𝑥𝛾𝐻𝑛 (𝑦√𝜔)2(1 + 𝛾𝑥2)3 .

(33)

To understand the essential features of the entropies, some
related figures are included. At first case we plotted the
position space Shannon information entropies 𝑆𝑥 considering𝛾 varying for𝑚0 = 1, 𝜔 = 1. In Figures 6 and 7, we depicted
the behavior of the position space Shannon information
entropies 𝑆𝑥 as function of 𝑛 and 𝛾 by considering 𝑚0 =1, 𝜔 = 1. The ascending nature can be seen easily. In Figures
8 and 9 we have plotted the position Shannon information
entropy densities versus x.

6. Some Expectation Values and
the Uncertainty Principle

The asymmetry caused by the parameter 𝛾 can be ade-
quately quantified in terms of the average position calculated
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as ⟨𝑥⟩ = ∫∞
−∞
Ψ𝑛∗(𝑥)𝑥Ψ𝑛(𝑥)𝑑𝑥 and average for 𝑥2 is ⟨𝑥2⟩ =

∫∞
−∞
Ψ𝑛∗(𝑥)𝑥2Ψ𝑛(𝑥)𝑑𝑥. From (23), the average of the modi-

fied momentum is ⟨𝑝⟩ = 0 and average for 𝑝2 is ⟨𝑝2⟩ =−ℎ2 ∫∞
−∞
Ψ𝑛∗(𝑥)(𝑑2/𝑑𝑥2)Ψ𝑛(𝑥)𝑑𝑥 [41, 42]. We have plotted

the uncertainty for 𝑥, 𝑝 and the uncertainty principle.
Figure 10 shows how uncertainty for 𝑥 can change. Also treat-
ments of uncertainty inmomentum are shown in Figure 11 for𝑚0 = 1 and 𝜔 = 1 for different 𝑛 in terms of 𝛾. Figure 12,
assuming 𝑚0 = 1 and 𝜔 = 1, illustrates the uncertainty
principle versus 𝛾.
7. Conclusion

We studied the physical characteristics of a nonrelativistic
quasi-oscillator interaction within position-dependent mass
formalism. We first obtained the wave functions and the
energy spectra of the system in an exact analytical manner.
Next, the thermodynamic properties, information entropy,
some expectation values, and some uncertainty principles
were evaluated. In addition, we included some figures to

Δ
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2

3

4

1 2 3 4 50
𝛾

m0 = 1, 𝜔 = 1, n = 1
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m0 = 1, 𝜔 = 1, n = 3

Figure 12: Combined uncertainty versus 𝛾.

illustrate the physical characteristics and asymptotic behavior
of the results.
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