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This paper addressed the vehicle routing problem (VRP) in large-scale urban transportation networks with stochastic time-
dependent (STD) travel times. The subproblem which is how to find the optimal path connecting any pair of customer nodes
in a STD network was solved through a robust approach without requiring the probability distributions of link travel times. Based
on that, the proposed STD-VRP model can be converted into solving a normal time-dependent VRP (TD-VRP), and algorithms
for such TD-VRPs can also be introduced to obtain the solution. Numerical experiments were conducted to address STD-VRPTW
of practical sizes on a real world urban network, demonstrated here on the road network of Shenzhen, China. The stochastic time-
dependent link travel times of the network were calibrated by historical floating car data. A route construction algorithm was
applied to solve the STD problem in 4 delivery scenarios efficiently. The computational results showed that the proposed STD-
VRPTW model can improve the level of customer service by satisfying the time-window constraint under any circumstances.
The improvement can be very significant especially for large-scale network delivery tasks with no more increase in cost and
environmental impacts.

1. Introduction

Urban freight distribution/delivery usually leads to traffic
congestion, safety concerns, air pollution, and high logistic
costs [1]. In recent years,more andmore carriers and shippers
have recognized the importance of designing efficient distri-
bution strategies to improve the level of customers service
and reduce the financial and environmental cost of freight
transportation [2]. However, the extensive literature on the
classical vehicle routing problem (VRP) and its variants
have primarily considered the problem using static traffic
information with corresponding constant travel times. In
recent years, a number of studies take account of substantial
variation in speeds and improve themodel by taking the time
dependency of travel times into consideration (see details
in Section 2). However, in urban transportation system, lots
of random factors, such as uncertain traffic volume, severe
weather conditions, and incidents, can lead to the uncertainty

of travel times during most of the day, especially during
the morning and evening peak periods. Those nonrecur-
rent events can significantly affect the reliability of the
transportation system and contribute to a stochastic time-
dependent (STD) congested transportation network. Urban
route designs that ignore these significant variations and
uncertainties of travel times are often found to be inefficient
within a congested traffic condition and may contribute to
higher operational costs or inferior customer service [1].

Therefore, in order to optimize the freight distribution
performance in urban settings, both the random and time-
varying properties of the link travel timesmust be considered.
In this paper, we refer to the stochastic time-dependent VRP
with hard time window (STDVRPTW).The aim of this study
is to devise good and computationally efficient approaches to
assist the fleet dispatchers operating in an urban congested
environment. To utilize available resources for serve time-
sensitive customers, this paper takes into consideration of
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the following travel-time properties: (1) for certain routes, the
travel times vary according to the time of day; (2) the travel
time is stochastic.

The contributions of this paper are as follows.

(i) Taking account of the random and time-varying
characters of traffic conditions, a robust optimization
based method is applied in the proposed model,
which is able to compute the stochastic time-
dependent optimal paths (STDOP) connecting any
pair of customer nodes efficiently. Being different
from many existing approaches, the robust approach
does not require the probability distributions of link
travel times and only takes the range of uncertainty
which can be derived from historical data and expe-
rience of the decision-makers.

(ii) The STDVRP model we proposed here can be con-
verted into a time-dependent VRP (TDVRP). The
simplified problem will not lead to an increase in
the computing time and can be solved efficiently
by conventional algorithms. The proposed model
is capable of addressing STDVRPTW of practical
sizes on a real-world urban network, demonstrated
here on the road network of Shenzhen, China, with
computational instances of up to 150 customers.

(iii) The model we proposed can improve the level of
customer service by guaranteeing the time-window
constraint satisfied without leading to cost increase
or environmental impacts. The improvement can be
significant especially for large-scale network delivery
tasks.

The rest of paper is organized as follows. In Section 2,
a literature review is given on both VRP and optimal path
problem in STD networks. In Section 3, the STD network
is defined and the model of STDVRPTW is formulated.
In Section 4, a routing construction algorithm is presented.
Computational instance and analysis are shown in Section 5.
In Section 6, conclusions are made and future directions are
given.

2. Literature Review

This literature review is split into two parts: firstly, the
literature related to the vehicle routing problems in terms
of time dependency and randomness of link travel times
is overviewed and secondly, the research on optimal path
problem in STD networks is discussed.

2.1. Vehicle Routing Problem. Vehicle assignment and rout-
ing problems have been studied for several decades. Most
traditional methodologies for this class of problems have
been proposed based on adaptations of static algorithms and
developed under static travel time, but they less consider
dynamic traffic flow conditions [3].

As an extension of VRP, in order to consider possible
variations of travel times in the network, Dynamic Vehicle
Routing Problem is proposed.Malandraki andDaskin [4] put

forward a strict mathematical model for TDVRP. They treat
the travel time between two customers as a function of dis-
tance and the time of the day and design a nearest-neighbor
heuristic algorithms and a cut plane heuristic algorithm.
Ichoua et al. [5] introduce a First in First out (FIFO) principle
into TDVRP and use time dependent function of speed to
represent dynamic network, which avoids the deficiency of
waiting in customer node in Malandraki and Daskin’s model
[4]. Donati et al. [6] extend this line of research by indicating
the importance of optimizing the starting time and designing
a more efficient heuristic algorithm in a time-dependent
environment Recently, many research works adopt the time-
dependent speed assumption proposed in [5]. Using queuing
models for time-dependent speeds, analytical expressions for
the expected travel times as well as for the variance of the
travel times are derived in [7]. A continuous function model
of time-dependent link speeds is proposed in [8]. More real-
istic time-dependent information is obtained from archived
historical travel data, as seen in [9]. A general modeling
framework with finer time-dependent traffic information
and efficient solution algorithm are proposed in [1] and are
applicable to large-scale real world.

In this paper, we consider the VRP with dynamic and
stochastic travel times (STDVRP), while there is limited
research related to this topic. Lecluyse et al. [10] address
the STDVRP by capturing the uncertainty in an analytical
way using queuing theory and introduced the variability in
traffic flows into the model, which allows for an evaluation
of the routes based on the uncertainty involved. Nahum
and Hadas [11] combine two important variants to form and
define the STDVRP. Two algorithms for solving the stochastic
time-dependent VRP are compared. As Ichoua et al. [5]
indicate, stochastic and time-dependent travel times aremore
extensively operated on optimal path analysis between two
service nodes when executing VRP delivery (see details
in Section 2.2). Although mean and variance contain the
most important information about path travel time, finding
the single route with expected shortest travel time is not
appropriate for routing when planners are not risk neutral.
So in order to take account of the STD travel times in
STDVRPTW, the optimal path problem in STD networks
should be addressed as a subproblem first.

2.2. Optimal Path Problem in STD Networks. In real-
world transportation networks, there exists more than one
path connecting the current customer-node with the next
unserved one, so taking which path to continue the delivery
should be decided based on certain optimality criterions.That
is to say, optimal path finding problem between two customer
nodes is the fundamental subproblem for VRP and should
be addressed first here to cope with the STD nature of travel
times. If the uncertainty of link travel times can be captured
to determine the optimal path efficiently, approaches may
be more easily obtained for STDVRPTW. However, “optimal
routes selection” in STD networks is more difficult than in
deterministic networks, in part because, for a given departure
time, more than one path may exist between an origin and
destination, each with a positive probability of having the
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least travel time, so the definition of an optimal path can be
somewhat indeterminate.

Hall [12] first puts forward the stochastic and time-
dependent optimal path problem (STDOPP). He chooses
minimum expected travel time (METT) as the optimality
criterion and proposes a branch-and-bound procedure for
finding the METT path in STD networks. Miller-Hooks and
Mahmassani explore the definition of optimality based on
first-order stochastic dominance and definite dominance.
After the 1990s, the utility theory in economics has been
introduced to solve the STD optimal path problem. Wellman
[13] identifies a stochastic consistent condition and presents
a revised path-planning algorithm based on utility function.
Huang and Gao [14] define a disutility function of travel
time to evaluate the STD paths. They design an exact label-
correcting algorithm to find the optimal path with the min-
imum expected disutility, but the algorithm had exponential
computation complexity.

Most existing approaches to this problem in terms of dif-
ferent criterions of optimality rely on the precise probability
distributions for link travel times, which is hard to realize
in practical application. High computation complexity and
inefficient algorithms are also strong restraints when solving
large size network problems. In recent years, considering the
“worst-case performance” of each path, the robust optimiza-
tion theory has emerged as a preemptive way to address
the uncertainties of link travel times without requiring exact
probability distributions. Bertsimas and Sim [15] propose
a linear robust optimization approach based on polyhedral
uncertainty sets. Sim [16] proposes a new methodology to
solve the stochastic optimal path problem, which promises
greater computational tractability, both theoretically and
practically, than the classical robust framework; however, he
does not conduct a further study for solving the optimal path
problem in STD networks.

2.3. Summary of Past Literature. Although routing models
in STD networks are gaining greater attention in the lit-
erature and industry, a general modeling framework and
efficient solution algorithm which is applicable to large-scale
real-world networks are still lacking. Stochastic and time-
dependent travel times aremore extensively operated on opti-
mal path analysis between two service nodes when executing
VRP delivery. However, most of the existing approaches to
the STDOPP generally need a precise probability distribution
of the uncertain link travel times which is hard to realize
in practical application. High computation complexity and
inefficient algorithms are also strong restraints when solv-
ing large size networks problems. In recent years, robust
optimization theory has emerged as a preemptive way to
address the uncertainties of link travel times with better
computational tractability, meanwhile without requiring the
precise probability distribution of link travel times.

In this paper, for such delivery routing with rigid arrival
time requirements, the worst-case travel times of each can-
didate path connecting any pair of customer nodes should be
considered to guarantee the timewindow constraint satisfied.
Beyond that, the reliability of travel time is also a concern in
delivery. So we refer to the robust approach here and apply

it to solve the subproblem of STDVRPTW. The path, which
minimizes the worst-case travel times over all the candidate
paths, is defined as the optimal path connecting any two
customer nodes.

3. Model for STDVRPTW

3.1. The Stochastic Time-Dependent Network. Given a direct-
ed graph 𝐺 = (𝑁,𝐴, 𝑇, 𝐶𝑡

𝑖𝑗
), where 𝑁 is the set of the nodes

and 𝐴 is the set of the links. The number of the nodes and
links are denoted, respectively, as |𝑁| = 𝑛 and |𝐴| = 𝑚. 𝑇 is
the set of time intervals {0, 1, . . . ,𝑀−1}. Link (𝑖, 𝑗) represents
the directed link from node 𝑖 to node 𝑗. A path connecting
any pair of nodes can be denoted as a sequence of nodes. The
travel time on link (𝑖, 𝑗) at time interval 𝑡 is denoted as𝐶𝑡

𝑖𝑗
. SR

represents the set of links with random travel times. In this
paper, it is assumed that all the link travel times in the network
are random and dynamic, so |SR| = |𝐴| = 𝑚. Waiting time
is not permitted at the upstream node 𝑖 before moving to the
downstream node.

We define the travel time on link (𝑖, 𝑗) as

𝐶
𝑡

𝑖𝑗
= 𝑅
𝑡

𝑖𝑗
+ 𝜏
𝑡

𝑖𝑗
. (1)

𝑅
𝑡

𝑖𝑗
is a fixed travel time value at time interval 𝑡 and 𝜏𝑡

𝑖𝑗
is a

randomvariable ranging from0 to 𝑑𝑡
𝑖𝑗
, where 𝑑𝑡

𝑖𝑗
is also a fixed

value at time interval 𝑡. Hence 𝐶𝑡
𝑖𝑗
is random time-dependent

variable and takes value within [𝑅𝑡
𝑖𝑗
, 𝑅𝑡
𝑖𝑗
+ 𝑑𝑡
𝑖𝑗
].

Furthermore, it is assumed that the network model
satisfies the stochastic consistent condition (SCC) proposed by
Wellman [13].That is, the network is stochastically consistent,
if for any link (𝑖, 𝑗), at any time interval 𝑡 < 𝑡󸀠 and any given
time 𝑧, the following inequality holds:

Pr (𝐶𝑡
𝑖𝑗
+ 𝑡 ≤ 𝑧) ≥ Pr (𝐶𝑡

󸀠

𝑖𝑗
+ 𝑡
󸀠
≤ 𝑧) . (2)

The inequality means that the probability of arriving
by any given time 𝑧 cannot be increased by leaving later.
Although overtaking exists in transportation network, such
deterministic consistency condition (FIFO) property gener-
ally holds [14].

3.2. Mathematical Formulation. In this paper, we study
STDVRP with hard time windows. It is assumed that there
is only one depot from where the routes start and end
for each vehicle, a homogeneous fleet consisting of several
vehicles with fixed capacity, while the customers’ demands
are predetermined and each customer must be served within
its time window. Unlike in manufacturing settings where
buffer space may not be available in production facilities
for goods arriving early, this paper permits early vehicles to
wait till the beginning of time windows, as seen in Figure 1.
Since STDVRP is amultiobjective optimization problem, this
papermainly considers the number of vehicles out for service
and total schedule time, allowing different costs associated
with each one. Beyond that, we also take into account that
how many customer nodes failed to be served within their
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Figure 1: An Illustration of STDVRPTW.

time windows during the delivery procedure since more and
more suppliers are concerned about the quality of service.
In addition, the numbers of vehicles out for service are
considered with a larger weight factor than the total schedule
time here.

3.2.1. Notations and Variables. The notations and variables in
the model are shown in Table 1.

3.2.2. The Optimal Path Connecting Any Pair of Customer
Nodes in STD Networks. In this section, we focus on the
subproblem of STDVRPTW.Aswe defined in Section 2.2, the
optimal path fromcustomer node 𝑖 to customer node 𝑗 should
take both the time window constraint and time reliability
into consideration for goods delivery in STD networks, due
to the uncertainty of travel times. So we obtain the STD
optimal path connecting two customer nodes through Min-
Max approach, which minimizes the largest travel times of
each candidate path to gain a more time-reliable and robust
solution. By this optimality criterion, we define

𝑇
𝑚
1

𝑖𝑗
= Min( Max

Candidate Paths
∑
(𝑎,𝑏)∈𝐴

𝑀

∑
𝑚
2
=1

(𝑅
𝑚
2

𝑎𝑏
+ 𝜏
𝑚
2

𝑎𝑏
) ⋅ 𝑦
𝑚
2

𝑎𝑏
) .

(3)

In STD networks, according to the aforementioned
stochastic consistent condition, for any link (𝑎, 𝑏), at any time
interval𝑚

2
< 𝑚󸀠
2
, and any given time 𝑧, we can get (2).

In (2), let 𝑍 = max(𝑅𝑚
󸀠

2

𝑎𝑏
+ 𝜏
𝑚
󸀠

2

𝑎𝑏
+ 𝑚󸀠
2
) = 𝑅

𝑚
󸀠

2

𝑎𝑏
+ 𝑑
𝑚
󸀠

2

𝑎𝑏
+ 𝑚󸀠
2
.

Then, it can be observed that the probability of the right-side
formula of (2) is 100%. Then we can determine that if the

inequality always holds, it must have the following relation,
which holds for any time interval𝑚

2
< 𝑚󸀠
2
:

𝑅
𝑚
2

𝑎𝑏
+ 𝜏
𝑚
2

𝑎𝑏
+ 𝑚
2
≤ max (𝑅𝑚2

𝑎𝑏
+ 𝜏
𝑚
2

𝑎𝑏
+ 𝑚
2
)

= 𝑅
𝑚
2

𝑎𝑏
+ 𝑑
𝑚
2

𝑎𝑏
+ 𝑚
2
≤ 𝑅
𝑚
󸀠

2

𝑎𝑏
+ 𝑑
𝑚
󸀠

2

𝑎𝑏
+ 𝑚
󸀠

2
.

(4)

In this paper, each candidate path connecting any pair
of costumer nodes can be denoted as a sequence of STD
links. So the largest or worst-case travel times of the path
can be obtained by calculating the travel times link by link.
Furthermore, as the bold italic types shown in (4), it indicates
that the worst-case travel times of each STD link satisfies the
FIFO property, for example, link (𝑎, 𝑏). So if all the STD links
take the worst-case value at the departing time of upstream
nodes, it can guarantee the calculated path travel time being
the largest.Thenwe can obtain the worst-case travel times for
each candidate path, as shown in (5) as follows:

max
for each candidate path

∑
(𝑎,𝑏)∈𝐴

𝑀

∑
𝑚
2
=1

(𝑅
𝑚
2

𝑎𝑏
+ 𝜏
𝑚
2

𝑎𝑏
) ⋅ 𝑦
𝑚
2

𝑎𝑏

= ∑
(𝑎,𝑏)∈𝐴

𝑀

∑
𝑚
2
=1

(𝑅
𝑚
2

𝑎𝑏
+ 𝑑
𝑚
2

𝑎𝑏
) ⋅ 𝑦
𝑚
2

𝑎𝑏
,

(5)

𝑇
𝑚
1

𝑖𝑗
= Min( ∑

(𝑎,𝑏)∈𝐴

𝑀

∑
𝑚
2
=1

(𝑅
𝑚
2

𝑎𝑏
+ 𝑑
𝑚
2

𝑎𝑏
) ⋅ 𝑦
𝑚
2

𝑎𝑏
) . (6)

In (6), 𝑅𝑚2
𝑎𝑏

and 𝑑𝑚2
𝑎𝑏

change along with the time-interval
𝑚
2
. 𝑅𝑚2
𝑎𝑏
+ 𝑑
𝑚
2

𝑎𝑏
is not the actual travel time but the upper

bound of travel time on link (𝑎, 𝑏) at time-interval𝑚
2
, which

satisfies FIFO property. So 𝑇𝑚1
𝑖𝑗

can be solved as the shortest
path problem in a FIFO network with time-dependent upper
bound of link travel times 𝑅𝑚2

𝑎𝑏
+ 𝑑
𝑚
2

𝑎𝑏
. Furthermore, the TD

shortest path problem in FIFO networks has been proved to
be solved in polynomial time, and the extended conventional
labeling setting algorithms can be modified to solve the
problem with no more computation complexity than that in
a static network [17].

3.2.3. Model for STDVRPTW. The following is a mixed-
integer programming model for STDVRPTW.

Objective Function. Consider

min𝐾, (7)

min ST. (8)
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Table 1: Notations and variables.

Type Symbol Definition

Objective
function
quantities

K The number of vehicles out for service
ST Total schedule time
TT Total travel time
WT Total waiting time
SVT Total service time

Sets

S Set of starting nodes of all vehicles
E Set of end nodes of all vehicles
D Set of all customer nodes

i ∈ SD Set of starting nodes and customer nodes
j ∈ DE Set of customer nodes and end nodes

i, j ∈ SDE Set of all nodes
C Set of all customers

SC ⊆ C Subset of set C
Link (a, b) ∈ A Set of links that are present in the networks

Inputs and parameters

M The number of time intervals
m1,m2 = 1, 2, . . . ,M Time intervalm1,m2

B An infinite number
svti Service time of customer node 𝑖
qi Delivery demand of customer node 𝑖

[0,T] Time window of depot
[ei, li] Time window constraint of customer node 𝑖
Qk Capacity of vehicle 𝑘

Decision variables

ti Vehicle’s arrival time at node 𝑖
ym2
ab ym2

ab = 1, if any vehicle occupies link (a, b) at timem2; otherwise y
m2
ab = 0

Tm1
ij

Travel times of the optimal path from customer node i to customer node j at
departing time intervalm1

xm1
ij

xm1
ij = 1, if vehicle departs from customer node 𝑖 to customer node 𝑗 at time interval
m1; otherwise x

m1
ij = 0

vik vik = 1, if customer node 𝑖 is visited by vehicle 𝑘; otherwise, vik = 0

Expressions of Objective Function. Consider

ST = TT +WT + SVT,

TT = ∑
𝑖∈𝑆𝐷

∑
𝑗∈𝐷𝐸

𝑗 ̸=𝑖

𝑀

∑
𝑚
1
=1

(𝑇
𝑚
1

𝑖𝑗
⋅ 𝑥
𝑚
1

𝑖𝑗
) ,

WT = ∑
𝑖∈𝐷

max (𝑒
𝑖
− 𝑡
𝑖
, 0) ,

𝑇
𝑚
1

𝑖𝑗
= Min( max

for each candidate path
∑
(𝑎,𝑏)∈𝐴

𝑀

∑
𝑚
2
=1

(𝑅
𝑚
2

𝑎𝑏
+ 𝜏
𝑚
2

𝑎𝑏
) ⋅ 𝑦
𝑚
2

𝑎𝑏
)

= Min( ∑
(𝑎,𝑏)∈𝐴

𝑀

∑
𝑚
2
=1

(𝑅
𝑚
2

𝑎𝑏
+ 𝑑
𝑚
2

𝑎𝑏
) ⋅ 𝑦
𝑚
2

𝑎𝑏
) ,

𝑡
𝑖
= max (𝑒

𝑖−1
, 𝑡
𝑖−1
) + svt

𝑖−1
+ 𝑇
𝑚
1

(𝑖−1)𝑖
,

SVT = ∑
𝑖∈𝐷

svt
𝑖
.

(9)

Constraints. Consider

∑
𝑖∈𝑆𝐷

𝑖 ̸=𝑗

𝑀

∑
𝑚
1
=1

𝑥
𝑚
1

𝑖𝑗
= 1, 𝑗 ∈ 𝐷𝐸, (10)

∑
𝑗∈𝐷𝐸

𝑖 ̸=𝑗

𝑀

∑
𝑚
1
=1

𝑥
𝑚
1

𝑖𝑗
= 1, 𝑖 ∈ 𝑆𝐷, (11)

𝐾

∑
𝑘=1

𝑘 (V
𝑖𝑘
− V
𝑗𝑘
) ≤ 𝐵(1 −

𝑀

∑
𝑚
1
=1

𝑥
𝑚
1

𝑖𝑗
) ,

𝑖 ∈ 𝑆𝐷, 𝑗 ∈ 𝐷𝐸, 𝑖 ̸= 𝑗,

(12)

𝐾

∑
𝑘=1

𝑘 (V
𝑖𝑘
− V
𝑗𝑘
) ≥ 𝐵(

𝑀

∑
𝑚
1
=1

𝑥
𝑚
1

𝑖𝑗
− 1) ,

𝑖 ∈ 𝑆𝐷, 𝑗 ∈ 𝐷𝐸, 𝑖 ̸= 𝑗,

(13)
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Figure 2: The illustrated solving procedure of STDVRPTWmodeling.

𝐾

∑
𝑘=1

V
𝑖𝑘
= 1, 𝑖 ∈ 𝐷, (14)

∑
𝑖∈𝐷

(𝑞
𝑖
⋅ V
𝑖𝑘
) ≤ 𝑄

𝑘
, 𝑘 = 1, 2, 3, 4, (15)

∑
𝑖∈𝑠

∑
𝑗∈𝐷𝐸

𝑀

∑
𝑚
1
=1

𝑥
𝑚
1

𝑖𝑗
= ∑
𝑖∈𝑆𝐷

∑
𝑗∈𝐷

𝑀

∑
𝑚
1
=1

𝑥
𝑚
1

𝑖𝑗
, (16)

∑
𝑖,𝑗∈𝑆𝐶

𝑖 ̸=𝑗

𝑀

∑
𝑚
1
=1

𝑥
𝑚
1

𝑖𝑗
≤ |𝑆𝐶| − 1, 𝑆𝐶 ∈ 𝐶, (17)

𝑡
𝑖
= max (𝑒

𝑖−1
, 𝑡
𝑖−1
) + svt

𝑖−1
+ 𝑇
𝑚
1

(𝑖−1)𝑖
≤ 𝑙
𝑖
, 𝑖 ∈ 𝐷, (18)

𝑡depot ≤ 𝑇, 𝑡
0
= 0. (19)

Objective function (7) minimizes the number of vehicles
out for service. Objective function (8) minimizes the total
schedule time (ST), where ST is the sum of total travel
time (TT), total waiting time (WT), and total service time
(SVT). Constraints (10) and (11) state that each customer
can be served only once. Constraints (12)–(14) state that
customers for each route can be served by only one vehicle.
Constraint (15) states that the capacity of customers for each
route does not exceed the maximum capacity of a single
vehicle. Constraint (16) states that all the utilized vehicles
should return to the depot. Constraint (17) is added for
route continuity. Constraints (18) and (19) are added as time
window constraints.

4. Algorithm for STDVRPTW

In the model of STDVRPTW that we proposed, the only
dynamic random variable𝑇𝑚

𝑖𝑗
has been converted into a time-

dependent function which can be computed by solving a
shortest path problem with time dependent travel times (see
details in Section 3.2.2, denoted as (6)). So the STDVRP can
be simplified into a TDVRP, and algorithms for suchTDVRPs
can also be applied to obtain the solution. Since VRP is a
NP-hard optimization problem, the complexity of the STD
problem will remain the same as capacitated VRP at least,
because of the time dimension and the stochastic properties
of the problem. Such complexity calls for the development of
an efficient heuristic algorithm.

Duan et al. [18] extended the route construction algo-
rithm, namely, NNC (nearest neighbor algorithm base
on minimum cost) algorithm for solving the TDVRP
in extended Solomon instances. Considering computing
time and solution quality synthetically, he proved that the
extended NNC algorithm had a better performance com-
pared with some other existing algorithms. The same algo-
rithm is also applied in this paper to solve the simplified
STDVRPTW.

5. Case Study

The main goals of this computational test are (a) to illustrate
the importance of considering the STD characters of the
transportation networks when designing the delivery route



Discrete Dynamics in Nature and Society 7

Table 2: Computational results and evaluation of routing plans in 4 delivery scenarios.

Instance specification Vehicle number Schedule timeb Travel time Failure number Failure CPU times (s)
Scenario Number of customers Model ratec

1 25
TD 4 43.76 22.44 5.5 22% 5.55
STD 5 47.35 23.61 0 0 5.27
Δ
a 25.00% 8.20% 5.21% None −22% −5%

2 50
TD 7 60.24 29.98 11.4 22.8% 19.63
STD 9 65.62 31.20 0 0 17.08
Δ 28.57% 8.93% 4.07% None −22.8% −13%

3 100
TD 15 116.97 47.98 20.3 20.3% 71.11
STD 17 126.89 53.25 0 0 66.58
Δ 13.33% 8.48% 10.98% None −20.3% −6%

4 150
TD 20 179.15 88.61 31.4 20.9% 148.38
STD 23 202.99 98.08 0 0 137.88
Δ 15.00% 13.31% 10.69% None −20.9% −7%

a
Δ indicates relative percentage change between the two tests.

bTotal schedule time is the sum of total travel time (TT), total waiting time (WT), and total service time (SVT).
cFailure rate = failure number/number of customers.

Figure 3: The transportation network of Shenzhen, China.

plans and (b) to confirm the validity of robust approach, by
use of which, the STD optimal paths connecting any pair of
customer nodes can be computed, the VRP model can be
simplified (STDVRPTW to TDVRPTW), and it is also able
to gain a high service-level solution without increasing the
computing time, and (c) to verify that the solution algorithm
works well in a simulated large-scale urban transportation
network with STD link travel times for an entire planning
horizon.The functions of link travel times in the test network
can be calibrated by the use of historical floating car data
which can be derived from taxis equipped with GPS devices.
The solving procedure can be illustrated in Figure 2.

5.1. Construction of Test Instance in Real Urban
Transportation Network

5.1.1. Experimental Setting

(1) The Large-Scale Urban Road Network. Numerical experi-
ments were conducted on the urban transportation network
of Shenzhen, China, consisting of 3,454 nodes and 4,876

links, shown in Figure 3. The network covers the downtown
area of Shenzhen.

(2) Stochastic Time-Dependent Link Travel Times of the
Network Calibrated by Historical Floating Car Data. Floating
car data (FCD) collection system is a new traffic detection
technology in recent years, which uses the position data
transmitting from on-board GPS equipment in regular inter-
val, to compute the traffic parameters of speed and travel
time and so forth and get the real-time traffic condition
of the network. Compared with fixed-point traffic detector
like inductive loop and microware radar, it is advanta-
geous in wide coverage, high efficiency, and low operation
cost.

In this paper, the historical floating car data (travel
speeds) were obtained at a 5-minute interval (total 288
intervals for one day) from over 5,000 taxis equipped with
FCD collection devices in Shenzhen, China, during workdays
in one week. After raw data filtering, recovering, and map-
matching processing, a set of discrete travel speeds on each
link at a 5-minute interval can be obtained.Then for each link
of the network, the upper and lower bound of obtained link
travel speeds at each interval can be calibrated by the maxi-
mum andminimumvalue of the processed data; moreover, in
order to reflect the randomness of the network, the link travel
speed at each interval was assumed to take values randomly
within the ranges (hypothetical Gaussian distribution). So the
time-dependent step function of stochastic link travel speeds
can be established with 288 intervals, through which the
stochastic time-dependent link travel times of the network
can be obtained. The calibration procedure is illustrated in
Figure 4.

(3) Travel Times of the STD Optimal Path Connecting Any
Pair of Customer Nodes. Since link travel times of the network
have been calibrated at 288 intervals. Travel times of the STD
optimal paths connecting any pair of customer nodes can be
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Raw floating car data

Raw data:
filtering, recovering and, map-matching process

Discrete link travel speeds at each interval
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speeds at each interval
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stochastic link travel speeds

Time-dependent functions of stochastic 
link travel times

Total 4,876 links and 288 intervals 

Converted
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each interval
lower V

each interval
upper

∼

Figure 4: The calibration procedure of stochastic time-dependent travel times.

computed at each interval by the proposed robust approach
in Section 3.2.2.

(4) Depot and Customer Nodes Information. Four delivery
scenarios with different number of customer nodes were set
for the test. The spatial distribution of depot and customer
nodes is shown in Figure 5.The symbol ⋆ denoted depot, and
∙ denoted customer node.

(5) Customer Information

(i) Demand range: 1–40 units (random integers drawn
from the Solomon’s test instance R101 [19]).

(ii) Service time of customers: the service time of each
customer is fixed as 30 minutes.

(iii) The earliest service time of each customer: the earliest
start service time of each customer is generated based
on the test instance R101 of Solomon instances [19],
ranging from 8 AM to 5 PM.

(6) Time Window Information

(i) The working hours of the depot is [8:00, 19:00].
(ii) 30 minutes time window of customers: specify 30

minutes time window from the earliest start service
time for each of the customers.

(7) Vehicle Information

(i) Fleet size is 30.
(ii) Vehicle capacity is 200 units.

5.1.2. Test Environment. The test environment is as follows:

(i) CPU is Intel Core i3 (Quad-Core), 2.93GHz.
(ii) Memory is 4GB.
(iii) Operation Systems is Windows 2003 Server.
(iv) Program Language is Microsoft C# .Net.

5.2. Computational Results. The STDVRPTW were solved,
respectively, in the 4 delivery scenarios on the large-scale
road network of Shenzhen, China, by the extended NNC
algorithm. Meanwhile, in order to test the effectiveness of
the approachwe proposed, another TDVRPTW test was con-
ducted as the reference in the same instances (the expected
travel times were used to cope with the fluctuations of travel
time in STD instances for a priori delivery-route planning;
therefore it can be considered as a TDVRP). In these two
tests, the a priori delivery-route plans in the instances were
first generated based on the model of STDVRPTW and
TDVRPTW. Then the delivery task was executed according
to the a priori plans, during which the link travel times
were generated randomly (hypothetical Gaussian distribu-
tion) between the upper and lower bound of the calibrated
travel times. The number of vehicles out for service, total
schedule times, and CPU times were calculated, respectively,
in the tests. The indicator failure number denoted how many
customer nodes failed to be servedwithin their timewindows
due to the fluctuation of travel times during the actual
execution (if a vehicle arrives at the customer node beyond
its upper bound of time window, the service will not start and
the vehicle will continue its next delivery node according to
the plan).The comparative results between STDVRPTW and
TDVRPTW are shown in Table 2.

5.2.1. Comparison of Primary Results and Evaluation of
Routing Plans. Table 2 shows a comparison of the results
obtained from all instances. As expected, the total cost in
STDVRPTW test, including the number of vehicles out
for service and the total schedule times, is a little higher
compared with the counterpart instances in TD situation.
The relative increase of cost regarding the total schedule
time can go up to 13.31% in Scenario 4. Similar tendency is
also observed for the total number of vehicles; that is, STD
model requires more vehicles to serve all customer nodes,
but with the number of customers increasing in large-scale
delivery scenarios (Scenarios 3 and 4), the relative percentage
of increase becomes smaller. However, if we take the failure
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Scenario 1: a depot and 25 customer nodes

Scenario 2: a depot and 50 customer nodes

Scenario 3: a depot and 100 customer nodes

Scenario 4: a depot and 150 customer nodes

Figure 5: Spatial distribution of depot and customer nodes on the
network (4 scenarios).

number of service into consideration, the cost gap may be
ignored, which will be explained in the following.

The comparison result regarding the number of customer
nodes that fail to be served within time windows in actual
execution is quite the contrary.The failure rates of TDmodel
in 4 delivery scenarios always retain larger than 20%and seem
to be invariant with the number of customers. However, there
exist no delivery failures in the actual delivery executions
when using our STDVRP model, as shown in Table 2. Such
comparison results can be explained as follows: the expected

travel times are used in TDVRP test to cope with the fluctua-
tions of travel times for a priori route planning. However, the
actual travel times in STD networks are generated randomly
between the upper and lower bounds of the calibrated travel
times during the execution of delivery, so it cannot guarantee
the actual travel times satisfying the time-window constraint
of next customer node and may lead to the failure of delivery
task. In contrast, it can be entirely avoided in the model
of STDVRPTW we proposed by considering the worst-case
travel times though robust approach.

The good news is that the relative percentage increase of
the total cost seems to become smaller with the increasing
number of the customers, while the failure rate in TD
model always retains a high 20% level. Since the fail-serviced
customer nodes in real life generally need to be served again
afterwards, with the network scale expanding, more extra
vehicles and operational costs would be paid on the basis
of first round service. Thus, it indicates that for large-scale
network delivery task, the improvement of service level can
be very significant by use of our STDVRP model at no more
expense of increases in cost and environmental impacts.

5.2.2. Comparison of CPU Time. From the statistics in
Table 2, we can find that the STDVRPTW in 4 scenarios
requires more or less the same computational time as the
counterparts in TDVRP, and both of them can be solved
efficiently in large-scale delivery scenario by NNC algorithm
(137.88 s in 150 customers situations by use of STD model).
It implies that the VRPTW in STD networks can be solved
as efficiently as TDVRPTW by the NNC algorithm and may
have a good potential of application in large-scale network.

6. Conclusion and Future Directions

This paper addressed the VRPTW of practical sizes on a real-
world network with STD travel times. A robust optimization
based method was proposed to solve the STD optimal path
problem between any pair of customer nodes, which is
considered as the subproblem of STDVRPTW, and the path
which minimizes the worst-case travel time over all the can-
didate paths is defined as the optimal. With the subproblem
solved, the STDVRPTW can be simplified into a TDVRP
and algorithms for such TDVRPs can also be introduced to
obtain the solution. Numerical experiments were conducted
on the urban transportation network of Shenzhen, China,
consisting of 3,454nodes and 4,876 links.The stochastic time-
dependent link travel times of the network were calibrated
at 288 intervals by the use of historical floating car data.
Then the NNC algorithm was applied to solve the problem
in 4 delivery scenarios. The computational results showed
that the proposed STDVRPTW model can improve the
level of customers service by guaranteeing the time-window
constraint satisfied. The improvement can be very significant
especially for large-scale network delivery tasks at no more
expense of increases in cost and environmental impacts.

We would like to continue the work on analyzing STD-
VRP in large-scale transportation networks using real-time
information. More computational tests can be conducted
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to analyze the potential of our approach in practice. More
algorithms, such as Genetic Algorithm and Ant Colony
Algorithm, will be applied in future to obtain better solutions.
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