
Research Article
Performance of a Code Migration for the Simulation of
Supersonic Ejector Flow to SMP, MIC, and GPU Using OpenMP,
OpenMP+LEO, and OpenACC Directives

C. Couder-Castañeda,1,2 H. Barrios-Piña,3 I. Gitler,1 and M. Arroyo1

1Departamento de Matemáticas, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional
(ABACUS-CINVESTAV-IPN), P.O. Box 14-740, 07000 México, DF, Mexico
2Centro de Desarrollo Aeroespacial del Instituto Politécnico Nacional, Belisario Domı́nguez 22, 06010 México, DF, Mexico
3Tecnológico de Monterrey, Avenida General Ramón Corona 2514, 45201 Zapopan, JAL, Mexico

Correspondence should be addressed to H. Barrios-Piña; hector.barrios@itesm.mx

Received 28 July 2014; Revised 9 April 2015; Accepted 4 June 2015

Academic Editor: Jan Weglarz

Copyright © 2015 C. Couder-Castañeda et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

A serial source code for simulating a supersonic ejector flow is accelerated using parallelization based on OpenMP and OpenACC
directives.The purpose is to reduce the development costs and to simplify the maintenance of the application due to the complexity
of the FORTRAN source code.This research followswell-proven strategies in order to obtain the best performance in bothOpenMP
and OpenACC. OpenMP has become the programming standard for scientific multicore software and OpenACC is one true
alternative for graphics accelerators without the need of programming low level kernels.The strategies using OpenMP are oriented
towards reducing the creation of parallel regions, tasks creation to handle boundary conditions, and a nested control of the loop
time for the programming in offloadmode specifically for the Xeon Phi. In OpenACC, the strategy focuses onmaintaining the data
regions among the executions of the kernels. Experiments for performance and validation are conducted here on a 12-core Xeon
CPU, Xeon Phi 5110p, and Tesla C2070, obtaining the best performance from the latter. The Tesla C2070 presented an acceleration
factor of 9.86X, 1.6X, and 4.5X compared against the serial version on CPU, 12-core Xeon CPU, and Xeon Phi, respectively.

1. Introduction

Currently, the development of parallel applications in science
is conducted for heterogeneous architectures which are a set
of distinct processing units that share one memory system.
Usually, these units are a set of processors with multiple
cores or processing units such as graphics cards (GPUs)
or coprocessors, like the Xeon Phi, also known as Many
Integrated Core (MIC), designed to accelerate the computing
time.

Due to the diversity of architectures, the type of parallel
programming employed is heavily dependent on the type of
hardware. For this reason, when developing a parallel appli-
cation to be migrated for various platforms, the program-
mer must have three fundamental questions in mind: the
performance regarding the programming effort, that is, the
evaluation of the development cost in terms of the execution

time reduction, the energy efficiency, and the ease of mainte-
nance/modification of the source code.

For example, the parallel programming at low level on
Graphics Processing Units (GPUs) (at the kernel level) can be
complicated and requires much development time. This type
of programming can lead to a lack of productivity and error
prone, thereby usually not being acceptable for industrial
projects where the development time is a critical decision
factor. In order to mitigate the development effort, the next-
generation compilers help to create low-level code through
directives written in a higher level of abstraction. However,
even when these compilers are currently more advanced and
simplify the developer’s work, they still require good coding
design to achieve an efficient parallel algorithm. Benefits of
the compiler can be evidenced by simplifying the tedious low-
level coding work.

Hindawi Publishing Corporation
Scientific Programming
Volume 2015, Article ID 739107, 20 pages
http://dx.doi.org/10.1155/2015/739107

2 Scientific Programming

Within the methodology of a parallel application, the
most difficult part begins even before the first line is coded.
Having a successful parallel algorithm is essential to improve
performance, thereby reducing processing time. If the design
of the application is not significantly converted to parallel, the
implementation on aGPUorMICwill not havemuch benefit.
Other options and different possibilities for parallelization
should be explored [1].

Currently, OpenMP could be considered as standard for
scientific programming on symmetric multiprocessing sys-
tems (SMP), and even it can be used transparently in theXeon
Phi architecture [2]. OpenMP is sustained by a combination
of function and compiler directives [3, 4]. OpenMP has
proven to be a powerful tool for SMP due to several reasons:
it is highly portable; it allows medium granularity; each
thread can access the same shared memory; it has its own
private memory; and it also has a greater level of abstraction
than MPI models [5]. Specifically for Computational Fluid
Dynamics (CFD), applications of OpenMP have proven their
effectiveness better than MPI [6]. Meanwhile, OpenACC,
with a very similar methodology than OpenMP, has recently
appeared as a viable alternative for specialized low-level
languages, such as CUDA C and OpenCL for fluid dynamics
GPU based applications, with very good results [7, 8]. The
granularity in OpenACC is considered fine for its origin
linked to CUDA.

The application to be accelerated in the present work
is a serial code for simulating an ejector supersonic flow,
commonly used in oil and gas industry. The ejectors confine
a fluid flow under controlled conditions and then discharge
it to an intermediate pressure between high pressure fluid
from the nozzle and low pressure fluid from the suction.
The flow through an ejector is governed by the principle of
momentum conservation. Ejectors are seen like a venturi that
works on the transmission of energy caused by the impact of
a fluidmoving with a very high velocity against another slow-
moving or steady flow. This impact generates a mixture of
fluids moving at a moderately high velocity, finally obtaining
a higher pressure than the slow-moving fluid.

Ejectors are commonly employed to extract gases from
the reservoirs where vacuums are produced, appliances such
as condensers, evaporators, vacuum-based distillation tow-
ers, and refrigeration systems, where the extracted gases are
generally noncondensable, as air. Ejectors are also used for
mixing flows in sulfitation processes of sugar mills. Figure 1
shows the components of a typical ejector.

Previous numerical simulations for the ejector diffuser
using the present source code were conducted by Couder-
Castañeda [9], where the geometry of the diffuser, the
numerical scheme, and the initial and boundary conditions
are described in detail. Couder-Castañeda parallelized the
code using a message-passing methodology based on the
JPVM; however, the code was tested only in four processors
because the required number of messages is intensive. Thus
it is not scalable. After the work of Couder-Castañeda,
convolutional PML boundary conditions were improved in
the code to absorb pressure waves at the outflow boundary
[10]. The simulations have been costly in terms of computing
time, resulting in undesirable time-delays to get results. For

Motive gas Chess

Mixing chamber

Nozzle
Suction

Throat

Diffuser

Discharge

Figure 1: Different parts of a typical ejector.

example, on an Intel Xeon 2.67GHz, 3 seconds of real-time
simulation consumes about 35 hours of serial computing
time. For this reason, in this work other coding alternatives
to reduce the computing time are sought, while maintaining
the source code intact due to the complexity of the numerical
scheme.

This paper is organized as follows. Section 2 focuses on
the design of the parallel algorithm, where both OpenMP
and OpenACC designs are described in detail. In Section 3,
performance experiments of the designs are shown for differ-
ent architectures, that is, OpenMP on conventional multicore
CPU and Xeon Phi and OpenACC on GPU. Section 4 shows
validation tests of the code porting for the case of the ejector
flow, where the total energy and the Mach number are
compared. The paper ends with the conclusions in Section 5.

2. Design of the Parallel Algorithm

Details of the numerical scheme used in the original source
code can be consulted in [9]. As an explicit finite differ-
ence numerical method is used and the set of equations is
solved by a predictor-corrector scheme, the code is highly
parallelizable. However, it is necessary to be cautious about
the parallel implementation in order to get a significant
reduction of computing time. First, the number of loops
to be parallelized must be analyzed. Figure 2 illustrates the
flow diagram which corresponds to the predictor step and
demonstrates the execution of the loops labelled as 𝐶1, 𝐶2,
𝐶3,𝐶4,𝐶5,𝐶6, and𝐶7. On the other hand, Figure 3 shows the
corrector step where the loops are 𝐶8, 𝐶9, 𝐶10, 𝐶11, 𝐶12, 𝐶13,
𝐶14, 𝐶15, and 𝐶16.

In the predictor step, the loops are used as follows:

(i) One loop to calculate the predicted values of the flow
primitives with backward finite differences (𝐶

1
).

(ii) Four light loops to apply boundary conditions (from
𝐶2 to 𝐶5).

(iii) One loop to calculate stress forces (𝐶
6
).

(iv) One loop to calculate the predicted flow variables
(𝐶
7
).

In the corrector step, the loops are used as follows:

(i) One loop to calculate the new corrected values of the
flow primitives with forward finite differences (𝐶

8
).

(ii) Four light loops to apply boundary conditions (from
𝐶9 to 𝐶12).

Scientific Programming 3

C

C

C1

C2

C3

C4

C5

C6

C7

Do i=2,(ni-1)

Do i=2,(ni-1)

Do i=2,(ni-1)

Do j=1,nj

Do j=1,nj

Do j=2,(ni-1)

Do i=2,(ni-1)
Do j=2,(ni-1)

Do i=2,(ni-1)
Do j=2,(ni-1)

DF1/Dx_ DF3/Dx_

DF2/Dx_ DF4/Dx_

DF1/Dn_ DF3/Dn_

DF2/Dn_ DF4/Dn_

DG1/Dn_ DG3/Dn_

DG2/Dn_ DG4/Dn_

SF1_ SF3_

SF2_ SF4_

DU1/Dt DU3/Dt

DU2/Dt DU4/Dt

DU1Dtav DU2DtavDU3Dtav

DU3Dtav
DU3Dtav

DU4Dtav

u_,v_,p_,ro_

u_,v_,p_,ro_

u_,v_,p_,ro_

u_,v_,p_,ro_

tau_xx_ tau_yy_

tau_xy_ q_x_

q_y_

G1_

G2_

G3_

G4_

Stress terms

(outflow)

(upper boundary)

(lower boundary)

Artificial viscosity

(inflow)

Time derivative

Spatial derivatives

Average derivatives

Predicted values

Final predicted values

F4_F2_

F3_F1_U1_

U4_U3_

U2_

U1n

U2n

U3n

U4n

Figure 2: Flow diagram of the predictor step of the numerical algorithm.

4 Scientific Programming

C

C
9

C8

C10

C11

C12

C13

C14

C15

Do i=2,(ni-1)

Do i=2,(ni-1)

Do i=2,(ni-1)

Do j=1,nj

Do j=1,nj

Do j=2,(ni-1)

Do i=2,(ni-1)
Do j=2,(ni-1)

Do i=2,(ni-1)
Do j=2,(ni-1)

Do i=2,(ni-1)
Do j=2,(ni-1)

Do i=2,(ni-1)
Do j=2,(ni-1)

DF1/Dx_

DF2/Dx_

DF3/Dx_

DF4/Dx_

DF1/Dn_ DF3/Dn_

DF2/Dn_ DF4/Dn_

DG1/Dn_

DG2/Dn_

DG3/Dn_

DG4/Dn_

SF1_ SF3_

SF2_ SF4_

DU1/Dt DU3/Dt

DU2/Dt DU4/Dt

pn

un

ron

vn

U1n U3n

U2n U4n

U1n U2n

U3n U4n

DU1Dtav DU2Dtav

DU3Dtav DU4Dtav

un,vn,pn,ron

un,vn,pn,ron

un,vn,pn,ron

un,vn,pn,ron

tau_xx tau_yy

tau_xy q_x

q_y

F1n F3n

F2n F4n

G1n G3n

G2n G4n

Energy

ETOT

Reduction

Final corrected values

Stress terms
(outflow)

(upper boundary)

(lower boundary)

Corrected primitives Corrected values

Artificial viscosity

(inflow)

Time derivative

Spatial derivatives

Average derivatives

Figure 3: Flow diagram of the corrector step of the numerical algorithm.

Scientific Programming 5

Table 1: Intensity values of loops of the original source code. The
underlined intensities correspond to loops candidates to be paral-
lelized.

Loop Intensity
𝐶1 1.63
𝐶2 0.50
𝐶3 0.50
𝐶4 0.36
𝐶5 0.00
𝐶6 2.69
𝐶7 1.86
𝐶8 1.86
𝐶9 0.50
𝐶10 0.50
𝐶11 0.36
𝐶12 0.00
𝐶13 2.14
𝐶14 2.69
𝐶15 1.86
𝐶16 1.40

(iii) One loop to calculate stress forces (𝐶
13
).

(iv) One loop to calculate the final flow variables (𝐶
14
).

Additionally, onemore loop is considered to calculate the
energy per cell (𝐶15), and another loop with a sum reduction
serves to calculate the total energy (𝐶16). Thus, the code
requires 16 loops to complete one time step. In order to get
a significant reduction in computing time, the loops must be
computationally intensive. Intensity is not the only metric,
but for codes that use finite differences it is very useful. The
intensity of a loop is the ratio of floating point operations to
the memory accesses required by the loop.

In the PGI FORTRAN compiler, the parameter
-Minfo=intensity can be employed to calculate intensity
𝐼. The intensities obtained for loops 𝐶1 to 𝐶16 are shown
in Table 1. It is necessary to clarify that the intensity 𝐼 is
defined as 𝐼 = 𝑓/𝑚, where 𝑓 is the number of floating point
operations and 𝑚 is the number of data movements; for
example, A(:)=B(:)+C(:) has an intensity of 0.333 (3
memory accesses, 1 operation) or A(:)=C0+B(:)*(C1+
B(:)*c2) has an intensity of 2.0 (2 memory accesses, 4
operations); more examples could be seen in [11]. All the
intensities in the loops were calculated manually following
this definition to verify the results given by the PGI compiler.
Additionally, the computing time required by loops was
measured using the PGI profiling tool. We observe that
intensity is directly proportional to computing time, which
means that loops with greater intensity are loops that
consume more computing time.

The intensities obtained are shown in Table 1. The impli-
cations of these results have to be managed carefully, because
it is necessary to take into account the characteristics of the
hardware. For this problem we consider that every loop with
an intensity level 𝐼 ≥ 1.0 is a candidate to be parallelized,
but it is also possible to parallelize them if they are part of

a larger program. Loops with 𝐼 ≤ 1.0 generally are loops
for which accelerating is not recommended but it depends
on the platform properties. The loops of the present source
code with intensities greater than 1.0 (values underlined in
Table 1) are ready to be parallelized.The loops with intensities
less than 1.0 are those where the boundary conditions are
handled (values boxed in Table 1). In these cases, the loops are
data dependent, whichmeans that once one loop has finished,
the next can start, with the exception of specific loops of
boundary conditions that can be executed concurrently.

2.1. Design in OpenMP. The methodology begins with the
OpenMP design, since it is more widely used and is com-
piled directly for multicore systems. Currently, OpenMP
is considered the de facto standard to express parallelism
in symmetric multiprocessing systems. According to Calvin
et al. [2], OpenMP can be employed transparently in the
Xeon Phi architecture. Furthermore, it is based on a com-
bination of compilation directives and functions. OpenMP
has proven to be a powerful tool for the development of
scientific applications requiring parallelization, because (1)
it is highly portable across multiple platforms, (2) it allows
the development of applicationswithmedium granularity, (3)
each processing thread created with the same directive has
its own private memory while also being able to access the
shared memory, and (4) it is considered to have a higher level
of abstraction than the message-passing model [3, 12, 13].
Two possible disadvantages that the use of OpenMP can has
are that the application can be affected by problems of cache
coherence, and uncontrolled and simultaneous access to the
shared memory can lead to false sharing problems between
execution threads.

The main characteristics of OpenMP are as follows:

(i) The OpenMP codes run on shared memory mach-
ines. It could be expected that they run also in GPUs
in the 4.0 specification.

(ii) It has high portability.
(iii) It permits both medium grain and fine grain paral-

lelism (vectorization level).
(iv) Each thread sees the same global memory but has its

own private memory.
(v) It has implicit messaging (through shared variables).

Some disadvantages we can find are as follows:

(i) The placement policy of data can cause problems for
not experts developers.

(ii) Overheads can become an issue when the size of the
parallel loop is too small.

(iii) Threads are executed in a nondeterministic order.
(iv) Explicit synchronization is required.

In order to use OpenMP, the code should include the
compilation directives to generate the parallel loops, thereby
distributing the computation automatically [13]. The loops
could be parallelized using Listing 1 or Listing 2. The com-
puting is distributed implicitly; therefore the partitioning of

6 Scientific Programming

!$OMP PARALLEL DO SHARED(⋅ ⋅ ⋅) &
!$OMP & FIRSTPRIVATE(⋅ ⋅ ⋅)

⋅ ⋅ ⋅

!$OMP END PARALLEL

Listing 1: The parallel DO is implemented more efficiently than a
general parallel region containing a loop.

!$OMP PARALLEL SHARED(⋅ ⋅ ⋅) &
!$OMP & FIRSTPRIVATE(⋅ ⋅ ⋅)

!$OMP DO

⋅ ⋅ ⋅

!$OMP END DO

!$OMP END PARALLEL

Listing 2: Parallel region containing a loop.

!$OMP PARALLEL DO

!$OMP END PARALLEL DO

!$OMP PARALLEL DO

!$OMP END PARALLEL DO

Listing 3: Opening and closing of the parallel region.

!$OMP PARALLEL

!$OMP DO

!$OMP END DO

!$OMP DO

!$OMP END DO

!$OMP END PARALLEL

Listing 4: Parallel region persistent between loops.

the loop is effectuated automatically using a balancing algo-
rithm. It can be specified by the developer but for our
application the decision is left to the scheduler.

We have two options for parallelizing the loops that have
to be considered; the first is the handling of loops inside a
parallel region (Listing 3), and the second is to create one
parallel DO for each loop (Listing 4). Both options are viable
because even when a parallel region is closed the threads
remain active and when a new parallel region is reopened the
overhead is not significant.

On the other hand, the parallelization of the loops
DO/FOR in the highest possible level can lead to a better
performance, thereby implying the parallelization of the
outer-most loop and the encompassing of multiple loops in
the parallel region. In general, the creation of loops inside

parallel regions reduces the overload for the parallelization
by avoiding the creation of a parallel DO.

For example, the code showed in Listing 1 ismore efficient
than the code showed in Listing 2.

Nevertheless, the parallel constructor in OpenMP of the
FORTRAN code shown in Listing 3 is less efficient than the
code shown in Listing 4, because of the creation of the parallel
DO; however the overhead creation is minimal, but, in finite
difference codes for fluid flows, where millions of iterations
are necessary over the time, a minimal overhead creation
could not be negligible.

Implementations using Listing 3, Figure 4(a), can be seen
in high-performance algorithms based on finite difference
methods, as the SEISMIC CPMLalgorithm [14, 15].However,
it misses the benefits shown in Listing 4, Figure 4(b), where a
better performance can be obtained. In this case, the parallel
region is persistently maintained throughout the time itera-
tion. Additionally, we prefer to code by the way of Listing 4
because the readability of the code could be improved.This is
due to the behavior of the variables that are only declared once
at the beginning of the parallel region (SHARED,PRIVATE. . .).
With the use of the scheme of Listing 4, the code contains
16 execution loops in one time iteration and only closes and
reopens at the beginning of the time iteration. In this way, the
opening and closing of 16 parallel regions on each iteration
are avoided. It is important to clarify that the compiler
cannot joint parallel regions automatically, because it could
modify the logic of the flow work. If the parallel region
is continuously opened and closed, it is obvious that the
creation of a parallel region (spawning in multiple threads)
will imply computational resources consumption, even if the
threads are not destroyed. The time consumption to create a
parallel region depends on compiler optimizations; thus this
is a responsibility of the developer.

The scheme shown in Figure 4(b) uses only one parallel
region.This schemewas selected to develop the code with the
OpenMP directives. For the loops for boundary conditions,
𝐶2 to 𝐶5 and from 𝐶9 to 𝐶12, where intensities are 𝐼 < 1.0,
we have two options. The first is to perform parallelization
by distributing the loop between available processing units
(cores), as with the other loops with intensities greater than 1.
This first alternative could not be convenient because a false
sharing can occur; nevertheless as the loops are part of a
large program, it seems to be a viable alternative. The second
option, which is preferred in the present work, is to create
one task for one loop (four loops to manage the boundary
conditions). In our case, from one thread up to four can
be assigned to perform the tasks. If the task is considered
computationally nonintensive, one thread can perform all the
tasks (all the loops), or if the task takes much time to be
completed by one thread, other threads could be assigned to
other tasks (see Figure 5).

Finally, it is possible to maintain the parallel region open,
even during the time iteration. As shown in Figure 6(b), all
the threads have control of the time iteration, thereby main-
taining the parallel region open during the entire simulation
time. It means that just one parallel region is created during
all the execution. In this way, the possibility of overhead
is reduced to a minimum. With this last design, only one

Scientific Programming 7

Time
iteration

Writing to disk

Bo
un

da
ry

 co
nd

iti
on

s

(a)

Time
iteration

Writing to disk

Bo
un

da
ry

 co
nd

iti
on

s

Parallel
region

(b)

Figure 4: Design in OpenMP. (a) Opening and closing of parallel regions between loops, (b) persistent parallel regions between loops.

Threads

Boundary
conditions

(a)

Task

Task

Task

Task

(b)

Figure 5: Implementation of the boundary conditions. (a) Distribution of the loops among the threads, (b) assignment of one loop to one
task to avoid possible false sharing due to a computational intensity < 1.

parallel region is opened during the whole execution of the
program and the loops with intensities below 1 are managed
with tasks; however it is necessary to mention that there are
more than one design possibilities.

Another important issue taken into account is the col-
lapsing of loops. The collapse directive is used to increase
the total number of iterations that will be partitioned across
the available number of threads. By reducing the granularity,
the number of parallel iterations to be done by each thread is
therefore increased. If the amount of work to be done by each

thread is not vectorizable (after collapsing is applied), the
parallel scalability of the application may be improved. This
technique was compared against vectorization of the inner
loop.

When the loops are collapsed, the number of iterations
distributed among the threads is (𝑛𝑗−1)×(𝑛𝑖−1) (see Listing
5). Without collapsing, the number of iterations distributed
among the threads is (𝑛𝑗 − 1). In Listing 6 the loops are
collapsed and the operations are vectorized; however, the
number of floating point operations should be sufficient to

8 Scientific Programming

Time
iteration

Writing to disk

Boundary
conditions

Boundary
conditions

(a)

Time
iteration

Writing to disk

Boundary
conditions

Boundary
conditions

(b)

Figure 6: Design in OpenMP with boundary condition handling via tasks. (a) A boundary condition is handled by only one thread; (b) all
threads handle the time iteration creating only one parallel region for the entire program execution.

!$OMP DO COLLAPSE(2)

DO j=2,(nj-1)

DO i=2,(ni-1)

⋅ ⋅ ⋅

END DO

END DO

Listing 5: Iterations of the loops are joined to be executed in parallel
by the team of threads.

!$OMP DO SIMD COLLAPSE(2)

DO j=2,(nj-1)

DO i=2,(ni-1)

⋅ ⋅ ⋅

END DO

END DO

Listing 6: Iterations of the loops are joined to be executed in parallel
and the internal operations are intended to be vectorized.

achieve the vectorization. If the operations are not sufficient,
the compiler is not able to generate a vectorized code and
a warning would be shown. In our code this is the case.

!$OMP DO SIMD

DO j=2,(nj-1)

DO i=2,(ni-1)

⋅ ⋅ ⋅

END DO

END DO

Listing 7: Iterations of the outer loop are distributed among the
threads and the operations are intended to be vectorized; as the inner
loop exists, it is intended to be vectorized.

For this reason the directive OMP DO SIMD COLLAPSE(2)
cannot be used. The Intel FORTRAN Compiler version
15.0 produces the warning #13379: loop was not
vectorized with “simd” and the PGI compiler produces
the warning Loop not vectorized: may not be ben-
eficial. In Listing 8, the directive OMP DO SIMD
COLLAPSE(2) could be applied with better success because
an additional inner loop is included.

To distribute the iterations of the outer loop among
the threads and to vectorize the operations (in general the
inner loop), the directive OMP DO SIMD (Listing 7) could be
used. For some compilers, the clause SIMD is not necessary
because an automatic vectorization is applied.

Scientific Programming 9

!$OMP DO SIMD COLLAPSE(2)

DO j=2,(nj-1)

DO i=2,(ni-1)

DO k=2,(nz-1)

⋅ ⋅ ⋅

END DO

END DO

END DO

Listing 8: Iterations of the outer loops are joined to be executed in
parallel and the internal operations are intended to be vectorized. As
the inner loop exists, it is intended to be vectorized.

The possibilities to parallelize the loops applicable to our
present code are shown in Listings 5 and 7.

2.1.1. OpenMP on the Xeon Phi. One advantage of the parallel
implementation in OpenMP is the possibility of migrating
to a MIC type architecture practically without modification
[4, 16]. The migration only requires the transfer of variables
and data to the coprocessor and then the transfer of the
execution of the parallel region. When the parallel regions
are opened, it is important to avoid the transfer of data
between CPU and coprocessor because this produces latency,
which will significantly reduce the overall performance of
the application. For this reason, the code should avoid any
transfers during the execution of a time iteration.

Since the GPUs have been on the market during much
time, more scientific applications have been migrated and
tried on them than on the MICs. Specifically, the efficiency
of the GPUs has been proven for finite difference-based algo-
rithms [17–19]. MPI with CUDAC is used in [19].There exist
some similarities because the authors solve a PDE on time
as we do, but their implementation is low level (kernels) for
elastodynamic equations in a huge domain.Our application is
for fluid flow equations in a relatively small domain; however,
the flow chart shown is analogous. The GPUs do not offer an
easy programmingwhen they are usedwith low-level kernels,
available on the Xeon Phi coprocessors, because the GPUs
are not complete cores. In fact, the GPU cores can be seen
as a group of small mathematical coprocessors that efficiently
handle applications with very fine granularity. Similarly,
we expect that applications which show a positive result
using GPUs should benefit even more than the Xeon Phi
architecture due to the presence of the vectorization concept,
which is similar to CUDA architecture. The flexibility of the
Xeon Phi allows themigration and provides support to a large
number of applications requiring multiprocessing without
the vectorization concept. Additionally, code generation for
the GPU requires more refinement of the application to
achieve the desired performance. This refinement means
much development time, but, with the use of OpenACC, the
job of coding low-level kernels is reduced.

One important aspect to be considered for understanding
the expected performance of a Xeon Phi is the MT technol-
ogy.WithMT, each core can handle four threads for reducing

the inherent latency to a micro-architecture multicore. This
should not be confused with hyper threading (HT), defined
as rapidly commutating between two threads that use the
same core; HT can be deactivated via BIOS (for CPU). The
Xeon Phi multithread technology cannot be deactivated and
therefore we have to deal with it. Due to the inherent MT,
available on the Xeon Phi coprocessor, the testing will consist
of 1 up to 4 threads per core, the maximum that can be
efficiently handled.

Although the Xeon Phi coprocessors are a complete
computer by itself, they are able to execute programs natively
independent of the CPU. The programming model recom-
mended by Intel is the offload, where the CPU controls the
Xeon Phi card, sending the tasks to be completed while
the results are transferred back to the CPU. This model is
employed since it is considered the most flexible, similar to
the one used with the GPU. It is necessary to clarify that
LEO extensions were preferred to offload the data, because
although OpenMP 4.0 has capabilities of offloading, not all
compilers implement it entirely. For example, OpenMP 4.0
will be apparently implemented completely in GCC 5.0 but
in earlier versions it is partially implemented.

As happens in OpenMP for the CPU, what must be
minimized is the number of parallel regions that are created
in the loop of time, because unlike the CPU the threads
created in the MIC for a parallel region are destroyed when
the control returns to the CPU. However, the information
must be registered on the CPU every certain number of
iterations in order to write the simulation data to permanent
storage. In this way, in a given instant, the parallel region
must be abandoned in order to give back the control to the
CPU. For this reason, it is not possible to use the model of
Figure 6(b), where the parallel region is persistent throughout
the whole program execution.

To minimize the number of parallel regions is important
because much computing time is needed to create them.
Schmidl et al. [20] showed that, to create a parallel region
on an Intel Xeon Phi with 240 threads, 27.56 microseconds
were needed. In the present code, we have 16 loops and, for
example, a numerical simulation of 3 million of iterations
implies 48 millions of parallel for/DO, which means 22
minutes of overload approximately (environ 2% of the overall
time).

It is possible to use a design whereby the region is main-
tained open when disk writing is necessary. In Figure 7(a) we
show a conventional design, where for each time iteration
a parallel region is created on the MIC (this design will be
denoted by D1 herein). In Figure 7(b) an improved design is
shown, designed by reducing the number of created parallel
regions. This is achieved by abandoning the execution of
the MIC when disk writing is needed (this design will be
denoted by D2 herein). In other words, control is given to
the CPU only when transferring data from simulation to
disk is effectuated. The corresponding implementation of
Figure 7(b) can be seen in the Listing 9.

2.2. Design in OpenACC. Once the OpenMP model is com-
pleted and since this algorithm is a finite difference algorithm

10 Scientific Programming

Offloading
region

Bo
un

da
ry

co
nd

iti
on

s

Writing to
the disk

Data transfer
to the MIC

Time
iteration

(a)

Offloading
region

Bo
un

da
ry

co
nd

iti
on

s

Writing to
the disk

Data transfer
to the MIC

Time
iteration

Transfer of
the control iterators

to the MIC

Inner
cycle of

time

Data transfer
to the CPU

(b)

Figure 7: Design inOpenMP for theMIC architecture. (a) For each time iteration, one parallel region is opened and unloaded; (b) the parallel
region is maintained until it is necessary to write data to the permanent memory; at that point control is returned to the CPU followed by a
reentry to the MIC.

without complex reductions, it seems easy to migrate it to the
OpenACC model. Both models have many similarities that
can be consulted extensively in [21].

Researches have shown that, to obtain the best perfor-
mance on the GPU, the transfers between CPU and GPU
must be reduced at minimum. These transfers are transfers
between kernels of the persistent variables. In OpenACC, the
directive data specifies a region of the code where the data
will be persistent on the GPU. Any region enclosed in the
data region will use a persistent variable on the GPU, without
the necessity of transferring the variables themselves to the
compute region (kernel). The design used in this work is
shown in Figure 8.This design is analogous to the one shown
previously in Figure 7(a). However, the GPU has a limited
residence time of the functions; that is, the card necessarily
returns the control to the CPU after executing the kernel, in
contrast to MIC.

The code structure which corresponds to the design of
Figure 8 is shown in Listing 10.

The format of the loop (𝐶
16
) to calculate the total energy

with a reduction is shown in Listing 11.

3. Performance Experiments

This section is focused on the experiments to evaluate both
the performance of OpenMP on the conventional multicore

CPU and Xeon Phi and the performance of OpenACC on the
TESLAC2070GPU.The time stepΔ𝑡 is 1×10−6 s and the code
is executed to simulate 3.0 s of real time, requiring 3 millions
of time iterations.The computational domain is composed of
1121 × 41 discrete points in 𝑥 and 𝑦 directions, respectively.
Based on this mesh size, the computational domain can be
considered as small, which has to be taken into account for
the calculation of the performance.

This problem is considered as strong-scaling, because the
computational domain is fixed and the number of processing
elements is increased (threads mapped to cores); therefore
the problem is governed by Amdahl’s law. In strong-scaling,
a program is considered to scale linearly if the speed-up is
equal to the number of the processing elements used. In
general, it is hard to achieve good strong-scaling with a big
number of processes, since the communication overhead for
most algorithms increases in proportion to the number of
processes used. For the present problem the processes are
threads.

3.1. Experiments on CPU. The configuration of the worksta-
tion is

(i) Dual Intel(R) Xeon(R) CPU X5650 @ 2.67Ghz,
(ii) 12 real cores (one core can handle two threads when

HT is enabled),

Scientific Programming 11

! dir$offload transfer target(mic:0)

in(U1,U2,U3,U4: alloc if(.true.)

free if(.false.))

!dir$offload transfer target(mic:0)

in(U1 ,U2 ,U3 ,U4 : alloc if(.true.)

free if(.false.))

!dir$offload transfer target(mic:0)

in(F1,F2,F3,F4: alloc if(.true.)

free if(.false.))

DO WHILE (.TRUE.)

⋅ ⋅ ⋅

!dir$ offload target(mic:0)

nocopy(DF1Dx,DF2Dx,DF3Dx,DF4Dx) &
& nocopy(F1,F2,F3,F4,U1,U2,U3,U4,

G1,G2,G3,G4) &
& nocopy(a x,b x,K x,deltae) &
⋅ ⋅ ⋅

& in(k,Timetotal) out(k shared) &
& out(Timetotal shared,etot) &
& out(ro,u,v,P,T,M,ET)

!$OMP PARALLEL DEFAULT(NONE) &
!$OMP & SHARED(DF1Dx,DF2Dx,DF3Dx,DF4Dx) &
!$OMP & SHARED(F1,F2,F3,F4,

U1,U2,U3,U4,G1,G2,G3,G4) &
!$OMP & SHARED(a x,b x,K x,deltae) &
⋅ ⋅ ⋅

DO WHILE (K <= nk)

!$OMP DO COLLAPSE(2)

DO j=2,(nj-1)

DO i=2,(ni-1)

⋅ ⋅ ⋅

END DO

END DO

⋅ ⋅ ⋅

!$OMP END PARALLEL

PRINT *, 'EXITING THE MIC TO WRITE DATA';
⋅ ⋅ ⋅

⋅ ⋅ ⋅

IF (k shared >=nk) exit;

k = k shared+1;

TimeTotal = TimeTotal shared;

END DO;

Listing 9: Code fragments corresponding to Figure 7(b); first all the variables are transferred to the MIC.

(iii) 12 GB RAM,
(iv) CentOS 6.6 Operating System,
(v) Intel FORTRAN Compiler 15.0.0.
Before the performance experiments begin, the developer

should keep in mind the effects of the HT and the vector-
ization on the performance [22]. Thus, the experiments are
conducted with HT enabled and HT disabled. Since there are
12 physical cores, from 1 to 12 kernel threads are created to
analyze the behavior of the performancewhenHT is disabled.
On the other hand, when HT is enabled, from 1 to 24 kernel
threads are created. It is not necessary to create more threads

than cores (or logical cores) in the system; otherwise only
overhead will be created.

For experiments with HT disabled, the strategy is to
assign one thread to one core, and the compact scheduling
affinity was used (see Figure 9). The compact strategy keeps
all threads running on a single physical processor mapped
one to one. Performance experiments for only 30,000 time
iterations show that the scatter affinity is slower than the
compact affinity by 30% to 10% (from 2 to 12 threads);
therefore it is not included in the performance experiments.
The compact affinity is desirable as long as all threads in the
application repeatedly access different parts of a large array

12 Scientific Programming

!$acc data &
!$acc copyin(deltae,a x,b x,K x) &
!$acc local(DF1Dn,DF2Dn,DF3Dn,DF4Dn) &
⋅ ⋅ ⋅

!WHILE OF TIME

⋅ ⋅ ⋅

!$acc kernels

⋅ ⋅ ⋅

!$acc loop independent

DO j=2,(nj-1)

!$acc loop independent

DO i=2,(ni-1)

⋅ ⋅ ⋅

END DO

END DO

⋅ ⋅ ⋅

!$acc end kernels

IF (MOD(k,it display) == 0) THEN

!$acc update host(U,V,ro,P,T,M,ET) async

CALL LAYER WRITE(DBLE(k))

END IF

END DO ! end of while in time

!END OF WHILE

!$acc end data

Listing 10: Format of the OpenACC directives used to parallelize
the loops.

DO i=2,(ni-1)

!$acc loop reduction(+:ETOT)

DO j=2,(nj-1)

ETOT = ETOT + (ET(i,j)*VOL(i,j));

END DO

END DO

Listing 11: Format of the OpenACC directives used when a
reduction is required. For the outer loop the directive acc loop has
to be deleted.

(the case of the present application). When HT is enabled
(see Figure 10), the scatter and the compact affinities give
similar performance when the 24 kernel threads are created.
However, the behavior of the performance of scatter affinity is
similar to the performance with HT disabled until 12 threads,
because the physical allocation is equal.

The performance experiments were carried out with
vectorization of the inner loop and collapsing the loops.
Sometimes the performance of nested loops can be improved
by collapsing them, since this increases the total number of
iterations that will be distributed over the available threads,

Data transfer
to the GPU

Time iteration

Data
region

Writing
to the disk

Kernels

Data transfer
to the CPU

Figure 8: Design of the OpenACC for the GPU architecture.

thereby increasing the granularity. Nevertheless, for this
problem the vectorization of the inner loop results in a better
performance than collapsing by 5% to 7%. Vectorization is
the process by which the implementation of an algorithm
is converted from scalar to vectorial such that one single
operation is executed over a group of contiguous values, all
at the same time. In our particular case, the vectorization
only applies to large floating point operations (inner loop)
[23]. Thus, when the loops are collapsed, the granularity
is reduced and the vectorization could not be applied; that
is, by collapsing the loops, computing is insufficient for
vectorization.

For the handle of the boundary conditions, an improve-
ment by 1% and 1.5%was obtained using tasks, comparedwith
loops parallelized conventionally; thus the gain is low. About
the use of a persistent parallel region the gain is by 0.5% and
1.0%. Thus, there is not a noticeable overhead when many
parallel regions are used, and therefore one or many parallel
regions could be used.

The best performance is gathered when the compact
affinity, vectorization of the inner loop, tasks for the boundary
conditions, and HT disabled were considered. The corre-
sponding computing times with their respective speed-up
factors are shown in Table 2 for 1 to 12 threads.

The behavior of the computing time with HT enabled
and disabled is shown in Figures 11(a) and 11(b), respectively.
We denote that there is a difference in computing time
when the HT is enabled and disabled. When the HT is
enabled the serial execution is slower by 20%.This result is in

Scientific Programming 13

Socket 0 Socket 1

10

11

0

1

2

3

4

5

0

1

2

3

4

5

6

7

8

9

10

11

6

7

8

9

(a)

Socket 0 Socket 1

0 1

2 3

4 5

10

11

0

1

2

3

4

5

6

7

8

9

10 11

6 7

8 9

(b)

Figure 9: Affinities behavior on a SMP with 2 sockets and 6 cores by socket, with the HT disabled; (a) compact affinity, (b) scatter affinity.

0 0

12

12

1

1

13

13

2

2

14

14

3

3

15

15

4

4

16

16

5

5

17

17

6

6

18

18

7

7

19

19

8

8

20

9

9

21

21

1020

10

22

22 11

11 2323

Socket 0 Socket 1

(a)

0

12

1

13

2

14

3

15

4

16

5

17

6

18

7

19

8 9

21

10

20

22

11

0

12

1

13

2

14

3

15

4

16

5

17

6

18

7

19

8

20

9

21

10

22

11

2323

Socket 0 Socket 1

(b)

Figure 10: Affinities behavior on a SMP with 2 sockets and 6 cores by socket, with the HT enabled; (a) compact affinity, (b) scatter affinity.
Curly brackets mean that the virtual cores are handled by the same physical core.

agreement with Zhang et al. [13], who found that sometimes
it is better to execute an OpenMP application using only
a single thread per physical processor. Leng et al. [24] also
confirmed that the HT can lead to performance degradation
for some HPC applications. Empirical studies showed that
when HT is used for intensive floating point calculation
codes, which need to share variables among the threads,
an overhead can be introduced. To achieve similar perfor-
mance with only one thread without the HT, it is necessary
to create two threads and assign them to the same core.
Nevertheless, for applications where the threads do not
share the computational domain a gain in performance was
observed by Couder-Castañeda et al. [25].

The graph of Figure 12(a) depicts a behavior governed
by Amdahl’s law with a maximum speed-up factor of 6.14X.

The speed-up factors obtained let us to approximate the serial
fraction of our code between 0.05 and 0.10. This also was
estimated by measuring the computing time of the different
parts of the code.

With HT enabled each core can handle 2 threads and
reports 24 logic cores; therefore execution threads from 1
to 24 are created to analyze the performance behavior. In
this way, we tried to determine if a better performance can
be achieved with HT [26–29]. When HT is enabled, the
best speed-up factor obtained is 6.72 for the scatter affinity
and 7.40 for the compact affinity, considering as reference
the computing time of the optimized serial version executed
with the HT enabled. In this case, the use of HT does not
increase the performance; thus theHTdoes not really provide
a benefit for this case. This behavior seems to be normal

14 Scientific Programming

20,000

40,000

60,000

80,000

120,000

100,000

140,000

C
om

pu
tin

g
tim

e (
s)

 lo
g

sc
al

e

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Number of threads

HT-D, V-A

(a) Computing time obtained with HT disabled (12 threads)

40,000

60,000

80,000

20,000

120,000

100,000

140,000
160,000

C
om

pu
tin

g
tim

e (
s)

 lo
g

sc
al

e

0 5 10 15 20 25

Number of threads
Scatter affinity
Compact affinity

(b) Computing time obtained with HT enabled (24 threads)

Figure 11: Computing times obtained on the Dual Xeon CPU.

Table 2: Computing times and speed-up factors obtained using
OpenMP on the Xeon CPU with HT disabled. The speed-up
factors are calculated with best optimized serial version as reference.
With HT: hyper threading, V: vectorization, D: deactivated, and A:
activated.

Threads HT-D V-A Speed-up
1 34 h 48m 32 s (1.00X)
2 19 h 26m 58 s (1.79X)
3 12 h 20m 02 s (2.82X)
4 09 h 35m 11 s (3.63X)
5 07 h 58m 53 s (4.36X)
6 07 h 15m 54 s (4.79X)
7 06 h 58m 14 s (4.99X)
8 06 h 40m 30 s (5.21X)
9 06 h 18m 21 s (5.52X)
10 05 h 55m 56 s (5.87X)
11 05 h 41m 52 s (6.11X)
12 05 h 40m 23 s (6.14X)

because the application is floating point intensive and two
threads are sharing the same core FPU (floating point unit).

These results showed in Table 3 emphasize the effects of
the vectorization which works correctly when the number
of floating point operations by core is sufficient and can be
vectorized.

3.2. Experiments on the Xeon Phi. The code with OpenMP
directives was also tested for performance on the Xeon Phi
(model 5110P) with the following general characteristics:

(i) 60 active cores (each core can handle 4 threads),

(ii) frequency 1GHz,

Table 3: Computing times and their corresponding speed-up
factors obtained with HT enabled for the compact and scatter
affinities. HT: hyper threading, V: vectorization, and A: activated.

Threads HT-A, V-A, compact HT-A V-A, scatter
1 43 h 22m 22 s (1.00X) 43 h 19m 58 s (1.00X)
2 27 h 17m 46 s (1.59X) 24 h 05m 16 s (1.80X)
3 21 h 38m 07 (2.00X) 15 h 41m 05 (2.76X)
4 14 h 37m 51 s (2.96X) 12 h 15m 17 s (3.54X)
5 12 h 12m 27 s (3.55X) 11 h 18m 27 s (3.83X)
6 11 h 44m 25 s (3.69X) 08 h 55m 26 s (4.86X)
7 11 h 36m 13 s (3.74X) 07 h 46m 44 s (5.57X)
8 10 h 15m 49 s (4.23X) 07 h 21m 59 s (5.88X)
9 09 h 49m 17 s (4.42X) 06 h 31m 26 s (6.64X)
10 9 h 51m 28 s (4.40X) 06 h 16m 28 s (6.91X)
11 09 h 26m 09 s (4.60X) 05 h 33m 41 s (7.79X)
12 09 h 27m 33 s (4.59X) 06 h 03m 58 s (7.14X)
13 09 h 01m 54 s (4.8X) 06 h 29m 24 s (6.68X)
14 08 h 37m 13 s (5.03X) 07 h 01m 00 s (6.18X)
15 08 h 12m 43 s (5.28X) 06 h 27m 47 s (6.70X)
16 07 h 56m 28 s (5.46X) 06 h 31m 54 s (6.63X)
17 07 h 35m 52 s (5.71X) 06 h 26m 55 s (6.72X)
18 07 h 27m 38 s (5.81X) 06 h 35m 04 s (6.58X)
19 07 h 09m 47 s (6.06X) 06 h 20m 00 s (6.84X)
20 06 h 26m 38 s (6.73X) 06 h 19m 51 s (6.84X)
21 06 h 18m 32 s (6.87X) 06 h 12m 58 s (6.97X)
22 06 h 00m 01 s (7.23X) 06 h 20m 40 s (6.83X)
23 05 h 51m 48 s (7.40X) 06 h 24m 12 s (6.77X)
24 05 h 51m 49 s (7.40X) 06 h 27m 04 s (6.72X)

(iii) 8 GB of DDR5 memory,

(iv) up to one theoretical Teraflop in double floating point
precision.

Scientific Programming 15

0 2 4 6 8 10 12

Number of threads

0

2

4

6

8

10

12

14

Speed-up obtained
Perfect speed-up

Amdahl (f = 0.10)

Amdahl (f = 0.05)

Sp
ee

d-
up

(a) Speed-up factor estimated using the computing times showed in
Figure 11(a)

Number of threads

Amdahl (f = 0.10)

Amdahl (f = 0.05)

0 5 10 15 20 25

0

2

4

6

8

10

12

Sp
ee

d-
up

Speed-up scatter affinity
Speed-up compact affinity

(b) Speed-up factor estimated using the computing times showed
in Figure 11(b)

Figure 12: Comparison of the obtained speed-up factors versus Amdahl’s law with a serial fraction of 𝑓 = 0.05 and 𝑓 = 0.10.

The first consideration regarding this implementation
is that the Xeon Phi coprocessor supports 4 threads per
processing core; therefore the optimum number of execution
threads per core is necessary to be determined. Generally, this
optimal number of threads greatly depends on the algorithm
and the memorymanagement within the application [30, 31].
Moreover, on the Phi architecture, more than one thread per
core helps to hide the inherent latencies in the applications.
For example, while one thread awaits its memory resource
assignment, other threads could be scheduled on the core. On
the conventional Xeon CPU architecture, various developers
have found that in general HPC applications do not benefit
from the HT technology [32]. Nevertheless, this is not
applicable to the Phi technology where the multithreading
(MT) can not be disabled as the HT can be disabled via BIOS.

The Xeon Phi could be used in native or offloadmode.
In nativemode the Phi could be seen as stand-alone computer
and the applications can run directly on the coprocessor. In
the offloadmode the Phi operates as a slave computer and
the information and control are transferred and handled by
the hosts. In the present case, the Phi is used in the same
manner as a conventional GPU.

When the Xeon Phi coprocessor is used in offload
mode, the method to observe the performance begins with
the creation of different numbers of threads from (𝑛 − 1) up
to 4 × (𝑛 − 1), where 𝑛 is the number of physical cores in
the Phi. Then, as recommended by Intel, four experiments
should be executed creating (𝑛 − 1), 2 × (𝑛 − 1), 3 ×
(𝑛 − 1), and 4 × (𝑛 − 1) threads, respectively. This serves
to determine if the increasing number of threads per core
improves the performance. Multiples of (𝑛 − 1) are employed
instead of multiples of 𝑛 because one core is left available
for the operating system services. Therefore, we conducted
the experiments using 59, 118, 177, and 236 execution threads
on the Xeon Phi with a balanced affinity, since each core

can handle up to 4 threads. Regarding the vectorization, the
$SIMD directive was required to vectorize the internal loop.
Table 4 reports the results obtained in execution time of the
different configurations.

Figure 13 shows the graphs which correspond to Table 4.
In this case, the condition of 59 execution threads was
considered as reference to calculate the speed-up factors. If
the conventional design D1 is used, the number of threads
is increased from 59 up to 236 threads, since 4 threads
per core is the optimal number handled by the Phi cores.
The experiments were conducted in a similar way for the
collapsed design and the vectorized design D2.

From Figure 13, the best speed-up factor is reached by the
collapsed design D2, as expected, since the times the parallel
region has created were reduced. With this, the improvement
in performance is between 0.05X and 0.34X. This result
suggests that the overload for creating one parallel region
on the coprocessor can be considered lightweight, but when
several parallel regions are created (millions) this can cause
overhead for this case by 2%. If this design is implemented
in algorithms where the number of iterations is much higher
[33], the benefit would be even more evident, for example,
wave-propagation models.

Themaximum speed-up factor obtained when using four
threads per core is 2.30X, in reference with the one-thread-
per-core design on the Phi and 4.30X in reference with the
serial version on the CPU. This is a result of the low number
of data. Effects of vectorization are not denoted in the per-
formance, because the data handled by the internal loops are
not too many. Moreover, the number of data is not sufficient
to continue scaling. For this reason, in contrast with the
experiments carried out on the conventional CPU, the best
performance is shown by collapsing the loops without vec-
torization. Table 5 compares the speed-up factors for theMIC

16 Scientific Programming

Table 4: Computing times and the corresponding speed-up factors obtained by using OpenMP mounted on the Xeon Phi coprocessor. D1:
design 1, D2: design 2, C: collapsed, and V: vectorized.

Threads D1-C D2-C D2-V
59 37 h 07m 47 s (1.00X) 27 h 47m 51 s (1.34X) 28 h 52m 20 s (1.29X)
118 18 h 54m 38 s (1.91X) 18 h 54m 38 s (1.96X) 24 h 43m 53 s (1.50X)
177 20 h 09m 13 s (1.84X) 19 h 24m 13 s (1.91X) 22 h 24m 06 s (1.66X)
236 16 h 40m 19 s (2.23X) 16 h 10m 10 s (2.30X) 22 h 07m 53 s (1.68X)

D2-V (double control design)
D2-C (double control design)
D1-C (conventional design)

59 118 177 236

Number of threads

50,000

60,000

70,000

80,000

90,000

100,000

110,000

120,000

130,000

140,000

C
om

pu
tin

g
tim

e (
s)

 lo
g

sc
al

e

(a) Computing time

59 118 177 236

Number of threads

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

Sp
ee

d-
up

Amdahl (f = 0.10)

Amdahl (f = 0.05)

D2-V (double control design)
D2-C (double control design)
D1-C (conventional design)

(b) Speed-up

Figure 13: Computing times and the corresponding speed-up factors compared to Amdahl’s law with 𝑓 = 0.05 and 𝑓 = 0.10. As can be
seen, the Xeon Phi stops scaling in two threads per core for all the proposed designs (for this domain size). Unlike the conventional CPU
the Phi does not show improvements with the vectorization, due to the decrease of vectorization effects with many cores; that is, there are no
sufficient floating point operations per core.

against the other architectures in their best version regarding
the performance.

3.3. Experiments on the GPU. The GPU experiments were
carried out using a Tesla C2070 card with the following
characteristics:

(i) 14 multiprocessors (SM),
(ii) 32 cores per multiprocesador (448 GPU cores total),
(iii) 6GB of DDR5 global memory,
(iv) up to 515 theoretical Gflops in double floating point

precision,
(v) up to one theoretical Teraflop in single floating point

precision,
(vi) 1.15 GHz frequency of the GPU cores.

The experiment used the PGI version 15.3 64-bit compiler
with the compilation flags: -Minline -Minfo=acc,
accel, intensity -acc -fast. The execution time
obtained was 3 h 31 m 47 s, which is the best execution

time reached for all architectures. Table 6 compares the
speed-up factors for the C2070 against the other architectures
in their best version regarding the performance.

4. Validation of the Code Porting

The level of decomposition (granularity) is highly influ-
enced by the type of architecture employed. This work
employed three different architectures and two programming
paradigms to obtain the maximum performance from each
platform. Moreover, the validation of the code is a work that
must be addressed as well, since inherent errors can occur
during program development.

The supersonic ejector flow is a very complex problem
due to the physics of the flow and the geometry of the
ejector. A transformation of grid coordinates has to be used
to characterize the expansion section of the diffuser. Thus,
an appropriate transformation to generate a boundary-fitted
coordinate system was implemented and validated [9]. On
the other hand, as the flow is supersonic, pressure waves are
present on the flow and have to be absorbed at the open

Scientific Programming 17

Table 5: Comparison of the speed-up factors taking as reference the MIC.

MIC Computing time Versus CPU serial vectorized without HT Versus CPU (HT) OpenMP vectorized GPU C2070
5110P 16 h 10m 10 s (1.0X) 2.15X −3.5X −4.5X

Table 6: Comparison of the speed-up factors taking as reference the GPU.

GPU Computing time Versus CPU serial vectorized without HT Versus CPU (HT) OpenMP vectorized Versus MIC
C2070 03 h 31m 47 s (1.0X) 9.86X 1.6X 4.5X

(3.74m, 0.04m)

V

10 cm
PML

(1081, 4)

Figure 14: Location of the numerical visor near the outflow region.
The thickness of the CPML absorbing zone is 10 cm (10 × Δ𝑥).

boundaries, which is not trivial. For this reason, an unsplit
convolutional PML boundary condition was developed to
absorb pressure waves [10]. Moreover, the numerical scheme
considersDirectNumerical Simulation (DNS), which implies
high computational cost even at low Reynolds numbers. This
is one of the reasons that an algorithm with a high level of
optimization must be used for this problem.

Time series signals of the primitive flow variables were
stored to analyze the quality of the calculations. For this
reason, a numerical visor was located near one of the sloped
walls, where the diffuser section is expanded (see Figure 14).
The visor was located at the near flow region walls, a critical
region where distortions of the flow structure could appear
due to the presence of spurious fluxes coming from the open
boundary. The simulations were carried out over 3 millions
of iterations and the data were stored each 30,000 iterations,
thereby generating 100 data points per primitive flowvariable.
The 10 cm zone at the end of the ejector is highlighted, where
aConvolutional PerfectlyMatched Layer (CPML) of the open
boundary is employed to absorb pressure waves.

A numerical simulation using a serial processing of one
core provided the reference solution to be compared with the
parallel solution of the same core. To compare the serial and
the parallel solutions, the computed total energy of the system
(𝐸
𝑡
) was analyzed, since this physical quantity integrates all

the primitive variables as follows:

𝐸
𝑡
=
1
2
(𝑢

2
+ V2) +

1
𝛾 − 1
𝑝

𝜌
, (1)

where 𝑢 and V are the vector velocity components in the 𝑥 and
𝑦 directions, respectively, 𝑝 is the pressure, 𝜌 is the density of
the fluid, and 𝛾 is the adiabatic dilation coefficient. The first
term of the right hand of (1) represents the kinetic energy
per unit of mass and the second term represents the internal
energy per unit of mass.

In addition, the computed Mach number (𝑀) from both
solutionswas also compared, because it characterizes the flow
under consideration.

Table 7: Total energy andMach number obtained in the visor𝑉 for
all three architectures at the end of the 3 s of simulation period.

𝐸
𝑡
(m2/s2) 𝑀

Reference 3366417302.615026 1.644826
GPU 3366759849.759678 1.644971
MIC 3367625209.964143 1.643896
CPU multicore 3366417302.615055 1.644826

Table 8: Relative percentage error for total energy and for Mach
number obtained in the visor𝑉 for all three architectures at the end
of the 3 s simulation period.

Error for 𝐸
𝑡
(%) Error for𝑀 (%)

GPU 1.01754 × 10−4 8.81552 × 10−5

MIC 3.58811 × 10−4 5.65409 × 10−4

CPU 8.92365 × 10−15 0.00000

For the sake of clarity, only the results of the experiments
which reached the best performance from the GPU and
MIC platforms are discussed (see Figures 15 and 16). The
curves of Figures 15 and 16 together with the calculated
correlation coefficients show good agreement between the
porting parallel solutions and the serial reference solution.
However, we observe small differences among the results of
the platforms. Even within the same platforms where we
introduced processing threads, variations are observed.

The numerical algorithm must be robust and stable
enough during long periods of time in order to demonstrate
numerical stability. Table 7 shows the differences between
the magnitudes of total energy and Mach number computed
in the visor 𝑉 at the end of the 3 s of simulation, for all
three architectures. The corresponding relative percentage
errors are also shown in Table 8 regarding the reference
serial solution. It can be observed that the CPU multicore
architecture provides the most accurate solution regarding
the reference serial solution, where the error is negligible for
both the total energy and the Mach number. For the GPU
and MIC architectures, the MIC has the greatest error for
both the total energy (3.58811 × 10−4) and the Mach number
(5.65409 × 10−4).

Figure 17 shows different snapshots of the Mach number
in the diffuser of the ejector at different times. Patterns were
obtained on the GPU C2070. Snapshots of the Mach number
in the ejector diffuser are reproduced at 0.75 s, 1.5 s, 2.25 s, and
3 s of real time.The contour levels show the instants when the
compression, transfer, and expansion occur in the diffuser.

18 Scientific Programming

0 0.5 1 1.5 2 2.5 3

Real simulation (s)

0

0.5

1

1.5

2

M
ac

h
nu

m
be

r

GPU Mach
CPU serial Mach

−0.5

(a) Mach number, correlation coefficient = 0.999999483128566

0 0.5 1 1.5 2 2.5 3

Real simulation (s)
GPU energy
CPU serial energy

2.00e + 09

2.50e + 09

3.00e + 09

3.50e + 09

4.00e + 09

4.50e + 09

5.00e + 09

5.50e + 09

En
er

gy
 (J

)
(b) Total energy, correlation coefficient = 0.999998594006821

Figure 15: Comparison of the total energy and the Mach number of the visor 𝑉. Simulations on GPU compared against the serial reference
solution.

MIC Mach
CPU serial Mach

Real simulation (s)
0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

M
ac

h
nu

m
be

r

−0.5

(a) Mach number, correlation coefficient = 0.999998575641890

MIC energy
CPU serial energy

Real simulation (s)

2e + 09

2.5e + 09

3e + 09

3.5e + 09

4e + 09

4.5e + 09

5e + 09

5.5e + 09

En
er

gy
 (J

)

0 0.5 1 1.5 2 2.5 3

(b) Total energy, correlation coefficient = 0.999999702775720

Figure 16: Comparison of the total energy and the Mach number of the visor 𝑉. Simulations on MIC running with the design D2 at 236
threads compared against the serial reference solution.

5. Conclusions

The need of reducing computing time of scientific applica-
tions led to the development of accelerators and coprocessors
to meet this demand.There are now tools based on directives
as OpenACC and OpenMP that reduce the arduous task of
low-level programming. However, in spite of the fact that a
methodology based on directives reduces the programming
work, it is necessary to explore different design strategies to
take advantage of the maximum potential of the available
architectures.The application ported in this work was a serial
source code for a supersonic ejector flow. This work showed

the effectiveness of OpenMP, by reducing the computing
time in very good agreement with Amdahl’s law. Regarding
OpenACC, the well-known strategy that could be applied
is to maintain the data regions active among calls to the
kernels, thereby avoiding the data transfer between CPU and
GPU. Similarly, the persistent variables are maintained when
working on theMIC in offloadmode.The overload, caused by
adding directives in OpenMP for the parallel programming
on CPU and on the MIC, is relatively low and does not limit
scalability.

In terms of programmability and productivity, we show
that OpenMP and OpenACC are viable alternatives for

Scientific Programming 19

0

20

40

0 50 100 150 200 250 300 400350

0.2 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.8 2.2

(a)

0

20

40

0 50 100 150 200 250 300 400350

0.2 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.8 2.2

(b)

0

20

40

0 50 100 150 200 250 300 400350

0.2 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.8 2.2

(c)

0

20

40

0 50 100 150 200 250 300 400350

0.2 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.8 2.2

(d)

Figure 17: Snapshots of the Mach number obtained at different
times: (a) 0.75 s, (b) 1.5 s, (c) 2.25 s, and (d) 3.0 s.

the development of parallel codes for scientific applications.
The expected performance is satisfactory, considering that
OpenMP and OpenACC are paradigms that express paral-
lelism and the parallel code is generated by the compiler,
which finally implies less development time with an accept-
able performance.

6. Future Work

As future work, OpenMP and OpenACC can be mixed in
order to port the application to a multi-GPU or multicopro-
cessor architecture integrated in the same node.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work has been supported in part by the project
ABACUS-CONACyT under Grant no. EDOMEX-2011-C01-
165873. The authors would like to thank the CNS (National
Supercomputing Center, http://www.cns-ipicyt.mx/) for the
facilities given for using the Xeon Phi coprocessor.

References

[1] I. Foster, Designing and Building Parallel Programs: Concepts
and Tools for Parallel Software Engineering, Addison-Wesley
Longman, Boston, Mass, USA, 1995.

[2] C. Calvin, F. Ye, and S. Petiton, “The exploration of pervasive
and fine-grained parallel model applied on Intel Xeon Phi
coprocessor,” in Proceedings of the 8th International Conference
on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC
’13), pp. 166–173, IEEE, Compiègne, France, October 2013.

[3] L. Dagum and R. Menon, “OpenMP: an industry standard
API for shared-memory programming,” IEEE Computational
Science and Engineering, vol. 5, no. 1, pp. 46–55, 1998.

[4] M. Curtis-Maury, X. Ding, C. D. Antonopoulos, and D. S.
Nikolopoulos, “An evaluation of openmpon current and emerg-
ing multithreaded/multicore processors,” in OpenMP Shared
Memory Parallel Programming: Proceedings of the International
Workshops, IWOMP 2005 and IWOMP 2006, Eugene, OR, USA,
June 1–4, 2005, Reims, France, June 12–15, 2006, vol. 4315 of
Lecture Notes in Computer Science, pp. 133–144, Springer, Berlin,
Germany, 2008.

[5] H. Brunst and B. Mohr, “Performance analysis of large-scale
openmp and hybrid mpi/openmp applications with vampir ng,”
in OpenMP Shared Memory Parallel Programming, M. Mueller,
B. Chapman, B. Supinski, A.Malony, andM.Voss, Eds., vol. 4315
of Lecture Notes in Computer Science, pp. 5–14, Springer, Berlin,
Germany, 2008.

[6] A. Amritkar, S. Deb, and D. Tafti, “Efficient parallel CFD-DEM
simulations using OpenMP,” Journal of Computational Physics,
vol. 256, pp. 501–519, 2014.

[7] B. P. Pickering, C.W. Jackson, T. R. Scogland,W.-C. Feng, andC.
J. Roy, “Directive-based GPU programming for computational
fluid dynamics,”Computers & Fluids, vol. 114, pp. 242–253, 2015.

[8] A. Kucher and G. Haase, “Many-core sustainability by pragma
directives,” in Large-Scale Scientific Computing, vol. 8353 of
Lecture Notes in Computer Science (Including Subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformat-
ics), pp. 448–456, Springer, 2014.

[9] C. Couder-Castañeda, “Simulation of supersonic flow in an
ejector diffuser using the jpvm,” Journal of AppliedMathematics,
vol. 2009, Article ID 497013, 21 pages, 2009.

[10] R. Martin and C. Couder-Castaneda, “An improved unsplit
and convolutional perfectly matched layer absorbing technique
for the navier-stokes equations using cut-off frequency shift,”
Computer Modeling in Engineering and Sciences, vol. 63, no. 1,
pp. 47–77, 2010.

[11] J. Levesque and G. Wagenbreth, High Performance Computing:
Programming and Applications, CRC Press, 2010.

[12] Z. Krpic, G. Martinovic, and I. Crnkovic, “Green HPC: MPI
vs. OpenMP on a shared memory system,” in Proceedings of the
35th International Convention on Information and Communica-
tion Technology, Electronics and Microelectronics (MIPRO ’12),
pp. 246–250, 2012.

[13] Y. Zhang, M. Burcea, V. Cheng, R. Ho, and M. Voss, “An
adaptive OpenMP loop scheduler for hyperthreaded SMPs,”
in Proceedings of the International Conference on Parallel and
Distributed Computing Systems (PDCS ’04), 2004.

[14] R. Martin, D. Komatitsch, and A. Ezziani, “An unsplit convo-
lutional perfectly matched layer improved at grazing incidence
for seismic wave propagation in poroelastic media,” Geophysics,
vol. 73, no. 4, pp. T51–T61, 2008.

20 Scientific Programming

[15] D. Komatitsch, G. Erlebacher, D. Göddeke, and D. Michéa,
“High-order finite-element seismic wave propagationmodeling
with MPI on a large GPU cluster,” Journal of Computational
Physics, vol. 229, no. 20, pp. 7692–7714, 2010.

[16] T. Cramer, D. Schmidl, M. Klemm, and D. an Mey, “Openmp
programming on intel r xeon phi tm coprocessors: An early
performance comparison,” 2012.

[17] J. Zhou, D. Unat, D. J. Choi, C. C. Guest, and Y. Cui, “Hands-
on performance tuning of 3D finite difference earthquake
simulation on GPU fermi chipset,” in Proceedings of the 12th
International Conference on Computational Science (ICCS ’12),
pp. 976–985, June 2012.

[18] P. Micikevicius, “3D finite difference computation on GPUs
using CUDA,” in Proceedings of the 2nd Workshop on General
Purpose Processing on Graphics Processing Units (GPGPU-2 ’09),
pp. 79–84, ACM, New York, NY, USA, March 2009.

[19] D. Michéa and D. Komatitsch, “Accelerating a three-dimen-
sional finite-difference wave propagation code using GPU
graphics cards,” Geophysical Journal International, vol. 182, no.
1, pp. 389–402, 2010.

[20] D. Schmidl, T. Cramer, S. Wienke, C. Terboven, and M. Muller,
“Assessing the performance of OpenMP programs on the intel
xeon phi,” in Euro-Par 2013 Parallel Processing, F.Wolf, B. Mohr,
and D. an Mey, Eds., vol. 8097 of Lecture Notes in Computer
Science, pp. 547–558, Springer, Berlin, Germany, 2013.

[21] S. Wienke, C. Terboven, J. C. Beyer, and M. S. Müller, “A
pattern-based comparison of OpenACC and OpenMP for
accelerator computing,” in Euro-Par 2014 Parallel Processing, F.
Silva, I. Dutra, and V. Santos Costa, Eds., vol. 8632 of Lecture
Notes in Computer Science, pp. 812–823, Springer International
Publishing, Cham, Switzerland, 2014.

[22] D. K. Ojha and G. Sikka, “A study on vectorization methods
for multicore SIMD architecture provided by compilers,” in
ICT and Critical Infrastructure: Proceedings of the 48th Annual
Convention of Computer Society of India- Vol I, vol. 248 of
Advances in Intelligent Systems and Computing, pp. 723–728,
Springer, 2014.

[23] J. Francés, S. Bleda, A. Márquez et al., “Performance analysis
of SSE and AVX instructions in multi-core CPUs and GPU
computing on FDTD scheme for solid and fluid vibration
problems,” The Journal of Supercomputing, vol. 70, no. 2, pp. 1–
13, 2013.

[24] T. Leng, R. Ali, J. Hsieh, V. Mashayekhi, and R. Rooholamini,
“An empirical study of hyper-threading in high performance
computing clusters,” in Proceedings of the LinuxHPCRevolution
Conference, 2002.

[25] C. Couder-Castañeda, J. C. Ortiz-Alemán, M. G. Orozco-del-
Castillo, and M. Nava-Flores, “Forward modeling of grav-
itational fields on hybrid multi-threaded cluster,” Geof́ısica
Internacional, vol. 54, no. 1, pp. 31–48, 2015.

[26] U. Ranok, S. Kittitornkun, and S. Tongsima, “A multithreading
methodology with OpenMP on multi-core CPUs: SNPHAP
case study,” in Proceedings of the 8th Electrical Engineer-
ing/Electronics, Computer, Telecommunications and Information
Technology (ECTI ’11), pp. 459–463, IEEE, KhonKaen,Thailand,
May 2011.

[27] J. H. Abdel-Qader and R. S. Walker, “Performance evaluation
of OpenMP benchmarks on Intel’s quad core processors,” in
Proceedings of the 14th WSEAS International Conference on
Computers, vol. 1, pp. 348–355, July 2010.

[28] W. Zhong, G. Altun, X. Tian, R. Harrison, P. C. Tai, and Y.
Pan, “Parallel protein secondary structure prediction schemes

using Pthread and OpenMP over hyper-threading technology,”
Journal of Supercomputing, vol. 41, no. 1, pp. 1–16, 2007.

[29] G. Bernabé, R. Fernández, J. M. Garćıa, M. E. Acacio, and J.
González, “An efficient implementation of a 3D wavelet trans-
form based encoder on hyper-threading technology,” Parallel
Computing, vol. 33, no. 1, pp. 54–72, 2007.

[30] A. E. Eichenberger, C. Terboven, M. Wong, and D. an Mey,
“The design of openmp thread affinity,” in OpenMP in a
Heterogeneous World, vol. 7312 of Lecture Notes in Computer
Science, pp. 15–28, Springer, Berlin, Germany, 2012.

[31] C. Allande, J. Jorba, A. Sikora, and E. César, “A performance
model for openMP memory bound applications in multisocket
systems,” Procedia Computer Science, vol. 29, pp. 2208–2218,
2014.

[32] P. Gepner,M. F. Kowalik, D. L. Fraser, and K.Waćkowski, “Early
performance evaluation of new six-core intel xeon 5600 family
processors for HPC,” in Proceedings of the 9th International
Symposium on Parallel and Distributed Computing (ISPDC ’10),
pp. 117–124, July 2010.

[33] M. Araya-Polo, F. Rubio, R. de la Cruz, M. Hanzich, J. M. Cela,
and D. P. Scarpazza, “3D seismic imaging through reverse-
timemigration on homogeneous and heterogeneousmulti-core
processors,” Scientific Programming, vol. 17, no. 1-2, pp. 185–198,
2009.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

