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The challenges in developing a fault detection and diagnosis system for industrial applications are not inconsiderable, particularly
complex materials processing operations such as aluminium smelting. However, the organizing into groups of the various fault
detection and diagnostic systems of the aluminium smelting process can assist in the identification of the key elements of an
effectivemonitoring system.This paper reviews aluminium process fault detection and diagnosis systems and proposes a taxonomy
that includes four key elements: knowledge, techniques, usage frequency, and results presentation. Each element is explained
together with examples of existing systems. A fault detection and diagnosis system developed based on the proposed taxonomy
is demonstrated using aluminium smelting data. A potential new strategy for improving fault diagnosis is discussed based on the
ability of the new technology, augmented reality, to augment operators’ view of an industrial plant, so that it permits a situation-
oriented action in real working environments.

1. Introduction

A variety of fault detection systems for the aluminium
smelting process can be found in the literature. This diversity
is contributed to principally by the way in which each system
utilizes the resources available by using an approach which
is appropriate for the process control system in question.
Investigating these systems by identifying elements that shape
the systems may help us to understand the different kinds
of fault detection system in the aluminium smelting process.
Thus, we classified these elements in the following groups.

(1) Fault detection and diagnostic knowledge: what
knowledge is used in the fault detection and diagnosis
systems of the aluminium smelting process?

(2) Fault detection and diagnostic techniques: how is the
system built by utilizing the knowledge?

(3) Usage frequency: how frequently can the system
monitor the process?

(4) Results presentation: how are the results of the system
presented to the operators?

The aim of this work is to identify taxonomy of alu-
minium process fault detection and diagnosis system with

four key elements: techniques, knowledge, usage frequency,
and results presentation. This work also aims to identify the
potential ability of augmented reality as one of the techniques
in results presentation.

This paper will first describe a fault detection and diag-
nostic taxonomy that has been developed from reviews of
the literature and knowledge pertaining to the aluminium
smelting process. Secondly, the groups and elements that
comprise the taxonomy are explained. Next, the key elements
of the new system for the aluminium smelting process that
have been identified in this research based on the taxonomy
are discussed and demonstrated with an example. Finally, in
order to further assist in fault diagnosis, the integration of
augmented reality that can be used as a potential new strategy
is discussed.

2. The Proposed Taxonomy for Aluminium
Process Fault Detection and Diagnosis

The groups and elements that create a fault detection and
diagnostic taxonomy for the aluminium smelting process are
illustrated in Figure 1. The proposed taxonomy can assist in
determining the various factors in developing a new fault
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Figure 1: Taxonomy for aluminium process fault detection and diagnosis.

detection and diagnosis system. The groups and elements of
this taxonomy are briefly described in the following section.

2.1. Fault Detection and Diagnostic Knowledge. The first
group is comprised of fault detection and diagnostic knowl-
edge. The elements of this group represent particular knowl-
edge in the aluminium smelting process that has been used,
and can be used, to develop fault detection and diagnosis
systems. A brief explanation of each element is given below.

(1) The first element in this group is a spectrum of
resistance in which the specifications of the spectra in three
cases were identified for assisting in fault diagnosis.The cases
are normal cell, aluminium roll, and abnormal anode [1].

(2) Patterns of noise constitute the second element in this
group. Three different patterns of noise were recognized, to
assist in fault diagnosis. These are bubble noise [2], short-
circuiting noise, and metal pad roll noise [2, 3].

(3) The third element in the group is a theoretical resis-
tance/alumina concentration curve.There have been research-
ers who have selected data for developing fault detection
systems by using this curve as an important reference such
as Meghlaoui et al. [4], Yurkov et al. [5], and Nagem et al. [6].

(a) The first example stems from research by Meghlaoui
et al. [4] in which two dynamic trend indicators were
generated based on the theoretical resistance/alumina
concentration curve.

(b) The second example comes from research carried
out by Yurkov et al. [5] in which selected data were
deemed appropriate for analysis based on feeding
cycles. These cycles were formed following the con-
trolling of alumina feeding based on the theoretical
resistance/alumina concentration curve.

(c) The third example is from research byNagem et al. [6]
in which data were divided into four regions based
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Figure 2: The two main stages in model-based fault detection and diagnosis (redrawn from [7]).

on the theoretical resistance/alumina concentration
curve. These regions were (1) lean (low alumina con-
centration), (2) normal (good operating point), (3)
rich (high alumina bulk concentration), and (4) very
rich (high alumina bulk concentration, high temper-
ature, and reoxidation phenomena).

These examples from previous research indicate the diffi-
culties experienced in the direct measurement of alumina
concentration and the frequent measurement of important
parameters, such as cell temperature; this has prompted a
groupof researchers to discover how to utilize existing knowl-
edge in the development of an appropriate fault detection and
diagnosis system.

(4) The fourth element is a set of colour and textural
features grouped according to the varying alumina content
of anode cover materials. These colour and textual features
were identified using multivariate image analysis techniques.
These features can be used to estimate the alumina content of
anode cover materials [8].

(5) The fifth element is the diagnosis and correction of
operating cells thatwere recorded by operators and engineers.
This knowledge can be used to form a knowledge database
in an expert system (e.g., [9, 10]). It can also assist in the
discovery of new knowledge for fault diagnosis and then for
validating that new knowledge by using the procedure for
knowledge discovery from databases (e.g., [11]).

2.2. Fault Detection and Diagnostic Techniques. The develop-
ment of fault detection and diagnosis systems involves not
only various knowledge domains but also a variety of meth-
ods. In the taxonomy proposed here, the group pertaining to
the techniques to be used for fault detection and diagnosis
is described as the second group. This group concerns the
development of a fault detection system by using a suitable
technique and utilizing specific knowledge. A brief explana-
tion of each element is given below.
(1) The first element in this group is an analytical

approach because two common methods for this approach,
parameter estimation and diagnostic observers, were used
to develop an aluminium process detection system [12].
The approach was based on a quantitative model in a well-
accepted taxonomy developed by Venkatasubramanian et al.
[13] in which precise first principles or mathematical models
of the process are used to model a system based on the
relationship between the inputs and outputs of the process.
The differences between actual system behaviour and that of
the systemmodel are then calculated and called residuals [13].
(2) Figure 2 shows the two main stages in model-based

fault detection and diagnosis [7] where some of the frequently

used residual generation methods are diagnostic observers,
Kalman filters, and parameter estimation.These residuals are
further evaluated in order to identify the occurrence of faults
in the process [7].

In a fault detection system for the aluminium smelting
process, an extended Kalman filter was used in order to not
only estimate the alumina concentration in different sections
of an aluminium reduction cell, but to also indicate an
abnormal alumina distribution. A mathematical model was
developed to estimate the alumina concentration. Residuals
were generated from the difference between the alumina con-
centration expected by the system model and the actual con-
centration [12]. Abnormal alumina distribution was detected
when the residuals were significant. However, the residuals
not only indicate abnormal events butmay also indicate other
sources including noise, disturbances, and model errors [7].
This issue of robustness may limit the effectiveness of using
the Kalman filter or other model-based approaches.
(3) An expert system which is a process history-based

approach is the second element in this group. In the process
history-based approach, prior knowledge is extracted from a
large amount of historical data.This feature extraction can be
divided into qualitative and quantitative methods as shown
in Figure 3 [14]. A popular example of a qualitative method
is the expert system where prior knowledge from experts
is extracted to represent human knowledge in a particular
domain. It is used in fault diagnosis to infer a conclusion
of an out-of-control situation by combining the facts from
a user with the knowledge from human experts represented
in knowledge databases. In the aluminium smelting process,
knowledge relating to diagnosis and correction of operating
cells was incorporated in a number of expert systems such
as those of Haldris [9], the FMFA-based expert system [10],
and the CVG Venalum potline supervisory system [15]. In an
aluminium electrolysis process expert system (AEPES) [16],
for example, there were two subsystems; the first one incor-
poratedmore general knowledge of the aluminium reduction
cell including unstable cell voltage, anode carbon quality, and
higher iron impurity. The second one incorporated specific
knowledge including bath temperature, metal level, and bath
ratio. The use of an expert system, however, lacks statistical
inference and pattern recognition [17].

The third element in this group, neural networks, is also
a process history-based approach. As shown in Figure 3, the
quantitative method can be divided into statistical and non-
statistical. The use of artificial neural networks is a nonstatis-
tical approach used in fault diagnosis to recognise the re-
ceived pattern of data by using a nonlinear mapping between
input (data patterns) and output (fault classes).This mapping
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Figure 3: Classification of process history-based methods (redrawn from [14]).

consists of hidden neurons that are highly interconnected and
arranged in layers [17]. In the aluminium smelting process, a
backpropagation neural network was used to map spectra of
cell resistance and output vectors for three cases which were
normal cell, aluminium roll, and abnormal anode [1]. In addi-
tion, a feedforward neural network was used to predict cell
resistance and as a fast dynamic indicator [4]. Both systems
used simulation data to train the networks. The use of neural
networks, however, lacks the ability to generalise/explain
behaviour [18].
(4) The fourth element in this group is the use of

multivariate statistical techniques which is also a quantitative
and process history-based approach. Multivariate statistical
techniques such as PCA and PLS are used to extract a number
of latent variables from normal operating data which are
retrieved from historical databases, in order to form an
empirical model [19, 20]. Thus, in the future, whenever the
behaviour of the operation of the plant differs from the empir-
ical model of the normal process, unexpected changes in
the process can be detected [20]. The following are examples
of the use of PCA/PLS for process monitoring in materials
processing including aluminium processing:

(a) a combination of PCA and linear discriminant analy-
sis (LDA) was used for monitoring the quality of iron
and steel [21];

(b) PCA was used for monitoring the quality of copper
[22];

(c) multivariate image analysis was used for estimating
alumina concentration on anode cover [8];

(d) estimation was carried out for aluminium reduction
cell performance using PLS [23];

(e) multivariatemonitoring of aluminium reduction cells
was undertaken using PCA [24];

(f) multivariate online monitoring of preheating, start-
up, and early operation of aluminium reduction cells
was investigated using PLS regression [25].

These examples show that the multivariate techniques,
PCA/PLS, have been investigated for analysis of historical

data and monitoring of processes in various complex process
industries because of their ability to handle large volumes of
highly correlated data.

2.3. Usage Frequency. The third group to be considered in
this taxonomy is usage frequency where it applies to the way
the fault detection and diagnosis system performs its analysis
of the process. A brief explanation of each element is given
below.

(1) The first element in this group is one which is contin-
uous. An online fault detection and diagnosis system
monitors the process continuously by analysing con-
tinuous data from the process.The systemmay imme-
diately signal abnormal events after they happen.
Examples of these systems include a backpropagation
neural network developed by Shuiping et al. [1] and
a feedforward neural network system developed by
Meghlaoui et al. [4].

(2) Periodic analysis is the second element in this group.
In an aluminium smelting process, an offline fault
detection and diagnosis system periodically analyzes
data at a frequency ranging from daily to once in two
days.This level of frequency is to enable the detection
of abnormal events using bath chemistry and heat
balance parameters. Some of the examples in this
system include (1) processmonitoring using PCA [24]
and (2) an analytical model for estimating alumina
concentration and abnormal events [12].

2.4. Results Presentation. The fourth group in this taxonomy
describes the threemodes for presenting the detection results:
text, graphics (visual), and three-dimensional (3D) visualiza-
tion.The presentation of detection results to the operator can
be more informative if the operator’s needs are considered in
terms of a clear visual indication in the screen design [26].
This theory is supported by research done by Harris et al.
[27] where colour and statistical graphs were incorporated
in the design of a supervisory control system. The use of the
bold, contrasting colour in this system clearly indicates when
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there is an alarm so that the section leader in a smelter can
act accordingly. Furthermore, the potential operator colour
sensitivity should be considered by choosing colour palettes
that provide effective contrast for all potential colour vision
levels.

Although many contributors to the reference literature
pertaining to aluminium process fault detection cited in this
taxonomy do not provide screen design in their approach,
there are some articles that do provide or describe how the
results are presented. Three major examples are given here.
Firstly, in a multivariate statistical application, a 3D visual-
ization was used to illustrate Hotelling’s 𝑇2 statistic with a
3D control envelope which is based on bath temperature, liq-
uidus point, and cumulative sum of alumina feed ratios [28].
Secondly, a fault diagnosis system based on a neural network
had a screen interface in which two modes of presentation
were used: text (querying history report, spectrum analysis
of cell resistance, and fault diagnosis for the cell state) and
graphics (real-time curve and history curve of the cell signals)
[1]. Thirdly, a supervision system for aluminium reduction
cells based on mathematical models had an interface dis-
playing five functions including real-time display and curve
change for specified parameters [29]. The state of the cells is
displayed using a text box, and the temperature, the voltage,
the current, and the alumina concentration are displayed in
charts. The user interface also consists of control boxes, such
as combo boxes, and control buttons. These three examples
show that a combination of text and graphics may be more
effective for revealing monitoring results to the operator than
solely using either text or graphics [29].

A fault detection and diagnosis systemwill now be shown
and discussed in the next sections in order to demonstrate
how a new system can be developed based on the proposed
taxonomy.

3. Cascade Fault Detection
and Diagnosis System

The cascade fault detection and diagnosis system [30, 31] was
designed to detect any faults and then diagnose faults that
are related to anode effect, anode spike, block feeder, and low
alumina dissolution. This system is presented as an example
of how faults such as an anode effect can be detected and
diagnosed with multivariate statistical techniques as can be
seen in Figure 4.Thekey elements of this systemare discussed
below by referring to Figure 4.

3.1. Fault Detection and Diagnostic Knowledge. The first ele-
ment of this system is the discovery of new knowledge based
on the established relationship between pseudoresistance
and alumina concentration. In addition to the extraction of
knowledge from the prior research of experts and the produc-
tion of a theoretical resistance/alumina concentration curve
through experiment, learning to identify abnormal patterns
from data is one of the practical ways by which to discover
fresh knowledge relating to fault detection and diagnosis [32].
Since there is a need to develop a fault detection and diagnosis
system based on the changes of cell voltage and cell resis-
tance patterns within overfeed/underfeed cycles, ascertaining

Figure 4: Operator screen shows an indication of an anode effect
and its possible causes: a block feeder and low alumina dissolution.

abnormal patterns within these cycles using data mining to
discover new knowledge was carried out in this research [30].
In Figure 4, for example, abnormal patterns within the cur-
rent cycles were detected and diagnosed to be related to the
patterns of an anode effect and patterns of the previous cycles
to be related to a block feeder and low alumina dissolution.

3.2. Fault Detection and Diagnostic (FDD) Techniques. In
the first element of the system, the established relationship
between pseudoresistance and alumina concentration is used
as a basis for discovering new knowledge. In the second
element, the established relationship is used as the basis for
monitoring the process with the added use of a suitable FDD
technique. It has been interesting to note that the established
relationship between pseudoresistance and alumina concen-
tration has become the basis for many applications from
linear to nonlinear models for a range of purposes such as
(1) the estimation of alumina concentration using the Kalman
filter approach [12], (2) the prediction of anode effects using a
linear time-series model and a simple nonlinear exponential
rise curve [33], and (3) the prediction of feed control
decision variables using neural networks [4]. The strengths
and weaknesses of some of these applications were discussed
by Stevens Mcfadden et al. [34] where an application using
the neural network model has been suggested as a suitable
approach for a predictive modelling task.

As discussed above, many fault detection techniques have
been employed previously.Themain interest of this research,
however, is a technique that is capable of early fault detection
in the industrial application of the aluminium smelting
process. All of the previously mentioned applications in
this research stem from analytical and knowledge-based
approaches, the focus of which has mainly been on the avoid-
ance of anode effects. Less attention has been given to the use
of data-driven approaches such as PCAandPLS for observing
the changes of patterns within the overfeed-underfeed cycle
for the detection and diagnosis of problems. Also, many
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researchers have used only simulated data instead of real data.
Since the aluminium smelting process is complex, having
many problems that require effective process monitoring, it
may be impractical to develop an accurate and explicit math-
ematical model of the process for this purpose. Therefore,
the model-based methods, both quantitative and qualitative,
have not been considered in this work.

On the other hand, there has been growing interest in
using process history-based approaches for fault detection
of industrial applications [14, 19]. Venkatasubramanian et al.
[14] listed three key reasons for this increasing interest; these
are as follows: (1) they are easy to put into practice, (2) little
modelling effort is required, and (3) little prior knowledge
is needed. A number of process history-based fault diag-
nostic techniques have been developed for the aluminium
smelting process including expert systems, neural networks,
and multivariate statistical techniques (PCA/PLS). Firstly, a
number of expert systems were developed for fault diagnosis
[9, 10]. Due to the complexity of the aluminium smelting
process, the cause of an abnormal operating pattern is often
difficult to diagnose. Process engineers may interpret the
abnormal pattern themselves before or while using an expert
system. A computerized system that is capable of solving
the persistent problem of diagnosing abnormal patterns for
multiple aluminium reduction cells is needed. Furthermore,
expert systems require considerable effort in order to build
a knowledge-based diagnosis system for a complex and large
process. An existing solution for this problem has been based
onneural networks [1].However, this requires comprehensive
and excessive amounts of data, causing Shuiping et al. [1]
to use simulation data instead of real data in their study.
The use of PCA and PLS is a viable option because only
moderate amounts of historical data are needed. Based on
this, an application of PCAwas developed byTessier et al. [24]
for monitoring the aluminium electrolysis process. However,
in order for a monitoring system to be rendered effective,
consideration needs to be given to dynamic cell behaviour.

Therefore, the objective of this system is to incorporate
the dynamic behaviour of the two important events of
anode changing and alumina feeding during the aluminium
smelting process, for effective and timely fault detection and
diagnosis. This can be done by using a new multivariate
statistical framework using PCA and PLS. In this system,
PCA has been chosen for the development of a fault detection
system and a combination of PCA and PLS has been chosen
for the development of a system for fault diagnosis. This is
because these multivariate statistical techniques can address
some of the problems arising in the detection and diagnosis
of faults in the aluminium smelting process.

(1) Firstly, PCA or PLS can handle a substantial quantity
of data which is both correlated and noisy.

(2) Secondly, both PCA and PLS use a noncausal model
so that the lack of a causal model in the aluminium
smelting process is not an issue. A causal model needs
a first principles model.

(3) Thirdly, multiway PCA (MPCA) and multiway PLS
(MPLS), extensions of PCA and PLS, respectively, are

able to handle any nonlinear behaviour during the
process of alumina feeding.

(4) Finally, PCA and PLS are effective in practice for the
monitoring of the aluminium smelting process since
the reference models have been mainly built from
process data [35].

Principally, the use of multivariate statistical techniques such
as PCA and PLS needs to be investigated not only for the
prediction of anode effects, but also for the diagnosis of
problems that cause anode effects and for the early detection
of anode spikes. This advanced monitoring of aluminium
processing leads to a reduction in energy consumption and
emission of PFCs. Abnormal patterns within the alumina
feeding cycles were analysed using MPCA and MPLS. As
shown in Figure 4, the monitoring charts used in the system
were based on MPCA. These charts are Hotelling’s 𝑇2 chart
and the SPE chart. The abnormal events detected by these
charts were then diagnosed using MPLS in order to classify
patterns related to these abnormal events [31].

3.3. Usage Frequency. The continuous monitoring of changes
of variability patterns within the overfeed/underfeed cycles
is preferred in this research for early fault detection and
diagnosis [30]. As shown in Figure 4, five-minute data were
used for monitoring the process. The monitoring charts
detected and diagnosed an anode effect 25 minutes before it
occurred in the real operation. This shows an early detection
and diagnosis of an anode effect.

3.4. Results Presentation. Charts that can show changes of
pattern against acceptable limits for operations are one of
the important elements in monitoring. Information about
the current process and the results of the diagnosis that
were provided in textual form were put together with the
charts. In this research [30, 31], a mixture of text and graphics
incorporated with suitable colour (red and green) and user
control boxes such as a combo box for selecting cells was used
instead of selecting only one mode in order to demonstrate
clearly abnormal events. In Figure 4, for example, the opera-
tor’s screen indicated this situation by a change in the colour
of button for cell 2004 from green to red, the status of the
process from “IN CONTROL” to “OUTOF CONTROL,” and
the status of the anode effect detection from “NO” to “YES.” A
clear indication of abnormal events as shown in this example
can help process engineers and operators to timely respond
to problems that occur in the process.

3.4.1. The Need of Augmented Reality (AR). Augmented real-
ity is a viable option for improving the results presentation.
Results from the system were mostly based on computer-
generated information such as text, graphics, charts, and
tables. Operators in the smelters will take actions based on
this information. Integrating this digital information with a
real situationmight help further in fault diagnosis. In fact, this
is the basis of augmented reality where it has been defined in
a broad sense as augmenting natural feedback to the operator
with simulated cues [36]. The main reason for using AR is its
capability of augmenting a user’s view of an industrial plant,
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so that it permits a situation-oriented action in real working
environments.The integration of augmented realitywithin an
aluminium process fault detection and diagnosis system is a
potential new strategy for improving decisionmaking in fault
diagnosis.

4. The New Strategy for Aluminium Process
Fault Detection and Diagnosis

Anew strategy for fault detection and diagnosis was proposed
to incorporate AR technique. This adds a new element in
terms of results presentation as shown in Figure 5. AR was
selected because it is a novel human-computer interaction
tool that overlays computer-generated information on a real-
world environment [37]. This technique has been applied in
industry, for example, the Boeing wire harnessing project
[38], car engine maintenance [39], and an intelligent welding
gun [40].These works have shown potential of AR to be com-
bined with human abilities to offer efficient and complemen-
tary tools to assist manufacturing tasks [37]. This motivates
this research to propose a new strategy for improving fault
detection and fault diagnosis in the aluminium smelter.

4.1. Procedure for the New Strategy. In this new strategy,
there are five steps in incorporating AR in the fault detection
and diagnosis system: requirement, design, development,
implementation, and evaluation.These steps are described in
the sections that follow.

4.1.1. Requirement. In the first step, the requirements for AR
technology for a specific task inmanufacturing are identified.
This identification is based on the need for error-free job
execution, reduced cognitive load, ease of learning a task
[37], and assisted decision making. When the specific task
has been identified, the current industry situation needs
to be studied in order to support the task, in terms of its
end-users, level of expertise, and current environment [41].
One of the tasks of operators in an advanced supervisory
control and management system (named integrated potline
control and improvement, referred to as IPC-Im hereafter)
is root causes diagnosis [42]. This task can be combined
with AR (as illustrated in Figure 6) in order to offer effi-
ciency of information presentation and to assist developer of
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Figure 6: Detection tool with AR application (adapted from [42]).

the system in providing an improved interaction between
human and the system.

4.1.2. Design. A number of the main elements, which were
identified fromAR-assisted maintenance system by Nee et al.
[37], can be considered in this design phase. These elements
are as follows.

(1) Display Device. What device is used for visual output?
Examples include head-mounted display (HMD) (e.g., [43,
44]), handheld devices (HHD) (e.g., [45, 46]), and projectors
(e.g., [47]).

Since handheld devices, such as mobile phones, can be
used as a tool to view this information overlay, mobile AR has
gained increased attention from academia and industry, due
to the portability of mobile phones and the ubiquitous nature
of camera phones [37]. Therefore, mobile phone is one of the
viable options as a display device in this new strategy.

(2) Tracking Technologies.What technology is used for track-
ing the cameras position, in order to register virtual objects?
Examples include vision-based tracking (marker) (e.g., [48]),
sensor-based tracking (e.g., [49]), or a hybrid (i.e., vision-
and sensor-based tracking) (e.g., [50]). In this new strategy,
vision-based tracking (marker) has been used to simulate
how information of a cell can be superimposed on a live
view of the cell. An example of such markers is shown in
Figure 7, where the camera first locates the marker (which in
this case is an image of aluminium reduction cell’s number,
2053).When themarker is recognized, a superimposed image
(shown as information of a cell, e.g., temperature, excessAlF

3
,

liquidus temperature, and voltage) will appear on the screen,
in order to mix the virtual world with real world that is
being viewed.This innovative technology offers a solution for
assisting in monitoring a complex process industry, such as
the aluminium smelting industry.

(3) DataManagement.How data is managed in the AR-based
application? Examples include scenario-oriented/process-
oriented (e.g., [51]), knowledge-based (e.g., [50]), or virtual
model-based (e.g., [52]) data retrieval.
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Figure 7: Augmented view of cell 2053 with superimposed information for four process variables.
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Figure 8: Abnormalities potentially generate a distinct view within an aluminium reduction cell. The combination of this view and current
information of the cell can be used as a guideline to diagnose problems.

(4) Human-System Interaction. How do humans interact
with the AR-based system? Examples include using mouse,
keyboard, microphone, touchscreen (e.g., [53]), and digital
camera.

(5) User Collaboration. How does an AR-based application
provide collaboration among users? Examples include using
a microphone and a remote laser pointer (e.g., [52]).

If abnormalities can be diagnosed using the proposed
mobileAR-based approach, a real-time fault diagnosis system
could be developed as an advanced tool to diagnose problems
in an aluminium smelter as shown in Figure 8. In this
application, all the processing work and file saving can be
done in the cloud of the Internet after considering the limited
processing capability of the mobile phone [37].

The mobile AR module should provide sufficient infor-
mation for the process operators to diagnose operating prob-
lems. Six functions that need to be considered are the plant

information system, linking of documents, machine history,
interactive troubleshooting, error tracking and feedback,
interactive video, and a virtual laser pointer. The potential
view of the mobile AR module for a process operator in
an aluminium smelting plant is illustrated in Figure 9 where
there are four main functions:

(1) buttons for interactive manipulation,
(2) speech-based interaction,
(3) results from diagnosis module,
(4) cell information, current status, and faults’ history.

4.1.3. Development, Implementation, and Evaluation. The
third step is development where the platform used to build
the AR application is selected as being either a browser or
a device platform. This development should focus on the
usability and performance of the application. In the fourth
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Figure 9: Augmented view of the real world with superimposed information for four main functions.

step, implementation, possible problems in setting up the
application should first be identified [41], before implement-
ing the application. A clear action plan should be developed
in order to assist end-users or workers in using the new
technology.Thefifth step is evaluationwhere user satisfaction
is evaluated, and the benefits of the application are identified.

These five steps (requirement, design, development,
implementation, and evaluation) can be used as guidance in
developing an AR application for any manufacturing plant,
such as the aluminium smelting plant. In addition, the AR
module can also be added in corrective action guidelines
because AR can be used to highlight dangerous area in a
plant. A virtual fire in the plant, for example, might help
an operator to have in-depth understanding with operating
procedures when an abnormal situation occurs. Therefore,
operator behaviour in normal and abnormal situation can be
tested in order to improve operating procedures.

5. Conclusions

Developing a fault detection and diagnosis system for the
aluminium smelting process is a major challenge. This fault
detection and diagnosis system should be able to accurately
indicate abnormal situations although the process is complex
anddynamic. In this paper, the proposed taxonomydescribed
with examples of existing systems was given. The taxonomy
clearly highlights the key elements of a fault detection and
diagnosis systemwhich covers utilization of knowledge, FDD
techniques, usage frequency, and results presentation. The
taxonomy has many uses including the following:

(1) to identify the key elements to distinguish between
existing systems,

(2) to identify areas of improvement for the existing
systems,

(3) to provide an overview of the system where various
techniques have been applied to detect and diagnose
faults.

This taxonomy has helped in the development of this work by
identifying the gap in existing fault detection and diagnosis
systems and realizing a new approach to developing a new
system that is practical, provides timely detection and diag-
nosis, and is easy to understand by operators. In the future,
the use of AR technology can enhance the competence of the
diagnostic module to diagnose problems in a more practical
manner. AR can provide an interactive environment, where
operators and remote experts can communicate using the
same field of vision. Since AR can be used to augment a user’s
view of an industrial plant, it provides alternative solutions
for design, quality control, monitoring and control, service,
and maintenance in complex process industries, such as the
aluminium smelting industry.
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