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Free surface flows arise in a variety of engineering applications. To predict the dynamic characteristics of such problems, specific
numericalmethods are required to accurately capture the shape of free surface.This paper proposed a newmethodwhich combined
the Arbitrary Lagrangian-Eulerian (ALE) technique with the Finite Volume Method (FVM) to simulate the time-dependent
viscoelastic free surface flows. Based on an open source CFD toolbox called OpenFOAM, we designed an ALE-FVM free surface
simulation platform. In the meantime, the die-swell flow had been investigated with our proposed platform to make a further
analysis of free surface phenomenon.The results validated the correctness and effectiveness of the proposedmethod for free surface
simulation in both Newtonian fluid and viscoelastic fluid.

1. Introduction

In recent years, there is a growing interest in free surface
simulations (e.g., die-swell and bubble growing). Die-swell,
as a typical phenomenon seen in viscoelastic fluids, is widely
investigated. Numerical simulations of extrusion flow need
to address free surface problems. Numerical schemes for
free surface treatment can be classified into the fixed grid
(interface capturing) and themoving grid (interface tracking)
methods. Fixed grid methods capture the interface in a Eule-
rian description, including Volume of Fluid (VOF) method
[1], Level Set method [2], and Marker and Cell (MAC)
method [3], in which the interface is reconstructed through
numerical schemes in these methods.Though these methods
could address sharp interface and large deformation issues
well, the position of the free surface is usually not precise
enough. On the contrary, moving grid methods explicitly
track the position of interface by computational grids which
guarantees the precision of the interface position, but the
quality of the mesh might be reduced during mesh moving
in large deformation cases. Arbitrary Lagrangian-Eulerian

(ALE) Method [4] is one of the moving grid methods.
It combines the advantage of the Lagrangian method in
tracking interface and the efficiency of Eulerian method in
solving governing equations. Therefore, it has been widely
used in wave-like free surface simulations.

ALE method is usually combined with Finite Element
Method (FEM) [5], in which the traction boundary condition
on the interface could be treated in a neat and exact way by
integrating the force in the momentum equation by parts.
However, with the development of Finite Volume Method
(FVM), FVM system is more attractive in fluid simulations
for its good property in local conservation. Therefore, com-
bining ALE method with FVM is capable of representing the
position of free surface by the computational mesh directly,
while benefitting from a good conservation property with
FVM. Tuković and Jasak [6] developed a platform to simulate
Newtonian fluid free surface problems by using the ALE
method in FVM system. In order to get the accurate velocity
on the surface, a new surface mesh is coupled with the
traditional mesh, but it increases the computational cost and
complexity. Moreover, it could not tackle with viscoelastic
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fluids. The greatest challenge of doing this is setting proper
boundary conditions on the free surface.

In this paper, a novel numerical method is proposed for
2D viscoelastic extrusion flow simulations. To the best of the
authors’ knowledge, this paper is the first implementation
for combining ALE technique and FVM in studying time-
dependent viscoelastic extrusion simulations, which extends
the application fields of ALE method. The main contribution
of this paper may be summarized as follows:

(i) We addressed the challenges in coupling theALEwith
FVM method to simulate time-dependent viscoelas-
tic extrusion flows. The obstacle of setting proper
free surface boundary conditions is well addressed by
deriving the Dirichlet pressure boundary condition
and introducing a balance force imposed on the free
surface. The proposed method is capable of dealing
with both Newtonian fluids and viscoelastic fluids.

(ii) We implemented a coupled ALE-FVM simulation
platform based on OpenFOAM (Open Source Field
Operation and Manipulation) [7]. The novel numeri-
cal method is validated by comprehensively compar-
ing with previous literature. Compared to Tuković
and Jasak’s work [6], our approach significantly
reduced the storage and computation cost by aban-
doning the additional surface mesh. Moreover, based
on OpenFOAM, our free surface numerical solver
could be easily scaled to massive processor cores for
large-scale parallel simulations.

The rest of the paper is organized as follows. Details of the
proposed method are presented in Section 2. The numerical
results and discussion are reported in Section 3. Conclusions
are drawn in Section 4.

2. Methodology

In this section, the mathematical formulation of Oldroyd-B
model and numerical algorithms used in the paper will be
presented.

2.1. Mathematical Model. The governing equations for iso-
thermal and incompressible viscoelastic fluid flows include
the mass (continuity) conservation equation, momentum
equation, and constitutive equation. The forms of those
equations for the Oldroyd-B model are given by

𝜌(
𝜕u
𝜕𝑡

+ (u − w) ⋅ ∇u) = −∇𝑝 + ∇ ⋅ 𝜏 + 𝜂
𝑠
Δu,

∇ ⋅ u = 0,

𝜏 + 𝜆
∇

𝜏 = 2𝜂
𝑝
D,

(1)

where 𝜌 is the fluid density, u is the fluid velocity, w is the
velocity of the cell, 𝑝 is the pressure, and 𝜏 is the polymeric
contribution for stress tensor. 𝜂

𝑠
and 𝜂
𝑝
are the solvent viscos-

ity and polymer viscosity, respectively. 𝜆 is the characteristic

relaxation time, and D is the rate of deformation tensor,
which can be expressed as

D =
1

2
(∇u + (∇u)𝑇) . (2)

The upper-convected time derivative of the polymer stress
tensor is defined as

∇

𝜏=
𝜕𝜏

𝜕𝑡
+ (u − w) ⋅ ∇𝜏 − (∇u)𝑇 ⋅ 𝜏 − 𝜏 ⋅ ∇u. (3)

For the convenience of comparison with others’ works,
variables above are usually converted into their dimensionless
form. New dimensionless variable Reynolds number Re
and Weissenberg number Wi are introduced by scaling the
following variables as

𝑥
󸀠

=
𝑥

𝐿
,

𝑦
󸀠

=
𝑦

𝐿
,

u󸀠 = u
𝑈
,

𝑝
󸀠

=
𝑝𝐿

𝜂𝑈
,

𝜏
󸀠

=
𝜏𝐿

𝜂𝑈
,

𝑡
󸀠

=
𝐿

𝑈
𝑡,

Re =
𝜌𝑈𝐿

𝜂
,

Wi = 𝜆
𝑈

𝐿
,

𝛽 =
𝜂
𝑠

𝜂

(4)

in which 𝐿 is the characteristic length (the half width of the
die in this work), 𝑈 is the characteristic velocity (the average
velocity in this work), and 𝜂 is the sum of the 𝜂

𝑠
and 𝜂

𝑝
;

namely, total viscosity 𝜂 = 𝜂
𝑠
+ 𝜂
𝑝
. 𝛽 is the viscosity ratio

parameter.

2.2. Numerical Algorithm

2.2.1. Implementation of Free Surface Boundary Condition.
The most difficult problems in die-swell simulation are the
implementation of free surface boundary condition. Bound-
ary conditions imposed on the free surface could be divided
into two categories, the kinematic boundary condition and
the dynamic boundary condition. The kinematic boundary
condition requires that the normal component of the fluid
velocity equals the normal component of the interfacial grid
velocity, as denoted by

u ⋅ n = w ⋅ n. (5)
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The equation above means the relative speed between the
fluid and the grid perpendicular to the interface is zero. In
OpenFOAM, the velocity of fluid is stored at the cell center,
whichmeans it would be hard to get the velocity of interfacial
grid directly. However, the flux of the fluid through each
cell face could be obtained easily. Therefore, the velocity
of interfacial face could be calculated according to the net
mass flux on the surface. A detailed description about the
implementation of the kinematic boundary condition can be
found in [6, 8]. After moving the interfacial nodes at the
interface, the internal nodes need to be moved according to
the solution of solving a Laplace equation:

∇ ⋅ (Γ∇u) = 0, (6)

where Γ is the diffusion coefficient. The solver chosen to
move nodes in this work is Laplace Face Decomposition
[9], which could maintain a good quality of the mesh in
large deformation cases. And the diffusion coefficient chosen
is inversely proportional to the square of distance from
the free surface. Regenerating the internal grids in this
way could form lines of equal potential and decrease the
nonorthogonality which in turn increases the quality of the
mesh.

The dynamic boundary condition is also called the
traction boundary condition. Ignoring the surface tension, it
means the traction exerted from the fluid to the atmosphere
should be equal to the atmospheric forces acting on the fluid.
Without loss of generality, the atmosphere pressure is set as
𝑝
0
= 0. So the boundary condition is given by

𝜎 ⋅ n = (−𝑝I + 2𝛽D + 𝜏) ⋅ n = (−𝑝I + T) ⋅ n = 0, (7)

where 𝜎 is the total stress tensor, namely, the Cauchy stress
tensor across the free surface, and T = 2𝛽D + 𝜏 is the
extra stress tensor. When solving equations in OpenFOAM,
PISO algorithm requires the term −∇𝑝 and the term 𝜂

𝑠
Δu

exists separately in the equation. However, the term 𝜎 is
a combination of 𝑝, 𝜏, and D. Therefore, this boundary
condition is hard to satisfy directly. It has been known that
−∇𝑝 + ∇ ⋅ 𝜏 + 𝜂

𝑠
Δ𝑢 = ∇ ⋅ 𝜎, and in FVM systems, every term

in the equation should be integrated over the cell volume 𝑉.
Therefore, the right side of (1) is actually solved as∫

𝑉

(−∇𝑝+∇⋅

𝜏+𝜂
𝑠
Δ𝑢)𝑑𝑉 = ∫

𝑉

(∇⋅𝜎)𝑑𝑉. According toGauss’s theorem, the
spatial derivative term could be converted to integrals over
the cell surface 𝑆 bounding the volume. Then, we have

∫
𝑉

(∇ ⋅ 𝜎) 𝑑𝑉 = ∫
𝑆

𝑑S ⋅ 𝜎 = ∑

𝑎

𝜎
𝑎
⋅ n
𝑎
𝑆
𝑎

= ∑

𝑎 ̸=𝑏

𝜎
𝑎
⋅ n
𝑎
𝑆
𝑎
+ 𝜎
𝑏
⋅ n
𝑏
𝑆
𝑏
,

(8)

where S is the face area vector and n is the unit normal vector
of face area. 𝑎 and 𝑏 represent faces around a cell and free
surface faces, respectively.

The dynamic boundary condition requires 𝜎
𝑏
⋅ n
𝑏
= 0;

however, it would not be the case if any of the boundary
conditions is improper. Noting that the boundary condition
would only influence the calculation of the cell that owns

the boundary patch, we introduce a balance force 𝜎∗ = −𝜎

on the free surface (it is zero elsewhere including the internal
field and other boundary fields) to compensate the influence
of nonzero boundary force. By adding the term ∇ ⋅ 𝜎

∗ into
the original momentum equation, the right side of (1) can be
solved as

∫
𝑉

(−∇𝑝 + ∇ ⋅ 𝜏 + 𝜂
𝑠
Δ𝑢 + ∇ ⋅ 𝜎

∗

) 𝑑𝑉

= ∫
𝑉

(∇ ⋅ 𝜎 + ∇ ⋅ 𝜎
∗

) 𝑑𝑉 = ∫
𝑆

𝑑S ⋅ (𝜎 + 𝜎
∗

)

= ∑

𝑎

𝜎
𝑎
⋅ n
𝑎
𝑆
𝑎
− 𝜎
𝑏
⋅ n
𝑏
𝑆
𝑏
= ∑

𝑎 ̸=𝑏

𝜎
𝑎
⋅ n
𝑎
𝑆
𝑎
.

(9)

It can be seen that the influence of the total stress imposed on
the free surface is offset in this way, which means the traction
boundary condition is satisfied equivalently.Themomentum
equation is actually solved in the form:

𝜌(
𝜕u
𝜕𝑡

+ (u − w) ⋅ ∇u)

= −∇𝑝 + ∇ ⋅ 𝜏 + 𝜂
𝑠
Δu + ⟨∇ ⋅ 𝜎

∗

⟩
Γ𝑓
,

(10)

where Γ
𝑓
indicates the term is only applied on the free surface

boundary. Since the SIMPLE algorithm is used to iteratively
solve the linear momentum equation and the continuity
equation, a proper pressure boundary condition is required
during the step of solving the Poisson equation. According
to the force balance in the normal direction on the interface,
Dirichlet boundary condition for the pressure is given by

𝑝 = n ⋅ T ⋅ n. (11)

It is important to note that the pressure condition here is just
a derived quantity, which has arisen only because of the need
to solve the Poisson equation for 𝑝 in isolation. While the
traction boundary condition is the real physical quantity, it
must be satisfied on the fluid. Provided that𝑝 andu are solved
jointly, no pressure boundary condition is needed anymore
[10].

2.2.2. DEVSS Method for Numerical Stability. In order to
enhance the stability of the linear momentum equation,
especially for high Wi number flow, the discrete elastic split
stress (DEVSS) numerical strategy proposed byMatallah et al.
[11] is used. The momentum equation can be rewritten as

𝜌(
𝜕u
𝜕𝑡

+ (u − w) ⋅ ∇u)

= −∇𝑝 + ∇ ⋅ Σ
𝑝
+ 𝜂
𝑡
Δu + ⟨∇ ⋅ 𝜎

∗

⟩
Γ𝑓
,

(12)

where 𝜂
𝑡
= 𝜂
𝑠
+ 𝛼 and ∇ ⋅ Σ

𝑝
is the added artificial viscosity

ratio. The term ∇ ⋅ Σ
𝑝
= ∇ ⋅ 𝜏 − 𝛼Δu is treated as a source

term.A typical choice of𝛼 is 𝜂
𝑝
.This strategy greatly increases

numerical stability and can be applied in modelling various
constitutive models.
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2.2.3. The Simulation Procedure. Apart from the treatment
of the free surface boundary conditions, the simulation
procedure is similar to [6] as shown below:

(1) For a new time step 𝑡
𝑛
, the velocity field u∗, the

pressure field 𝑝
∗, the polymer stress field 𝜏∗, and the

fluid mass fluxes 𝑚̇
𝑓
are obtained from the previous

time step. The initial net mass fluxes through the
interface faces 𝜑

𝑛
are calculated according to the

previous interface position by subtracting the fluid
mass fluxes by the volumetric face fluxes 𝑉̇

𝑓
.

(2) Move the interface mesh points so that the net mass
flux through the interface could be compensated and
the mass conservation law is satisfied.

(3) According to the displacement of the interface mesh
points, the position of internal mesh points is
obtained by solving the Laplacian equation.

(4) Beginning of the outer iteration loop:

(a) getting the new estimated polymer stress tensor
𝜏
∗∗ by solving the specified constitutive equa-

tion with previous velocity field u∗;
(b) setting up the pressure boundary condition and

estimating the balance force 𝜎∗;
(c) calculating the latest velocity field u∗∗ and the

pressure filed 𝑝
∗∗ with SIMPLE algorithm;

(d) moving the interfacemesh points similar to step
(2) until the prescribed accuracy is reached.

(5) If the programme has not reached the final time,
return to step (1).

Step (4)(d) is performed again in order to avoid the
operation of step (3), which is a time-consuming step. Such
procedure is reasonable provided that the displacement of
the interface in one time step is smaller than the thickness of
the nearest interface cell. And this condition could be easily
satisfied by decreasing the time interval.

2.2.4. Other General Numerical Schemes Used in the Simula-
tion. In addition to the approaches described above, under-
relaxation algorithm is also used to enhance the stability of
the numerical simulation, where the relaxation parameters
for 𝑝 and 𝑈 are 0.3 and 0.5, respectively.

Backward Euler method with second order is used for
time derivatives. In terms of the linear system solver, PCG
(Preconditioned Conjugate Gradient method) with AMG
(Algebraic Multi-Grid method) preconditioning is used for
pressure, while BiCGstab (Bi-Conjugate Gradient Stabilized
method) with Diagonal Incomplete Lower-Upper (DILU)
preconditioning is used for velocity and stress [12, 13].
Absolute tolerances are 1.0 × 10

−6 for the velocity and 1.0 ×

10
−7 for pressure and stress, respectively.

3. Results and Discussion

3.1. Basic Geometric Shape and Boundary Conditions. A
sketch of the geometry and the boundary conditions for

Free surface

Symmetry

Outlet
Inlet

No-slip u = w = 0
uin

𝜏in
L

u · n = w · n

𝜎 · n = 0 p = 0

L1 L2

Figure 1: Die-swell flow configurations.

modelling the Newtonian and Oldroyd-B fluid is shown
in Figure 1. The half width of the die 𝐿 is chosen as
the characteristic length. The lengths of the upstream and
the downstream are set as 𝐿

1
and 𝐿

2
, respectively. They

should be long enough to ensure the flow before entry of
the die exit and further downstream at the outlet is fully
developed. In this paper, length settings are 𝐿 = 1 and
𝐿
1
= 𝐿
2
= 8.

As the pressure, the velocity, and the polymer stress are
solved in a coupled way in our system, we usually give either
all the correct boundary conditions or any one of them on the
boundary. In order to avoid unnecessary numerical failure
near the inlet, the conditions of fully developed flow are
imposed on the inlet boundary.The velocity along𝑥direction
at the inlet is uin = 1.5(1 − 𝑦

2

), while the velocity along
𝑦 direction is zero. Therefore, the average velocity of the
inflow is u = 1, and the shear rate near the wall is ̇𝛾

𝑤
=

3. The polymer stress tensor at the inlet for the Oldroyd-
B model is set according to the analytical solution. No-
slip boundary condition is set at the wall. The symmetry
boundary condition is set at the centreline for all fields.
Symmetry boundary condition is provided by OpenFoam
itself. It means there is neither convection flux nor diffusion
flux across the plane; that is, the vertical velocity and the shear
stress component are zero (u

𝑥
= 0 and 𝜎

𝑥𝑦
= 0). We assumed

that the flow at the outlet has been already fully developed;
therefore, the pressure is set as zero at the outlet. Note that
the pressure here is just a reference pressure which is used to
solve the governing equations. In terms of the free surface, the
pressure is initially set as fixed value zero, and it would change
dynamically during the simulation (see (11)). Without special
declaration, zero gradient boundary condition is set for the
remaining boundaries.

3.2. Validation of ComputationalModel withNewtonian Fluid.
By setting Re = 0.01, Wi = 0, 𝛽 = 1, and 𝜀 = 0, Oldroyd-
B model degrades to Newtonian fluid. Under isothermal
condition and neglecting the effects of gravity and surface
tension, the swelling ratio, defined as the maximum diameter
of the extrudate divided by the diameter of the die, is 1.193
from our simulation. It is in an excellent agreement with the
results of Mitsoulis et al. [14] and Georgiou and Boudouvis
[15], which is around 1.19.

3.3. Validation of ComputationalModel with Viscoelastic Fluid
Using Oldroyd-B Model. Based on K-BKZ models, Tanner
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Table 1: Mesh parameters for convergence validation withWi = 0.1.

Name Size Δ𝑥min/𝐿 Δ𝑦min/𝐿 𝑆
𝑅

M1 160 ∗ 30 0.1 0.02 1.1677
M2 320 ∗ 30 0.05 0.02 1.1727
M3 160 ∗ 60 0.1 0.01 1.1691
M4 640 ∗ 30 0.025 0.02 1.1789
M5 160 ∗ 120 0.1 0.005 1.1697
M6 360 ∗ 60 0.025 0.01 1.1770
M7 400 ∗ 60 0.0125 0.01 1.1787

[16] derived an analytical formula to account for the viscous
and elastic contributions to the swell ratio as

𝑆
𝑅
= 0.19 + [1 +

1

12
(
𝑁
1

𝜎
𝑥𝑦

)

𝑤

2

]

1/4

, (13)

where 𝑁
1
= 𝜎
𝑥𝑥

− 𝜎
𝑦𝑦

is the first normal stress difference
and 𝜎

𝑥𝑦
is the shear stress. Both of them are evaluated at the

wall. Introducing the parameter of recoverable shear 𝑅
𝑠
=

(𝑁
1
/2𝜎
𝑥𝑦
)
𝑤
, the swelling ratio can be estimated as

𝑆
𝑅
= 0.19 + [1 +

1

3
𝑅
𝑠

2

]

1/4

. (14)

For the Oldroyd-B model, the recoverable shear of a fully
developed Poiseuille flow is equal to

𝑅
𝑠
= [

2Wi (1 − 𝛽) ̇𝛾
2

2 ̇𝛾
]

𝑤

= (1 − 𝛽)Wi ̇𝛾
𝑤
. (15)

Since in our case ̇𝛾
𝑤

= 3 and 𝛽 = 0.1, the recoverable
shear is 𝑅

𝑠
= 2.7Wi.

Mesh convergence was tested at Wi = 0.1 with seven
meshes, which are listed in Table 1. Δ𝑥min/𝐿 and Δ𝑦min/𝐿
are the relative minimum length along 𝑥-axis and 𝑦-axis,
respectively. These cells appear near the exit of the die.
Through the comparison of all these seven meshes, it is
found that the value of Δ𝑥min/𝐿 plays a dominant role when
determining the welling ratio. Furthermore, if Δ𝑦min/𝐿 ≤

0.01 and Δ𝑥min/𝐿 ≤ 0.025, the relative error of the swelling
ratio is below 0.2%. The solution convergence is reached by
using M6. The time interval is Δ𝑡 = 10

−6 for M7 and Δ𝑡 =

10
−5 for other cases (except for M1).
The value of pressure and polymer stress near the sin-

gularity is illustrated in Figure 2, where 𝑥 is in the range
of [−0.4, 0.4], along with different mesh densities (M4, M6)
at Wi = 0.1. It is shown that the two curves are very
close to each other, which indicates that the given mesh
density is sufficient. In terms of the tendency, the pressure
gradually declines at first and then experiences a steep fall
followed by a mild elevation before the exit. Subsequently, it
dramatically drops from positive to negative and approaches
zero afterwards. As shown in Figures 2(b) and 2(c), there
is a highest point for 𝜏

𝑥𝑥
and lowest point for 𝜏

𝑦𝑦
, where

both points are around the exit. Furthermore, the curve of
𝜏
𝑦𝑦

is sharper than the one of 𝜏
𝑥𝑥
. As 𝑥 increases, the value

of 𝜏
𝑥𝑦

decreases at first, reaches the bottom, and sharply

grows to an apogee, before it declines to zero gradually. In
terms of the trend of the profiles as well as the maximum
and the minimum values near the singularity, the results
of the proposed method are close to those of the spectral
element method with 3rd order polynomial adopted in Claus
work [17], which again demonstrates that the current mesh
is capable of providing reliable results. The small deviation
in terms of the positions of the maximum value and the
minimum value are attributed to the fact that the velocity is
stored on the cell center in this paper and on the cell vertex
in [17], respectively.

In general, with the increase of Wi, the profile of com-
ponents of the polymer stress should be similar but with a
greater value. However, the figure for 𝜏

𝑦𝑦
is much different

from the intuition. Figure 3 shows that the nadir forWi = 0.1

and Wi = 0.2 which is negative becomes the peak for Wi =
0.5which is positive.The force along𝑦direction caused by the
polymer stress components 𝜏

𝑦𝑦
is 𝑛
𝑦
𝜏
𝑦𝑦
, where 𝑛

𝑦
is vertical

component of the standard interfacial normal.Thus, themore
likely 𝑛

𝑦
is approaching to one (corresponding to a small

swelling ratio with a gentle curve), the greater the influence of
𝜏
𝑦𝑦

would be. As the force increases, the extrusion is growing
larger.

The swelling ratio is given in Figure 4 with a comparison
with others’ works. Note that, in their works, the definition
of relative parameters could be different. For example, Russo
and Phillips [18] and Tomé et al. [19] used the full width as the
characteristic length.We just altered them to be the same one
in our work.Moreover, Crochet and Keunings [20] and Tomé
et al. [19] took the Reynolds number as 0 and 0.5, respectively.
Russo and Phillips [18] tested two situations with Re = 0.001

and Re = 0.5 and the results shed light on the fact that
no significant change was achieved by varying the Reynolds
number when Re is small enough. All of these three papers
took 𝛽 = 1/9 in their similar simulations. Our simulation
is kind of similar to Crochet and Keunings [20] and Tomé
et al. [19] who varied the relaxation time 𝜆 in different cases;
therefore, the trend of the curves is the same. However, Russo
and Phillips [18] changed the input velocity, that is, both shear
rate near the wall ̇𝛾

𝑤
and the Weissenberg number Wi are

changed. In his case, the recoverable shear rate is far different
from the one in our simulation even with the same Wi. That
is the reason the trend of his curve seems different from
others. The swelling ratio of all these curves shown increases
with the increase of theWeissenberg number. From Figure 4,
our results are above Crochet and Keunings [20] and Tomé
et al. [19] but below Russo and Phillips [18].With the increase
of Wi number, the elastic effect plays a dominant role in
determining the die-swell. In addition, slight drop of swelling
ratio at low Wi number illustrated in Figure 4 is due to the
negative value of 𝜏

𝑦𝑦
and was also observed in [20].

The steady state profiles of the free surface at various Wi
numbers are shown in Figure 5. It can be seen that a larger
Wi value would result in an increased slope of the curve.This
is because the first normal stress at the exit of the channel
for bigger Wi number is larger than the smaller ones. Such
phenomenon also indicates the main factor of the swelling is
the value of the first normal stress near the exit of the die.
Under higher Wi number, the hexahedron cell is deformed
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Figure 2: Pressure and components of polymer stress near the singularity at Wi = 0.1.
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greatly which increases the mesh nonorthogonality. The
maximum mesh nonorthogonality has reached as high as 40
at Wi = 1.0 and the threshold in OpenFOAM is usually set
as 70. Though the nonorthogonality value could be reduced
by mesh refinement, the computational time would increase.
Themaximum swelling ratio obtained from our simulation is
about 2.26 at Wi = 2.5 using Mesh M1.

Contour plots of velocity components 𝑈
𝑥
for Wi = 0.1,

0.5, 0.8, 1.0 and𝑈
𝑦
for Wi = 0.5, 1.0 are displayed in Figure 6.

By increasing Wi number, the horizontal components of the
velocity 𝑈

𝑥
increase along 𝑦 directions. The contour line

of 𝑈
𝑥

= 1.4 expands upward and forward. The vertical
components of the velocity 𝑈

𝑦
also increase due to larger

elastic effects which results in a larger swelling ratio.
The profile of the first normal stress difference 𝑁

1
just

before the exit (at 𝑥 = −0.04, and the exit is at 𝑥 = 0) of the die
for a large range of Wi is shown in Figure 7. These lines are
sampled along 𝑦-axis at fixed 𝑥. Apparently, the maximum
value of each line increases as Wi becomes larger, which is
consistent with (15). All of these four lines begin with zero
at the middle of the die (𝑦 = 0). As for Wi = 1.0, it goes up
gradually until it approaches thewall, where it grows instantly
to the peak. Subsequently, it drops dramatically. The profiles
of otherWi values smaller than 1.0 are something like shifting
the curve of Wi = 1.0 downwards to the right. In detail, there
is no peak in the case ofWi = 0.1. Generally speaking, a larger
Wi results in a higher peak, which indicates the first normal
stress dominates the extrusion process.

Decreasing the viscosity ratio 𝛽 from 1 to 0 means
gradually increasing the contribution of elastic stress and
decreasing the effects of purely viscous stress.When𝛽 reaches
zero, the model degrades to the upper-convected Maxwell
(UCM) model. In order to investigate the role of 𝛽 in die-
swell simulations, simulations under 𝛽 = 0.5 and 𝛽 = 0.9

are carried out. Figure 8 illustrates the trend that the swelling
ratio would increase as Wi number increases, regardless of

the value of 𝛽. Moreover, the result departs fromTanners the-
ory obviously. Considering an extreme case, as 𝛽 approaches
one, the swelling ratio almost remains a constant even for a
large value of Wi according to Tanners theory. However, this
does not match the experimental result. For the case 𝛽 = 0.9,
Wi = 1 and the case 𝛽 = 0.1, Wi = 1, the recoverable shear
𝑅
𝑠
are 3 and 2.7, respectively. According to (15), the swelling

ratio of the former one should be larger than the later one,
while the fact is contrary. Russo and Phillips [18] attribute the
discrepancy to the fact that Tanners formula derived from
a KBK-Z integral constitutive equation only considered a
single relaxation time; however, the Oldroyd-Bmodel owns a
retardation time in addition to the relaxation time.This result
might be related to the fact that the elongational response
for 𝛽 = 0.1 is much stronger than the one for 𝛽 = 0.9

as illustrated in Figure 9. Thus, the extensional response
also plays an important role in swelling process and should
be taken into account when predicting the final swelling
ratio. The simulation results in [21] demonstrate that flows
with a sufficiently high elongational viscosity are able to
swell to an apparently large state even at a relatively low
flow rate, ignoring their performance in simple shear flows.
Nevertheless, decreasing the viscosity ratio would lead to an
increase in the recoverable shear and, in turn, increases the
value of swelling ration according to (15). By comparing the
value in Figures 4 and 8, it is reasonable to say that Tanners
theory still makes some sense. Apart from that, with a careful
comparison, it is found that when the viscosity ratio 𝛽 is
very large (for the case of 𝛽 = 0.9), which represents a very
dilute fluid, the swelling ratio suffers a significant drop. In
comparison, when 𝛽 is relatively small (for the case of 𝛽 =

0.5), the swelling ratio ismuch less sensitive.This phenomena
was also observed in [22]. Note that because of different
definitions of the viscosity ratio, 𝛽 in this paper is equivalent
to 1 − 𝛽 in their works.

As can be seen from (13), the value of the shear
stress would not change once the shear rate is determined.
Consequently, the first normal stress difference is the only
variable which determines the swelling ratio. Figures 7 and
10 demonstrate that a high proportion of polymeric stress
contributionwould result in a larger value of𝑁

1
, whichwould

provide greater power to swell. According to the analytical
solution of the Oldroyd-B model, smaller 𝛽 would result in
a higher value of the first normal stress. Therefore, the first
normal stress plays a vital role in determining the behaviour
of extrusion flows and could be used to predict the final
results of swelling ratio.

4. Conclusion

In this work, a new method to track the free surface for
viscoelastic fluids was proposed. The obstacle of setting a
proper free surface boundary condition was well resolved by
deriving a Dirichlet pressure boundary condition and intro-
ducing a balance force. The proposed numerical approach
was implemented opon OpenFOAM, which is widely used
in CFD simulations [23, 24]. Comparing with previous
literature, the results showed that our solutions were close
to those with other methods (e.g., FEM, Spectral Element
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Method, and MAC), which validated the correctness and
effectiveness of the proposed numerical method. Moreover,
the results showed that the swelling ratio would decline
gradually with the increase of the viscosity ratio. In the
meantime, brief analysis of the influence of the viscosity ratio
was performed. Moreover, providing appropriate constitu-
tive equations, investigation of die-swell behaviour for new
polymeric materials can be performed based on our new
platform. In addition, since the FVM systems are suitable for
parallelization, the free surface simulations in our platform
would be easily scaled to massive processors for parallel
computing.
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