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Short-term traffic flow prediction is one of the most important issues in the field of adaptive traffic control system and dynamic traffic
guidance system. In order to improve the accuracy of short-term traffic flow prediction, a short-term traffic flow local prediction
method based on combined kernel function relevance vector machine (CKF-RVM) model is put forward. The C-C method is used
to calculate delay time and embedding dimension. The number of neighboring points is determined by use of Hannan-Quinn
criteria, and the CKF-RVM model is built based on genetic algorithm. Finally, case validation is carried out using inductive loop
data measured from the north-south viaduct in Shanghai. The experimental results demonstrate that the CKF-RVM model is 31.1%
and 52.7% higher than GKF-RVM model and GKF-SVM model in the aspect of MAPE. Moreover, it is also superior to the other

two models in the aspect of EC.

1. Introduction

Short-term traffic flow prediction is an important basis for
intelligent transportation systems (ITS). Real-time and accu-
rate prediction information can be directly applied to the
advanced traffic management system (ATMS) and advanced
traffic information service system (ATIS). Because of its
importance, short-term traffic flow predication has generated
great interest among the scientific community and a large
number of relevant methods exist in the literature. These
include the spectral analysis model [1, 2], time series model [3,
4], regression model [5, 6], the Kalman filtering model [7, 8],
neural network model [9, 10], support vector machine model
[11, 12], and wavelet network model [13]. Reader interested
in details of models applied in traffic flow prediction field
could refer to review papers such as [14-16]. With the
development of chaos theory, recent studies such as [17-19]
have found that the short-term traffic flow time series data
had nonlinear chaotic phenomena. Therefore, short-term
traffic flow chaotic predictions have gained special attention.
The prediction of chaotic time series could be generally
classified into two categories: global prediction and local

prediction. Global prediction methods use all phase points
to describe the evolution law and then to predict the future
value. A number of researchers have utilized global predic-
tion methods in prediction of chaotic time series. Karunas-
inghe and Liong [20] investigated the performance of artifi-
cial neural network as a global model in chaotic time series
predictions compared to local prediction models. Dong et al.
[21] adapted the Elman neural network to realize short-time
traffic flow prediction based on chaos analysis. Baydaroglu
and Kocak [22] used support vector regression model to
predict evaporation amounts, and phase space reconstruction
is used to prepare input data for SVR. Local prediction
methods select K neighboring points to fit the brief evolution
trend of phase points and then to obtain the predicted
value. Local prediction methods mainly include local average
prediction method [23], weighted first-order local prediction
method [24], the Lyapunov index prediction method [25],
and support vector machine model [26]. Due to the less
number of fitting phase points, the local prediction method
has the advantage of low computational complexity and
high fitting degree. Farmer and Sidorowich [27] had already
proved that the performance of local prediction methods



was better than global prediction method under the same
embedding dimension. Therefore, local prediction is adopted
to achieve short-term traffic flow prediction in this paper.

In order to get the accurate prediction results, we need
to find the nonlinear prediction function. However, it is hard
to get the accurate function due to the interference of inside
and external excitations. But determining the linear function
is not hard since detecting linear relations has been focus of
much research in statistics and machine learning fields for
decades and the resulting algorithms are well understood,
well developed, and efficient. So if we could combine both,
it will solve the problem. Instead of trying to fit a nonlinear
model, we can map the problem from the input space to
the feature space by doing a nonlinear transformation using
suitably chosen basis functions and then use a linear model
in the feature space. The basis function is called kernel
function. The linear model in the feature space corresponds
to a nonlinear model in the input space. This is the main
idea of relevance vector machine (RVM) model. Due to
RVM theoretical advantages, it has gained special attention in
recent years, such as [28-30]. This paper is motivated to build
the short-term traffic flow forecasting model based on RVM
because of its ability to deal with the dynamic, nonlinear,
and complex traffic flow time series. consequently, it is very
suitable for short-term traffic flow prediction.

For these reasons, and with the goal of improving the
accuracy of short-term traffic flow prediction, we put forward
a short-term traffic flow local prediction method based on
combined kernel function relevance vector machine model.
The remainder of this paper is structured as follows: Section 2
presents the phase space reconstruction theory. Section 3
gives the process of building combined kernel function
relevance vector machine model. Section 4 describes the
experiment setup and case study. Section5 draws some
conclusions.

2. Phase Space Reconstruction Theory

Phase space reconstruction theory proposed by Packard et al.
[31] is a powerful tool in the study of complicated system.
According to the theory of chaos dynamics, the time series
contains total useful information and reflects the process of
system evolution in a long term. Complex characteristics
found in a time series may be the result of temporal evolution
on a chaotic attractor, objects of fractal dimension created
by means of stretching and folding of space. If we could
capture chaotic behavior from the time series signal of
traffic flow models, we could enhance our knowledge about
the inherent properties of the traffic flow system. Phase
space reconstruction theory is used to create topologically
equivalent attractors to the original dynamical system using
the information from a scalar time series only [32].

Phase space can be reconstructed using delay coordinate
method. The basic idea of delay coordinate method is that
the evolution of any single variable of a system is determined
by the other variables with which it interacts. Information
about the relevant variables is thus implicitly contained in
the history of any single variable. For a time series {x(i),
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i = 1,2,...,N}, the phase space can be reconstructed
according to

X0 ={x@),x@G+1),....,.x[i+(m-1)71]}, (1)

where 7 is delay time and 1 is embedding dimension.

Embedding dimension and delay time are the key param-
eters for phase space reconstruction. At present, there are two
kinds of views about the selection of these two parameters.
One view is that the two parameters are independent and
could be determined separately. The methods of calculat-
ing delay time include Average Displacement method [33],
Mutual Information method [34], and Autocorrelation Func-
tion method [35]. The methods of calculating embedding
dimension include False Nearest Neighbors method [36],
Cao method [37], and G-P method [38]. Another view
is that the two parameters are interrelated and should be
determined simultaneously, such as C-C method [39]. C-C
method can obtain embedding dimension and delay time
simultaneously. Compared with other methods, C-C method
has the advantage of small amount of calculation and strong
anti-interference. Therefore, C-C method is employed to
determine delay time T and embedding window width 7,,, and
then the embedding dimension m is calculated according to
7, = (m — 1)7. The principle of C-C method is as follows.

{x(i), i = 1,2,..., N} denotes time series data; a new set
of vector series denoted by X = X(i) could be obtained
through phase space reconstruction. The correlation integral
for the embedded time series is the following function:

C(m,N,r, 1)
2 : . (2)
Moo, 2, KO- X0l

where r is the neighborhood radius, X(i) is phase point in
phase space, 7 is delay time, m is embedding dimension,
M = N—(m—1)7 is the number of embedded points in phase
space, N is the length of time series, | - ||, denotes sup-norm,
and 6(-) is Heaviside unit function; if x < 0, 8(x) = 0; if
x > 0,0(x) = 1. The correlation integral is a cumulative
distribution function and denotes the probability that the
distance between any two points is less than r. We define the
test statistics

S(m,N,r,7) =C(m,N,r,7)-C" (I,N,r,7).  (3)

The time series x(i), i = 1,2,..., N, can be divided into ¢
disjoint time series. The results are as follows:

(x(1),x(t+1),x(2t+1),...}

(xQ2),x(t+2),x(2t+2),...}
(4)

(X (), x(t+1),x 2t +1),...}.
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The test statistics is
S(m,N,r,t)
t (5)

1 N N
== E [Cl<m,—,r,t>—C}”(l,—,r,t>],
t r r

I=1

where C; denotes the correlation integral of the /th subse-
quence.
As N — 00, we can write

S(m,r,t) = %Z [C) (m,r,t) - C" (1,1,1)]. (6)
=1

For fixed embedding dimension m and delay time 7, as
N — o0, S(m,r,t) will be identically equal to 0 for all r
if the time series data are independent and identical distri-
bution. However, the actual time series data are finite and
correlated, so S(m,r,t) is not equal to 0 generally. Thus,
the local optimal times may be either the zero crossings
of S(m, r,t) or the times at which S(m, r,t) shows the least
variation with r, because this indicates that these points are
uniform distribution. Hence, we select the maximum and
minimum radius to define quantity.

Consider

AS (m,t) = max {S (m,r,,t)} — min {S (m, rj,t)}. (7)

AS(m, t) measures the maximum deviation of S(m, 7, t) ~
t with r. Therefore, the optimal delay time is the first zero
crossings of S(m,r,t) ~ t or the first local minimum point
of AS(m, t) ~ t.

According to the BDS statistic result, we select m = 2,3,
4,5 r; = i0/2,i = 1,2,3,4, to calculate the following vari-
ables:

'S

_ 1 <
S(t):RZ
=2 j=1

m

S (m, Tjs t),

<.
Il

5
AS () = i Y AS(m,t), ®)
m=2

Seor (1) = AS () + [S ()]

where S(t) is the mean of S(m, r,t) for all subsequence. The
optimal delay time 7 is the first local minimum point of
AS(t) ~ t. The delay time window 7, is global minimum point
of Scop (1) ~ £.

3. Modeling of CKF-RVM Model

3.1. The Principle of RVM Model. The relevance vector
machine (RVM) model proposed by Tipping [40] is a sparse
probabilistic model based on Bayesian principle. Compared
with other intelligent algorithms, RVM owns better perfor-
mance. For example, the kernel function of RVM model need
not be restricted by Mercer’s condition. Moreover, it inducts
a priori distribution of the weights and then greatly reduces

the complexity of calculation. The principle of RVM model is
as follows.

Consider a data set {x,, t,}",, where x,, € R", t,, € R. The
relationship between x,, and ¢,, is as follows:

N
tn = y (xn; ‘LU) + En = Z wigoi (x) + wO + E) (9)

i=1

where w = (wy, wy,...,wy) is weight vector, £, is the inde-
pendent additive noise term subject to &, ~ N (0, 0%), ¢;(x) =
K(x, x;) is the nonlinear basis function, and K(-) is the kernel
function. Therefore, p(t, | x) = N(t,, | y(xn),az) denotes the
normal distribution of ¢, with mean y(x,) and variance 0.
Assume t, are independent of each other; the likelihood of
the complete data set can be written as

-N/2 1
p (t | w, 02) = (27102) exp {_th It - CDw||2} ,  (10)
wheret =(t,,t,,..., tN)T and @ = [p(x,), p(x,), ... ,(p(xN)]T
is the N x (N — 1) kernel function matrix in which ¢(x,,) =
[1, K(5, 1) K (X, X5), . s K (5, x0)] 7
Because there are many parameters in the model, the
maximum likelihood estimates of w and o> will lead to severe
overfitting. Therefore, the sparse Bayesian theory is adopted
and a prior zero-mean Gaussian distribution over w is as
follows:

N
pwla)=[]N(w10,0), (1)

i=0

where o = {&y, &y, ..., ay} is a vector of N + 1 hyperparame-
ters. Each weight is individually associated with a parameter,
which controls the influence of the prior distribution over
associated weight.

Because we have defined the prior probability distribution
and the likelihood distribution, the posterior probability
distribution is as follows according to the Bayesian theory:

P(w | t, e, 0—2) = (2m) W2 g 12

(12)
1 —

e {3 (w-p) %3 (w-n)}.

Posterior covariance matrix and mean value are as fol-
lows, respectively:

2= (o20Td+4) ", (13)

p=0"30"t, (14)

where A = diag(ay, &y, .. ., ay)-

According to the maximum expected hyperparameter
estimation, the value of « and o” can be obtained through
iterative algorithm. Consider

new 7

% =5 (15)
2
l Hi
where y; is the ith posterior average weight and r; = 1 —;N;;,
where Nj; is the ith diagonal element of the covariance matrix
computed by the current & and 0.



The noise variance o* can be obtained through iterative
algorithm

sy _ = ou

Given anew sample x,,, t, is the corresponding prediction
value. The probability distribution of prediction value follows
a normal distribution N ([4*,0‘2) with mean p, and variance
2. Consider

Ho = .“Tq) (x*) >

. (17)
O‘i = GI%AP +O0(x,) Z0(x,),

where p, is the predictive mean on x, and o7 is the predictive

variance.

3.2. The Construction of Combined Kernel Function. The tra-
ditional relevance vector machine model mostly adopts single
kernel function to complete the process of feature space
mapping, which has achieved good performance in many
practical applications. But the single kernel function has great
limitations when the sample data contains heterogeneous
information. Therefore, this paper integrates the Gaussian
kernel function and polynomial kernel function to construct
anew combination kernel function. The form of combination
kernel function is as follows:

<

-
K(x,x,-)zA-exp(——x +(1-1)
202 (18)

(xx; + l)d,

where A is weight coefficient, 0 < A < 1, o is the kernel width
of Gaussian kernel function, and d is the order of polynomial
kernel function.

Different kernel functions have different advantages; if
the weight coeflicient of combination kernel function is inap-
propriate, the performance of combination kernel function
may be lower than single kernel function. Therefore, proper
weight coeflicient is of great importance for the combined
kernel function.

3.3. Parameter Optimization Based on Genetic Algorithm.
There are three parameters that need to be optimized in the
combined kernel function. The commonly used parame-
ter optimization methods mainly include cross validation
method [41] and grid search method [42]. But these methods
have a large amount of calculation and are often trapped in
local optimum. Genetic algorithm (GA) [43] is a heuristic
scientific method based on Darwin’s biological evolutionism,
which has been widely applied to solve high dimensional
optimization problem for parameter optimization in engi-
neering and science areas. Genetic algorithm differs from tra-
ditional search and optimization methods in four significant
points:Genetic algorithms search parallel from a population
of points. Therefore, it has the ability to avoid being trapped in
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local optimal solution like traditional methods, which search
from a single point.Genetic algorithms use probabilistic
selection rules, not deterministic ones.Genetic algorithms
work on the chromosome, which is encoded version of
potential solutions’ parameters, rather than the parameters
themselves.Genetic algorithms use fitness score, which is
obtained from objective functions, without other derivative
or auxiliary information.

Therefore, genetic algorithm is used to obtain the optimal
parameters of combination kernel function. The specific steps
are as follows.

Step 1 (initialize the parameters). The population size and
maximal generation count: the population size is 20, and the
maximal generation count is 100.

Step 2 (representation). The parameters to be optimized A, o,
and d are coded in binary to generate the chromosomes.

Step 3 (fitness function definition). The cross validation
method is used to prevent overfitting and underfitting. The
training data set is randomly divided into K subsets in K-
fold cross validation. The RVM model is built using K - 1
subset as the training set. The performance of the parameters
is checked on the Kth subset. In this paper, fivefold cross
validation method is used. The fitness function is defined as
the mean absolute percentage error of the fivefold validation
method on the training data set.

Step 4 (creating new population). Selection, crossover, and
mutation are carried out to generate population. The chro-
mosomes with better fitness function values are selected
using the roulette wheel method. The crossover probability of
creating new chromosomes is set to 0.8. Mutation probability
is set to 0.05.

Step 5 (stopping criteria determine). If the generation count
reaches its maximum value, the iteration is stopped. Other-
wise, the process is repeated from Step 3 to Step 4.

4. Experiment Setup and Case Study

4.1. Data Source. The experimental traffic flow data come
from loop detectors located on the north-south viaduct
expressway in Shanghai, China. This segment includes 24
mainline detecting sections and 30 ramp detecting sections,
equipped with 88 mainline loop detectors and 60 ramp loop
detectors, respectively. The experimental data are collected
on five consecutive Mondays from September 1, 2008, to
September 29, 2008. The original time interval of collected
data is 5 min. Figure 1 gives the traffic flow time series data
from five consecutive Mondays.

4.2. Phase Space Reconstruction. Phase space reconstruction
is the basis of chaotic time series analysis which affects
the prediction performance directly. This paper selects C-
C method to complete phase space reconstruction. Figure 2
gives the curve graph between AS(t) and t. Figure 3 gives the
curve graph between S, () and t.
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FIGURE 1: The traffic flow time series data from five consecutive
Mondays.
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FIGURE 2: The curve graph between AS(t) and ¢.

From Figure 2, it can be seen that when AS(t) get the first
minimum, the value of ¢ is 18. Therefore, the value of delay
time 7 is determined to be 18. From Figure 3, when S_,.(t) get
the global minimum, the value of t is 113. Therefore, the value
of 7, is 113, and the embedding dimension m is determined
to be 7 according to 7, = (m — 1)7.

Figure 4 displays the 2D attractor of the reconstructed
phase space for traffic flow time series.

From Figure 4, we could see clearly that the 2D attractor
for traffic flow time series is well-regulated, which instructs
that the C-C method could implement phase space recon-
struction of traffic flow time series excellently.

4.3. Identification of Chaos. Among the wide variety of
methods available for chaos identification, the most popular
one is the largest Lyapunov exponent method. The main
methods of calculating largest Lyapunov exponent include
Wolf method [44], Jacobian method [45], and small data sets
method [46]. Due to the smaller amount of calculation and
clear principles, the small data sets method is employed to
calculate the largest Lyapunov exponent of traffic flow time
series. Figure 5 displays the result of small data sets method.
The linear range is from 57 to 98, and the largest Lyapunov
exponent corresponding to the slope value is obtained after
the least-squares fit for the linear range. The largest Lyapunov
exponent is found to be 0.0014, and this positive value implies
an exponential divergence of the trajectories and hence a
strong signature of chaos.

sCOl’(t)

100 120 140 160 180 200
t
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FIGURE 3: The curve graph between S_,(t) and .
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FIGURE 4: The 2D attractor of the reconstructed phase space for
traffic flow time series.

4.4. The Number of Neighboring Points. The number of neigh-
boring points is one of the most important parameters which
affects the prediction accuracy and the amount of calculation.
If the number of neighboring points is too little, the nonlinear
fitting advantage of relevance vector machine model will not
be reflected. However, if the number of neighboring points
is too much, the amount of calculation will increase greatly
and the overfitting phenomenon will appear. Therefore,
the Hannan-Quinn criteria [47] are used to determine the
number of neighboring points. Figure 6 shows the results of
Hannan-Quinn criteria.

According to Hannan-Quinn criteria, when C(k) gets
the minimum value, the corresponding k is the number of
neighboring points which we need. From Figure 6, we could
see that the number of neighboring points is 26.

4.5. Parameter Optimization. Genetic algorithm is used to
optimize A, 0, and d. The specific parameters of genetic algo-
rithm are as follows: the population size is 20, maximal
generation count is 100, the crossover probability is 0.8, and
the mutation probability is 0.05. Figure 7 gives the fitness
curve.

From Figure 7, we could see that the optimal parameters

of combined kernel function are A = 0.57, ¢ = 0.25, and
d=3.

4.6. Performance Evaluation Index. In order to evaluate the
performance of the proposed method, two different types of



8.65
86|
8.55 |
85|
_ 845
= 84}
835 |
83|
8.25 [
8.2
0

50 100 150 200 250 300

i

FIGURE 5: The result of small data sets method.

=10 i

=12 i

-14

0 5 10 15 20 25 30
k

FIGURE 6: The number of neighboring points based on Hannan-
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FIGURE 7: The fitness curve of GA.

measurements are introduced: the mean absolute percentage
error denoted by MAPE and equal coefficient denoted by EC.
The equations for the MAPE and EC are as follows:

MAPE = lz u’
il i
(19)
n ~\2
EC=1- Zi:I (yz yl)

R
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TABLE 1: Prediction performance comparison of different methods.

East mainline West mainline

Model

MAPE EC MAPE EC
CKF-RVM 5.0% 0.987 5.4% 0.982
GKF-RVM 7.2% 0.958 7.9% 0.965
GKF-SVM 10.6% 0.940 11.4% 0.935

where y; denotes the actual value for the ith time interval, y;
denotes the predicted value for the ith time interval, and 7 is
the total number of time intervals.

4.7. Model Performance and Analysis. Data collected from
September 1 to September 22 are used as training samples,
and data collected on September 29 are used as test samples
to evaluate the performance of prediction model. In order to
illustrate the predictive performance of the proposed method
intuitively, Figure 8 presents prediction results based on the
proposed method. The black line stands for actual traffic flow
data, and the red line stands for the prediction results of CKF-
RVM model. Figures 8(a) and 8(b), respectively, show the
prediction results and the MAPE for east mainline detector
denoted by NBDX16(2). Figures 8(c) and 8(d), respectively,
show the prediction results and the MAPE for west mainline
detector denoted by NBXX10(1).

As shown in Figure 8, the prediction results are quite
close to the actual data, and the MAPE are mostly within
10%. However, the MAPE from 0:00 to 4:00 is high, and
this is because the actual traffic flow data during that time
period is small. Overall, the CKF-RVM model achieves good
prediction performance, which could meet the needs of
short-term traffic flow prediction.

To describe the superiority of the proposed method
detailedly, comparative analysis is carried out. This paper
selects Gaussian kernel function relevance vector machine
(GKF-RVM) model and Gaussian kernel function sup-
port vector machine (GKF-SVM) model as comparative
approaches. For the sake of comparison and analysis in terms
of macroscopic and microscopic aspects, Figure9 gives
the microscopic comparative results of different methods.
Figure 9(a) shows the prediction results for east mainline
detector denoted by NBDXI1I(1), and Figure 9(b) shows
the prediction results for west mainline detector denoted
by NBXXI15(2). Table1 gives the macroscopic comparative
results of different methods.

As shown in Figure 9, we could see clearly that the pre-
diction results of CKF-RVM model have the best fitting
performance comparing to GKF-RVM model and GKEF-
SVM model. Therefore, the CKF-RVM model could further
improve the accuracy of short-term traffic flow prediction.

From Table 1, we could see that the overall improvement
of CKF-RVM model is obvious comparing to GKF-RVM
model and GKF-SVM model. More precisely, the CKF-RVM
model has an extra 31.1% improvement over the GKF-RVM
model and an extra 52.7% improvement over the GKF-
SVM model in the aspect of MAPE. Meanwhile, the CKF-
RVM model is also superior to the other two models in
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FIGURE 8: The prediction performance based on the proposed method.
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FIGURE 9: The microscopic comparative results of different methods.

the aspect of EC. Furthermore, the experimental results
also demonstrate that the CKF-RVM model achieves good
prediction performance for both east mainline data and west
mainline data, which proves that CKF-RVM model has strong
generalization ability. Overall, the CKF-RVM model is an
effective and accurate method for short-time traffic flow
prediction, which can provide satisfactory prediction results.

5. Discussion and Conclusions

This paper proposes a new short-term traffic flow local
prediction method based on combined kernel function
relevance vector machine model. The proposed method is
more in line with the short-term traffic flow characteristic,
which are nonlinear, chaotic, and nonstationary. The main



contribution of this paper is not the specific techniques but
rather the demonstration that the forecasting model should
take the dynamic characteristics of short-term traffic flow
into consideration. The most important contribution is that
this paper provides the new idea and methodology to the
relevance vector machine model on how to construct the
combined kernel function for the short-term traffic flow
forecasting model and how to optimize and identify the
model structure parameters efficiently and effectively.

Traffic flow data collected from expressway are employed
to evaluate the prediction performance of the proposed
method, and the results are encouraging. The theoretical
advantage and better performance from our studies indi-
cate that the CKF-RVM model has good potential to be
developed and is feasible in applying for short-term traffic
flow prediction. In order to have more general and robust
conclusions, traffic data from different roadways require
further exploration. And future studies need to apply the
model to other traffic variable data sets (such as traffic
speed, travel time, and average occupancys; this study chooses
the traffic flow as the demonstration). Moreover, it will be
interesting to test traffic data set in different time intervals in
the model.
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