
Research Article
Deep Extreme Learning Machine and Its Application in
EEG Classification

Shifei Ding,1,2 Nan Zhang,1,2 Xinzheng Xu,1,2 Lili Guo,1,2 and Jian Zhang1,2

1School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
2Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences,
Beijing 100190, China

Correspondence should be addressed to Shifei Ding; dingsf@cumt.edu.cn

Received 26 August 2014; Revised 4 November 2014; Accepted 12 November 2014

Academic Editor: Amaury Lendasse

Copyright © 2015 Shifei Ding et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Recently, deep learning has aroused wide interest in machine learning fields. Deep learning is a multilayer perceptron artificial
neural network algorithm. Deep learning has the advantage of approximating the complicated function and alleviating the
optimization difficulty associated with deep models. Multilayer extreme learning machine (MLELM) is a learning algorithm of
an artificial neural network which takes advantages of deep learning and extreme learning machine. Not only does MLELM
approximate the complicated function but it also does not need to iterate during the training process. We combining with MLELM
and extreme learning machine with kernel (KELM) put forward deep extreme learning machine (DELM) and apply it to EEG
classification in this paper. This paper focuses on the application of DELM in the classification of the visual feedback experiment,
using MATLAB and the second brain-computer interface (BCI) competition datasets. By simulating and analyzing the results of
the experiments, effectiveness of the application of DELM in EEG classification is confirmed.

1. Introduction

Brain-computer interface (BCI) is a kind of technology that
enables people to communicate with a computer or to control
devices with EEG signals [1].The core technologies of BCI are
to extract the feature of preprocessed EEG and classify ready-
processed EEG, and this paper is mainly about classification
analysis. In recent years, BCI has gotten a great advance with
the rapid development of computer technology. BCI has been
applied to many fields, such as medicine and military [2–4].
Currently, many different methods have been proposed for
EEG classification, including decision trees, local backprop-
agation (BP) algorithm, Bayes classifier,𝐾-nearest neighbors
(KNN), support vector machine (SVM), batch incremental
support vector machine (BISVM), and ELM [5–8]. However,
most of them are shallow neural network algorithms inwhich
the capabilities achieve approximating the complex functions
that are subject to certain restrictions, and there is no such
restriction in deep learning.

Deep learning is an artificial neural network learning
algorithm which has multilayer perceptrons. Deep learning

has achieved an approximation of complex functions and
alleviated the optimization difficulty associated with the deep
models [9–11]. In 2006, the concept of deep learning was first
proposed by Hinton and Salakhutdinov who presented deep
structure of multilayer autoencoder [12]. Deep belief net-
work was proposed by Hinton [13]. LeCun et al. put forward
the first real deep learning algorithm—convolutional neural
networks (CNNs) [14]. More and more people put forward
some new algorithms based on deep learning.Then convolu-
tional deep belief network was put forward [15]. In 2013, the
model ofmultilayer extreme learningmachine (MLELM)was
proposed by Kasun et al. [16], and DELM takes advantages
of deep learning and extreme learning machine. Extreme
learningmachine (ELM) proposed by Huang et al. is a simple
and efficient learning algorithm of single layer feed-forward
neural networks (SLFNs) [17, 18]. In addition, some people
put forward some deformation algorithms based on ELM,
such as regularized extreme learning machine (RELM) [19],
extreme learning machine with kernel (KELM) [20], opti-
mally pruned extreme learning machine (OP-ELM) [21], and
evolving fuzzy optimally pruned extreme learning machine
(eF-OP-ELM) [22].

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 129021, 11 pages
http://dx.doi.org/10.1155/2015/129021

2 Mathematical Problems in Engineering

a11

a12

a21

a22
a2n

aj1

aj2

ajn bn

n

j

a1n

b1

b2

m

2

1

2

1

2

1

�n1

�n2

�nm

�11

�12�1m

�21

�22

�2m

Input layer Single-hidden layer Output layer

...
...

...

xi
yi

Figure 1: The model structure of ELM.

We combining withmultilayer extreme learningmachine
(MLELM) and extreme learningmachinewith kernel (KELM)
put forward deep extreme learning machine (DELM) and
apply it to EEG classification, and the paper is organized as
follows: Section 2 gives themodel of ELM,RELM, andKELM.
Section 3 describes themodel structure ofMLELM. Section 4
details the model structure of DELM. Section 5 first evaluates
the usefulness of DELM on UCI datasets and then applies
DELM to EEG classification. In Section 6, the conclusion is
gotten.

2. Extreme Learning Machine (ELM)

2.1. Basic Extreme Learning Machine (Basic ELM). ELM pro-
posed by Huang et al. is a simple and efficient learning algo-
rithm of SLFNs. The model of ELM constituted input layer,
single-hidden layer, and output layer. The model structure
of ELM is shown in Figure 1, with 𝑗 input layer nodes, 𝑛
hidden layer nodes, 𝑚 output layer nodes, and the hidden
layer activation function 𝑔(𝑥).

For 𝑁 distinct samples 𝑥
𝑖
∈ 𝑅
𝑁
× 𝑅
𝑗
, 𝑦
𝑖
∈ 𝑅
𝑁
× 𝑅
𝑚
(𝑖 =

1, 2, . . . , 𝑁), the outputs of the hidden layer can be expressed
as (1), and the numerical relationship between output of the
hidden layer and output of the output layer can be expressed
as (2):

ℎ = 𝑔 (𝑎𝑥 + 𝑏) , (1)

ℎ (𝑥
𝑖
) 𝑉 = 𝑦

𝑖
, 𝑖 = 1, 2, . . . , 𝑁. (2)

The above equation can be written compactly as

𝐻𝑉 = 𝑌, (3)

where

𝐻 =

[
[
[
[

[

𝑔(⃗𝑎
1
, 𝑏
1
, 𝑥⃗
1
) 𝑔(⃗𝑎

1
, 𝑏
1
, 𝑥⃗
2
) ⋅ ⋅ ⋅ 𝑔(⃗𝑎

𝑛
, 𝑏
𝑛
, 𝑥⃗
𝑁
)

𝑔(⃗𝑎
2
, 𝑏
2
, 𝑥⃗
1
) 𝑔(⃗𝑎

2
, 𝑏
2
, 𝑥⃗
2
) ⋅ ⋅ ⋅ 𝑔(⃗𝑎

𝑛
, 𝑏
𝑛
, 𝑥⃗
𝑁
)

.

.

.
.
.
. d

.

.

.

𝑔(⃗𝑎
𝑛
, 𝑏
𝑛
, 𝑥⃗
1
) 𝑔(⃗𝑎

𝑛
, 𝑏
𝑛
, 𝑥⃗
2
) ⋅ ⋅ ⋅ 𝑔(⃗𝑎

𝑛
, 𝑏
𝑛
, 𝑥⃗
𝑁
)

]
]
]
]

]

𝑇

, (4)

𝑉 =

[
[
[
[
[
[

[

V𝑇
1

V𝑇
2

.

.

.

V𝑇
𝑛

]
]
]
]
]
]

]𝑛×𝑚

, 𝑌 =

[
[
[
[
[
[

[

𝑦
𝑇

1

𝑦
𝑇

2

.

.

.

𝑦
𝑇

𝑁

]
]
]
]
]
]

]𝑁×𝑚

, (5)

where 𝑎
𝑖
= [𝑎
𝑖1
, 𝑎
𝑖2
, . . . , 𝑎

𝑖𝑛
]
𝑇 are the weights connecting the

𝑖th input nodes and hidden layer, 𝑏
𝑗
is the bias of the 𝑗th

hidden node, and V
𝑗
= [V
𝑗1
, V
𝑗2
, . . . , V

𝑗𝑛
]
𝑇 are the weights con-

necting the 𝑗th hidden node and the output layer.𝐻 is output
matrix of the neural network.We need to set input weights 𝑎

𝑖𝑗

and the bias of the hidden layer 𝑏
𝑗
; the output weights 𝑉 can

be obtained by a series of linear equations transformations.
In conclusion, using ELM to obtain the output weights 𝑉

can be divided into three steps.

Step 1. Randomly select numerical values between 0 and 1 to
set input weights 𝑎

𝑖𝑗
and the bias of the hidden layer 𝑏

𝑗
.

Step 2. Calculate the output matrix𝐻.

Step 3. Calculate the output weights 𝑉:

𝑉 = 𝐻
†
𝑌, (6)

where 𝐻† represents the generalized inverse matrix of the
output matrix𝐻.

Mathematical Problems in Engineering 3

2.2. Regularized Extreme Learning Machine (RELM). ELM
has the advantage of fast training speed and high general-
ization performance, but ELM also has the disadvantage of
bad robustness. Deng et al. combining with experiential risk
and structural risk put forward regularized extreme learning
machine (RELM) which has better robustness, and RELM
aims to solve the output weights by minimizing the regu-
larized cost function of least squares estimate regularization,
which leads to the following formulation:

min 𝐿RELM =
1

2
‖𝑉‖
2
+
𝐶

2
‖𝑌 − 𝐻𝑉‖

2
, (7)

where 𝐶 is a scale parameter which adjusts experiential risk
and structural risk.

By setting the gradient of 𝐿RELM with respect toV to zero,
we have

𝑉 + 𝐶𝐻
𝑇
(𝑌 − 𝐻𝑉) = 0. (8)

When the number of training samples is more than the
number of hidden layer nodes, the output weight matrixV in
RELM can be expressed as

𝑉 = (
𝐼

𝐶
+ 𝐻
𝑇
𝐻)

−1

𝐻
𝑇
𝑌. (9)

When the number of training samples is less than the
number of hidden layer nodes, the output weight matrix V
in RELM can be expressed as

𝑉 = 𝐻
𝑇
(
𝐼

𝐶
+ 𝐻𝐻

𝑇
)

−1

𝑌. (10)

2.3. Extreme Learning Machine with Kernel (KELM). Huang
et al. combiningwith the kernelmethod and extreme learning
machine put forward extreme learning machine with kernel
(KELM). The outputs of the hidden layer of ELM can be
regarded as the nonlinear mapping of samples. When the
mapping is an unknown,we can construct the kernel function
instead of𝐻𝐻𝑇:

𝐻𝐻
𝑇
= ΩELM =

[
[

[

𝐾 (𝑥
1
, 𝑥
1
) ⋅ ⋅ ⋅ 𝐾 (𝑥

1
, 𝑥
𝑁
)

.

.

. d
.
.
.

𝐾 (𝑥
𝑁
, 𝑥
1
) ⋅ ⋅ ⋅ 𝐾 (𝑥

𝑁
, 𝑥
𝑁
)

]
]

]

,

ℎ (𝑥)𝐻
𝑇
=
[
[

[

𝐾 (𝑥, 𝑥
1
)

.

.

.

𝐾 (𝑥, 𝑥
𝑁
)

]
]

]

𝑇

.

(11)

The most popular kernel of KELM in use is the Gaussian
kernel 𝐾(𝑥

𝑖
, 𝑥
𝑗
) = exp(−‖𝑥

𝑖
− 𝑥
𝑗
‖/𝛾), where 𝛾 is the kernel

parameter.
Thus, the output weight matrix V in KELM can be

expressed as (12) and the Classification of formula of KELM
can be expressed as (13):

𝑉 = (
𝐼

𝐶
+ ΩELM)

−1

𝑌, (12)

𝑓 (𝑥) = ℎ (𝑥)𝐻
𝑇
𝑉 =

[
[

[

𝐾 (𝑥, 𝑥
1
)

.

.

.

𝐾 (𝑥, 𝑥
𝑁
)

]
]

]

𝑇

(
𝐼

𝐶
+ ΩELM)

−1

𝑌.

(13)

3. Multilayer Extreme Learning
Machine (MLELM)

3.1. Extreme Learning Machine-Autoencoder (ELM-AE).
Autoencoder is an artificial neural network model which
is commonly used in deep learning. Autoencoder is an
unsupervised neural network, the outputs of autoencoder are
the same as the inputs of autoencoder, and autoencoder is a
kind of neural networks which reproduces the input signal as
much as possible. ELM-AE proposed by Kasun et al. is a new
method of neural network which can reproduce the input
signal as well as autoencoder.

The model of ELM-AE constituted input layer, single-
hidden layer, and output layer. The model structure of ELM-
AE is shown in Figure 2, with 𝑗 input layer nodes, 𝑛 hidden
layer nodes, 𝑗 output layer nodes, and the hidden layer
activation function 𝑔(𝑥). According to the output of the
hidden layer representing the input signal, ELM-AE can be
divided into three different representations as follows.

𝑗 > 𝑛: Compressed Representation: this represents
features from a higher dimensional input signal space
to a lower dimensional feature space.

𝑗 = 𝑛: Equal Dimension Representation: this repre-
sents features from an input signal space dimension
equal to feature space dimension.

𝑗 < 𝑛: Sparse Representation: this represents features
from a lower dimensional input signal space to a
higher dimensional feature space.

There are two differences between ELM-AE and tradi-
tional ELM. Firstly, ELM is a supervised neural network and
the output of ELM is label, but ELM-AE is an unsupervised
neural network and the output of ELM-AE is the same as
the input of ELM-AE. Secondly, the input weights of ELM-
AE are orthogonal and the bias of hidden layer of ELM-AE is
also orthogonal, but ELM is not so. For 𝑁 distinct samples,
𝑥
𝑖
∈ 𝑅
𝑛
×𝑅
𝑗
, (𝑖 = 1, 2, . . . , 𝑁), the outputs of ELM-AE hidden

layer can be expressed as (14), and the numerical relationship
between the outputs of the hidden layer and the outputs of
the output layer can be expressed as (15):

ℎ = 𝑔 (𝑎𝑥 + 𝑏) , where 𝑎𝑇𝑎 = 𝐼, 𝑏
𝑇
𝑏 = 1, (14)

ℎ (𝑥
𝑖
) 𝑉 = 𝑥

𝑇

𝑖
, 𝑖 = 1, 2, . . . , 𝑁. (15)

Using ELM-AE to obtain the output weights𝑉 can be also
divided into three steps, but the calculation method of the
output weights 𝑉 of ELM-AE in Step 3 is different from the
calculation method of the output weights 𝑉 of ELM.

For sparse and compressed ELM-AE representations,
output weights V are calculated by (16) and (17).

4 Mathematical Problems in Engineering

x2i

xji

x1i

x2i

xji

x1i

xi

1

1

1

2 2

2

j

a21

a22

a2n

a1n
aj1

aj2

ajn

a11

a12

b1

b2

bn

n

�11

�12
�1j

�21

�22

�2j

j

�n1

�n2

�nj

xj

Output layerSingle-hidden layerInput layer

...
...

...

Figure 2: The model structure of ELM-AE.

When the number of training samples is more than the
number of hidden layer nodes,

𝑉 = (
𝐼

𝐶
+ 𝐻
𝑇
𝐻)

−1

𝐻
𝑇
𝑋. (16)

When the number of training samples is less than the
number of hidden layer nodes,

𝑉 = 𝐻
𝑇
(
𝐼

𝐶
+ 𝐻𝐻

𝑇
)

−1

𝑋. (17)

For equal dimension ELM-AE representation, output
weights 𝑉 are calculated by

𝑉 = 𝐻
−1
𝑋. (18)

3.2. Multilayer Extreme Learning Machine (MLELM). In
2006, Hinton et al. put forward an effective method of
establishing amultilayer neural network on the unsupervised
data. In the new method, first the parameters in each layer
are obtained by unsupervised training, and then the network
is fine-tuned by supervised learning. In 2013, MLELM was
proposed by Kasun et al. Like other deep learning models,
MLELM makes use of unsupervised learning to train the
parameters in each layer, but the difference is that MLELM
does not need to fine-tune the network.Thus, compared with
other deep learning algorithms, MLELM does not need to
spend a long time on the network training.

MLELM makes use of ELM-AE to train the parameters
in each layer, and MLELM hidden layer activation functions
can be either linear or nonlinear piecewise. If the activation
function of the MLELM 𝑖th hidden layer is 𝑔(𝑥), then the

parameters between the MLELM 𝑖th hidden layer and the
MLELM (𝑖−1) hidden layer (if 𝑖−1 = 0, this layer is the input
layer) are trained by ELM-AE, and the activation function
should be 𝑔(𝑥), too. The numerical relationship between
the outputs of MLELM 𝑖th hidden layer and the outputs of
MLELM (𝑖 − 1) hidden layer can be expressed as

𝐻
𝑖
= 𝑔 ((V

𝑖
)
𝑇
𝐻
𝑖−1
) , (19)

where𝐻
𝑖
represents the outputs of MLELM 𝑖th hidden layer

(if 𝑖−1 = 0, this layer is the input layer, and𝐻
𝑖−1

represents the
inputs of MLELM). The model of MLELM is shown in Fig-
ure 3, V

𝑖
represents the output weights of ELM-AE, the input

of ELM-AE is𝐻
𝑖−1

, and the number of ELM-AE hidden layer
nodes is identical to the number ofMLELM 𝑖th hidden nodes
when the parameters between the MLELM 𝑖th hidden layer
and the MLELM (𝑖 − 1) hidden layer are trained by ELM-AE.
The output of the connections between the last hidden layer
and the output layer can be analytically calculated using
regularized least squares.

4. Deep Extreme Learning Machine (DELM)

MLELM makes use of ELM-AE to train the parameters in
each layer, and ML-ELM hidden layer activation functions
can be either linear or nonlinear piecewise, and the mapping
of MLELM is linear or nonlinear. When the mapping is an
unknown, we can add one hidden layer and construct the
kernel function. In other words, at last the outputs ofMLELM
hidden layer 𝐻

𝑘
(the matrix size is 𝑛

𝑘
∗ 𝑁) are the inputs of

KELM, and we can construct the kernel function instead

Mathematical Problems in Engineering 5

2

1

1

2

1

2 2

1

1

2

1

2

2

1

1

2

1

2

1

2

1

2

2

1

1

2

1

2

Input layer

The model of ELM-AE The model of ELM-AE

Hidden layer Output layer

The model of MLELM

n1

n1 ni ni+1

ni+1

Vi+1

nk

ni ini

hihi

ym

y2

y1

m

V1

x1

x2

xj

x1

x2

xj

x1

x2

xjj

j

j

.

.

.

.

.

. .
.
.

.

.

.

.

.

.
.
.
.

.

.

. .
.
.

.

.

.
.
.
.

.

.

..
.
.

Vi+1
T

V1
T

Figure 3: The model structure of MLELM.

of 𝐻
𝑘+1

𝐻
𝑘+1

𝑇. This algorithm combining with MLELM and
KELM is called deep extreme learning machine (DELM):

𝐻
𝑘+1

𝐻
𝑘+1

𝑇

= ΩDELM

=
[
[

[

𝐾 (𝐻
𝑘 (:, 1) ,𝐻𝑘 (:, 1)) ⋅ ⋅ ⋅ 𝐾 (𝐻

𝑘 (:, 1) ,𝐻𝑘 (:, 𝑁))

.

.

. d
.
.
.

𝐾 (𝐻
𝑘 (:, 𝑁) ,𝐻𝑘 (:, 1)) ⋅ ⋅ ⋅ 𝐾 (𝐻

𝑘 (:, 𝑁) ,𝐻𝑘 (:, 𝑁))

]
]

]

,

ℎ
𝑘+1

(ℎ
𝑘 (𝑥))𝐻𝑘+1

𝑇
=
[
[

[

𝐾 (ℎ
𝑘 (𝑥) ,𝐻𝑘 (:, 1))

.

.

.

𝐾 (ℎ
𝑘 (𝑥) ,𝐻𝑘 (:, 𝑁))

]
]

]

𝑇

.

(20)

The model of DELM is shown in Figure 4, V
𝑖
(𝑖 ∈

[1, . . . , 𝑘]) represents the output weights of ELM-AE, the
input of ELM-AE is𝐻

𝑖−1
, and the number of ELM-AE hidden

layer nodes is identical to the number of DELM 𝑖th hidden
nodes when the parameters between the DELM 𝑖th hidden
layer and the MLELM (𝑖 − 1) hidden layer are trained by
ELM-AE. And we can construct the kernel function instead
of𝐻
𝑘+1

𝐻
𝑘+1

𝑇; thus the output weight matrixV in DELM can

be expressed as (21) and the classification of formula of KELM
can be expressed as (22):

𝑉 = (
𝐼

𝐶
+ ΩDELM)

−1

𝑌, (21)

𝑓 (𝑥) = ℎ
𝑘+1

(ℎ
𝑘 (𝑥))𝐻𝑘+1

𝑇
𝑉

=
[
[

[

𝐾(ℎ
𝑘
(𝑥),𝐻

𝑘
(:, 1))

.

.

.

𝐾(ℎ
𝑘
(𝑥),𝐻

𝑘
(:, 𝑁))

]
]

]

𝑇

(
𝐼

𝐶
+ ΩDELM)

−1

𝑌.

(22)

5. Experiments and Analysis

The execution environment of experiments is MATLAB
2012B. All activation functions of ELM, MLELM, and DELM
select sigmoid function and the kernel functions of KELM
and DELM are Gaussian kernel. ELM, MLELM, and DELM
were executed100 times, and the average values and the best
values are reported.

5.1. UCI Datasets Classification. In this part, the UCI datasets
were used to test the performances of DELM, and the details

6 Mathematical Problems in Engineering

Table 1: The details of UCI datasets.

Dataset Number of samples Attributes information Number of labels
Training samples Testing samples Number of attributes Attribute characteristics

Ionosphere 200 151 34 Continuous attributes 2
Diabetes 576 192 8 Categorical, integer 2

1

2

ni

1

2

ni

The model of KELM

The model of ELM-AEThe model of ELM-AE
1

2

1

2

1

2

1

2

1

2

1

2

1

2

m

1

2

1

2

1

2

1

2

1

2

Hidden layer Output layerInput layer

.

.

.
.
.
.

.

.

. .
.
.

.

.

.
.
.
.

The model of DELM

n1

n1

j

ym

ni

y1

y2

nixj

jxj

j xj

x1

x2

x1

x2

x1

x2

hi hi

nkni+1 nk+1

ni+1

.

.

.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

..
.
.

V1 Vi+1

Vi+1
T

V1
T

Figure 4: The model structure of DELM.

of UCI dataset are presented in Table 1, including ionosphere
dataset and diabetes dataset.

As shown in Figure 5, we can make choices that the
numbers of ELM hidden layer nodes on ionosphere dataset
and diabetes dataset are 50 and 40, the regularized parameter
𝐶 and the kernel parameter 𝛾 of KELMon ionosphere dataset
are 103 and 102, and the regularized parameter 𝐶 and the ker-
nel parameter 𝛾 of KELM on diabetes dataset are 102 and 101.
The structure of MLELM on ionosphere dataset is 34-30-
30-50-2, where the parameter 𝐶 for layer 34-30 is 103, the
parameter 𝐶 for layer 30-50 is 10−2, and the parameter 𝐶 for
layer 50-2 is 108. And the structure of MLELM on diabetes
dataset is 8-10-10-40-2, where the parameter𝐶 for layer 8-10 is

106, the parameter 𝐶 for layer 10-40 is 108, and the parameter
𝐶 for layer 40-2 is 105. The structure of DELM on ionosphere
dataset is 34-30-30-L-2, where the parameter 𝐶 for layer 34-
30 is 101, the parameter 𝐶 for layer L-2 is 103, and the kernel
parameter 𝛾 is 102. And the structure of DELM on diabetes
dataset is 8-10-10-L-2, where the parameter 𝐶 for layer 34-
30 is 101, the parameter 𝐶 for layer L-2 is 102, and the kernel
parameter 𝛾 is 101.

The performance comparison of DELM with ELM,
KELM, and MLELM on UCI datasets is shown in Table 2. It
is clearly observed that DELM testing accuracy is higher than
MLELM, either the average or the maximum, and the best
values of DELM testing accuracy are higher than ELM and

Mathematical Problems in Engineering 7

Table 2: Performance comparison of DELM with ELM, KELM, and MLELM on UCI datasets.

Dataset Algorithm # Training accuracy Testing accuracy Training time (s) Testing time (s)

Ionosphere

Basic ELM Average 0.9207 ± 0.0151 0.9342 ± 0.0222 0.0044 ± 0.0074 0.0013 ± 0.0048
Best 0.9500 0.9735 — —

KELM — 0.9900 0.9735 0.0064 0.0017

ML-ELM Average 0.9112 ± 0.0159 0.9447 ± 0.0216 0.0115 ± 0.0116 0.0014 ± 0.0050
Best 0.9500 0.9801 — —

DELM Average 0.9503 ± 0.0111 0.9474 ± 0.0292 0.0164 ± 0.0079 0.0045 ± 0.0064
Best 0.9750 0.9934 — —

Diabetes

Basic ELM Average 0.7983 ± 0.0062 0.7725 ± 0.0129 0.0072 ± 0.0132 0.0034 ± 0.0098
Best 0.8125 0.8021 — —

KELM — 0.7899 0.7917 0.6818 0.0314

ML-ELM Average 0.7666 ± 0.0207 0.7522 ± 0.0324 0.0091 ± 0.0143 0.0044 ± 0.0109
Best 0.7951 0.8177 — —

DELM Average 0.7871 ± 0.0079 0.7580 ± 0.0422 0.0641 ± 0.0143 0.0112 ± 0.0086
Best 0.8038 0.8229

0 50 100 150 200
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

The number of hidden neurons

Ac
cu

ra
cy

Training accuracy
Testing accuracy

(a) Basic ELM for ionosphere dataset

−4 −3 −2 −1 0 1 2 3 4

−8−6−4−202468
0.2

0.4

0.6

0.8

1

Te
sti

ng
 ac

cu
ra

cy

ln(𝛾)
ln(C)

(b) KELM for ionosphere dataset

0 50 100 150 200
0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

The number of hidden neurons

Ac
cu

ra
cy

Training accuracy
Testing accuracy

(c) Basic ELM for diabetes dataset

−4 −3 −2 −1 0 1 2 3 4

−8−6−4−202468
0.55

0.6

0.65

0.7

0.75

0.8

Te
sti

ng
 ac

cu
ra

cy

ln(𝛾)
ln(C)

(d) KELM for diabetes dataset

Figure 5: Basic ELM and KELM for UCI dataset.

8 Mathematical Problems in Engineering

Table 3: The details of the second BCI competition dataset IA.

Dataset Number of samples Number of attributes Number of labels
Training samples Testing samples

BCI competition II dataset IA 268 293 5376 2

Table 4: Performance comparison of DELM with ELM, KELM, and MLELM on the BCI competition II dataset IA.

Dataset Algorithm # Training accuracy Testing accuracy Training time (s) Testing time (s)

BCI competition II dataset IA

Basic ELM Average 1.0000 ± 0 0.8609 ± 0.0187 3.3670 ± 0.0866 2.2361 ± 0.0498
Best 1.0000 0.9078 — —

KELM — 0.8582 0.9010 0.0754 0.1430

ML-ELM Average 0.7849 ± 0.0213 0.8642 ± 0.0216 9.2012 ± 0.1444 0.4820 ± 0.0272
Best 0.8358 0.9113 — —

DELM Average 0.7515 ± 0.0161 0.8650 ± 0.0224 6.7438 ± 0.2099 0.2932 ± 0.0290
Best 0.7873 0.9181 — —

0 1000 2000 3000 4000 5000

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

The number of hidden neurons

Ac
cu

ra
cy

Training accuracy
Testing accuracy

(a) Basic ELM for the BCI competition II dataset IA

−4 −2 0 2 4 6 8

−8−6−4−202468
0.5

0.6

0.7

0.8

0.9

1
Te

sti
ng

 ac
cu

ra
cy

ln(𝛾)
ln(C)

(b) KELM for the BCI competition II dataset IA

Figure 6: Basic ELM and KELM for the BCI competition II dataset IA.

KELM. And DELM training time is the longest, but there is
little difference between testing times. Sigillito et al. inves-
tigated ionosphere dataset using backpropagation and the
perceptron training algorithm; they found that “linear” per-
ceptron achieved 90.7%, a “nonlinear” perceptron achieved
92%, and backprop an average of over 96% accuracy [23].
Although the average value of DELM on ionosphere dataset
only achieves 94.74%, the best value has reached to 99.34%.

5.2. EEG Classification. The effectiveness of DELM has been
confirmed, so the effectiveness of the application of DELM in
EEG classification is tested in this part.

5.2.1. Visual Feedback Experiment (Healthy Subject). Theper-
formances of DELM on the second BCI competition dataset
IA are tested in this section, and this dataset comes from

the visual feedback experiment (healthy subject) provided by
University of Tuebingen [24].

The datasets were taken from a healthy subject. The sub-
ject was asked to move a cursor up and down on a computer
screen, while his cortical potentials were taken. Cortical
positivity leads to a downwardmovement of the cursor on the
screen. Cortical negativity leads to an upward movement of
the cursor. Each trial lasted 6 s. The visual feedback was
presented from second 2 to second 5.5. Only this 3.5-second
interval of every trial is provided for training and testing.The
sampling rate of 256Hz and the recording length of 3.5 s
result in 896 samples per channel for every trial, and the
details are presented in Table 3.

As shown in Figure 6, we can make choices that the
number of ELM hidden layer nodes on BCI competition II
dataset IA is 3000; the regularized parameter𝐶 and the kernel
parameter 𝛾 of KELM are 103 and 104. The structure of

Mathematical Problems in Engineering 9

0 1000 2000 3000 4000 5000
0.4

0.5

0.6

0.7

0.8

0.9

1

The number of hidden neurons

Ac
cu

ra
cy

Training accuracy
Testing accuracy

(a) Basic ELM for the BCI competition II dataset IA

−4 −3 −2 −1 0 1 2 3 4

−8−6−4−202468
0.5

0.51

0.52

0.53

0.54

0.55

Te
sti

ng
 ac

cu
ra

cy

ln(𝛾)
ln(C)

(b) KELM for the BCI competition II dataset IA

Figure 7: Basic ELM and KELM for the BCI competition II dataset IA.

MLELM is 5376-500-500-3000-2, where the parameter 𝐶 for
layer 5376-500 is 21, the parameter 𝐶 for layer 500-3000 is 28,
and the parameter 𝐶 for layer 3000-2 is 2−7. The structure of
DELM is 5376-500-500-L-2, where the parameter 𝐶 for layer
5376-500 is 10−1, the parameter𝐶 for layer L-2 is 10−1, and the
kernel parameter 𝛾 is 102.

The performance comparison of DELM with ELM,
KELM, and MLELM on the BCI competition II dataset IA
is shown in Table 4. It is clearly observed that DELM testing
accuracy is higher than MLELM, either the average or the
maximum, and the best values of DELM testing accuracy are
higher than ELM and KELM. MLELM training time is the
longest, and the testing time of MLELM and DELM is less
than ELM. The performance comparison of DELM with the
results of BCI competition II dataset IA is shown in Table 5. It
is clear that the average error value of DELM on BCI compe-
tition II dataset IA achieves 13.50%, but the min error value
has reduced to 8.19%, which is much lower than the results of
BCI competition II.

5.2.2. Visual Feedback Experiment (ALS Patient). The per-
formances of DELM on the second BCI competition dataset
IB are tested in this section, and this dataset comes from
the visual feedback experiment (ALS patient) provided by
University of Tuebingen.

The datasets were taken from an artificially respirated
ALS patient. The subject was asked to move a cursor up and
down on a computer screen, while his cortical potentials were
taken. Cortical positivity leads to a downward movement
of the cursor on the screen. Cortical negativity leads to an
upward movement of the cursor. Each trial lasted 8 s. The
visual feedback was presented from second 2 to second 6.5.
Only this 4.5-second interval of every trial is provided for
training and testing. The sampling rate of 256Hz and the

Table 5: Performance comparison of DELM with the results of BCI
competition II on dataset IA.

Contributor Error (%)
1 Brett Mensh 11.3
2 Guido Dornhege 11.6
3 Kai-Min Chung 11.9
4 Tzu-Kuo Huang 15.0
5 David Pinto 15.7
6 Juma Mbwana 17.1
7 Vladimir Bostanov 17.4
8 Ulrich Hoffmann 17.8
9 Deniz Erdogmus 19.1
10 Justin Sanchez 19.8
∗ Ours (the average value of DELM) 13.50
∗ Ours (the best value of DELM) 8.19

recording length of 4.5 s result in 1152 samples per channel
for every trial, and the details are presented in Table 6.

As shown in Figure 7, we can make choices that the
number of ELM hidden layer nodes on BCI competition II
dataset IA is 2000; the regularized parameter𝐶 and the kernel
parameter 𝛾 of KELM are 10−1 and 103. The structure of
MLELM is 8064-500-500-2000-2, where the parameter 𝐶 for
layer 8064-500 is 101, the parameter 𝐶 for layer 500-2000 is
108, and the parameter𝐶 for layer 2000-2 is 104.The structure
of DELM is 8064-500-500-L-2, where the parameter 𝐶 for
layer 8064-500 is 10−2, the parameter 𝐶 for layer L-2 is 10−8,
and the kernel parameter 𝛾 is 101.

The performance comparison of DELM with ELM,
KELM, and MLELM on the BCI competition II dataset IB is
shown in Table 7. It is clearly observed that the best of DELM
testing accuracy is not lower thanMLELM, ELM, andKELM.

10 Mathematical Problems in Engineering

Table 6: The details of the second BCI competition dataset IB.

Dataset Number of samples Number of attributes Number of labels
Training samples Testing samples

BCI competition II dataset IB 200 180 8064 2

Table 7: Performance comparison of DELM with ELM, KELM, and MLELM on the BCI competition II dataset IB.

Dataset Algorithm # Training accuracy Testing accuracy Training time (s) Testing time (s)

BCI competition II dataset IB

Basic ELM Average 1.0000 ± 0 0.5172 ± 0.0395 3.4636 ± 0.1255 2.0602 ± 0.0670
Best 1.0000 0.6056 — —

KELM — 1.0000 0.5333 0.0738 0.1285

ML-ELM Average 0.6145 ± 0.0306 0.5219 ± 0.0284 10.4225 ± 0.1134 0.3970 ± 0.0182
Best 0.6750 0.5833 — —

DELM Average 0.7151 ± 0.0485 0.5211 ± 0.0266 8.9814 ± 0.2085 0.2603 ± 0.0231
Best 0.8450 0.6056 — —

Table 8: Performance comparison of DELMwith the results of BCI
competition II on dataset IB.

Contributor error
1 Vladimir Bostanov 45.6%
2 Tzu-Kuo Huang 46.7%
2 Juma Mbwana 46.7%
4 Kai-Min Chung 47.8%
5 Xichen Sun 48.3%
6 Amir Saffari 53.3%
7 Fabien Torre 54.4%
8 Brett Mensh 56.1%
∗ Ours (the average value of DELM) 47.89%
∗ Ours (the best value of DELM) 39.44%

MLELM training time is the longest, and the testing time
of MLELM and DELM is less than ELM. The performance
comparison of DELM with the results of BCI competition II
dataset IA is shown in Table 8. It is clear that the average error
value of DELM on BCI competition II dataset IA achieves
47.89%, but themin error value has reduced to 39.44%, which
is much lower than the results of BCI competition II.

6. Conclusions

This paper explores the application of DELM in EEG classi-
fication and makes use of two BCI competition datasets to
test the performances of DELM. Experimental results show
that DELM has the advantage of the least training time and
the good efficiency and DELM is an effective BCI classifier.
Although DELM has these advantages, there are some places
which should be improved, such as the number of all hidden
layer nodes, each hidden layer activation function, and each
layer parameter 𝐶 that are difficult to determine. In this
paper, DELM is used to classify preprocessed EEG data and
the feature attributes of preprocessed EEG are not extracted,
which has certain effects on the experimental results. Future
research is to combine the EEG feature extraction methods
and DELM, which will be applied to the EEG classification.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work is supported by the National Natural Science
Foundation of China (No. 61379101), the National Key Basic
Research Program of China (No. 2013CB329502), the Natural
Science Foundation of Jiangsu Province (No. BK20130209),
and the Fundamental Research Funds for the Central Uni-
versities (No. 2013XK10).

References

[1] R. Cucchiara, C. Grana, M. Piccardi, and A. Prati, “Detecting
moving objects, ghosts, and shadows in video streams,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol.
25, no. 10, pp. 1337–1342, 2003.

[2] J.-B. Zhao and Z.-J. Zhang, “Progress in brain-computer inter-
face based on cortical evoked potential,” Space Medicine &
Medical Engineering, vol. 23, no. 1, pp. 74–78, 2010.

[3] M. Middendorf, G. McMillan, G. Calhoun, and K. S. Jones,
“Brain-computer interfaces based on the steady-state visual-
evoked response,” IEEE Transactions on Rehabilitation Engi-
neering, vol. 8, no. 2, pp. 211–214, 2000.

[4] Z.-Y. Feng, EEG Applied Research in Personal Identification and
Fatigue Detection, Beijing University of Posts and Telecommu-
nications, 2013.

[5] N. Ye, Y.-G. Sun, and X. Wang, “Classification of brain-com-
puter interface signals based on common spatial patterns andK-
nearest neighbors,” Journal of Northeastern University, vol. 30,
no. 8, pp. 1107–1110, 2009.

[6] M. Meng and Z.-Z. Luo, “Hand motion classification based on
eye-moving assisted EEG,” Pattern Recognition and Artificial
Intelligence, vol. 25, no. 6, pp. 1007–1012, 2012.

[7] B.-H. Yang, M.-Y. He, L. Liu, and W.-Y. Lu, “EEG classification
based on batch incremental SVM in brain computer interfaces,”
Journal of Zhejiang University (Engineering Science), vol. 47, no.
8, pp. 1431–1436, 2013.

Mathematical Problems in Engineering 11

[8] Q. Yuan,W. Zhou, S. Li, andD. Cai, “Approach of EEGdetection
based on ELM and approximate entropy,” Chinese Journal of
Scientific Instrument, vol. 33, no. 3, pp. 514–519, 2012.

[9] Y. Bengio and O. Delalleau, “On the expressive power of deep
architectures,” in Algorithmic Learning Theory, vol. 6925 of
Lecture Notes in Computer Science, pp. 18–36, Springer, Berlin,
Germany, 2011.

[10] Y. Bengio, “Learning deep architectures for AI,” Foundations
and Trends in Machine Learning, vol. 2, no. 1, pp. 1–27, 2009.

[11] Y. Bengio and Y. Lecun, “Scaling learning algorithms towards
AI,” in Large-Scale Kernel Machines, vol. 34, pp. 1–41, 2007.

[12] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimen-
sionality of data with neural networks,” American Association
for the Advancement of Science: Science, vol. 313, no. 5786, pp.
504–507, 2006.

[13] G. E. Hinton, “Deep belief networks,” Scholarpedia, vol. 4, no. 5,
article 5947, 2009.

[14] Y. LeCun, B. Boser, J. S. Denker et al., “Backpropagation applied
to handwritten zip code recognition,” Neural Computation, vol.
1, no. 4, pp. 541–551, 1989.

[15] M. Norouzi, M. Ranjbar, and G. Mori, “Stacks of convolutional
restricted Boltzmannmachines for shift-invariant feature learn-
ing,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR ’09), pp. 2735–2742, IEEE Press,
Miami, Fla, USA, 2009.

[16] L. L. C. Kasun, H.-M. Zhou, G.-B. Huang, and C. M. Vong,
“Representational learning with extreme learning machine for
big data,” IEEE Intelligent System, vol. 28, no. 6, pp. 31–34, 2013.

[17] J. Cao, Z. Lin, G.-B. Huang, and N. Liu, “Voting based extreme
learning machine,” Information Sciences, vol. 185, no. 1, pp. 66–
77, 2012.

[18] E. Cambria, G.-B. Huang, L. L. C. Kasun et al., “Extreme
learning machines,” IEEE Intelligent Systems, vol. 28, no. 6, pp.
30–59, 2013.

[19] W.-Y. Deng, Q.-H. Zheng, L. Chen, and X.-B. Xu, “Research
on extreme learning of neural networks,” Chinese Journal of
Computers, vol. 33, no. 2, pp. 279–287, 2010.

[20] G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme learn-
ing machine for regression and multiclass classification,” IEEE
Transactions on Systems, Man, and Cybernetics, Part B: Cyber-
netics, vol. 42, no. 2, pp. 513–529, 2012.

[21] Y. Miche, A. Sorjamaa, P. Bas, O. Simula, C. Jutten, and A.
Lendasse, “OP-ELM: optimally pruned extreme learning ,”
IEEE Transactions on Neural Networks, vol. 21, no. 1, pp. 158–
162, 2010.

[22] F. M. Pouzols and A. Lendasse, “Evolving fuzzy optimally
pruned extreme learning machine for regression problems,”
Evolving Systems, vol. 1, no. 1, pp. 43–58, 2010.

[23] V. G. Sigillito, S. P. Wing, L. V. Hutton, and K. B. Baker, “Clas-
sification of radar returns from the ionosphere using neural
networks,” Johns Hopkins APL Technical Digest (Applied Physics
Laboratory), vol. 10, no. 3, pp. 262–266, 1989.

[24] N. Birbaumer, N. Ghanayim, T. Hinterberger et al., “A spelling
device for the paralysed,”Nature, vol. 398, no. 6725, pp. 297–298,
1999.

Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of

