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Two nonlinear controllers are proposed for a light-weighted all-electric vehicle: Chebyshev neural network based backstepping
controller and Chebyshev neural network based optimal adaptive controller. The electric vehicle (EV) is driven by DCmotor. Both
the controllers use Chebyshev neural network (CNN) to estimate the unknown nonlinearities.The unknown nonlinearities arise as
it is not possible to precisely model the dynamics of an EV.Mass of passengers, resistance in the armature winding of the DCmotor,
aerodynamic drag coefficient and rolling resistance coefficient are assumed to be varying with time. The learning algorithms are
derived from Lyapunov stability analysis, so that system-tracking stability and error convergence can be assured in the closed-loop
system.The control algorithms for the EV system are developed and a driving cycle test is performed to test the control performance.
The effectiveness of the proposed controllers is shown through simulation results.

1. Introduction

In recent years due to stricter emission standards and global
fuel supply issues, researchers in the automobile industry
are paying more attention to zero-polluting electric vehicles
(EVs) for energy conservation and environmental protection.
EV has emerged as a promising alternative to improve fuel
economywhile meeting the tightened emission standards [1].
EV is used in many applications, particularly for the purpose
of patrolling and other short-range transportations. A lot of
work has been reported in the literature for reducing the
cost, extending the driving range, and sophisticated energy
management strategies to improve the performance and
usage of energy [2–6]. Direct current (DC) power is supplied
from the battery, and therefore EVs driven by DCmotor are a
favorable selection. The control of DC motor is simple and it
can provide comparatively larger startup torque. In addition
to the primary function of propulsion, the DCmotor can also
be used effectively as the braking device because of its fast
torque response characteristics and capability of regeneration
[7, 8].

The dynamics of EV are inherently nonlinear and it is well
known that nonlinear control techniques are superior to the

conventional linear controlmethods [9, 10].The performance
of nonlinear control techniques, specifically, the differential-
geometric approach, to the control of EV is presented in [11].
Due to the complex operating conditions of EV, intelligent
or fuzzy control is suggested in [12, 13]. In [12], the fuzzy
logic controller (FLC) is modeled to be capable of increasing
the initial torque required for the electric vehicle drive with
variable speed characteristics and high efficiency. In [13],
fuzzy logic based controller to control the wheel slip for
electric vehicle antilock braking systems (ABSs) is developed.
A methodology to generate stochastic drive cycles for the
design and control optimization of EVs is detailed in [14].
An algorithm for determining online energy based driving
guidance for an EV using particle swarm optimization is
developed in [15].

Neural networks have been used for approximation
of nonlinear systems, for classification of signals and for
associative memory. Chebyshev neural network (CNN) has
been shown to be able to approximate any continuous
functions over a compact set to arbitrary accuracy [16–18].
CNN is a functional link neural network (FLN) based on
Chebyshev polynomials. The efficacy of CNN in the areas of
online system identification [19, 20] and tracking controller
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for nonlinear systems has been established [21–23]. The
proposed controller does not necessitate exact knowledge of
the unknown nonlinearities. The CNN is used for estimating
the unknown nonlinearities of the system. The adaptation
laws for the CNN weights are such that they guarantee the
stability of the system. The tracking error mainly depends
on the CNN, feedback functions to be used for the weight
adaptation law, and other design parameters.

It is not possible to precisely model the dynamics of
an EV as some parameters may vary with time/conditions.
For example, the resistance in the armature winding of
the DC motor changes as the temperature varies and the
aerodynamic drag coefficient 𝐶𝑑 and the rolling resistance
coefficient 𝜇𝑟𝑟 are varying because of wind and road con-
ditions, respectively. In this paper, the resistance in the
armature winding (𝑅𝑎) of the DC motor, the aerodynamic
drag coefficient 𝐶𝑑, the rolling resistance coefficient 𝜇𝑟𝑟, and
themass of the passengers (Δ𝑀) are considered to be varying
with time resulting in unknown nonlinearities. The aim of
this paper is to design CNN based backstepping controller
and CNN based optimal adaptive controller for EV in the
presence of unknownnonlinearities and test the performance
of the overall system on NEDC drive cycle test.

The paper is organized as follows. In Section 2, the
description of the complete EV system and the structure of
CNNwill be presented.The problem statement is introduced
in Section 3. The design of conventional backstepping con-
troller and CNN based backstepping controller is described
in Section 4. In Section 5, we give an optimal control design
for EV systems using the H-J-B equation followed by a CNN
based optimal adaptive controller. Section 6 validates the
performance of the proposed controllers through simulations
and drive cycle test followed by conclusion.

2. EV System Description and CNN Structure

An EV system dynamics mainly comprises two parts: the
vehicle dynamics and dynamics of the motor system, as
shown in Figure 1. Motor system is connected to EV system
through transmission unit, which includes the gearing sys-
tem. In the actual EVs, the driver provides the command
signal through the accelerator/brake pedal in the form of
acceleration/deceleration to the controller of the propulsion
system. The DC motor is used in the proposed EV system
for propulsion and DC motor system is connected to EV
system through transmission unit, which includes the gearing
system. Accordingly, the speed of DC motor is controlled so
as to control the actual EV system.

2.1. Vehicle Dynamics. The major factors that affect the
vehicle dynamics are road condition, aerodynamic drag, hill
climbing, acceleration, and so forth. After these factors are
taken into account, vehicle dynamics can bewritten as follows
[1]:
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Figure 1: EV system.

where 𝜇𝑟𝑟 is the rolling resistance coefficient,𝑚 is the mass of
the EV, 𝑔 is the gravity acceleration, 𝜌 is the air density, 𝐴 is
the frontal area of the vehicle, 𝐶𝑑 is the drag coefficient, V is
the driving velocity of the vehicle, and 𝜙 is the hill climbing
angle. In this paper, the aerodynamic drag coefficient 𝐶𝑑 and
the rolling resistance coefficient 𝜇𝑟𝑟 are assumed to be varying
with time. In [1] 𝑚 is a constant which is a very stringent
assumption. In the proposed work 𝑚 includes the mass of
vehicle 𝑀 and the mass of passengers Δ𝑀; that is, 𝑚 =

𝑀 + Δ𝑀. Thus𝑚 is varying with time and not a constant.
In the vehicle dynamics (1), the first term assimilates to

the rolling resistance force; the second term assimilates to
the aerodynamic drag force; the third term assimilates to the
hill climbing force; and the fourth term assimilates to the
acceleration force.This resultant traction force𝐹will produce
a counterproductive torque to the driving motor, which is
represented by the following relationship:

𝑇𝐿 = 𝐹
𝑟

𝐺
, (2)

where𝑇𝐿 is the torque produced by the drivingmotor, 𝑟 is the
tyre radius of the EV, and 𝐺 is the gearing ratio.

2.2. Motor Dynamics. The EV is driven by a DC motor and
the dynamics of which are given by [11]

𝐽
𝑑𝜔

𝑑𝑡
= 𝐿𝑎𝑓𝑖

2
− 𝐵𝜔 − 𝑇𝐿,

(𝐿𝑎 + 𝐿field)
𝑑𝑖

𝑑𝑡
= 𝑉 − (𝑅𝑎 + 𝑅𝑓) 𝑖 − 𝐿𝑎𝑓𝑖𝜔,

(3)

where 𝐽 is the inertia of the motor, including the gearing
system and the tyres, 𝜔 is the motor angular speed, 𝑖 is the
armature current (also field current), 𝐿𝑎, 𝑅𝑎, 𝐿field, and 𝑅𝑓

are the armature inductance, armature resistance, field wind-
ing inductance, and field winding resistance, respectively,
𝐵 is the viscous coefficient, 𝑇𝐿 corresponds to the external
torque, 𝑉 is the control input voltage, and 𝐿𝑎𝑓 is the mutual
inductance between the armature winding and the field
winding, generally nonlinear because of saturation. In this
paper the resistance in the armature winding 𝑅𝑎 of the DC
motor is considered to be varying as the armature winding
resistance of theDCmotor changes as the temperature varies.
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Table 1: Parameters of the EV system [11].

Motor Vehicle
𝐿
𝑎
+ 𝐿field (mH) 6.008 𝑀 (kg) 800

𝑅𝑎 + 𝑅𝑓 (Ω) 0.12 𝐴 (m2) 1.8
𝐵 (N.M.s.) 0.0002 𝜌 (kg/m3) 1.25
𝐽 (kgm2) 0.05 𝐶𝑑 0.3
𝐿𝑎𝑓 (mH) 1.766 𝜙 (∘) 0
𝑉 (V) 0∼48 𝜇rr 0.015
𝑖 (A) 78A (250max) 𝑟 (m) 0.25
𝜔 (r/min) 2800 (V = 25 km/h) 𝐺 11
Δ𝑀 = 150 (kg) for 𝑡 ≤ 195 and 𝑡 ≥ 780 (kg), Δ𝑀 = 220 for 𝑡 > 195, and 𝑡 ≤ 585 and Δ𝑀 = 300 (kg) for 𝑡 > 585 and 𝑡 < 780.
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Figure 2: Open-loop response of the EV system.

2.3. Complete Dynamics and Open-Loop Response. With
vehicle dynamics (1) and motor dynamics (3), the complete
dynamics of the EV system becomes [11]
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(𝐿𝑎 + 𝐿field)
𝑑𝑖

𝑑𝑡
= 𝑉 − (𝑅𝑎 + 𝑅𝑓) 𝑖 − 𝐿𝑎𝑓𝑖 𝜔.

(4)

By using (4), the open-loop response of a light-weighted
all-electric vehicle is studied. The parameters used on a
light-weighted all-electric vehicle are specified in Table 1.The
simulation result of open-loop response is shown in Figure 2.
The plot shows the full power speed characteristics. As given
in Table 1 the desired nominal speed is V = 25 km/hr whereas
in open-loop conditions the speed is beyond 40 km/hr which
is not acceptable. Therefore, it is required to design proper
controller.

The relation between the driving velocity of the vehicle V
and the motor angular speed 𝜔 is given as

V =
𝑟

𝐺
𝜔, (5)

where 𝑟 is the tyre radius of the EV and𝐺 is the gearing ratio.
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Figure 3: Structure of CNN.

2.4. Structure of Neural Network. In this paper, a single layer
CNN is considered for the NN structure. CNN consists
of a functional expansion (FE) block and a single-layer
perceptron network. The purpose of the FE block is to
increase the dimension of the input pattern so as to improve
representation of the input pattern in a higher dimensional
space. Chebyshev expansions are frequently used for approx-
imations to functions as they are much more efficient than
other power series expansion of the same degree. Among
orthogonal polynomials, the Chebyshev polynomials which
are derived from the solution of the Chebyshev differential
equation occupy an important place, since, in the case of a
broad class of functions, expansions in Chebyshev polyno-
mials converge more rapidly than expansions in other set of
polynomials. Hence, we consider the Chebyshev polynomials
as basis functions for the neural network.

The Chebyshev polynomials can be generated by the
following recursive formula [17]:

𝑇𝑖+1 (𝑥) = 2𝑥𝑇𝑖 (𝑥) − 𝑇𝑖−1 (𝑥) , 𝑇0 (𝑥) = 1, (6)

where 𝑇𝑖(𝑥) is a Chebyshev polynomial, 𝑖 is the order of
Chebyshev polynomials chosen, and here 𝑥 is scalar quantity.
𝑇1(𝑥) can be chosen as 𝑥, 2𝑥, 2𝑥 − 1 or 2𝑥 + 1. In this paper
𝑇1(𝑥) is chosen as 𝑥. For example, an enhanced pattern using
the Chebyshev polynomials for 𝑥 ∈ R2 is obtained as

𝜙 (𝑥) = [1 𝑇1 (𝑥1) 𝑇2 (𝑥1) ⋅ ⋅ ⋅ 𝑇1 (𝑥2) 𝑇2 (𝑥2) ⋅ ⋅ ⋅ ]
𝑇
,

(7)

where 𝑇𝑖(𝑥𝑗) is a Chebyshev polynomial, 𝑖 is the order of the
selected Chebyshev polynomial, and 𝑗 = 1, 2. 𝜙(𝑥) denotes
the Chebyshev polynomial basis function.

Referring to Figure 3, the architecture of the CNN con-
sists of two parts [17], namely, numerical transformation part
and learning part. The numerical transformation is the FE
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of the input pattern consisting of a finite set of Chebyshev
polynomials. Consequently, the Chebyshev polynomial basis
can be considered as a new input vector. The learning part
involves functional-link neural network based on Chebyshev
polynomials. The CNN is a single-layered neural network,
and, in general, its learning is fast [16, 17].

On the basis of approximation property of CNN [19],
a general nonlinear function 𝑦(𝑥) can be approximated by
CNN as

𝑦 (𝑥) =W𝑇𝜙 + 𝜀, (8)

where 𝜀 is the CNN functional reconstruction error vector
and ‖𝜀‖ ≤ 𝜀𝑁 which is bounded, W is the optimal weight
matrix, and 𝜙 denotes the Chebyshev polynomial basis
function. The output of the CNN is given by

�̂� =
̂W
𝑇

𝜙, (9)

where ̂W is the estimate of the optimal weight matrixW.

3. Problem Statement

The complete dynamics in (4) can be described as

Ẋ = 𝑓 (X) + 𝑔 (X) 𝑢,

𝑦 = ℎ (X) ,
(10)

where

X = [𝑥1
𝑥2
] = [

𝜔

𝑖
] ,

𝑓 (X) =
[
[
[
[

[

1

𝐽 + 𝑚 (𝑟2/𝐺2 )

{

{

{

𝐿𝑎𝑓𝑥2
2
− 𝐵𝑥1 −

𝑟

𝐺

×(
𝜇𝑟𝑟𝑚𝑔 +

1

2
𝜌𝐴𝐶𝑑

𝑟
2

𝐺2
𝑥1
2

+𝑚𝑔 sin𝜙
)
}

}

}

−
𝑅𝑎 + 𝑅𝑓

𝐿𝑎 + 𝐿field
𝑥2 −

𝐿𝑎𝑓

𝐿𝑎 + 𝐿field
𝑥1𝑥2

]
]
]
]

]

,

(11)

𝑔 (X) = [
[

0

1

𝐿𝑎 + 𝐿field

]

]

, ℎ (X) = 𝑥1. (12)

Assuming the hill climbing angle 𝜙 to be zero, the nonlinear
functions 𝑓(X) and 𝑔(X) become

𝑓 (X) = [
[

𝐾1

𝑚 + 𝐾2

{𝐾3𝑥2
2
− 𝐾4𝑥1 − 𝐾5𝑥1

2
− 𝐾6𝑚}

−𝐾7𝑥2 − 𝐾8𝑥1𝑥2

]

]

,

𝑔 (X) = [ 0
𝐾9
] , ℎ (X) = 𝑥1,

(13)

where 𝐾1 = 𝐺
2
/𝑟
2 , 𝐾2 = (𝐺

2
/𝑟
2
)𝐽, 𝐾3 = 𝐿𝑎𝑓, 𝐾4 = 𝐵, 𝐾5 =

(1/2)𝜌𝐴𝐶𝑑(𝑟
3
/𝐺
3
), 𝐾6 = (𝑟/𝐺)𝜇𝑟𝑟𝑔, 𝐾7 = (𝑅𝑎 + 𝑅𝑓)/(𝐿𝑎 +

𝐿field), 𝐾8 = 𝐿𝑎𝑓/(𝐿𝑎 + 𝐿field), and𝐾9 = 1/(𝐿𝑎 + 𝐿field).
As a result, the EV system becomes

�̇�1 =
𝐾1

𝑚 + 𝐾2

{𝐾3𝑥2
2
− 𝐾4𝑥1 − 𝐾5𝑥1

2
− 𝐾6𝑚} ,

�̇�2 = −𝐾7𝑥2 − 𝐾8𝑥1𝑥2 + 𝐾9𝑢,

𝑦 = 𝑥1.

(14)

The aim of this paper is to compare and test the perfor-
mance of CNN based backstepping controller with a CNN
based optimal adaptive controller, which forces the plant
output 𝑦 to track a specified reference trajectory 𝑦𝑑 in the
presence of time varying mass “𝑚” and varying armature
winding resistance (𝑅𝑎), aerodynamic drag coefficient 𝐶𝑑,
and the rolling resistance coefficient 𝜇𝑟𝑟; that is,

lim
𝑡→∞

(𝑦 − 𝑦𝑑) = 0. (15)

4. Nonlinear Backstepping Controller Design

The nonlinear backstepping controller is designed in the
following ways.

4.1. Conventional Backstepping Controller. In this subsection,
the steps involved in the development of backstepping con-
troller for system (14) are discussed.

By selecting the following state transformation:

𝑧1 = 𝑥1,

𝑧2 = �̇�1,

(16)

the system (14) becomes

�̇�1 = 𝑧2,

�̇�2 = −
2𝐾1𝐾3𝐾7

𝑚 + 𝐾2

𝑥2
2
−
2𝐾1𝐾3𝐾8

𝑚 + 𝐾2

𝑧1𝑥2
2
−
𝐾1𝐾4

𝑚 + 𝐾2

𝑧2

−
2𝐾1𝐾5

𝑚 + 𝐾2

𝑧1𝑧2 +
2𝐾1𝐾3𝐾9

𝑚 + 𝐾2

𝑥2𝑢,

𝑦 = 𝑧1,

(17)

which is in the strict feedback form [24, 25]. In this case,
all the nonlinear functions are considered known. The error
dynamics is defined as

𝑒1 = 𝑧1 − 𝑧1𝑑 = 𝑧1 − 𝑦𝑑 (18)

𝑒2 = 𝑧2 − 𝑧2𝑑. (19)

The time derivative of 𝑒1 can be found as

̇𝑒1 = �̇�1 − ̇𝑦𝑑. (20)

From (17) and (19), we have (20) as

̇𝑒1 = 𝑒2 + 𝑧2𝑑 − ̇𝑦𝑑. (21)



International Journal of Vehicular Technology 5

By selecting 𝑧2𝑑 = ̇𝑦𝑑 − 𝑘1𝑒1, (21) yields

̇𝑒1 = 𝑒2 − 𝑘1𝑒1, (22)

where 𝑘1 is the positive constant.
Differentiating (19),

̇𝑒2 = �̇�2 − �̇�2𝑑. (23)

Substituting �̇�2 from (17), (23) becomes

̇𝑒2 = −
2𝐾1𝐾3𝐾7

𝑚 + 𝐾2

𝑥2
2
−
2𝐾1𝐾3𝐾8

𝑚 + 𝐾2

𝑧1𝑥2
2

−
𝐾1𝐾4

𝑚 + 𝐾2

𝑧2 −
2𝐾1𝐾5

𝑚 + 𝐾2

𝑧1𝑧2

+
2𝐾1𝐾3𝐾9

𝑚 + 𝐾2

𝑥2𝑢 − �̇�2𝑑.

(24)

To stabilize (24), the control effort 𝑢 is chosen as

𝑢 =

{{{

{{{

{

�̇�2𝑑 − 𝑒1 +
2𝐾1𝐾3𝐾7

𝑚 + 𝐾2

𝑥2
2
+
2𝐾1𝐾3𝐾8

𝑚 + 𝐾2

𝑧1𝑥2
2

+
𝐾1𝐾4

𝑚 + 𝐾2

𝑧2 +
2𝐾1𝐾5

𝑚 + 𝐾2

𝑧1𝑧2 − 𝑘2𝑒2

}}}

}}}

}

×
1

{(2𝐾1𝐾3𝐾9) / (𝑚 + 𝐾2)} 𝑥2

,

(25)

where 𝑘2is the positive constant.
Substituting (25) in (24) gives

̇𝑒2 = −𝑒1 − 𝑘2𝑒2. (26)

To prove the convergence of the EV system a Lyapunov
function is chosen as

𝐿1 =
1

2
𝑒
2

1
+
1

2
𝑒
2

2
. (27)

The time derivative of (27) is

�̇�1 = 𝑒1 ̇𝑒1 + 𝑒2 ̇𝑒2. (28)

Using (22) and (26) we get

�̇�1 = −𝑘1𝑒
2

1
− 𝑘2𝑒
2

2
. (29)

Thus, it can be easily seen that the system is globally
asymptotically stable.

4.2. CNN Based Backstepping Controller. The EV system in
(17) is rewritten in the following form for the implementation
of the CNN based backstepping controller:

�̇�1 = 𝑧2,

�̇�2 = 𝑓 (𝑥, 𝑧) + 𝑔 (𝑥, 𝑧) 𝑢,

𝑦 = 𝑧1.

(30)

Here the nonlinear functions 𝑓(𝑥, 𝑧) and 𝑔(𝑥, 𝑧) are
unknown as𝑚, 𝑅𝑎, 𝐶𝑑, and 𝜇𝑟𝑟 are varying with time.

The error dynamics is defined as

𝑒1 = 𝑧1 − 𝑧1𝑑 = 𝑧1 − 𝑦𝑑

𝑒2 = 𝑧2 − 𝑧2𝑑.

(31)

The CNN based backstepping controller is designed in the
following two steps.

Step 1.The time derivative of 𝑒1 is given by

̇𝑒1 = �̇�1 − ̇𝑦𝑑. (32)

Using (30) and (31), (32) becomes

̇𝑒1 = 𝑒2 + 𝑧2𝑑 − ̇𝑦𝑑. (33)

Stabilize (33) by choosing

𝑧2𝑑 = ̇𝑦𝑑 − 𝑘1𝑒1, (34)

where 𝑘1is the positive constant.
Substituting (34) in (33), ̇𝑒1 becomes

̇𝑒1 = 𝑒2 − 𝑘1𝑒1. (35)

Step 2.The time derivative of 𝑒2 can be obtained as

̇𝑒2 = �̇�2 − �̇�2𝑑. (36)

By using (30), (36) results in

̇𝑒2 = 𝑓 (𝑥, 𝑧) + 𝑔 (𝑥, 𝑧) 𝑢 − �̇�2𝑑. (37)

The unknown nonlinear functions 𝑓(𝑥, 𝑧) and 𝑔(𝑥, 𝑧)
will be estimated by CNN 1 and CNN 2, respectively. The
nonlinear functions𝑓(𝑥, 𝑧) and 𝑔(𝑥, 𝑧) can be represented by
a CNN as

𝑓 =W𝑇
1
𝜙
1
+ 𝜀1,

𝑔 =W𝑇
2
𝜙
2
+ 𝜀2,

(38)

where 𝜀1 and 𝜀2 are the bounded CNN approximation errors,
W1 and W2 are the optimal weight matrices, and 𝜙

1
and 𝜙

2

are the basis functions.
The estimate 𝑓 of 𝑓 and 𝑔 of 𝑔 can be written as

𝑓 = Ŵ𝑇
1
𝜙
1
,

𝑔 = Ŵ𝑇
2
𝜙
2
,

(39)

where Ŵ1 is the estimate of theW1 and Ŵ2 is the estimate of
theW2.

Adding and subtracting𝑔(𝑥, 𝑧)𝑢 and rearranging, (37) we
have

̇𝑒2 = 𝑓 (𝑥, 𝑧) + {𝑔 (𝑥, 𝑧) − 𝑔 (𝑥, 𝑧)} 𝑢 − �̇�2𝑑 + 𝑔 (𝑥, 𝑧) 𝑢.

(40)
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Figure 4: Block diagram of CNN based backstepping controller.

To stabilize (40), the control effort 𝑢 is chosen as

𝑢 =
1

𝑔 (𝑥, 𝑧)
{−𝑓 (𝑥, 𝑧) + �̇�2𝑑 − 𝑘2𝑒2 − 𝑒1} , (41)

where 𝑘2 is the positive constant. The block diagram of the
overall system is presented in Figure 4.

Substituting (41) in (40), ̇𝑒2 becomes

̇𝑒2 = {𝑓 (𝑥, 𝑧) − 𝑓 (𝑥, 𝑧)} + {𝑔 (𝑥, 𝑧) − 𝑔 (𝑥, 𝑧)} 𝑢 − 𝑘2𝑒2 − 𝑒1.

(42)

Define the estimation error as
𝑓 = 𝑓 − 𝑓,

𝑔 = 𝑔 − 𝑔.

(43)

Using (38) and (39) in (43) gives

𝑓 = W̃𝑇
1
𝜙
1
+ 𝜀1,

𝑔 = W̃𝑇
2
𝜙
2
+ 𝜀2,

(44)

where W̃1 =W1 − Ŵ1 and W̃2 =W2 − Ŵ2 are weight errors.
Now by applying (44) in (42) ̇𝑒2 becomes

̇𝑒2 = W̃𝑇
1
𝜙
1
+ 𝜀1 + (W̃

𝑇

2
𝜙
2
+ 𝜀2) 𝑢 − 𝑘2𝑒2 − 𝑒1. (45)

Two standard assumptions, which are commonly used in
the neural networks literature, are given below [26].

Assumption 1. The optimal weightsW1 andW2 are bounded
by known positive values so that

W1
𝐹 ≤W1𝑀,

W2
𝐹 ≤ 𝑊2𝑀. (46)

We only need to know that ideal weights exist to prove the
convergence analysis. The exact value of the ideal weights
need not be known.The symbol ‖ ∙ ‖𝐹 denotes the Frobenius
norm; that is, given amatrixA, the Frobenius norm is defined
by

‖A‖2
𝐹
= tr (A𝑇A) = ∑

𝑖,𝑗

𝑎
2

𝑖𝑗
. (47)

Assumption 2. Thedesired trajectory𝑦𝑑 and its derivatives up
to second order are bounded.

Based on the above Assumptions 1 and 2, the stability
analysis is given in Section 4.3.

4.3. Stability Analysis

Theorem 3. Consider the EV system (30) and control input
(41) satisfying Assumptions 1 and 2. If the weights of the CNN
1 and CNN 2 are updated according to adaptation law given in
(48) and (49), respectively,

̇̂W1 = 𝜂1𝜙1𝑒2 − 𝜌𝜂1
𝑒2
 Ŵ1, (48)

̇̂W2 = 𝜂2𝜙2𝑢𝑒2 − 𝜌𝜂2
𝑒2
 |𝑢| Ŵ2, (49)

where 𝜂1 and 𝜂2 are the learning rate and 𝜌 is damping
coefficient, then the weight errors W̃1 = W1 − Ŵ1, W̃2 =
W2 − Ŵ2 and the errors 𝑒1 and 𝑒2 are uniformly ultimately
bounded (UUB).

Proof. Consider the Lyapunov function

𝐿2 =
1

2
𝑒
2

1
+
1

2
𝑒
2

2
+
1

2
tr {W̃𝑇

1
𝜂
−1

1
W̃1} +

1

2
tr {W̃𝑇

2
𝜂
−1

2
W̃2} .

(50)

The time derivative of (50) is

�̇�2 = 𝑒1 ̇𝑒1 + 𝑒2 ̇𝑒2 + tr {W̃
𝑇

1
𝜂
−1

1

̇̃W1}

+ tr {W̃𝑇
2
𝜂
−1

2

̇̃W2} .
(51)

Now substitute ̇𝑒1 and ̇𝑒2 from (35) and (45), respectively, and
perform a simple manipulation (i.e., using 𝑥𝑇𝑦 = tr{𝑥𝑇𝑦} =
tr{𝑦𝑥𝑇}, for placing weight matrices inside a trace operator).
Then we have

�̇�2 = −𝑘1𝑒
2

1
+ 𝑒2 (𝜀1 + 𝜀2𝑢 − 𝑘2𝑒2)

+ tr {W̃𝑇
1
(𝜙
1
𝑒2 + 𝜂

−1

1

̇̃W1)}

+ tr {W̃𝑇
2
(𝜙
2
𝑒2 + 𝜂

−1

2

̇̃W2)} .

(52)

With the adaptation law given in (48) and (49), (52) becomes

�̇�2 = −𝑘1𝑒
2

1
+ 𝑒2 (𝜀1 + 𝜀2𝑢 − 𝑘2𝑒2)

+ tr {W̃𝑇
1
(𝜌
𝑒2
 Ŵ1)}

+ tr {W̃𝑇
2
(𝜌
𝑒2
 |𝑢| Ŵ2)} .

(53)
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Apply the following inequality [27]:

tr [W̃𝑇 (W − W̃)] = ⟨W̃,W⟩
𝐹
−

W̃
2

𝐹

≤

W̃𝐹W𝑀 −


W̃
2

𝐹
.

(54)

And assume that the upper bounds are as follows:
𝜀1
 ≤ 𝜀1𝑀,

𝜀2
 ≤ 𝜀2𝑀, |𝑢| ≤ 𝑢𝑆. (55)

Now we can express (53) as

�̇�2 ≤ −𝑘1
𝑒1


2
+
𝑒2
 (𝜀1𝑀 + 𝜀2𝑀𝑢𝑆 − 𝑘2

𝑒2
)

+ 𝜌
𝑒2
 {(


W̃1
𝐹
𝑊1𝑀 −


W̃1


2

𝐹
)}

+ 𝜌
𝑒2
 𝑢𝑆 {(


W̃2
𝐹
𝑊2𝑀 −


W̃2


2

𝐹
)} .

(56)

As the first term is always negative, now defining nonnegative
term and completing the square terms in (56) yield

�̇�2 ≤ −
𝑒2
 [𝑘2

𝑒2
 − 𝜀1𝑀 − 𝜀2𝑀𝑢𝑆

+ 𝜌(

W̃1


2

𝐹
−
𝑊1𝑀

2
)

2

− 𝜌
𝑊
2

1𝑀

4
+ 𝜌𝑢𝑆(


W̃2


2

𝐹
−
𝑊2𝑀

2
)

2

−𝜌𝑢𝑆

𝑊
2

2𝑀

4
]

(57)

which is negative as long as either (58), (59), or (60) holds

[𝜀1𝑀 + 𝜀2𝑀𝑢𝑆 + 𝜌 (𝑊
2

1𝑀
/4 + 𝑢𝑆𝑊

2

2𝑀
/4)]

𝑘2

<
𝑒2
 ,

(58)

𝑊1𝑀

2
+ √(

𝑊
2

1𝑀

4
) +

𝜀1𝑀

𝜌
≤

W̃1
𝐹
. (59)

Or

𝑊2𝑀

2
+ √𝑢𝑆 (

𝑊
2

2𝑀

4
+
𝜀2𝑀

𝜌
) ≤


W̃2
𝐹
. (60)

Thus, �̇�2 is negative outside a compact set. According to
a standard Lyapunov theorem extension [28], this demon-
strates uniform ultimate boundedness of weight errors W̃1,
W̃2 and errors 𝑒1, 𝑒2.

5. Nonlinear Optimal Controller
Design Using CNN

The following approach is used to design the nonlinear
optimal controller for the EV system (17).

The tracking errors are defined as

𝑒 (𝑡) = 𝑧1 (𝑡) − 𝑦𝑑 (𝑡) ,

̇𝑒 (𝑡) = �̇�1 (𝑡) − ̇𝑦𝑑 (𝑡) = 𝑧2 (𝑡) − ̇𝑦𝑑 (𝑡) .

(61)

And the filtered tracking error is defined as

𝑟 (𝑡) = ̇𝑒 (𝑡) + Λ𝑒 (𝑡) , (62)

where Λ is the positive constant.
Differentiating (62) and rearranging it, we have

̇𝑟 (𝑡) = Λ𝑟 (𝑡) − ̈𝑦𝑑 (𝑡) + �̇�2 (𝑡) − Λ
2
𝑒 (𝑡) . (63)

Substituting �̇�2(𝑡) from EV system (17), (63) becomes

̇𝑟 (𝑡) = Λ𝑟 (𝑡) − ̈𝑦𝑑 (𝑡) + 𝑋1𝑥 + 𝐹1𝑥𝑢 − Λ
2
𝑒 (𝑡) , (64)

where 𝑋1𝑥 = −(2𝐾1𝐾3𝐾7/(𝑚 + 𝐾2))𝑥2
2- (2𝐾1𝐾3𝐾8/(𝑚 +

𝐾2))𝑧1𝑥2
2- ((𝐾1 𝐾4)/(𝑚 + 𝐾2))𝑧2- ((2𝐾1𝐾5)/(𝑚 + 𝐾2))𝑧1𝑧2

and 𝐹1𝑥 = ((2𝐾1𝐾3𝐾9)/(𝑚 + 𝐾2))𝑥2.
System (64) may be written as

̇𝑟 (𝑡) = Λ𝑟 (𝑡) + 𝐹1𝑥𝑢 (𝑡) + ℎ (𝑥) , (65)

where

ℎ (𝑥) = 𝑋1𝑥 − ̈𝑦𝑑 (𝑡) − Λ
2
𝑒 (𝑡) . (66)

Now we define an auxiliary control input 𝑢(𝑡), which is to
be optimized in the next subsection as

𝑢 (𝑡) = ℎ (𝑥) + 𝐹1𝑥𝑢 (𝑡) (67)

with 𝑢(𝑡) as the control input. The closed-loop system
becomes

̇𝑟 (𝑡) = Λ𝑟 (𝑡) + 𝑢 (𝑡) . (68)

5.1. Optimal Controller Using Hamilton-Jacobi-Bellman (H-
J-B) Optimization. The augmented system [27] is achieved
using (62) and (68)

[
̇𝑒

̇𝑟
] = [

−Λ 𝐼

0 Λ
] [
𝑒

𝑟
] + [

0

𝐼
] 𝑢 (𝑡) (69)

or with shorter notation

̇̃z (𝑡) = Az̃ (𝑡) + B𝑢 (𝑡) (70)

with z̃(𝑡) being defined as z̃(𝑡) = [𝑒(𝑡) 𝑟(𝑡)]𝑇, A = [−Λ 𝐼;

0 Λ], and B = [0 𝐼]
𝑇. A quadratic performance measure

𝐽(𝑢) is as follows:

𝐽 (𝑢) = ∫

∞

𝑡0

𝐿 (z̃, 𝑢) 𝑑𝑡 (71)

with the Lagrangian

𝐿 (z̃, 𝑢) = 1
2
z̃𝑇 (𝑡)Qz̃ (𝑡) + 1

2
𝑢
𝑇
(𝑡) 𝑅𝑢 (𝑡)

=
1

2
[𝑒 𝑟] [

𝑄11 𝑄12

𝑄
𝑇

12
𝑄22

][
𝑒

𝑟
] +

1

2
𝑢
𝑇
𝑅𝑢.

(72)

Theobjective is to find the auxiliary control input𝑢(𝑡) that
minimizes the quadratic performance measure 𝐽(𝑢) subject
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to the constraints imposed by (69) which will be denoted by
𝑢
∗
(𝑡) in the presence of known nonlinearities.
A necessary and sufficient condition for 𝑢∗(𝑡) is that there

exist a function 𝑉 = 𝑉(z̃, 𝑡), which is accredited as the value
function and satisfies the H-J-B equation [29]

𝜕𝑉 (z̃, 𝑡)
𝜕𝑡

+min
𝑢

[𝐻(z̃, 𝑢, 𝜕𝑉 (z̃, 𝑡)
𝜕𝑡

, 𝑡)] = 0, (73)

where the Hamiltonian of optimization is described as

𝐻(z̃, 𝑢, 𝜕𝑉 (z̃, 𝑡)
𝜕𝑡

, 𝑡) = 𝐿 (z̃, 𝑢) + 𝜕𝑉 (z̃, 𝑡)
𝜕𝑡

̇̃z (74)

and 𝑉(z̃, 𝑡) satisfies the partial differential equation

−
𝜕𝑉 (z̃, 𝑡)
𝜕𝑡

= 𝐿 (z̃, 𝑢∗) + 𝜕𝑉 (z̃, 𝑡)
𝜕𝑡

̇̃z. (75)

The minimum is achieved for 𝑢(𝑡) = 𝑢∗(𝑡), and the Hamil-
tonian is then given by

𝐻
∗
= min
𝑢

[𝐿 (z̃, 𝑢) + 𝜕𝑉 (z̃, 𝑡)
𝜕𝑡

̇̃z]

= 𝐻(z̃, 𝑢∗, 𝜕𝑉 (z̃, 𝑡)
𝜕𝑡

, 𝑡)

= −
𝜕𝑉 (z̃, 𝑡)
𝜕𝑡

.

(76)

Lemma 4 (see [27]). The function 𝑉 composed of z̃ and 𝐾
satisfies the H-J-B equation

𝑉 =
1

2
z̃𝑇Pz̃ = 1

2
z̃𝑇 [𝐾 0

0 𝐼
] z̃, (77)

whereΛ and𝐾 in (62) and (77) respectively can be found from
the Riccati differential equation

PA + A𝑇P𝑇 − PB𝑅−1B𝑇P + Ṗ +Q = 0. (78)

The optimal control 𝑢∗(𝑡) that minimizes (71) subject to (70) is

𝑢
∗
(𝑡) = −𝑅

−1B𝑇Pz̃ = −𝑅−1𝑟 (𝑡) . (79)

LetQ, 𝑅 be chosen such that

Q = [𝑄11 𝑄12
𝑄
𝑇

12
𝑄22
] > 0, 𝑅

−1
= 𝑄22 (80)

with 𝑄12 + 𝑄
𝑇

12
< 0 [27]. Then the Λ and 𝐾 required in

Lemma 4 can be calculated as given below

𝐾 = −
1

2
(𝑄12 + 𝑄

𝑇

12
) > 0, (81)

Λ
𝑇
𝐾 + 𝐾Λ = 𝑄11 (82)

with (82) solved for Λ.
Using (67) and (79), the input to the EV system is given

as

𝑢
∗
(𝑡) = (inV (𝐹𝑥1)) {𝑢

∗
(𝑡) − ℎ (𝑥)} , (83)

where ℎ(𝑥) is given by (66) and is assumed to be known.The
following subsection details the stability analysis.

5.2. Stability Analysis. Suppose that𝐾 andΛ exist that satisfy
Lemma 4, and in addition, there exist constants 𝑘

1
and 𝑘

2

such that 0 < 𝑘
1
< 𝑘


2
< ∞, and the spectrum of𝑃 is bounded

in the sense that 𝑘
1
𝐼 < P < 𝑘



2
𝐼 on (𝑡0,∞). Then using

the feedback control (79) into (70) results in the controlled
nonlinear system becomes

̇̃z (𝑡) = {A − B𝑅−1B𝑇P} z̃ (𝑡) . (84)

The function 𝑉(z̃, 𝑡) is chosen as a suitable Lyapunov
function; it shows that 𝑑𝑉/𝑑𝑡 < 0 for all ‖z̃‖ ̸= 0. The time
derivative of 𝑉(z̃, 𝑡) is given by

𝑑𝑉 (z̃, 𝑡)
𝑑𝑡

=
𝜕𝑉 (z̃, 𝑡)
𝜕𝑡

+
𝜕𝑉 (z̃, 𝑡)
𝜕𝑡

̇̃z. (85)

From the solution of the H-J-B equation (75) and using (85),
it results that

𝑑𝑉 (z̃, 𝑡)
𝑑𝑡

= −𝐿 (z̃, 𝑢∗) . (86)

Substituting optimal control law (79) into (72), the time
derivative of 𝑉(z̃, 𝑡) becomes

𝑑𝑉 (z̃, 𝑡)
𝑑𝑡

= −
1

2
{z̃𝑇Qz̃ + (B𝑇Pz̃)

𝑇

𝑅
−1
(B𝑇Pz̃)}

< 0 just ∀𝑡 > 0, z̃ ̸= 0.

(87)

The time derivative of the Lyapunov function is negative
definite, implying global exponential stability.

5.3. CNN Based Optimal Adaptive Controller. In Section 5.1,
the nonlinear function (66) is assumed to be known. This
assumption is relaxed and ℎ(𝑥) is treated as an unknown
nonlinear function. The function ℎ(𝑥) is estimated using
CNN neural network. The nonlinear function ℎ(𝑥) can be
represented by a CNN as

ℎ (𝑥) =W𝑇𝜑 (𝑥) + 𝜀 (𝑥) ‖𝜀 (𝑥)‖ ≤ 𝜀𝑀, (88)
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Figure 5: Block diagram of CNN based optimal adaptive controller.

where 𝜑(𝑥) is a basis function for the CNN. The block
diagram in Figure 5 demonstrates the CNN neural controller
based on H-J-B optimization.

The estimate ℎ̂(𝑥) of ℎ(𝑥) can be written as

ℎ̂ (𝑥) = Ŵ𝑇𝜑 (𝑥) . (89)

Using (67), (79), and (89), the input is given by

𝑢 (𝑡) = (inV (𝐹𝑥1)) {𝑢
∗
(𝑡) − Ŵ𝑇𝜑 (𝑥) − ] (𝑡)} , (90)

where ](𝑡) is a robustifying term, which is given by

] (𝑡) =
−𝑘𝑧𝑟 (𝑡)

‖𝑟 (𝑡)‖
(91)

with 𝑘𝑧 ≤ 𝑏𝑑 and 𝑟(𝑡) being defined as the filtered tracking
error in (62). Using (88) and (90), (65) becomes

̇𝑟 (𝑡) = Λ𝑟 (𝑡) + 𝑢
∗
(𝑡) + W̃𝑇𝜑 (𝑥) + 𝜀 (𝑥) − ] (𝑡) , (92)

where W̃ =W− Ŵ is the weight-estimation error. Using (92)
in (70) yields

̇̃z (𝑡) = Az̃ (𝑡) + B [𝑢∗ (𝑡) + W̃𝑇𝜑 (𝑥) + 𝜀 (𝑥) − ] (𝑡)] (93)

with A, B, and z̃ being given in (69) and (70).
Using the optimal control law (79) into (93), we have

̇̃z (𝑡) = (A − B𝑅−1B𝑇P) z̃ (𝑡) + B {W̃𝑇𝜑 (𝑥) + 𝜀 (𝑥) − ] (𝑡)} .
(94)

Theorem 5. Suppose the optimal control law 𝑢∗(𝑡) given by
(79)minimizes the quadratic performance measure 𝐽(𝑢) given
in (71). If the weights of the CNN are updated according to
adaptive learning law given by

̇̂W = 𝜑 (𝑥) z̃𝑇PBΓ − 𝑘 ‖z̃‖ Ŵ (95)

with Γ > 0 and 𝑘 > 0, then the errors 𝑒(𝑡), 𝑟(𝑡), and W̃(𝑡) are
uniformly ultimately bounded.

Proof. Consider the following Lyapunov function:

𝐿3 =
1

2
z̃𝑇 [𝐾 0

0 1
] z̃ + 1

2
tr (W̃𝑇Γ−1W̃) , (96)

where 𝐾 is positive given by (81). The time derivative �̇�3 of
(96) becomes

�̇�3 = z̃𝑇P ̇̃z + 1
2
z̃𝑇Ṗz̃ + tr (W̃𝑇Γ−1 ̇̃W) . (97)

Substituting ̇̃𝑧 from (94), (97) becomes

�̇�3 = z̃𝑇PAz̃ − z̃𝑇PB𝑅−1B𝑇Pz̃ + 1
2
z̃𝑇Ṗz̃

+ z̃𝑇PB {W̃𝑇𝜑 (𝑥) + 𝜀 (𝑥) − ] (𝑡)}

+ tr (W̃𝑇Γ−1 ̇̃W) .

(98)

Using z̃𝑇PAz̃ = (1/2)z̃𝑇{A𝑇P + PA}z̃ and from the Riccati
equation (78), we obtain

1

2
A𝑇P + 1

2
PA + 1

2
Ṗ = −1

2
Q + 1

2
PB𝑅−1B𝑇P. (99)

Then applying (99) in (98) and performing a simple manipu-
lation for placing weight matrices inside a trace operator, we
have

�̇�3 = −
1

2
z̃𝑇Qz̃ − 1

2
z̃𝑇PB𝑅−1B𝑇Pz̃

+ z̃𝑇PB {𝜀 (𝑥) − ] (𝑡)}

+ tr {W̃𝑇 (Γ−1 ̇̃W + 𝜑z̃𝑇PB)} .

(100)
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Now substitute the robustifying term (91), the adaptive
learning law (95), and the following inequality:

tr [W̃𝑇 (W − W̃)] = ⟨W̃,W⟩
𝐹
−

W̃
2

𝐹

≤

W̃𝐹𝑊𝑀 −


W̃
2

𝐹
.

(101)

The time derivative �̇�3 becomes

�̇�3 ≤ −
1

2
‖z̃‖2 {𝜆min (Q) + 𝜆min (𝑅

−1
)}

+ ‖z̃‖ 𝜀𝑀 + 𝑘 ‖z̃‖ (

W̃𝐹𝑊𝑀 −


W̃
2

𝐹
) .

(102)

Completing the square terms yields

�̇�3 ≤ −
1

2
‖z̃‖ [ ‖z̃‖ {𝜆min (Q) + 𝜆min (𝑅

−1
)}

+ 𝑘(

W̃𝐹 −

1

2
𝑊𝑀)

2

− 𝜀𝑀 −
1

4
𝑘𝑊
2

𝑀
]

(103)

which is guaranteed to be negative as long as either (104) or
(105) holds

(𝜀𝑀 + (1/4) 𝑘𝑊
2

𝑀
)

{𝜆min (Q) + 𝜆min (𝑅
−1)}

≤ ‖z̃‖ , (104)

√
𝜀𝑀

𝑘
+
1

4
𝑊
2

𝑀
+
1

2
𝑊𝑀 ≤


W̃𝐹. (105)

Thus, �̇�3 is negative outside a compact set. According to a
standard Lyapunov theory extension [28], this demonstrates
uniform ultimate boundedness of 𝑒(𝑡), 𝑟(𝑡), and W̃(𝑡).

6. Simulation Results

Thedrive cycle tests that are currently used for light-weighted
EVs are new European driving cycle (NEDC), Federal Test
Procedure (FTP-75), and JC08.The NEDC is used in Europe,
and the low powered EV version of this cycle is used in India.
The FTP 75 cycle is used in USA and the JC08 in Japan.
In order to show the validity of the proposed controllers,
the NEDC is used for testing the performance. The NEDC
is a driving cycle consisting of four repeated ECE-15 driving
cycles and an extra-urban driving cycle (EUDC) [1]. The
maximum speed of NEDC is 120 km/h but it is scaled to
50 km/h when applied in this paper [11].

The simulation is implemented inMATLAB 7.8.0 (2009a)
with m-file programming. The controller design parameters
for conventional backstepping are chosen as 𝑘1= 15 and
𝑘2 = 15. The controller design parameters for CNN based
backstepping are chosen as 𝑘1 = 0.8 and 𝑘2 = 0.35. For update
of parameters in (48) and (49), 𝜂1, 𝜂2, and 𝜌 are chosen as 1,
0.0001, and 0.15, respectively. For approximating 𝑓(𝑥, 𝑧) the
input to the CNN 1 is 𝑧1, 𝑧2, and for approximating 𝑔(𝑥, 𝑧)
the input to the CNN 2 is 𝑧1, 𝑧2. The order of Chebyshev
polynomial is chosen as 1 for both 𝑧1 and 𝑧2. The parameters

of CNNare initialized to zero.Thus𝜙
1
and𝜙

2
have dimension

(5 × 1), where 𝜙
1
= 𝜙
2
= [1 𝑧1 2𝑧

2

1
− 1 𝑧2 2𝑧

2

2
− 1]
𝑇. W1

andW2 have dimension of (5 × 1). For optimal controller the
design parameters are chosen as Λ = 1.25, 𝐾 = 4. For CNN
based optimal adaptive controller parameter 𝑘𝑧 is chosen as
0.0001. For update of parameters in (95), Γ and 𝑘 are chosen as
0.01. For approximating ℎ(𝑥) the input to the CNN is 𝑧1, 𝑧2, 𝑒,
𝑦𝑑, ̇𝑦𝑑, and ̈𝑦𝑑. The order of Chebyshev polynomial is chosen
as 1 for all inputs to the CNN. The parameters of CNN are
initialized to zero. Thus 𝜑 andW have dimension of (13 × 1).
The initial conditions for [𝑧1(0), 𝑧2(0)]

𝑇= [0.01, 0.1]𝑇.
Performance of designed controllers for mass varia-

tion as given in (106) is considered. Passengers mass is
increased/decreased at different point of time in the driving
cycle.The variation in armature winding resistance of the
DC motor due to temperature changes, the variation in
the aerodynamic drag coefficient, and the variation in the
rolling resistance coefficient are considered as given in (107),
(108), and (109), respectively.The variation inmass, armature
winding resistance, aerodynamic drag coefficient, and rolling
resistance coefficient are assumed to be known in conven-
tional backstepping and optimal controller. The variation
in mass, armature winding resistance, aerodynamic drag
coefficient, and rolling resistance coefficient are considered
unknown in CNN based backstepping controller and CNN
based optimal adaptive controller.

Choosing

𝑚 =

{{{{

{{{{

{

950 0 < 𝑡 ≤ 195

1 020 195 < 𝑡 ≤ 585

1 080 585 < 𝑡 < 780

950 780 ≤ 𝑡 ≤ 1180,

(106)

𝑅𝑎 = {
0.0867 300 < 𝑡 ≤ 500

0.0947 500 < 𝑡 ≤ 780,
(107)

𝐶𝑑 = {
0.27 200 < 𝑡 ≤ 300

0.33 600 < 𝑡 ≤ 780,
(108)

𝜇𝑟𝑟 = {
0.0165 200 < 𝑡 ≤ 300

0.0135 600 < 𝑡 ≤ 780.
(109)

The drive cycle test performances and tracking errors
for conventional backstepping controller and CNN based
backstepping controller are shown in Figures 6 and 7,
respectively. It is clear that the conventional backstepping
controller has better tracking performance than the CNN
based backstepping controller, in the range of speed below
designed nominal speed (V = 25 km/hr). The CNN based
backstepping controller performs much better in high speed
range.The amp-hour consumption for CNN based backstep-
ping controller is 4.4834 km/10.75AH.

The drive cycle test performances and tracking errors
for optimal controller and CNN based optimal adaptive
controller are shown in Figures 8 and 9, respectively. The
amp-hour consumption for CNN based optimal adaptive
controller is 4.4795 km/10.70AH. It can be seen that the opti-
mal controller has better tracking performance in the speed
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Figure 6: Performance and tracking error of conventional backstepping controller.
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Figure 7: Performance and tracking error of CNN based backstepping controller.
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Figure 8: Performance and tracking error of optimal controller.
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Figure 9: Performance and tracking error of CNN based optimal adaptive controller.
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Figure 10: Results of NEDC test of [11].

Table 2: Comparative results of driving cycle test.

Controller Amp-hour consumption
Nonlinear optimal [11] 4.48 km/11.97AH
Nonlinear robust [11] 4.4825 km/10.78AH
CNN based backstepping 4.4834 km/10.75AH
CNN based optimal adaptive 4.4795 km/10.70AH

range below designed nominal speed than conventional
backstepping controller and CNN based backstepping con-
troller. However, for the high speed range the performance
of CNN based backstepping controller is comparable to the
optimal controller. CNN based optimal adaptive controller
gives the best tracking performance on the entire speed
range of the drive cycle test as compared to CNN based
backstepping controller designed in current work and the
results presented in [11] which are reproduced in Figure 10.
The comparative result of the driving cycle test is presented
in Table 2 and to provide detailed quantitative analysis of
the designed controllers, root mean squared (RMS) tracking
error of controllers is presented in Table 3. The proposed
CNN based optimal adaptive learning shows both robustness
and adaptation to changing system dynamics and unknown
nonlinearities.

Table 3: RMS tracking error of controllers designed.

Controller RMS value of tracking errors
Conventional backstepping 0.0301
CNN based backstepping 0.0279
Optimal 0.0165
CNN based optimal adaptive 0.0040

The traction force is required to propel the EV in
forward direction. It is produced by the DC motor torque
and transferred through transmission unit, which includes
the gearing system and finally drive the vehicle. While the
vehicle is in motion, there are forces that try to stop its
movement.These forces usually include rolling resistance and
aerodynamic drag force. The simulation result of traction
force of the EV is shown in Figure 11.

In present work, all the parameters are specified on a
light-weighted all-electric vehicle and are given in Table 1.
The mass of the vehicle is considered as 800 kg. This includes
the body mass of the vehicle, accessories, weight of the
DC motor, and batteries. For modeling light-weighted EVs,
we have considered four batteries each of 12 volts and this
restricts the control effort in the range of 0 ∼ 48V (see
Table 1). The control effort is shown in Figure 12.
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7. Conclusion

Two nonlinear controllers for a light-weighted all-electric
vehicle, CNN based backstepping controller and CNN based
optimal adaptive controller, are presented in this paper. The
unknown nonlinearities in EV system arise due to varying
mass of passengers, varying resistance in the armature wind-
ing of the DC motor and variation in aerodynamic drag
coefficient and the rolling resistance coefficient are estimated
by CNN. The CNN weights are updated online according
to the adaptive-learning algorithm, which is obtained from
Lyapunov stability analysis, so that system-tracking stability
and error convergence can be assured in the closed-loop
system. The salient feature of the proposed design method-
ologies demonstrates that the control objective is obtained
with unknown nonlinear dynamics of the EV system. The
NEDC is used for testing the performance of the proposed
controllers. It is shown that the tracking performance of the
controllers designed in this paper is satisfactory in both the
cases.The test results for CNN based backstepping controller
and the CNN based optimal adaptive controller have better
tracking performance than that reported by Huang et al. [11]
and amp-hour consumption is also less than the nonlinear
controllers described in [11]. From simulation results and the
comparative and quantitative results presented in Tables 2
and 3, respectively, it is clear that the CNN based optimal
adaptive controller gives better performance as compared to
other controllers.
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