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Particle swarm optimization (PSO) has been successfully applied to solve many practical engineering problems. However, more
efficient strategies are needed to coordinate global and local searches in the solution space when the studied problem is extremely
nonlinear and highly dimensional. This work proposes a novel adaptive elite-based PSO approach. The adaptive elite strategies
involve the following two tasks: (1) appending themean search to the original approach and (2) pruning/cloning particles.Themean
search, leading to stable convergence, helps the iterative process coordinate between the global and local searches. The mean of the
particles and standard deviation of the distances between pairs of particles are utilized to prune distant particles.The best particle is
cloned and it replaces the pruned distant particles in the elite strategy. To evaluate the performance and generality of the proposed
method, four benchmark functions were tested by traditional PSO, chaotic PSO, differential evolution, and genetic algorithm.
Finally, a realistic loss minimization problem in an electric power system is studied to show the robustness of the proposedmethod.

1. Introduction

Particle swarm optimization (PSO) is a population-based
optimization method [1]. PSO attempts to mimic the goal-
searching behavior of biological swarms. A possible solution
of the optimization problem is represented by a particle. The
PSO algorithm requires iterative computation, which consists
of updating the individual velocities of all particles at their
corresponding positions. The PSO algorithm has some mer-
its: (1) it does not need the crossover andmutation operations
used in genetic algorithms; (2) it has a memory so that the
elite solutions can be retained by all particles (solutions);
and (3) the computer code of PSO is easy to develop. The
PSO has been successfully applied to solve many problems,
for example, reconfiguration of shipboard power system [2],
economic dispatch [3], harmonic estimation [4], harmonic
cancellation [5], and energy-saving load regulation [6].

PSO is designed to conduct global search (exploration)
and local search (exploitation) in the solution space. The
former explores different extreme points of the search space
by jumping among extreme particles. In contrast, the latter

searches for the extreme particle in a local region. The
particles ultimately converge to the same extreme position.
However, when a problem involves a great number of
unknowns, the PSO generally requires a large number of
particles in order to gain a global optimal solution (position).
Consequently, achieving the coordination between the global
search and the local search becomes more difficult.

To overcome the limitation described above, van den
Bergh and Engelbrecht presented the cooperative PSO
(COPSO) based on the dimension partition [7]. Nickabadi
et al. focused on several well-known inertia weighting strate-
gies and gave a first insight into various velocity control
approaches [8].The adaptive PSO (APSO) presented by Zhan
et al. utilized the information on population distribution to
identify the search status of particles; the learning strategy
tries to find an elitist and then search the global best position
in an iterative step [9]. Caponetto et al. presented a chaos
algorithm to compute the inertiaweight of preceding position
of a particle and a self-tuning method to compute learning
factors [10]. Their method introduces a chaos parameter,
which is determined by a logistic map. The learning factors
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are adaptive according to the fitness value of the best solution
during the iterations. To enhance the scalability of PSO,
José and Enrique presented two mechanisms [11]. First, a
velocity modulation is designed to guide the particles to the
region of interest. Second, a restarting modulation redirects
the particles to promising areas in the search space. Deng
et al. presented a two-stage hybrid swarm intelligence opti-
mization algorithm incorporatingwith the genetic algorithm,
PSO, and ant colony optimization to conduct rough searching
and detailed searching by making use of the advantages of
the parallel and positive feedback [12]. Li et al. presented a
cooperative quantum-behaved PSO, which produces several
particles using Monte Carlo method first and then these
particles cooperate with one another to converge to the global
optimum [13]. Recently, Arasomwan and Adewumi tried
many chaotic maps, in additional to the traditional logistic
map, which attempted to enhance the performances of PSO
[14]. Yin et al. incorporated the crossover and mutation
operators in PSO to enhance diversity in the population;
besides, a local search strategy based on constraint dom-
ination was proposed and incorporated into the proposed
algorithm [15].

The variants of PSO generally have the following limita-
tions.

(1) The solutions are likely to be trapped in the local
optima and undesirable premature situations because
it relies heavily on the learning factors and inertia
weight.

(2) Compared with the traditional PSO, variants of PSO
require longer CPU times to compute the global
optimum due to the extra treatment in exploration
and exploitation.

(3) The iterative process is unstable or even fails to con-
verge because of the ergodic and dynamic properties,
for example, chaos sequence.

Based on the above literature review, a novel PSO is
proposed in this paper. This novel adaptive elite-based PSO
employs the mean of all particles and standard deviation of
distances between any two particles. In addition to global
and local searches, a new mean search is introduced as
an alternative method for finding the global optimum. The
standard deviation of distances among all particles is utilized
to prune the distant particles. The best particle is cloned
to replace the discarded particles. This treatment ensures a
stable iterative process. The increase in the computational
burden of this enhancement is trivial.

The rest of this paper is organized as follows. Section 2
provides the general PSO algorithm. Section 3 proposes
the novel elite-based PSO. In Section 4, four benchmark
functions are utilized to validate the proposed method.
Comparative studies among different optimization methods
(traditional PSO, chaotic PSO [16], differential evolution [17],
and genetic algorithm) are given.The results of its application
to the real problem of loss minimization in an electric power
system are presented. Section 5 draws conclusions.

2. General PSO Algorithm

PSO, which is an evolutionary optimization method for
minimizing an objective 𝑓(𝑋), reflects the behavior of flock-
ing birds or schooling fish. PSO comprises a population of
particles iteratively updating the empirical information about
a search space. The population consists of many individuals
that represent possible solutions and are modeled as particles
moving in a 𝜓-dimensional search space. Let the superscript
𝑡 be the iteration index. The position and velocity of each
particle 𝑝 are updated as follows [1]:
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where vectors𝑋
𝑝
and𝑉

𝑝
are the 𝜓-dimensional position and

velocity of particle 𝑝, 𝑝 = 1, 2, . . . , 𝑃 (number of population
size), respectively. The inertia weight 𝜔 is designed to copy
the previously updated features to the next iteration. If 𝜔 = 1,
then the preceding 𝑉

𝑡

𝑝
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𝑝
. 𝑝best

and 𝑔best are the best position of a particle and the best
known position found by any particle in the swarm so far,
respectively. The random numbers 𝑟

1
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2
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0 and 1. Learning factors 𝐶
1
and 𝐶

2
are positive constants
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and 𝐶

2
× 𝑟
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thus stochastically control

the overall velocity of a particle. In this paper, 𝑋𝑡+1
𝑝

denotes
the 𝑝th vector (particle) at the (𝑡+1)th iteration and𝑉𝑡+1

𝑝
can

be regarded as the (𝑡+1)th updated value (Δ𝑋𝑡
𝑝
) that is added

to𝑋𝑡
𝑝
.

The second term in (1) is designed to conduct the global
search (exploration) and the third term in (1) describes
the local search (exploitation) in the solution space, as
described in Section 1. The global and local searches should
be coordinated in order to gain the global optimumand avoid
premature results. The inertia weight 𝜔 decreases linearly
throughout the iterations and governs the momentum of
the particle by weighting the contribution of the particle’s
previous velocity to its current velocity. A large 𝜔 is designed
for global searches, whereas a small 𝜔 is used for local
searches. Consequently, in the earlier stages of the search
process, a large 𝜔 is preferred, while a small value is preferred
in the later stages.

3. Proposed Adaptive Elite-Based PSO

The proposed novel PSO has the following three features. (1)
An extramean search is introduced to coordinate exploration
and exploitation; (2) distant particles are pruned and the
best particle is cloned to ensure that the iterative process
is stable; and (3) complicated computation is avoided and
CPU time is thus reduced. The proposed adaptive elite-
based PSO, thus, performs 2 main tasks: mean search and
particle pruning/cloning. The effects of these two tasks
decline as the number of iterations increases. The limitations
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of the traditional variants of PSO described in Section 1 can
therefore be eliminated.

3.1. Mean Search. The proposed method is based on the
mean of the particles and standard deviation of the distances
between any two particles in the tth iterations. Equation (1) is
herein modified to the following:
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(3)

where the inertia weight 𝜔𝑡 is decreased linearly from 0.5
in the first iteration to 0.3 in the final iteration. In addition
to 𝑟
1
and 𝑟
2
, the term 𝑟

3
is also a random number between

0 and 1. 𝑋𝑡
𝑚
is a 𝜓-dimensional vector of the mean values

of all particles. The last term introduced in (3) is used to
coordinate the global and local searches as well as the particle
pruning/cloning task later.

Because 𝐶
1
+ 𝐶
2
≤ 4 [18], the new learning factor is

defined by
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= 4 − 𝐶

𝑡

1
− 𝐶
𝑡

2
, (4)

where

𝐶
𝑡

1
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𝑡

2
= 1 +

1

1 + exp (𝛼/𝐹 (𝑔𝑡best))
(5)

and 𝛼 = 𝐹(𝑔1best) [10]. Equation (4) ensures that 𝐶𝑡
3
decreases

gradually to zero and (3) becomes (1) when the iterative
process converges.

3.2. Particle Pruning/Cloning. 𝑋𝑡
𝑚
introduced in Section 3.1 is

used to develop the second task of the adaptive elite strategy:
pruning the distant particles. The standard deviation 𝜎

𝑡 of
all distances among particles in the tth iteration is evaluated.
Suppose that all distances follow a Gaussian distribution.
Then𝑋𝑡

𝑚
± 3𝜎𝑡 covers 99.7% of all particles. Let 𝜂𝑡 = 3 − 2𝐶𝑡

3
.

Because 𝐶𝑡
3
in (4) decreases approximately from 1.48 to zero,

the values of 𝜂𝑡 will be increased from 0.04 to 3. Hence, the
second task in the adaptive elite-based PSO is initially to
prune distant particles and finally cover all particles. Restated,
the particles outside the range of 𝑋𝑡

𝑚
± 𝜂𝑡𝜎𝑡 are pruned. The

reduced number of particles are substituted by cloning 𝑔𝑡best.
That is,

𝑋
𝑡+1

𝑝
= 𝑔
𝑡

best + 𝑉
𝑡+1

𝑝
. (6)

As shown in Figure 1, 𝑋𝑡
𝑚

is a virtual particle which
includes the mean of all particles. Consider the range 𝑋𝑡

𝑚
±

𝜎𝑡. Only seven particles are inside this range and three are
outside it. Consider 𝑋𝑡

𝑝
which is outside the range and is

pruned.𝑋𝑡
𝑝
is hence substituted by 𝑔𝑡best, which is denoted by

𝑋𝑡
𝑝
.

3.3. Algorithmic Steps. The proposed method can be imple-
mented using the following algorithmic steps.

Xt
m

Xt
p𝜎t

gt
best

Xt
p

Figure 1: Pruning and cloning particles.

Step 1. Input the objective, unknowns, and the number of
population size.

Step 2. Give randomly the particles (vectors of unknowns).
Let 𝑡 = 1.

Step 3. Calculate all objective values for all particles.

Step 4. If the iterative process meets the convergence criteria,
then stop.

Step 5. Find the 𝑝𝑡best and 𝑔
𝑡

best from all particles according to
the objective values of all particles.

Step 6. Calculate 𝐶𝑡
1
and 𝐶𝑡

2
using (5). Compute 𝐶𝑡

3
using (4).

Step 7. Evaluate𝑋𝑡
𝑚
, 𝜎𝑡, and 𝜂𝑡.

Step 8. If a particle lies outside the range𝑋𝑡
𝑚
± 𝜂
𝑡
𝜎
𝑡, then it is

pruned and𝑋𝑡
𝑝
= 𝑋𝑡
𝑝
= 𝑔𝑡best.

Step 9. Calculate the velocities of all particles using (3).

Step 10. Update all particles using (2).

Step 11. Let 𝑡 = 𝑡 + 1 and go to Step 3.

3.4. Proof of Convergence of the Proposed Method. Let 𝜔 be
a real number. Equations (2) and (3) are rewritten in the
discrete-time matrix form as follows [19, 20]:
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Thus, (9) can be rewritten as follows:
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which is true only when 𝑝𝑡best = 𝑔𝑡best = 𝑋𝑡
𝑘
as 𝑡 → ∞. Hence,

the equilibrium point is

𝑌eq (𝑡) = [
𝑔
𝑡

best
0

] . (15)

In order to guarantee 𝑌eq(𝑡) of the discrete-time linear
system as shown in (12) to be asymptotically stable, the
following necessary and sufficient conditions are obtained
using the classical Jury criterion:
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2
+
𝐶𝑡
3
𝑟𝑡
3

𝑃
> 0,
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𝑡
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1
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2
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2
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3
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𝜔
𝑡
< 1.

(16)

Since random numbers 𝑟𝑡
1
, 𝑟𝑡
2
, and 𝑟𝑡

3
are between 0 and 1,

the above stability conditions are equivalent to the following
set of parameter selection heuristics, which guarantee conver-
gence for the proposed adaptive elite-based PSO algorithm:

0 < 𝐶
𝑡

1
+ 𝐶
𝑡

2
+
𝐶𝑡
3

𝑃
< 4,

𝐶𝑡
1
+ 𝐶𝑡
2
+ (𝐶𝑡
3
/𝑃)

2
− 1 < 𝜔

𝑡
< 1.

(17)

According to (17), the convergence of the proposed
adaptive elite-based PSO can be guaranteed.

4. Simulation Results

The performance of the proposed adaptive elite-based PSO
is verified by four benchmark test functions in this section.
Traditional PSO, chaotic PSO (CPSO), differential evolution
(DE), and genetic algorithm (GA) are used to investigate
the benchmark functions for comparative studies [21]. The
number of dimensions of each benchmark function is 20
(meaning that the number of unknowns 𝑛 = 20). The
number of particles (population size) is also 20 in all
methods. The mutation rate and crossover rate in DE are
0.8 and 0.5, respectively; while those in GA are 0.01 and 1.0,
respectively. Ten simulations are conducted by each method
to verify the optimality and robustness of the algorithms.
Two convergence criteria are adopted: convergence tolerance
and fixed maximum number of iterations. Five manuscript
codes are developed using MATLAB 7.12 to minimize the
benchmark functions. The CPU time for studying these four
test functions is evaluated using a PC with Intel (R) Core
i7 (CPU@3.4GHz, RAM 4GB). Finally, the problem of loss
minimization in an electric power system is used to validate
the proposed method.

4.1. Benchmark Testing: Sphere Function. First, the sphere
function is tested as follow:

𝑓
1
(𝑥) =

𝑛

∑
𝑖=1

𝑥
2

𝑖
− 100 < 𝑥

𝑖
< 100, (18)
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Table 1: Performance of different methods used to minimize 𝑓
1
based on 10 simulation results (convergence tolerance = 0.001).

Proposed method PSO CPSO DE GA

Shortest time
𝑓
1

7.74𝑒 − 4 9.16𝑒 − 4 8.93𝑒 − 4 7.16𝑒 − 4 —
Iterations 203 218 203 294 —
Time (s) 0.0343 0.0129 0.0146 0.1854 —

Mean
𝑓
1

8.80𝑒 − 4 9.40𝑒 − 4 9.06𝑒 − 4 8.95𝑒 − 4 —
Iterations 250.1 239.9 241 267.8 —
Time (s) 0.0391 0.0141 0.0168 0.1935 —

Longest time
𝑓
1

8.68𝑒 − 4 9.76𝑒 − 4 9.72𝑒 − 4 9.87𝑒 − 4 —
Iterations 302 263 208 247 —
Time (s) 0.0439 0.0149 0.0245 0.2062 —

Table 2: Performance of different methods used to minimize 𝑓
1
based on 10 simulation results (number of iterations = 500).

Proposed method PSO CPSO DE GA

Best 𝑓
1

𝑓
1

3.30𝑒 − 12 2.65𝑒 − 11 1.02𝑒 − 11 2.03𝑒 − 09 7.1996
Time (s) 0.0616 0.0232 0.0271 0.6265 1.3834

Mean 𝑓
1

1.41𝑒 − 10 1.70𝑒 − 09 4.09𝑒 − 07 1.22𝑒 − 08 18.4275
Time (s) 0.0619 0.0240 0.0269 0.6209 1.3143

Worst 𝑓
1

𝑓
1

1.00𝑒 − 09 8.20𝑒 − 09 1.54𝑒 − 06 4.10𝑒 − 08 45.4336
Time (s) 0.0620 0.0234 0.0262 0.6140 1.3328

where 𝑛 = 20 and 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

20
) ⋅ 𝑓
1
(𝑥) is a unimodal

test function whose optimal solution is 𝑓
1
(𝑥) = 0 and 𝑥

1
=

𝑥
2

= ⋅ ⋅ ⋅ = 𝑥
20

= 0. First, the convergence tolerance
is set to 0.001. Table 1 shows the shortest, mean and the
longest CPU times obtained from 10 simulations by the five
methods. As illustrated in Table 1, all methods can approach
similar solutions except for GA (which fails to converge).
DE requires the longest CPU times. In the conditions of
mean and the longest CPU times, the proposedmethod yields
smaller values of 𝑓

1
(𝑥) than the other methods. Figure 2

shows the iteration excursions of the different methods with
their shortest CPU times.

Table 2 shows the best,mean and theworst𝑓
1
(𝑥)obtained

by running 500 iterations using all methods. It can be
found that the proposed method always yields the smallest
𝑓
1
(𝑥) among the five methods. Figures 3 and 4 present the

parameter𝐶
3
and the standard deviation𝜎 obtained using the

proposedmethod in the case with the best𝑓
1
(𝑥), respectively.

The values of𝐶
3
decrease quickly in the first 30 iterations and

the standard deviation oscillates while decreasing to zero near
the 200th iteration.

Generally, the CPU time required by the proposed
method is longer than those taken by PSO and CPSO but
shorter than those taken by DE and GA.

4.2. Benchmark Testing: Rosenbrock Function. This subsec-
tion employs the Rosenbrock function for testing as follows:

𝑓
2
(𝑥) =

𝑛−1

∑
𝑖=1

100 × (𝑥
𝑖+1

− 𝑥
2

𝑖
)
2

+ (1 − 𝑥
𝑖
)
2

− 2.048 < 𝑥
𝑖
< 2.048,

(19)
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Figure 2: Iteration excursions with the shortest CPU times for
different methods used to minimize 𝑓

1
.

where 𝑛 = 20 and 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

20
). Each contour of

the Rosenbrock function looks roughly parabolic. Its global
minimum is located in the valley of the parabola (banana
valley). Since the function changes little in the proximity
of the global minimum, finding the global minimum is
considerably difficult. 𝑓

2
(𝑥) is also a unimodal test function

whose optimal solution is 𝑓
2
(𝑥) = 0 and 𝑥

1
= 𝑥
2
= ⋅ ⋅ ⋅ =

𝑥
20
= 0. First, the convergence tolerance is set to 0.001. Table 3
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Table 3: Performance of different methods used to minimize 𝑓
2
based on 10 simulation results (convergence tolerance = 0.001).

Proposed method PSO CPSO DE GA

Shortest time
𝑓
2

9.99𝑒 − 04 9.99𝑒 − 04 — 9.73𝑒 − 04 —
Iterations 6543 6931 — 1167 —
Time (s) 0.6641 0.3037 — 0.7361 —

Mean
𝑓
2

9.97𝑒 − 04 9.99𝑒 − 04 — 9.13𝑒 − 04 —
Iterations 7681.3 8532.3 — 1274.7 —
Time (s) 0.7787 0.4415 — 1.0411 —

Longest time
𝑓
2

9.99𝑒 − 04 9.98𝑒 − 04 — 8.68𝑒 − 04 —
Iterations 8759 9099 — 1680 —
Time (s) 0.8879 0.6239 — 1.4807 —
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Figure 3: Iterative performance in terms of 𝐶
3
(sphere function).

shows the shortest, mean and the longest CPU times obtained
by performing 10 simulations using the five methods. As
illustrated in Table 3, all methods yield similar solutions
except for CPSO and GA (which fail to converge). The CPU
times required by the proposed method are between those
taken by PSO and DE. It could be found that DE requires
fewer iterations but longer CPU times in all studies. All
solutions (optimality), from the viewpoints of the shortest,
mean and the longest CPU times, are similar. Figure 5 shows
the iteration excursions of the different methods (the cases
with their shortest CPU times).

Table 4 shows the best, mean and the worst 𝑓
2
(𝑥)

obtained by running 1000 iterations using all methods. Since
the proposed AEPSO and PSO require 6500∼8000 iterations
to find the global optimum of 𝑓

2
(𝑥), they only reach a near

optimal solution in the 1000th iterations. Figures 6 and 7
display the parameter 𝐶

3
and standard deviation 𝜎 of the

proposedmethod in the case with the best𝑓
2
(𝑥), respectively.

The values of 𝐶
3
decrease quickly in the first 40 iterations.

However, the standard deviation decreases to a very small
positive value near the 220th iteration and then oscillates
continuously.
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Figure 4: Iterative performance in terms of standard deviation
(sphere function).

4.3. Benchmark Testing: Griewank Function. In this subsec-
tion, the Griewank function is tested as follows:

𝑓
3
(𝑥) =

𝑛

∑
𝑖=1

𝑥2
𝑖

4000
−

𝑛

∏
𝑖=1

cos(
𝑥
𝑖

√𝑖
) + 1

− 600 < 𝑥
𝑖
< 600,

(20)

where 𝑛 = 20 and 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

20
). If 𝑛 = 1, then the

function 𝑓
3
(𝑥) has 191 minima, with the global minimum at

𝑥 = 0 and local minima at ±𝑥 for 𝑥 ≅ 6.28005, 12.5601,
18.8401, and 25.1202,. . .. First, the convergence tolerance is
set to 0.01. Table 5 shows the shortest, mean and the longest
CPU times achieved using the fivemethods in 10 simulations.
As illustrated in Table 5, CPSO, DE, and GA fail to converge.
The optimality of the proposed method and PSO, as given
by the shortest, mean and the longest CPU times, is similar.
Figure 8 shows the iteration excursions of the methods with
the shortest CPU times.

Table 6 shows the best,mean and theworst𝑓
3
(𝑥)obtained

at the 1000th iteration by all methods. The proposed method
still attains the best optimality comparedwith othermethods.
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Table 4: Performance of different methods used to minimize 𝑓
2
based on 10 simulation results (number of iterations = 1000).

Proposed method PSO CPSO DE GA

Best 𝑓
2

𝑓
2

0.0466 0.0258 65.8326 4.19𝑒 − 04 1.9769
Time (s) 0.1152 0.0488 0.0545 0.6335 2.0670

Mean 𝑓
2

0.0633 0.0717 70.1498 0.0037 6.1595
Time (s) 0.1162 0.0493 0.0535 0.6406 2.1172

Worst 𝑓
2

𝑓
2

0.0816 0.1474 77.7252 0.0072 9.0414
Time (s) 0.1157 0.0500 0.0543 0.6358 2.1768

Table 5: Performance of different methods used to minimize 𝑓
3
based on 10 simulation results (convergence tolerance = 0.01).

Proposed method PSO CPSO DE GA

Min (Time)
𝑓
3

0.0082 0.0098 — — —
Generation 850 1416 — — —
Time (s) 0.1349 0.1158 — — —

Mean (Time)
𝑓
3

0.0093 0.0095 — — —
Generation 5435 10347 — — —
Time (s) 0.8773 0.8910 — — —

Max (Time)
𝑓
3

0.0098 0.0100 — — —
Generation 11553 30425 — — —
Time (s) 1.6046 2.4117 — — —
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Figure 5: Iteration excursions with the shortest CPU times for
different methods used to minimize 𝑓

2
.

4.4. Benchmark Testing: Ackley Function. The Ackley func-
tion is an n-dimensional highlymultimodal function that has
a great number of local minima, which look like noise but
only one global minimum at 𝑓

4
(𝑥) = 0 and 𝑥 = (𝑥

1
, 𝑥
2
, . . .) =

(0, 0, . . .):

𝑓
4
(𝑥) = −20𝑒

−0.2×√(1/𝑛)∑
𝑛

𝑖=1
𝑥
2

𝑖 − 𝑒
(1/𝑛)∑

𝑛

𝑖=1
cos(2𝜋×𝑥

𝑖
)
+ 20 + 𝑒

1

− 32 < 𝑥
𝑖
< 32,

(21)

where 𝑛 = 20 and 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

20
) herein.
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Figure 6: Iterative performance in terms of 𝐶
3
(Rosenbrock func-

tion).

First, the convergence tolerance is set to 0.001. Table 7
shows the shortest, mean and the longest CPU times of 10
simulations obtained by the five methods. As illustrated in
Table 7, all methods are able to find the global optimum,
except for CPSO (which fails to converge). The CPU times
required by the proposed method are between those
required by PSO and DE, while GA needs very long CPU
times. All solutions (optimality) are similar from the
viewpoints of the shortest, mean and the longest CPU
times. Figure 11 shows the iteration excursions of the various
methods with the shortest CPU times.The proposed method
converges the fastest.

Table 8 shows the best, mean and the worst 𝑓
4
(𝑥)

obtained at the 500th iteration by all methods. The proposed
method andDE can gain the global optimumbut PSO, CPSO,
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Table 6: Performance of different methods used to minimize 𝑓
3
based on 10 simulation results (number of iterations = 1000).

Proposed method PSO CPSO DE GA

Best 𝑓
3

𝑓
3

0.0004 0.0195 3.53𝑒 − 02 0.6151 0.3880
Time (s) 0.1941 0.0820 0.1221 0.8560 2.7651

Mean 𝑓
3

0.0129 0.0779 0.1293 0.6953 0.7267
Time (s) 0.1927 0.1031 0.1157 0.8649 2.7097

Worst 𝑓
3

𝑓
3

0.0472 0.1687 1.87𝑒 − 01 0.8114 0.9426
Time (s) 0.1922 0.1033 0.1144 0.8706 2.5987

Table 7: Performance of different methods used to minimize 𝑓
4
based on 10 simulation results (convergence tolerance = 0.001).

Proposed method PSO CPSO DE GA

Shortest time
𝑓
4

0.000926 0.000865 — 0.000963 0.000732
Iterations 329 410 — 467 5604
Time (s) 0.0698 0.0354 — 0.4140 313.2481

Mean
𝑓
4

0.000956 0.000946 — 0.000944 0.000915
Iterations 380.9 424.5 — 490.2 6222.1
Time (s) 0.0775 0.0368 — 0.4371 322.7549

Longest time
𝑓
4

0.000928 0.000959 — 0.000933 0.000972
Iterations 398 431 — 503 7987
Time (s) 0.0875 0.0397 — 0.4616 333.9159
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Figure 7: Iterative performance in terms of standard deviation
(Rosenbrock function).

and GA cannot. The proposed method always gains the
smallest values of 𝑓

4
(𝑥) by inspecting the best, mean and the

worst values of the 𝑓
4
(𝑥). The proposed method also requires

the shortest CPU times to converge to solutions. Figures
12 and 13 illustrate parameter 𝐶

3
and standard deviation

𝜎, respectively, obtained using the proposed method in the
case with the best 𝑓

4
(𝑥). The values of 𝐶

3
decrease to small

positive values close to the 220th iteration. The standard
deviation decreases to very small positive values near the
400th iteration and thereafter oscillates (see Figures 9 and 10).
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Figure 8: Iteration excursions with the shortest CPU times for
different methods used to minimize 𝑓

3
.

4.5. Studies on Loss Minimization in a Power System. Active
power loss in the electric power system is caused by the resis-
tance in the transmission/distribution lines.The losses can be
evaluated as ∑ (each line current)2 × (each line resistance)
or simplified as (total active power generations − total active
power demands). If the active power demands are constant
and voltage magnitudes are increased, then the line currents
will be reduced, leading to reduction of active power losses.
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Table 8: Performance of different methods used to minimize 𝑓
4
based on 10 simulation results (number of iterations = 500).

Proposed method PSO CPSO DE GA

Best 𝑓
4

𝑓
4

8.29𝑒 − 06 1.93𝑒 − 04 1.423543 4.46𝑒 − 04 0.780793
Time (s) 0.0917 0.0394 0.0472 0.4336 1.8306

Mean 𝑓
4

7.83𝑒 − 05 0.000463 2.379854 0.000836 1.517645
Time (s) 0.0921 0.0405 0.0475 0.4346 1.7197

Worst 𝑓
4

𝑓
4

3.35𝑒 − 04 2.58𝑒 − 03 4.10𝑒 + 00 8.12𝑒 − 04 2.621082
Time (s) 0.0919 0.0406 0.0475 0.4347 1.6464
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Figure 9: Iterative performance in terms of𝐶
3
(Griewank function).
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Figure 10: Iterative performance in terms of standard deviation
(Griewank function).

Therefore, engineers who work on electric power systems
tend to utilize voltage controllers to increase the voltage
profile in order to reduce the active power losses [22]. The
voltage controllers include generator voltages, transformer
taps, and shunt capacitors.The problem formulation of active
power loss minimization is given in the appendix.
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Figure 11: Iteration excursions with the shortest CPU times for
different methods used to minimize 𝑓

4
.
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Figure 12: Iterative performance in terms of 𝐶
3
(Ackley function).

Figure 14 illustrates a 25-busbar power system with 3
wind farms at busbars 13, 14, and 25. The wind power
generations in these three busbars are 2.4, 2.4, and 5.1MW,
respectively.The diesel generators are located at busbars 1∼11.
The shunt capacitors are at busbars 21, 22, and 23. Seven
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Table 9: Optimality and CPU time required by different methods (10 runs).

AEPSO PSO CPSO DE GA

Best objective MW loss 1.783 1.865 1.829 1.857 1.862
Time (s) 33.9461 43.4231 48.3487 42.0286 70.3614

Mean MW loss 1.840 1.875 1.8654 1.915 1.886
Time (s) 34.2277 46.8953 48.3953 44.9488 72.0624

Worst objective MW loss 1.886 1.952 1.902 1.961 1.946
Time (s) 34.6663 48.4029 48.7938 47.7389 75.1891

Table 10: Optimal solutions obtained by different methods (best solution).

Control variables Proposed PSO CPSO ED GA
𝑉
1
–𝑉
3

1.01 1.02 0.96 0.95 1.04
𝑉
4
–𝑉
11

1.04 1.04 1.05 1.04 1.04
𝑉
13

1.03 1.04 1.03 1.03 1.00
𝑉
14

0.99 0.99 0.99 0.99 1.01
𝑉
25

1.04 1.04 1.04 1.04 1.00
Tap
1–12 0.95 0.96 0.95 0.95 0.97

Tap
4–12 1.05 1.05 1.03 1.05 0.99

Tap
12–17 0.95 1.01 0.98 1.01 1.04

Tap
12–18 0.98 0.98 0.98 0.98 0.99

Tap
12–19 1.02 1.03 1.02 1.03 1.02

Tap
17–15 1.02 1.03 1.02 1.02 0.96

Tap
14–16 1.02 1.02 1.02 1.02 0.98

Tap
20-21 1.01 0.96 1.01 1.01 1.01

Tap
20–22 1.04 1.04 0.96 1.04 1.01

Tap
20–23 1.02 1.04 0.98 1.01 1.03

SC21 0.05 0.05 0.1 0.1 0.09
SC22 0.1 0.1 0.1 0.1 0.06
SC23 0.15 0.15 0.1 0.1 0.09

demands can be seen at busbars 17∼19 and 21∼24. Conse-
quently, the number of control variables is 39 (14 generator
voltage magnitudes, 22 taps, and 3 shunt capaciotrs). The
number of state variables is 36 (voltagemagnitudes and phase
angles at busbars 12, 15∼19, and 20∼24, phase angles and
reactive power generations at generator busbars, and active
power generation at reference busbar 1).

The proposed method, PSO, CPSO, DE, and GA are
applied to the find the optimal 39 control variables in order
to minimize the active power (MW) losses. Ten simulations,
each with fixed 500 iterations are conducted using each
method. Figure 15 illustrates the iteration performance of
these fivemethods. It can be found the iteration process of the
proposed method converges slowly at first but quickly after
the 220th iteration. Table 9 reveals that the proposed method
is able to converge the fastest and requires the shortest CPU
times for the conditions of the best active power loss, mean
values, and the worst active power loss in the 10 simulations.
As shown in Table 9, GA still needs much more CPU time
to solve the realistic problem and DE yields the worst, mean
values over 10 simulation runs. Table 10 gives the results
of optimal controls obtained using the different methods
(best solution). Figure 16 displays the optimal voltage profile,
which is obtained by the proposed method, of the electric
power system.

4.6. Comparison of Time, Space Complexities, and Perfor-
mance. Compared with the traditional PSO, the proposed
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Figure 13: Iterative performance in terms of standard deviation
(Ackley function).

novel mean search and particle pruning/cloning manners
have been added to achieve stable iterative process and they
avoid ineffective searches, respectively. Although the space
complexity is increased a little bit due to these two tasks as
shown in (3)–(6), the number of iterations can be mitigated
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Figure 14: Oneline diagram of 25-busbar system.
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Figure 15: Iteration performance of five methods.

and the computational burden can be reduced effectively.
Thus, the time complexity is similar to that of the traditional
PSO.

The performance comparisons among the proposed
method, PSO, CPSO, DE, and GA are implemented using a
set of four benchmark functions and one realistic loss mini-
mization problem in an electric power system.The simulation
results, as shown in Tables 1–10, imply that the CPSO and DE

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1 3 5 7 9 11 13 15 17 19 21 23 25

Vo
lta

ge
 m

ag
ni

tu
de

s

Bubars

Figure 16: Voltage magnitudes in 25-busbar system (the proposed
method).

sometimes are unable to find the optimal solution or even
diverge. Furthermore, both GA and DE always require long
CPU times for computation. Additionally, the computational
effort required by the proposedmethod to obtain high quality
solutions is less than the effort required to obtain the same
high quality solutions by the GA and DE. Therefore, the
proposed method has the most stable convergence perfor-
mance to find the optimums and has the best computational
efficiency compared with the other methods considering the
time complexity and space complexity.

5. Conclusions

In this paper, to provide a better tradeoff between global and
local search in the iterative process than existing methods,
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a novel elite-based PSO approach is proposed for studying
highly dimensional and extraordinarily nonlinear optimiza-
tion problems. Two tasks have been developed: mean search
and particle pruning/cloning. The mean of all particles and
the standard deviation of the distances between pairs of par-
ticles are evaluated in each iteration.Themean search ensures
that the iterative process is stable. Particle pruning/cloning
avoids ineffective searches. All parameters are adaptively
self-tuned during the iterations. The impacts of these two
tasks are gradually mitigated in the iteration process. When
the proposed process is near convergence, its computational
burden is similar to that of the traditional PSO.

Based on the studies herein of benchmark functions, the
CPSO and DE sometimes are unable to find the optimal
solution or even diverge. GA is often unable to find the
optimum if the benchmark functions are very nonlinear. In
terms of optimality, the proposed method is generally better
than PSO. In the loss minimization problem, the best, mean
and the worst objective values obtained by the proposed
method in 10 simulations are always the best among those
obtained by allmethods.The smallestmean loss value implies
that the numerical process of proposed method is the more
stable than all of the others. The proposed method also
requires the least CPU time to solve the loss minimization
problem.

Appendix

A.

The active power loss minimization problem can be formu-
lated as follows. Let the number of transmission lines, the set
of generator busbars, and the set of total busbars be 𝑇,𝐾, and
𝐼, respectively. The objective is to minimize the line losses in
all lines:

min
𝑇

∑
𝑡=1

𝑃
𝑡

loss. (A.1)

Let busbar 1 be the reference with a phase-angle of zero. The
loss can be expressed as

𝑉
1

𝐼

∑
𝑗=1

𝑉
𝑗
(𝐺
1𝑗
cos 𝜃
1𝑗
+ 𝐵
1𝑗
sin 𝜃
1𝑗
)

+ ( ∑
𝑘∈𝐾,𝑘 ̸= 1

𝑃𝐺
𝑘
) − (∑

𝑖∈𝐼

𝑃𝐷
𝑖
) ,

(A.2)

where 𝑃
𝐺𝑘

and 𝑃
𝐷𝑖

are the active generation and demand at
the kth generator and busbar 𝑖, respectively. The terms 𝑉

𝑖

and 𝑉
𝑗
represent the voltages of busbars 𝑖 and 𝑗, respectively.

𝐺
𝑖𝑗
+ 𝑗𝐵
𝑖𝑗
is the element at location (𝑖, 𝑗) of the system

admittance matrix.The term 𝜃
𝑖𝑗
represents the voltage phase-

angle difference between busbars 𝑖 and 𝑗.
The objective is subject to the following equality and

inequality constraints.

A.1. Equality Constraints. The equality constraints covering
the power flow equations are shown in (A.3) as follows:

𝑃
𝐺𝑖
− 𝑃
𝐷𝑖
− 𝑃
𝑖
= 0, 𝑖 = 1, . . . , 𝐼

𝑄
𝐺𝑖
− 𝑄
𝐶𝑖
− 𝑄
𝐷𝑖
− 𝑄
𝑖
= 0, 𝑖 = 1, . . . , 𝐼,

(A.3)

where 𝑃
𝐺𝑖
and 𝑄

𝐺𝑖
are the active and reactive power genera-

tion at busbar 𝑖, respectively. 𝑃
𝐷𝑖

and 𝑄
𝐷𝑖

are the active and
reactive power demands at busbar 𝑖, respectively. 𝑃

𝑖
and 𝑄

𝑖

are the active and reactive power flow injections at busbar
𝑖, respectively. 𝑄

𝐶𝑖
is the injected reactive power at busbar 𝑖

where a capacitor is installed. 𝑃
𝑖
and𝑄

𝑖
can be represented as

follows:

𝑃
𝑖
= 𝑉
𝑖

𝐼

∑
𝑗=1

𝑉
𝑗
(𝐺
𝑖𝑗
cos 𝜃
𝑖𝑗
+ 𝐵
𝑖𝑗
sin 𝜃
𝑖𝑗
)

𝑄
𝑖
= 𝑉
𝑖

𝐼

∑
𝑗=1

𝑉
𝑗
(𝐺
𝑖𝑗
sin 𝜃
𝑖𝑗
− 𝐵
𝑖𝑗
cos 𝜃
𝑖𝑗
) .

(A.4)

A.2. Inequality Constraints. In the following, the subscripts
“max” and “min” denote the upper and lower limits.

Operational Limits of Voltage Magnitudes at Generator Bus-
bars. Consider

𝑉
𝐺𝑘,min ≤ 𝑉

𝑡

𝐺𝑘
≤ 𝑉
𝐺𝑘,max, 𝑘 ∈ 𝐾, (A.5)

where 𝑉
𝐺𝑘

represents the voltage magnitude at generator
busbar 𝑘. The symbol𝐾 denotes the set of generator busbars.

Limitations on Reactive Power at Generators. Consider

𝑄
𝐺𝑘,min ≤ 𝑄

𝑡

𝐺𝑘
≤ 𝑄
𝐺𝑘,max, 𝑘 ∈ 𝐾, (A.6)

where 𝑄
𝐺𝑘

represents the reactive power output at generator
𝑘.

Operational Limits at Transformers. Consider

𝑇
𝑙,min ≤ 𝑇

𝑡

𝑙
≤ 𝑇
𝑙,max, 𝑙 ∈ 𝐿, (A.7)

where 𝑇
𝑙
represents the tap at transformer 𝑙. The symbol 𝐿

represents the set of transformers.

Operational Limits of Capacitors. Consider

𝑄
𝐶𝑚,min ≤ 𝑄

𝐶𝑚
≤ 𝑄
𝐶𝑚,max, 𝑚 ∈ 𝑀, (A.8)

where 𝑄
𝐶𝑚

represents the injected reactive power at busbar
𝑚. The symbol𝑀 represents the set of capacitors.

Operational Limits of Voltage Magnitudes at Demand Bus-
bars. Consider

𝑉
𝐷𝑛,min ≤ 𝑉

𝐷𝑛
≤ 𝑉
𝐷𝑛,max, 𝑛 ∈ 𝑁, (A.9)

where 𝑉
𝐷𝑛

represents the voltage magnitude at busbar 𝑛. The
symbol𝑁 indicates the set of demands.

The active/reactive power demands, active power genera-
tion, and line impedances (𝑅

𝑖𝑗
+𝑗𝑋
𝑖𝑗
) of the 25-busbar system

are given in Tables 11(a), 11(b), and 11(c), respectively. Please
note that 𝐺

𝑖𝑗
+ 𝑗𝐵
𝑖𝑗
= (𝑅
𝑖𝑗
+ 𝑗𝑋
𝑖𝑗
)
−1.
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Table 11: (a) Active and reactive demands. (b) Power generation
(MW). (c) Line impedances of 25-busbar system.

(a)

Busbar Active demand (MW) Reactive demand (MVAR)
17 13.58 2.78
18 15.85 3.31
19 13.76 2.79
21 23.24 4.69
22 18.63 3.83
23 18.81 3.84
24 11.94 2.43

(b)

Busbar Active power
2 10
3 10
4 11
5 11
6 11
7 11
8 11
9 11
10 11
11 11
13 1.55
14 1.59
25 1.52

(c)

Line impedance 𝑅
𝑖𝑗

𝑋
𝑖𝑗

𝐿
1–12 0.0470 0.980

𝐿
2–12 0.0470 0.980

𝐿
3–12 0.0470 0.9840

𝐿
4–12 0.0585 0.9820

𝐿
5–12 0.0585 0.9820

𝐿
6–12 0.0585 0.9800

𝐿
7–12 0.0585 0.9750

𝐿
8–12 0.0585 0.9820

𝐿
9–12 0.0585 0.9870

𝐿
10–12 0.0585 0.9900

𝐿
11-12 0.0585 0.9820

𝐿
12–17 8𝑒 − 05 0.3548

𝐿
12–18 8𝑒 − 05 0.3544

𝐿
12–19 8𝑒 − 05 0.3544

𝐿
12–20 0.0239 0.0514

𝐿
13–15 0 0.4000

𝐿
14–16 0 0.4000

𝐿
15–17 0.9540 1.4070

𝐿
16–19 0.9540 1.4070

𝐿
20-21 8𝑒 − 05 0.3440

𝐿
20–22 8𝑒 − 05 0.3444

𝐿
20–23 8𝑒 − 05 0.3444

𝐿
20–24 8𝑒 − 05 0.3444

𝐿
25–17 0 0.4000
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