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The constrained convex minimization problem is to find a point 𝑥∗ with the property that 𝑥∗ ∈ 𝐶, and ℎ(𝑥∗) = min ℎ(𝑥), ∀𝑥 ∈ 𝐶,
where 𝐶 is a nonempty, closed, and convex subset of a real Hilbert space𝐻, ℎ(𝑥) is a real-valued convex function, and ℎ(𝑥) is not
Fréchet differentiable, but lower semicontinuous. In this paper, we discuss an iterative algorithm which is different from traditional
gradient-projection algorithms. We firstly construct a bifunction 𝐹

1
(𝑥, 𝑦) defined as 𝐹

1
(𝑥, 𝑦) = ℎ(𝑦) − ℎ(𝑥). And we ensure the

equilibrium problem for 𝐹
1
(𝑥, 𝑦) equivalent to the above optimization problem. Then we use iterative methods for equilibrium

problems to study the above optimization problem. Based on Jung’s method (2011), we propose a general approximation method
and prove the strong convergence of our algorithm to a solution of the above optimization problem. In addition, we apply the
proposed iterative algorithm for finding a solution of the split feasibility problem and establish the strong convergence theorem.
The results of this paper extend and improve some existing results.

1. Introduction

Let𝐻 be a real Hilbert space with the inner product ⟨⋅, ⋅⟩ and
the induced norm ‖ ⋅ ‖. Let 𝐶 be a nonempty, closed, and
convex subset of𝐻. Recall that a mapping 𝑇 is nonexpansive
(see [1]) if





𝑇𝑥 − 𝑇𝑦





≤




𝑥 − 𝑦





, ∀𝑥, 𝑦 ∈ 𝐶. (1)

We denote by 𝐹(𝑇) = {𝑥 ∈ 𝐶 : 𝑇𝑥 = 𝑥} the set of fixed points
of 𝑇. Recall that a self-mapping 𝑓 on 𝐻 is a contraction if
there exists a constant 𝛼 ∈ (0, 1) such that





𝑓 (𝑥) − 𝑓 (𝑦)





≤ 𝛼





𝑥 − 𝑦





, ∀𝑥, 𝑦 ∈ 𝐻. (2)

Consider the following constrained convexminimization
problem:

min
𝑥∈𝐶

ℎ (𝑥) , (3)

where ℎ : 𝐶 → 𝑅 is a real-valued convex function. Assume
that the constrained convex minimization problem (3) is
solvable, and let 𝑆 denote the set of solutions of (3). Assume

that ℎ(𝑥) is lower semicontinuous. Let𝐹
1
be a bifunction from

𝐶 × 𝐶 toR defined by 𝐹
1
(𝑥, 𝑦) = ℎ(𝑦) − ℎ(𝑥). It is easy to see

that 𝑆 = EP(𝐹
1
), where EP(𝐹

1
) denotes the set of solutions of

equilibrium problem to find 𝑥 ∈ 𝐶 such that

𝐹
1
(𝑥, 𝑦) ≥ 0, ∀𝑦 ∈ 𝐶. (4)

Hence, the optimization problem (3) is equivalent to the
equilibrium problem (4).

For solving the convex optimization problem (3), Su and
Li [2] introduced the following iterative scheme in a Hilbert
space: 𝑥

1
∈ 𝐻 and

ℎ (𝑦) − ℎ (𝑢
𝑛
) +

1

𝑟
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝑢
𝑛
− 𝑥
𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

𝑥
𝑛+1

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛾
𝑛
𝑢
𝑛
+ 𝛽
𝑛
𝑥
𝑛
,

(5)

for all 𝑛 ∈ N, where 𝑢
𝑛
= 𝑇
𝑟
𝑛

𝑥
𝑛
, {𝛼
𝑛
}, {𝛽
𝑛
}, {𝛾
𝑛
} ⊂ (0, 1), 𝛼

𝑛
+

𝛽
𝑛
+𝛾
𝑛
= 1, and {𝑟

𝑛
} ⊂ (0,∞). Under appropriate conditions,

they proved that the sequence {𝑥
𝑛
} generated by (5) converges

strongly to a point 𝑧 = 𝑃
𝑆
𝑓(𝑧) of optimization problem (3).
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In 2010, combining Yamada’s method [3] and Marino
and Xu’s method [4], Tian [5] proposed a general iterative
algorithm:

𝑥
𝑛+1

= 𝛼
𝑛
𝛾𝑓 (𝑥
𝑛
) + (𝐼 − 𝛼

𝑛
𝜇𝐹)𝑇 (𝑥

𝑛
) , (6)

where 𝑓 : 𝐻 → 𝐻 is a contraction with coefficient 0 <

𝛼 < 1 and 𝐹 : 𝐻 → 𝐻 is a 𝑘-Lipschitzian and 𝜂-strongly
monotone operator with 𝑘 > 0, 𝜂 > 0. Let 0 < 𝜇 < 2𝜂/𝑘

2,
0 < 𝛾 < 𝜇(𝜂−(𝜇𝑘

2

/2))/𝛼 = 𝜏/𝛼. It is proved that the sequence
{𝑥
𝑛
}
∞

𝑛=0
generated by (6) converges strongly to a fixed point

𝑥 ∈ Fix(𝑇), which solves the variational inequality

⟨(𝛾𝑓 − 𝜇𝐹) 𝑥, 𝑥 − 𝑥⟩ ≤ 0, ∀𝑥 ∈ Fix (𝑇) . (7)

In 2011, Jung [6] introduced the following general iterative
scheme for 𝑘-strictly pseudocontractive mapping 𝑇:

𝑥
𝑛+1

= 𝛼
𝑛
𝛾𝑓 (𝑥
𝑛
) + ((1 − 𝛽

𝑛
) 𝐼 − 𝛼

𝑛
𝜇𝐹) 𝑃
𝐶
𝑆


(𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
,

(8)

where 𝑆 : 𝐶 → 𝐻 is a mapping defined by 𝑆𝑥 = 𝑘𝑥 +

(1 − 𝑘)𝑇𝑥 and 𝑃
𝐶
is the metric projection of𝐻 onto 𝐶. Under

appropriate conditions, he established the strong convergence
of the sequence {𝑥

𝑛
} generated by (8) to a fixed point of 𝑇,

which is a solution of the variational inequality (7).
In this paper, motivated and inspired by the above results,

we introduce a general iterative method: 𝑥
1
∈ 𝐻 and

ℎ (𝑦) − ℎ (𝑢
𝑛
) +

1

𝑟
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝑢
𝑛
− 𝑥
𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

𝑥
𝑛+1

= 𝛼
𝑛
𝛾𝑓 (𝑥
𝑛
) + ((1 − 𝛽

𝑛
) 𝐼 − 𝛼

𝑛
𝜇𝐹) 𝑢

𝑛
+ 𝛽
𝑛
𝑥
𝑛
, 𝑛 ∈ N,

(9)

for solving the optimization problem (3), where 𝑢
𝑛
= 𝑇
𝑟
𝑛

𝑥
𝑛
.

Under appropriate conditions, it is proved that the sequence
{𝑥
𝑛
} generated by (9) converges strongly to a point 𝑧 ∈ 𝑆

which solves the variational inequality

⟨(𝜇𝐹 − 𝛾𝑓) 𝑧, 𝑧 − 𝑥⟩ ≤ 0, ∀𝑥 ∈ 𝑆. (10)

Furthermore, by using the above result we studied the split
feasibility problem and obtained the iterative algorithm for
solving the split feasibility problem.

2. Preliminaries

In this section we introduce some useful definitions and
lemmas which will be used in the proofs for the main results
in the next section.

Monotone operators are very useful in the convergence
analysis.

Definition 1 (see [7] for comprehensive theory of monotone
operators). Let 𝐴 : 𝐻 → 𝐻 be an operator.

(i) 𝐴 is monotone, if and only if

⟨𝑥 − 𝑦, 𝐴𝑥 − 𝐴𝑦⟩ ≥ 0, ∀𝑥, 𝑦 ∈ 𝐻. (11)

(ii) 𝐴 is said to be 𝜂-strongly monotone, if there exists a
positive constant 𝜂 such that

⟨𝑥 − 𝑦, 𝐴𝑥 − 𝐴𝑦⟩ ≥ 𝜂




𝑥 − 𝑦






2

, ∀𝑥, 𝑦 ∈ 𝐻. (12)

(iii) 𝐴 is said to be 𝜐-inverse strongly monotone (𝜐-ism),
if there exists a positive constant 𝜐 such that

⟨𝑥 − 𝑦, 𝐴𝑥 − 𝐴𝑦⟩ ≥ 𝜐




𝐴𝑥 − 𝐴𝑦






2

, ∀𝑥, 𝑦 ∈ 𝐻. (13)

It is known that inverse strongly monotone operators
have been studied widely (see [7–9]) and applied to solve
practical problems in various fields, for instance, in traffic
assignment problems (see [10, 11]).

Lemma 2 (see [5]). Let 𝐻 be a Hilbert space, 𝑓 : 𝐻 → 𝐻 a
contraction with a coefficient 0 < 𝜌 < 1, and 𝐹 : 𝐻 → 𝐻 a
𝑘-Lipschitz continuous and 𝜂-strongly monotone operator with
constants 𝑘 > 0, 𝜂 > 0. Then, for 0 < 𝛾 < 𝜇𝜂/𝜌,

⟨𝑥 − 𝑦, (𝜇𝐹 − 𝛾𝑓) 𝑥 − (𝜇𝐹 − 𝛾𝑓) 𝑦⟩ ≥ (𝜇𝜂 − 𝛾𝜌)




𝑥 − 𝑦






2

,

∀𝑥, 𝑦 ∈ 𝐻.

(14)

That is, 𝜇𝐹−𝛾𝑓 is strongly monotone with a coefficient 𝜇𝜂−𝛾𝜌.

Recall themetric (nearest point) projection𝑃
𝐶
from a real

Hilbert space𝐻 to a closed and convex subset 𝐶 of𝐻 which
is defined as follows: given 𝑥 ∈ 𝐻, 𝑃

𝐶
𝑥 is the unique point in

𝐶 with the property




𝑥 − 𝑃
𝐶
𝑥




= inf {


𝑥 − 𝑦





: 𝑦 ∈ 𝐶} . (15)

𝑃
𝐶
is characterized as follows.

Lemma 3. Let𝐶 be a closed and convex subset of a real Hilbert
space𝐻. Given 𝑥 ∈ 𝐻 and 𝑦 ∈ 𝐶, then 𝑦 = 𝑃

𝐶
𝑥 if and only if

the following inequality holds:

⟨𝑥 − 𝑦, 𝑦 − 𝑧⟩ ≥ 0, ∀𝑧 ∈ 𝐶. (16)

For solving the equilibrium problem for a bifunction 𝐹
1
:

𝐶 × 𝐶 → R, let us assume that 𝐹
1
satisfies the following

conditions:

(A1) 𝐹
1
(𝑥, 𝑥) = 0 for all 𝑥 ∈ 𝐶;

(A2) 𝐹
1
is monotone; that is, 𝐹

1
(𝑥, 𝑦) + 𝐹

1
(𝑦, 𝑥) ≤ 0 for all

𝑥, 𝑦 ∈ 𝐶;
(A3) for each 𝑥, 𝑦, 𝑧 ∈ 𝐶, lim sup

𝑡→0
+𝐹
1
(𝑡𝑧 + (1 − 𝑡)𝑥, 𝑦) ≤

𝐹
1
(𝑥, 𝑦);

(A4) for each 𝑥 ∈ 𝐶, 𝑦 → 𝐹
1
(𝑥, 𝑦) is convex and lower

semicontinuous.

Lemma 4 (see [12]). Let 𝐶 be a nonempty, closed, and convex
subset of𝐻 and let 𝐹

1
be a bifunction of𝐶×𝐶 intoR satisfying

(𝐴1)–(𝐴4). Let 𝑟 > 0 and 𝑥 ∈ 𝐻. Then, there exists 𝑧 ∈ 𝐶 such
that

𝐹
1
(𝑧, 𝑦) +

1

𝑟

⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥ 0 ∀𝑦 ∈ 𝐶. (17)
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Lemma 5 (see [13]). Assume that 𝐹
1
: 𝐶 × 𝐶 → R satisfies

(𝐴1)–(𝐴4). For 𝑟 > 0 and 𝑥 ∈ 𝐻, define a mapping 𝑇
𝑟
: 𝐻 →

𝐶 as follows:

𝑇
𝑟
(𝑥) = {𝑧 ∈ 𝐶 : 𝐹

1
(𝑧, 𝑦) +

1

𝑟

⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶} .

(18)

Then, the following hold.

(1) 𝑇
𝑟
is single-valued;

(2) 𝑇
𝑟
is firmly nonexpansive; that is, ‖𝑇

𝑟
𝑥 − 𝑇
𝑟
𝑦‖
2

≤

⟨𝑇
𝑟
𝑥 − 𝑇
𝑟
𝑦, 𝑥 − 𝑦⟩ for any 𝑥, 𝑦 ∈ 𝐻;

(3) 𝐹(𝑇
𝑟
) = 𝐸𝑃(𝐹

1
);

(4) 𝐸𝑃(𝐹
1
) is closed and convex.

Lemma 6 (see [14]). Assume that {𝑎
𝑛
}
∞

𝑛=0
is a sequence of

nonnegative real numbers such that

𝑎
𝑛+1

≤ (1 − 𝛾
𝑛
) 𝑎
𝑛
+ 𝛾
𝑛
𝛿
𝑛
, 𝑛 ≥ 0, (19)

where {𝛾
𝑛
}
∞

𝑛=0
is a sequence in (0, 1) and {𝛿

𝑛
}
∞

𝑛=0
is a sequence

in R such that

(i) ∑∞
𝑛=0

𝛾
𝑛
= ∞;

(ii) either lim sup
𝑛→∞

𝛿
𝑛
≤ 0 or ∑∞

𝑛=0
𝛾
𝑛
|𝛿
𝑛
| < ∞.

Then lim
𝑛→∞

𝑎
𝑛
= 0.

We adopt the following notation:

(i) 𝑥
𝑛
→ 𝑥means that 𝑥

𝑛
→ 𝑥 strongly;

(ii) 𝑥
𝑛
⇀ 𝑥means that 𝑥

𝑛
→ 𝑥 weakly.

3. Main Results

Recall that throughout this paper we always use 𝑆 to denote
the solution set of the constrained convex minimization
problem (3).

Let 𝐻 be a real Hilbert space and let 𝐶 be a nonempty,
closed, and convex subset of 𝐻. Let ℎ : 𝐶 → R be
a real-valued convex function. Assume that ℎ(𝑥) is lower
semicontinuous. Let 𝑓 : 𝐻 → 𝐻 be a contraction with a
coefficient 0 < 𝜌 < 1, and let 𝐹 : 𝐶 → 𝐻 be a 𝑘-Lipschitzian
and 𝜂-strongly monotone operator with constants 𝑘 > 0,
𝜂 > 0. Suppose that 0 < 𝜇 < 2𝜂/𝑘

2, 0 < 𝛾 < 𝜏/𝜌, where
𝜏 = 𝜇𝜂 − (𝜇

2

𝑘
2

/2).
Next, we study the following iterative method. For a

given arbitrary initial guess 𝑥
1
∈ 𝐻, the sequence {𝑥

𝑛
}
∞

𝑛=0
is

generated by the following recursive formula:

ℎ (𝑦) − ℎ (𝑢
𝑛
) +

1

𝑟
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝑢
𝑛
− 𝑥
𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

𝑥
𝑛+1

= 𝛼
𝑛
𝛾𝑓 (𝑥
𝑛
) + ((1 − 𝛽

𝑛
) 𝐼 − 𝛼

𝑛
𝜇𝐹) 𝑢

𝑛
+ 𝛽
𝑛
𝑥
𝑛
, 𝑛 ∈ N,

(20)

where𝑢
𝑛
= 𝑇
𝑟
𝑛

𝑥
𝑛
and𝑇
𝑟
𝑛

is amapping defined as in Lemma 5.
In order to prove the convergence, we also need the

following proposition.

Proposition 7. Let𝐻 be a real Hilbert space and let 𝐹 : 𝐻 →

𝐻 be a 𝑘-Lipschitzian and 𝜂-strongly monotone operator with
constants 𝑘 > 0, 𝜂 > 0. Suppose that 0 < 𝜇 < 2𝜂/𝑘

2, and {𝛼
𝑛
},

{𝛽
𝑛
} ⊂ (0, 1) satisfy 0 < 𝛼

𝑛
< min{(1 − 𝛽

𝑛
)/2𝜏, 1 − 𝛽

𝑛
}. Then,

themapping𝐺(𝑥) = ((1−𝛽
𝑛
)𝐼−𝛼
𝑛
𝜇𝐹)(𝑥) is a contraction with

a contractive constant 1 − 𝛽
𝑛
− 𝛼
𝑛
𝜏, where 𝜏 = 𝜇𝜂 − (𝜇2𝑘2/2).

Proof. Taking x, 𝑦 ∈ 𝐻, we have




𝐺 (𝑥) − 𝐺 (𝑦)






2

=




((1 − 𝛽

𝑛
) 𝐼 − 𝛼

𝑛
𝜇𝐹) (𝑥) − ((1 − 𝛽

𝑛
) 𝐼 − 𝛼

𝑛
𝜇𝐹) (𝑦)






2

= (1 − 𝛽
𝑛
)
2



𝑥 − 𝑦






2

− 2𝛼
𝑛
𝜇 (1 − 𝛽

𝑛
) ⟨𝑥 − 𝑦, 𝐹 (𝑥) − 𝐹 (𝑦)⟩

+ 𝛼
2

𝑛
𝜇
2



𝐹 (𝑥) − 𝐹 (𝑦)






2

≤ [(1 − 𝛽
𝑛
)
2

− 2𝛼
𝑛
𝜇 (1 − 𝛽

𝑛
) 𝜂 + 𝛼

2

𝑛
𝜇
2

𝑘
2

]




𝑥 − 𝑦






2

≤ (1 − 𝛽
𝑛
)
2

[1 −

2𝛼
𝑛
𝜇𝜂

1 − 𝛽
𝑛

+

𝛼
𝑛
𝜇
2

𝑘
2

1 − 𝛽
𝑛

]




𝑥 − 𝑦






2

.

(21)

Thus,




𝐺 (𝑥) − 𝐺 (𝑦)






≤ (1 − 𝛽
𝑛
)√1 − 𝛼

𝑛
(

2𝜇𝜂

1 − 𝛽
𝑛

−

𝜇
2

𝑘
2

1 − 𝛽
𝑛

)




𝑥 − 𝑦






≤ (1 − 𝛽
𝑛
) [1 − 𝛼

𝑛
(

𝜇𝜂

1 − 𝛽
𝑛

−

𝜇
2

𝑘
2

2 (1 − 𝛽
𝑛
)

)]




𝑥 − 𝑦






= (1 − 𝛽
𝑛
− 𝛼
𝑛
𝜏)




𝑥 − 𝑦





,

(22)

where 𝜏 = 𝜇𝜂 − (𝜇2𝑘2/2).

Theorem 8. Let 𝐻 be a real Hilbert space and let 𝐶 be a
nonempty, closed, and convex subset of 𝐻. Let ℎ : 𝐶 → R

be a real-valued convex function. Assume that ℎ(𝑥) is lower
semicontinuous. Let 𝑓 : 𝐻 → 𝐻 be a contraction with
a coefficient 0 < 𝜌 < 1 and let 𝐹 : 𝐶 → 𝐻 be a 𝑘-
Lipschitzian and 𝜂-strongly monotone operator with constants
𝑘 > 0, 𝜂 > 0. Suppose that 0 < 𝜇 < 2𝜂/𝑘2, 0 < 𝛾 < 𝜏/𝜌, where
𝜏 = 𝜇𝜂 − (𝜇

2

𝑘
2

/2). Suppose that the optimization problem
(3) is consistent and let 𝑆 denote its solution set. Let {𝑥

𝑛
}
∞

𝑛=0

be generated by 𝑥
1
∈ 𝐻 and

ℎ (𝑦) − ℎ (𝑢
𝑛
) +

1

𝑟
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝑢
𝑛
− 𝑥
𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

𝑥
𝑛+1

= 𝛼
𝑛
𝛾𝑓 (𝑥
𝑛
) + ((1 − 𝛽

𝑛
) 𝐼 − 𝛼

𝑛
𝜇𝐹) 𝑢

𝑛
+ 𝛽
𝑛
𝑥
𝑛
, 𝑛 ∈ N,

(23)

where 𝑢
𝑛
= 𝑇
𝑟
𝑛

𝑥
𝑛
and 𝑇

𝑟
𝑛

is a mapping defined as in Lemma 5.
{𝛼
𝑛
}, {𝛽
𝑛
} ⊂ (0, 1), {𝑟

𝑛
} ⊂ (0,∞) satisfy the following

conditions:
(𝐶1) lim

𝑛→∞
𝛼
𝑛
= 0 and ∑∞

𝑛=1
𝛼
𝑛
= ∞;

(𝐶2) ∑
∞

𝑛=1
|𝛼
𝑛+1

− 𝛼
𝑛
| < ∞;
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(𝐶3) lim sup
𝑛→∞

𝛽
𝑛
< 1;

(𝐶4) ∑
∞

𝑛=1
|𝛽
𝑛+1

− 𝛽
𝑛
| < ∞;

(𝐶5) lim inf
𝑛→∞

𝑟
𝑛
> 0 and ∑∞

𝑛=1
|𝑟
𝑛+1

− 𝑟
𝑛
| < ∞.

Then the sequence {𝑥
𝑛
} generated by (23) converges strongly to

a point 𝑧 ∈ 𝑆, which solves the variational inequality

⟨(𝜇𝐹 − 𝛾𝑓) 𝑧, 𝑧 − 𝑥⟩ ≤ 0, ∀𝑥 ∈ 𝑆. (24)

Proof. Let 𝐹
1
be a bifunction from 𝐶 × 𝐶 to R defined by

𝐹
1
(𝑥, 𝑦) = ℎ(𝑦)−ℎ(𝑥).We consider the following equilibrium

problem, that is, to find 𝑥 ∈ 𝐶, such that

𝐹
1
(𝑥, 𝑦) ≥ 0, ∀𝑦 ∈ 𝐶. (25)

It is obvious that EP(𝐹
1
) = 𝑆, where EP(𝐹

1
) denotes the set

of solutions of equilibrium problem (25). In addition, it is
easy to see that 𝐹

1
(𝑥, 𝑦) satisfies the conditions (𝐴1)–(𝐴4)

in Section 2. Then, the iterative method (23) is equivalent to
𝑥
1
∈ H and

𝐹
1
(𝑢
𝑛
, 𝑦) +

1

𝑟
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝑢
𝑛
− 𝑥
𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

𝑥
𝑛+1

= 𝛼
𝑛
𝛾𝑓 (𝑥
𝑛
) + ((1 − 𝛽

𝑛
) 𝐼 − 𝛼

𝑛
𝜇𝐹) 𝑢

𝑛
+ 𝛽
𝑛
𝑥
𝑛
, 𝑛 ∈ N,

(26)

where 𝑢
𝑛
= 𝑇
𝑟
𝑛

𝑥
𝑛
.

It is easy to see the uniqueness of a solution of variational
inequality (24). By Lemma 2, 𝜇𝐹 − 𝛾𝑓 is strongly monotone,
so variational inequality (24) has only one solution. Below, we
use 𝑧 ∈ 𝑆 to denote the unique solution of (24). Since 𝑧 ∈ 𝑆

solves variational inequality (24), then (24) can be written as

⟨(𝐼 − 𝜇𝐹 + 𝛾𝑓) 𝑧 − 𝑧, 𝑧 − 𝑥⟩ ≥ 0, ∀𝑥 ∈ 𝑆. (27)

So in terms of Lemma 3, it is equivalent to the following fixed-
point equation

𝑧 = 𝑃
𝑆
(𝐼 − 𝜇𝐹 + 𝛾𝑓) 𝑧 = 𝑃EP(𝐹

1
)
(𝐼 − 𝜇𝐹 + 𝛾𝑓) 𝑧. (28)

Now, we show that {𝑥
𝑛
} is bounded. Indeed, picking 𝑝 ∈ 𝑆 =

EP(𝐹
1
), since 𝑢

𝑛
= 𝑇
𝑟
𝑛

𝑥
𝑛
, by Lemma 5, we know that





𝑢
𝑛
− 𝑝





=






𝑇
𝑟
𝑛

𝑥
𝑛
− 𝑇
𝑟
𝑛

𝑝






≤




𝑥
𝑛
− 𝑝





, ∀𝑛 ≥ 1. (29)

From Propositions 7 and (29), we derive that





𝑥
𝑛+1

− 𝑝





=




𝛼
𝑛
𝛾𝑓 (𝑥
𝑛
) + ((1 − 𝛽

𝑛
) 𝐼 − 𝛼

𝑛
𝜇𝐹) 𝑢

𝑛
+ 𝛽
𝑛
𝑥
𝑛
− 𝑝






≤ 𝛼
𝑛





𝛾𝑓 (𝑥
𝑛
) − 𝜇𝐹 (𝑝)






+




((1 − 𝛽

𝑛
) 𝐼 − 𝛼

𝑛
𝜇𝐹) 𝑢

𝑛
− ((1 − 𝛽

𝑛
) 𝐼 − 𝛼

𝑛
𝜇𝐹) 𝑝






+ 𝛽
𝑛





𝑥
𝑛
− 𝑝






≤ 𝛼
𝑛
𝛾




𝑓 (𝑥
𝑛
) − 𝑓 (𝑝) ‖ +𝛼

𝑛
‖ 𝛾𝑓 (𝑝) − 𝜇𝐹 (𝑝)






+ (1 − 𝛽
𝑛
− 𝛼
𝑛
𝜏)




𝑢
𝑛
− 𝑝





+ 𝛽
𝑛





𝑥
𝑛
− 𝑝






≤ 𝛼
𝑛
𝛾𝜌




𝑥
𝑛
− 𝑝





+ 𝛼
𝑛





𝛾𝑓 (𝑝) − 𝜇𝐹 (𝑝)






+ (1 − 𝛽
𝑛
− 𝛼
𝑛
𝜏)




𝑢
𝑛
− 𝑝





+ 𝛽
𝑛





𝑥
𝑛
− 𝑝






≤ (1 − 𝛼
𝑛
(𝜏 − 𝛾𝜌))





𝑥
𝑛
− 𝑝





+ 𝛼
𝑛





𝛾𝑓 (𝑝) − 𝜇𝐹 (𝑝)






= (1 − 𝛼
𝑛
(𝜏 − 𝛾𝜌))





𝑥
𝑛
− 𝑝






+ 𝛼
𝑛
(𝜏 − 𝛾𝜌)





𝛾𝑓 (𝑝) − 𝜇𝐹 (𝑝)






𝜏 − 𝛾𝜌

≤ max{

𝑥
𝑛
− 𝑝





,





𝛾𝑓 (𝑝) − 𝜇𝐹 (𝑝)






𝜏 − 𝛾𝜌

} .

(30)

By induction, we have





𝑥
𝑛
− 𝑝





≤ max{


𝑥
0
− 𝑝





,





𝛾𝑓 (𝑝) − 𝜇𝐹 (𝑝)






𝜏 − 𝛾𝜌

} . (31)

Hence {𝑥
𝑛
} is bounded. From (29), we also derive that {𝑢

𝑛
} is

bounded.
Next, we show that ‖𝑥

𝑛+1
− 𝑥
𝑛
‖ → 0. Consider





𝑥
𝑛+1

− 𝑥
𝑛






=




[𝛼
𝑛
𝛾𝑓 (𝑥
𝑛
) + ((1 − 𝛽

𝑛
) 𝐼 − 𝛼

𝑛
𝜇𝐹) 𝑢

𝑛
+ 𝛽
𝑛
𝑥
𝑛
]

− [𝛼
𝑛−1

𝛾𝑓 (𝑥
𝑛−1

)

+ ((1 − 𝛽
𝑛−1

) 𝐼 − 𝛼
𝑛−1

𝜇𝐹) 𝑢
𝑛−1

+ 𝛽
𝑛−1

𝑥
𝑛−1

]





≤ 𝛼
𝑛
𝛾




𝑓 (𝑥
𝑛
) − 𝑓 (𝑥

𝑛−1
)




+




𝛼
𝑛
− 𝛼
𝑛−1





𝛾




𝑓 (𝑥
𝑛−1

)





+




((1 − 𝛽

𝑛
) 𝐼 − 𝛼

𝑛
𝜇𝐹) 𝑢

𝑛
− ((1 − 𝛽

𝑛
) 𝐼 − 𝛼

𝑛
𝜇𝐹) 𝑢

𝑛−1






+




(𝛽
𝑛−1

− 𝛽
𝑛
) 𝑢
𝑛−1

+ (𝛼
𝑛−1

− 𝛼
𝑛
) 𝜇𝐹 (𝑢

𝑛−1
)





+




𝛽
𝑛
− 𝛽
𝑛−1










𝑥
𝑛−1





+ 𝛽
𝑛





𝑥
𝑛
− 𝑥
𝑛−1






≤ 𝛼
𝑛
𝛾𝜌




𝑥
𝑛
− 𝑥
𝑛−1





+




𝛼
𝑛
− 𝛼
𝑛−1





𝛾




𝑓 (𝑥
𝑛−1

)





+ (1 − 𝛽
𝑛
− 𝛼
𝑛
𝜏)




𝑢
𝑛
− 𝑢
𝑛−1





+




𝛽
𝑛
− 𝛽
𝑛−1










𝑢
𝑛−1






+




𝛼
𝑛
− 𝛼
𝑛−1










𝜇𝐹 (𝑢

𝑛−1
)





+




𝛽
𝑛
− 𝛽
𝑛−1










𝑥
𝑛−1





+ 𝛽
𝑛





𝑥
𝑛
− 𝑥
𝑛−1






= (𝛼
𝑛
𝛾𝜌 + 𝛽

𝑛
)




𝑥
𝑛
− 𝑥
𝑛−1






+




𝛼
𝑛
− 𝛼
𝑛−1





(𝛾




𝑓 (𝑥
𝑛−1

)




+




𝜇𝐹 (𝑢

𝑛−1
)




)

+ (1 − 𝛽
𝑛
− 𝛼
𝑛
𝜏)




𝑢
𝑛
− 𝑢
𝑛−1






+




𝛽
𝑛
− 𝛽
𝑛−1





(




𝑢
𝑛−1





+




𝑥
𝑛−1





) .

(32)
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From 𝑢
𝑛+1

= 𝑇
𝑟
𝑛+1

𝑥
𝑛+1

and 𝑢
𝑛
= 𝑇
𝑟
𝑛

𝑥
𝑛
, we note that

𝐹
1
(𝑢
𝑛+1

, 𝑦) +

1

𝑟
𝑛+1

⟨𝑦 − 𝑢
𝑛+1

, 𝑢
𝑛+1

− 𝑥
𝑛+1

⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

(33)

𝐹
1
(𝑢
𝑛
, 𝑦) +

1

𝑟
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝑢
𝑛
− 𝑥
𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (34)

Putting 𝑦 = 𝑢
𝑛
in (33) and 𝑦 = 𝑢

𝑛+1
in (34), we have

𝐹
1
(𝑢
𝑛+1

, 𝑢
𝑛
) +

1

𝑟
𝑛+1

⟨𝑢
𝑛
− 𝑢
𝑛+1

, 𝑢
𝑛+1

− 𝑥
𝑛+1

⟩ ≥ 0,

𝐹
1
(𝑢
𝑛
, 𝑢
𝑛+1

) +

1

𝑟
𝑛

⟨𝑢
𝑛+1

− 𝑢
𝑛
, 𝑢
𝑛
− 𝑥
𝑛
⟩ ≥ 0.

(35)

So, from (A2), we have

⟨𝑢
𝑛+1

− 𝑢
𝑛
,

𝑢
𝑛
− 𝑥
𝑛

𝑟
𝑛

−

𝑢
𝑛+1

− 𝑥
𝑛+1

𝑟
𝑛+1

⟩ ≥ 0, (36)

and hence

⟨𝑢
𝑛+1

− 𝑢
𝑛
, 𝑢
𝑛
− 𝑢
𝑛+1

+ 𝑢
𝑛+1

− 𝑥
𝑛
−

𝑟
𝑛

𝑟
𝑛+1

(𝑢
𝑛+1

− 𝑥
𝑛+1

)⟩

≥ 0.

(37)

Since lim inf
𝑛→∞

𝑟
𝑛
> 0, without loss of generality, let us

assume that there exists a real number 𝑎 such that 𝑟
𝑛
> 𝑎 > 0

for all 𝑛 ∈ N. Thus, we have




𝑢
𝑛+1

− 𝑢
𝑛






2

≤ ⟨𝑢
𝑛+1

− 𝑢
𝑛
, 𝑥
𝑛+1

− 𝑥
𝑛
+ (1 −

𝑟
𝑛

𝑟
𝑛+1

) (𝑢
𝑛+1

− 𝑥
𝑛+1

)⟩

≤




𝑢
𝑛+1

− 𝑢
𝑛





{




𝑥
𝑛+1

− 𝑥
𝑛





+










1 −

𝑟
𝑛

𝑟
𝑛+1














𝑢
𝑛+1

− 𝑥
𝑛+1





} ;

(38)

thus,




𝑢
𝑛+1

− 𝑢
𝑛





≤




𝑥
𝑛+1

− 𝑥
𝑛





+

1

𝑎





𝑟
𝑛+1

− 𝑟
𝑛





𝑀
1
, (39)

where𝑀
1
= sup{‖𝑢

𝑛
− 𝑥
𝑛
‖ : 𝑛 ∈ N}.

From (32) and (39), we obtain




𝑥
𝑛+1

− 𝑥
𝑛






≤ (𝛼
𝑛
𝛾𝜌 + 𝛽

𝑛
)




𝑥
𝑛
− 𝑥
𝑛−1






+




𝛼
𝑛
− 𝛼
𝑛−1





(𝛾




𝑓 (𝑥
𝑛−1

)




+




𝜇𝐹 (𝑢

𝑛−1
)




)

+ (1 − 𝛽
𝑛
− 𝛼
𝑛
𝜏) (





𝑥
𝑛
− 𝑥
𝑛−1





+

1

𝑎





𝑟
𝑛
− 𝑟
𝑛−1





𝑀
1
)

+




𝛽
𝑛
− 𝛽
𝑛−1





(




𝑢
𝑛−1





+




𝑥
𝑛−1





)

≤ (1 − 𝛼
𝑛
𝜏 + 𝛼
𝑛
𝛾𝜌)





𝑥
𝑛
− 𝑥
𝑛−1






+




𝛼
𝑛
− 𝛼
𝑛−1





(𝛾




𝑓 (𝑥
𝑛−1

)




+




𝜇𝐹 (𝑢

𝑛−1
)




)

+

𝑀
1

𝑎





𝑟
𝑛
− 𝑟
𝑛−1





+




𝛽
𝑛
− 𝛽
𝑛−1





(




𝑢
𝑛−1





+




𝑥
𝑛−1





)

≤ (1 − 𝛼
𝑛
(𝜏 − 𝛾𝜌))





𝑥
𝑛
− 𝑥
𝑛−1






+𝑀
2
(




𝛼
𝑛
− 𝛼
𝑛−1





+




𝑟
𝑛
− 𝑟
𝑛−1





+




𝛽
𝑛
− 𝛽
𝑛−1





) ,

(40)

where 𝑀
2
≥ max{𝛾‖𝑓(𝑥

𝑛−1
)‖ + ‖𝜇𝐹(𝑢

𝑛−1
)‖,𝑀
1
/𝑎, ‖𝑢

𝑛−1
‖ +

‖𝑥
𝑛−1

‖}, for all 𝑛 ∈ N. Hence, by Lemma 6, we have

lim
𝑛→∞





𝑥
𝑛+1

− 𝑥
𝑛





= 0. (41)

Then, from (39), (41), and |𝑟
𝑛+1

− 𝑟
𝑛
| → 0, we have

lim
𝑛→∞





𝑢
𝑛+1

− 𝑢
𝑛





= 0. (42)

Next, we show that ‖𝑥
𝑛
− 𝑢
𝑛
‖ → 0.

Indeed, for any 𝑝 ∈ EP(𝐹
1
), by Lemma 5, we have





𝑢
𝑛
− 𝑝






2

=






𝑇
𝑟
𝑛

𝑥
𝑛
− 𝑇
𝑟
𝑛

𝑝







2

≤ ⟨𝑥
𝑛
− 𝑝, 𝑢

𝑛
− 𝑝⟩

=

1

2

(




𝑥
𝑛
− 𝑝






2

+




𝑢
𝑛
− 𝑝






2

−




𝑢
𝑛
− 𝑥
𝑛






2

) .

(43)

This implies that




𝑢
𝑛
− 𝑝






2

≤




𝑥
𝑛
− 𝑝






2

−




𝑢
𝑛
− 𝑥
𝑛






2

. (44)

Then from (29) and (44), we derive that




𝑥
𝑛+1

− 𝑝





2

=




𝛼
𝑛
𝛾𝑓 (𝑥
𝑛
) + ((1 − 𝛽

𝑛
) 𝐼 − 𝛼

𝑛
𝜇𝐹) 𝑢

𝑛
+ 𝛽
𝑛
𝑥
𝑛
− 𝑝






2

≤ (𝛼
𝑛





𝛾𝑓 (𝑥
𝑛
) − 𝜇𝐹 (𝑝)





+ 𝛽
𝑛





𝑥
𝑛
− 𝑝






+




((1 − 𝛽

𝑛
) 𝐼 − 𝛼

𝑛
𝜇𝐹) 𝑢

𝑛
− ((1 − 𝛽

𝑛
) 𝐼 − 𝛼

𝑛
𝜇𝐹) 𝑝





)
2

≤ (𝛼
𝑛
𝛾




𝑓 (𝑥
𝑛
) − 𝑓 (𝑝)





+ 𝛼
𝑛





𝛾𝑓 (𝑝) − 𝜇𝐹 (𝑝)






+ (1 − 𝛽
𝑛
− 𝛼
𝑛
𝜏)




𝑢
𝑛
− 𝑝





+ 𝛽
𝑛





𝑥
𝑛
− 𝑝





)
2

≤ ((𝛼
𝑛
𝛾𝜌 + 𝛽

𝑛
)




𝑥
𝑛
− 𝑝





+ (1 − 𝛽

𝑛
− 𝛼
𝑛
𝜏)




𝑢
𝑛
− 𝑝






+𝛼
𝑛





𝛾𝑓 (𝑝) − 𝜇𝐹 (𝑝)





)
2

≤ ((𝛼
𝑛
𝜏 + 𝛽
𝑛
)




𝑥
𝑛
− 𝑝





+ (1 − 𝛽

𝑛
− 𝛼
𝑛
𝜏)




𝑢
𝑛
− 𝑝






+𝛼
𝑛





𝛾𝑓 (𝑝) − 𝜇𝐹 (𝑝)





)
2

≤ (𝛼
𝑛
𝜏 + 𝛽
𝑛
)




𝑥
𝑛
− 𝑝






2

+ (1 − 𝛽
𝑛
− 𝛼
𝑛
𝜏)




𝑢
𝑛
− 𝑝






2

+ 𝛼
2

𝑛





𝛾𝑓 (𝑝) − 𝜇𝐹 (𝑝)






2

+ 2 [(𝛼
𝑛
𝜏 + 𝛽
𝑛
)




𝑥
𝑛
− 𝑝





+ (1 − 𝛽

𝑛
− 𝛼
𝑛
𝜏)




𝑢
𝑛
− 𝑝





]

× 𝛼
𝑛





𝛾𝑓 (𝑝) − 𝜇𝐹 (𝑝)






≤ (𝛼
𝑛
𝜏 + 𝛽
𝑛
)




𝑥
𝑛
− 𝑝






2

+ (1 − 𝛽
𝑛
− 𝛼
𝑛
𝜏)

× (




𝑥
𝑛
− 𝑝






2

−




𝑢
𝑛
− 𝑥
𝑛






2

) + 𝛼
2

𝑛





𝛾𝑓 (𝑝) − 𝜇𝐹 (𝑝)






2

+ 2




𝑥
𝑛
− 𝑝





𝛼
𝑛





𝛾𝑓 (𝑝) − 𝜇𝐹 (𝑝)
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=




𝑥
𝑛
− 𝑝






2

− (1 − 𝛽
𝑛
− 𝛼
𝑛
𝜏)




𝑢
𝑛
− 𝑥
𝑛






2

+ 𝛼
2

𝑛





𝛾𝑓 (𝑝) − 𝜇𝐹 (𝑝)






2

+ 2




𝑥
𝑛
− 𝑝





𝛼
𝑛





𝛾𝑓 (𝑝) − 𝜇𝐹 (𝑝)






≤ (




𝑥
𝑛
− 𝑥
𝑛+1





+




𝑥
𝑛+1

− 𝑝




)
2

− (1 − 𝛽
𝑛
− 𝛼
𝑛
𝜏)




𝑢
𝑛
− 𝑥
𝑛






2

+ 𝛼
2

𝑛





𝛾𝑓 (𝑝) − 𝜇𝐹 (𝑝)






2

+ 2




𝑥
𝑛
− 𝑝





𝛼
𝑛





𝛾𝑓 (𝑝) − 𝜇𝐹 (𝑝)






=




𝑥
𝑛
− 𝑥
𝑛+1






2

+




𝑥
𝑛+1

− 𝑝





2

+ 2




𝑥
𝑛
− 𝑥
𝑛+1










𝑥
𝑛+1

− 𝑝





− (1 − 𝛽
𝑛
− 𝛼
𝑛
𝜏)




𝑢
𝑛
− 𝑥
𝑛






2

+ 𝛼
2

𝑛





𝛾𝑓 (𝑝) − 𝜇𝐹 (𝑝)






2

+ 2




𝑥
𝑛
− 𝑝





𝛼
𝑛





𝛾𝑓 (𝑝) − 𝜇𝐹 (𝑝)





.

(45)

Thus,

(1 − 𝛽
𝑛
− 𝛼
𝑛
𝜏)




𝑢
𝑛
− 𝑥
𝑛






2

≤




𝑥
𝑛
− 𝑥
𝑛+1






2

+ 2




𝑥
𝑛
− 𝑥
𝑛+1










𝑥
𝑛+1

− 𝑝





+ 𝛼
2

𝑛





𝛾𝑓 (𝑝) − 𝜇𝐹 (𝑝)






2

+ 2




𝑥
𝑛
− 𝑝





𝛼
𝑛





𝛾𝑓 (𝑝) − 𝜇𝐹 (𝑝)





.

(46)

From (41) and condition (C1), we obtain that

(1 − 𝛽
𝑛
− 𝛼
𝑛
𝜏)




𝑢
𝑛
− 𝑥
𝑛






2

→ 0, 𝑛 → ∞. (47)

From conditions (C1) and (C3), we get that

lim
𝑛→∞





𝑢
𝑛
− 𝑥
𝑛





= 0. (48)

Next, we show that

lim sup
𝑛→∞

⟨(𝛾𝑓 − 𝜇𝐹) 𝑧, 𝑥
𝑛
− 𝑧⟩ ≤ 0, (49)

where 𝑧 ∈ 𝑆 which solves the variational inequality

⟨(𝜇𝐹 − 𝛾𝑓) 𝑧, 𝑧 − 𝑥⟩ ≤ 0, ∀𝑥 ∈ 𝑆. (50)

Since {𝑥
𝑛
} is bounded, without loss of generality, we may

assume that 𝑥
𝑛
𝑖

⇀ �̃� such that

lim sup
𝑛→∞

⟨(𝛾𝑓 − 𝜇𝐹) 𝑧, 𝑥
𝑛
− 𝑧⟩

= lim
𝑖→∞

⟨(𝛾𝑓 − 𝜇𝐹) 𝑧, 𝑥
𝑛
𝑖

− 𝑧⟩ .

(51)

From ‖𝑢
𝑛
− 𝑥
𝑛
‖ → 0 and 𝑥

𝑛
𝑖

⇀ �̃�, we obtain that 𝑢
𝑛
𝑖

⇀ �̃�.
Next, we show that �̃� ∈ 𝑆 = EP(𝐹

1
).

Indeed, from 𝑢
𝑛
= 𝑇
𝑟
𝑛

𝑥
𝑛
, for any 𝑦 ∈ 𝐶, we obtain

𝐹
1
(𝑢
𝑛
, 𝑦) +

1

𝑟
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝑢
𝑛
− 𝑥
𝑛
⟩ ≥ 0. (52)

From (A2), we have

1

𝑟
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝑢
𝑛
− 𝑥
𝑛
⟩ ≥ 𝐹
1
(𝑦, 𝑢
𝑛
) (53)

and hence

⟨𝑦 − 𝑢
𝑛
𝑖

,

𝑢
𝑛
𝑖

− 𝑥
𝑛
𝑖

𝑟
𝑛
𝑖

⟩ ≥ 𝐹
1
(𝑦, 𝑢
𝑛
𝑖

) . (54)

Since (𝑢
𝑛
𝑖

− 𝑥
𝑛
𝑖

)/𝑟
𝑛
𝑖

→ 0 and 𝑢
𝑛
𝑖

⇀ �̃�, it follows from (A4)
that 𝐹

1
(𝑦, �̃�) ≤ 0, for any 𝑦 ∈ 𝐶. Let 𝑦

𝑡
= 𝑡𝑦 + (1 − 𝑡)�̃�, for all

𝑡 ∈ (0, 1], 𝑦 ∈ 𝐶. Since {𝑢
𝑛
𝑖

} ⊂ 𝐶, 𝑢
𝑛
𝑖

⇀ �̃�, and 𝐶 is closed
and convex set, then we get �̃� ∈ 𝐶. Since 𝑦 ∈ 𝐶 and �̃� ∈ 𝐶,
then we have 𝑦

𝑡
∈ 𝐶. Hence we have 𝐹

1
(𝑦
𝑡
, �̃�) ≤ 0.

Thus, from (A1) and (A4), we have

0 = 𝐹
1
(𝑦
𝑡
, 𝑦
𝑡
)

= 𝐹
1
(𝑦
𝑡
, 𝑡𝑦 + (1 − 𝑡) �̃�)

≤ 𝑡𝐹
1
(𝑦
𝑡
, 𝑦) + (1 − 𝑡) 𝐹

1
(𝑦
𝑡
, �̃�)

≤ 𝑡𝐹
1
(𝑦
𝑡
, 𝑦) ,

(55)

and hence 𝐹
1
(𝑦
𝑡
, 𝑦) ≥ 0. From (A3), we have 𝐹

1
(�̃�, 𝑦) ≥ 0, for

any 𝑦 ∈ 𝐶. Hence �̃� ∈ EP(𝐹
1
) = 𝑆.

Therefore,

lim sup
𝑛→∞

⟨(𝛾𝑓 − 𝜇𝐹) 𝑧, 𝑥
𝑛
− 𝑧⟩ = lim

𝑖→∞

⟨(𝛾𝑓 − 𝜇𝐹) 𝑧, 𝑥
𝑛
𝑖

− 𝑧⟩

= ⟨(𝛾𝑓 − 𝜇𝐹) 𝑧, �̃� − 𝑧⟩ ≤ 0.

(56)

Finally, we show that 𝑥
𝑛
→ 𝑧.

As a matter of fact,

𝑥
𝑛+1

− 𝑧 = 𝛼
𝑛
𝛾𝑓 (𝑥
𝑛
) + ((1 − 𝛽

𝑛
) 𝐼 − 𝛼

𝑛
𝜇𝐹) 𝑢

𝑛
+ 𝛽
𝑛
𝑥
𝑛
− 𝑧

= 𝛼
𝑛
𝛾𝑓 (𝑥
𝑛
) − 𝛼
𝑛
𝜇𝐹 (𝑧) + 𝛽

𝑛
𝑥
𝑛
− 𝛽
𝑛
(𝑧)

+ ((1 − 𝛽
𝑛
) 𝐼 − 𝛼

𝑛
𝜇𝐹) 𝑢

𝑛
− ((1 − 𝛽

𝑛
) 𝐼 − 𝛼

𝑛
𝜇𝐹) 𝑧

= 𝛼
𝑛
𝛾 (𝑓 (𝑥

𝑛
) − 𝑓 (𝑧))

+ 𝛼
𝑛
(𝛾𝑓 (𝑧) − 𝜇𝐹 (𝑧)) + 𝛽

𝑛
(𝑥
𝑛
− 𝑧)

+ ((1 − 𝛽
𝑛
) 𝐼 − 𝛼

𝑛
𝜇𝐹) 𝑢

𝑛
− ((1 − 𝛽

𝑛
) 𝐼 − 𝛼

𝑛
𝜇𝐹) 𝑧.

(57)

So, from (29), we derive




𝑥
𝑛+1

− 𝑧





2

= 𝛼
𝑛
𝛾 ⟨𝑓 (𝑥

𝑛
) − 𝑓 (𝑧) , 𝑥

𝑛+1
− 𝑧⟩

+ ⟨((1 − 𝛽
𝑛
) 𝐼 − 𝛼

𝑛
𝜇𝐹) 𝑢

𝑛

− ((1 − 𝛽
𝑛
) 𝐼 − 𝛼

𝑛
𝜇𝐹) 𝑧, 𝑥

𝑛+1
− 𝑧⟩

+ 𝛼
𝑛
⟨𝛾𝑓 (𝑧) − 𝜇𝐹 (𝑧) , 𝑥

𝑛+1
− 𝑧⟩ + 𝛽

𝑛
⟨𝑥
𝑛
− 𝑧, 𝑥

𝑛+1
− 𝑧⟩

≤ 𝛼
𝑛
𝛾𝜌




𝑥
𝑛
− 𝑧





⋅




𝑥
𝑛+1

− 𝑧





+ (1 − 𝛽
𝑛
− 𝛼
𝑛
𝜏)




𝑢
𝑛
− 𝑧





⋅




𝑥
𝑛+1

− 𝑧





+ 𝛼
𝑛
⟨𝛾𝑓 (𝑧) − 𝜇𝐹 (𝑧) , 𝑥

𝑛+1
− 𝑧⟩

+ 𝛽
𝑛





𝑥
𝑛
− 𝑧





⋅




𝑥
𝑛+1

− 𝑧
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≤ (1 − 𝛼
𝑛
(𝜏 − 𝛾𝜌))





𝑥
𝑛
− 𝑧





⋅




𝑥
𝑛+1

− 𝑧





+ 𝛼
𝑛
⟨𝛾𝑓 (𝑧) − 𝜇𝐹 (𝑧) , 𝑥

𝑛+1
− 𝑧⟩

≤

1 − 𝛼
𝑛
(𝜏 − 𝛾𝜌)

2

(




𝑥
𝑛
− 𝑧






2

+




𝑥
𝑛+1

− 𝑧





2

)

+ 𝛼
𝑛
⟨𝛾𝑓 (𝑧) − 𝜇𝐹 (𝑧) , 𝑥

𝑛+1
− 𝑧⟩ .

(58)

It follows that




𝑥
𝑛+1

− 𝑧





2

≤

1 − 𝛼
𝑛
(𝜏 − 𝛾𝜌)

1 + 𝛼
𝑛
(𝜏 − 𝛾𝜌)





𝑥
𝑛
− 𝑧






2

+

2𝛼
𝑛

1 + 𝛼
𝑛
(𝜏 − 𝛾𝜌)

⟨𝛾𝑓 (𝑧) − 𝜇𝐹 (𝑧) , 𝑥
𝑛+1

− 𝑧⟩

≤ (1 − 𝛼
𝑛
(𝜏 − 𝛾𝜌))





𝑥
𝑛
− 𝑧






2

+

2𝛼
𝑛

1 + 𝛼
𝑛
(𝜏 − 𝛾𝜌)

⟨𝛾𝑓 (𝑧) − 𝜇𝐹 (𝑧) , 𝑥
𝑛+1

− 𝑧⟩ .

(59)

Hence,





𝑥
𝑛+1

− 𝑧





2

≤ (1 − 𝛾
𝑛
)




𝑥
𝑛
− 𝑧






2

+ 𝛾
𝑛
𝛿
𝑛
, (60)

where 𝛾
𝑛
= 𝛼
𝑛
(𝜏 − 𝛾𝜌), 𝛾

𝑛
𝛿
𝑛
= (2𝛼
𝑛
/(1 + 𝛼

𝑛
(𝜏 − 𝛾𝜌)))⟨𝛾𝑓(𝑧) −

𝜇𝐹(𝑧), 𝑥
𝑛+1

− 𝑧⟩.
Since 𝛼

𝑛
→ 0 and ∑∞

𝑛=0
𝛼
𝑛
= ∞, we get 𝛾

𝑛
→ 0 and

∑
∞

𝑛=0
𝛾
𝑛
= ∞. From (49), we get

lim sup
𝑛→∞

𝛿
𝑛
= lim sup
𝑛→∞

2

(1 + 𝛼
𝑛
(𝜏 − 𝛾𝜌)) (𝜏 − 𝛾𝜌)

× ⟨𝛾𝑓 (𝑧) − 𝜇𝐹 (𝑧) , 𝑥
𝑛+1

− 𝑧⟩ ≤ 0.

(61)

Now, applying Lemma 6 to (60) concludes that 𝑥
𝑛
→ 𝑧 as

𝑛 → ∞.

Remark 9. Our proposed algorithm (23) is more general than
Su and Li’s algorithm (5), because of introducing nonlinear
operator 𝐹.

If 𝛾 = 1, 𝜇 = 1, and 𝐹 = 𝐼, we obtain the following
Corollary.

Corollary 10. Let 𝐻 be a real Hilbert space and let 𝐶 be a
nonempty, closed, and convex subset of 𝐻. Let ℎ : 𝐶 → R

be a real-valued convex function. Assume that ℎ(𝑥) is lower
semicontinuous. Let 𝑓 : 𝐻 → 𝐻 be a contraction with a
coefficient 0 < 𝜌 < 1. Suppose that the optimization problem
(3) is consistent and let 𝑆 denote its solution set. Let {𝑥

𝑛
}
∞

𝑛=0
be

generated by 𝑥
1
∈ 𝐻 and

ℎ (𝑦) − ℎ (𝑢
𝑛
) +

1

𝑟
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝑢
𝑛
− 𝑥
𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

𝑥
𝑛+1

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + (1 − 𝛽

𝑛
− 𝛼
𝑛
) 𝑢
𝑛
+ 𝛽
𝑛
𝑥
𝑛
, 𝑛 ∈ N,

(62)

where 𝑢
𝑛
= 𝑇
𝑟
𝑛

𝑥
𝑛
. Let {𝛼

𝑛
}, {𝛽
𝑛
} ⊂ (0, 1), {𝑟

𝑛
} ⊂ (0,∞) satisfy

the following conditions:

(𝐶1) lim
𝑛→∞

𝛼
𝑛
= 0 and ∑∞

𝑛=1
𝛼
𝑛
= ∞;

(𝐶2) ∑
∞

𝑛=1
|𝛼
𝑛+1

− 𝛼
𝑛
| < ∞;

(𝐶3) lim sup
𝑛→∞

𝛽
𝑛
< 1 and ∑∞

𝑛=1
|𝛽
𝑛+1

− 𝛽
𝑛
| < ∞;

(𝐶4) lim inf
𝑛→∞

𝑟
𝑛
> 0 and ∑∞

𝑛=1
|𝑟
𝑛+1

− 𝑟
𝑛
| < ∞.

Then the sequence {𝑥
𝑛
} generated by (62) converges strongly to

a point 𝑧 ∈ 𝑆, which solves the variational inequality

⟨(𝐼 − 𝑓) 𝑧, 𝑧 − 𝑥⟩ ≤ 0, ∀𝑥 ∈ 𝑆. (63)

Remark 11. We would like to point out that the conditions of
algorithm (62) are different from those of algorithm (4.3) in
[2].The conditions of the sequence {𝛼

𝑛
} and the sequence {𝑟

𝑛
}

of parameters in (4.3) are the same as the ones of algorithm
(62), but the conditions of the sequence {𝛽

𝑛
} of parameters in

(4.3) are 𝛽
𝑛
= 𝑜(𝛼

𝑛
) and ∑∞

𝑛=1
|𝛽
𝑛+1

− 𝛽
𝑛
| < ∞. It is obvious

that our conditions are much weaker.

4. Application

In this section,we give an application ofTheorem 8 to the split
feasibility problem (say SFP, for short) which was introduced
by Censor and Elfving [15]. Since its inception in 1994, the
split feasibility problem (SFP) has received much attention
(see [16–18]) due to its applications to signal processing and
image reconstruction, with particular progress in intensity-
modulated radiation therapy.

The SFP can mathematically be formulated as the prob-
lem of finding a point 𝑥 with the property

𝑥 ∈ 𝐶, 𝐵𝑥 ∈ 𝑄, (64)

where𝐶 and𝑄 are nonempty closed convex subsets ofHilbert
spaces 𝐻

1
and 𝐻

2
, respectively. 𝐵 : 𝐻

1
→ 𝐻

2
is a bounded

linear operator.
It is clear that 𝑥∗ is a solution to the split feasibility

problem (64) if and only if 𝑥∗ ∈ 𝐶 and 𝐵𝑥∗ − 𝑃
𝑄
𝐵𝑥
∗

= 0.
We define the proximity function ℎ by

ℎ (𝑥) =

1

2





𝐵𝑥 − 𝑃

𝑄
𝐵𝑥





2 (65)

and consider the following optimization problem:

min
𝑥∈𝐶

ℎ (𝑥) = min
𝑥∈𝐶

1

2





𝐵𝑥 − 𝑃

𝑄
𝐵𝑥





2

. (66)

Then, 𝑥∗ solves the split feasibility problem (64) if and
only if 𝑥∗ solves the minimization problem (66) with the
minimization being equal to 0. Byrne [19] introduced the so-
called CQ algorithm to solve the SFP:

𝑥
𝑛+1

= 𝑃
𝐶
(𝐼 − 𝛾𝐵

∗

(𝐼 − 𝑃
𝑄
) 𝐵) 𝑥

𝑛
, 𝑛 ≥ 0, (67)

where 0 < 𝛾 < 2/‖𝐵‖
2. He obtained that the sequence {𝑥

𝑛
}

generated by (67) converges weakly to a solution of the SFP.
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In order to obtain strong convergence iterative sequence
to solve the SFP (64), we propose the following iterative
algorithm by 𝑥

1
∈ 𝐻
1
and

1

2





𝐵𝑦 − 𝑃

𝑄
𝐵𝑦





2

−

1

2





𝐵𝑢
𝑛
− 𝑃
𝑄
𝐵𝑢
𝑛






2

+

1

𝑟
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝑢
𝑛
− 𝑥
𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

𝑥
𝑛+1

= 𝛼
𝑛
𝛾𝑓 (𝑥
𝑛
) + ((1 − 𝛽

𝑛
) 𝐼 − 𝛼

𝑛
𝜇𝐹) 𝑢

𝑛
+ 𝛽
𝑛
𝑥
𝑛
,

𝑛 ∈ N,

(68)

where 𝑢
𝑛
= 𝑇
𝑟
𝑛

𝑥
𝑛
and 𝑇

𝑟
𝑛

: 𝐻
1
→ 𝐶 is a mapping defined

as in Lemma 5, where 𝑓 : 𝐻
1
→ 𝐻

1
is a contraction with a

coefficient 0 < 𝜌 < 1 and 𝐹 : 𝐶 → 𝐻
1
is a 𝑘-Lipschitzian and

𝜂-strongly monotone operator with constants 𝑘 > 0, 𝜂 > 0.
Suppose that 0 < 𝜇 < 2𝜂/𝑘

2, 0 < 𝛾 < 𝜏/𝜌, where 𝜏 = 𝜇𝜂 −

(𝜇
2

𝑘
2

/2). We can show that the sequence {𝑥
𝑛
} generated by

(68) converges strongly to a solution of the SFP (64), if the
sequence {𝛼

𝑛
}, {𝛽
𝑛
} ⊂ (0, 1) and the sequence {𝑟

𝑛
} ⊂ (0,∞)

of parameters satisfy appropriate conditions.
ApplyingTheorem 8, we obtain the following result.

Theorem 12. Assume that the split feasibility problem (64) is
consistent. Let the sequence {𝑥

𝑛
} be generated by (68), where

the sequence {𝛼
𝑛
}, {𝛽
𝑛
} ⊂ (0, 1) and the sequence {𝑟

𝑛
} ⊂

(0,∞) satisfy the conditions (𝐶1)–(𝐶5). Then the sequence
{𝑥
𝑛
} converges strongly to a solution of the split feasibility

problem (64).

Proof. We define the proximity function ℎ by

ℎ (𝑥) =

1

2





𝐵𝑥 − 𝑃

𝑄
𝐵𝑥





2 (69)

and consider the following optimization problem:

min
𝑥∈𝐶

ℎ (𝑥) = min
𝑥∈𝐶

1

2





𝐵𝑥 − 𝑃

𝑄
𝐵𝑥





2

, (70)

where ℎ : 𝐶 → R is a real-valued convex function and ℎ(𝑥)
is lower semicontinuous. Then, 𝑥∗ solves the split feasibility
problem (64) if and only if 𝑥∗ solves the minimization
problem (66) with the minimization being equal to 0.

Consequently, the iterative scheme (68) is equivalent to

𝑥
1
∈ 𝐻
1
,

ℎ (𝑦) − ℎ (𝑢
𝑛
) +

1

𝑟
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝑢
𝑛
− 𝑥
𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

𝑥
𝑛+1

= 𝛼
𝑛
𝛾𝑓 (𝑥
𝑛
) + ((1 − 𝛽

𝑛
) 𝐼 − 𝛼

𝑛
𝜇𝐹) 𝑢

𝑛
+ 𝛽
𝑛
𝑥
𝑛
, 𝑛 ∈ N,

(71)

where 𝑢
𝑛
= 𝑇
𝑟
𝑛

𝑥
𝑛
and 𝑇

𝑟
𝑛

: 𝐻
1
→ 𝐶 is a mapping defined

as in Lemma 5. Due to Theorem 8, we have the conclusion
immediately.
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