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In this paper, we consider a single-index varying-coefficient model with application to longitudinal data. In order to accommodate
the within-group correlation, we apply the block empirical likelihood procedure to longitudinal single-index varying-coefficient
model, and prove a nonparametric version of Wilks’ theorem which can be used to construct the block empirical likelihood
confidence region with asymptotically correct coverage probability for the parametric component. In comparison with normal
approximations, the proposed method does not require a consistent estimator for the asymptotic covariance matrix, making it
easier to conduct inference for the model’s parametric component. Simulations demonstrate how the proposed method works.

1. Introduction

The single-index varying-coefficient model which was pro-
posed by Huang and Zhensheng [1] is a very important tool
to explore the dynamic pattern in many complex dynamic
systems, such as economics, finance, politics, epidemiology,
medical science, and ecology. As mentioned in Gao et al.
[2], the concept of complex dynamic systems arises in many
varieties. Such systems are often concurrent and distributed,
because they have to react to various kinds of events, signals,
and conditions. They may be characterized by a system with
uncertainties, time delays, stochastic perturbations, hybrid
dynamics, distributed dynamics, chaotic dynamics, and a
large number of algebraic loops. Moreover, many related
literatures, such as Jian et al. [3] and Hu et al. [4], have been
proposed.The single-index varying-coefficient models is one
method that can be used to describe the complex dynamic
systems. They are natural extensions of classical parametric
models with good interpretability and are becoming more
and more popular in data analysis.

Longitudinal data arise frequently in many scientific
studies. For longitudinal data, we know that the data that
are collected from the same subject at different times are

correlated and that the observations from different subjects
are often independent. Therefore, it is of great interest to
estimate the regression function incorporating the within-
subject correlation to improve the efficiency of estimation.
The single-index varying-coefficient model is a popular
nonparametric fitting technique; it is easily interpreted in real
applications because it has the features of the single-index
model and the varying-coefficient model. In addition, the
single-index varying-coefficient model may include cross-
product terms of some components of covariates. Hence, it
has considerable flexibility to cater for a complexmultivariate
nonlinear structure.

Without loss of generality, we consider a longitudinal
study with 𝑁 subjects and 𝑛

𝑖
observations over time for

the 𝑖th subject (𝑖 = 1, . . . , 𝑁) with a total of 𝑛 = ∑
𝑁

𝑖=1
𝑛
𝑖

observations. In this article, we apply longitudinal data to a
single-index varying-coefficientmodel, and propose a single-
index varying-coefficient longitudinal datamodel of the form

𝑦
𝑖𝑗
= 𝑔
𝑇
(𝛽
𝑇
𝑥
𝑖𝑗
) 𝑧
𝑖𝑗
+ 𝜀
𝑖𝑗
, 𝑖 = 1, . . . , 𝑁; 𝑗 = 1, . . . , 𝑛

𝑖
, (1)

where (𝑥
𝑖𝑗
, 𝑧
𝑖𝑗
) ∈ 𝑅
𝑝
×𝑅
𝑞 is a vector of covariates, 𝑦

𝑖𝑗
is the 𝑗th

measurement on the 𝑖th unit, 𝛽 is an 𝑝×1 vector of unknown
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parameters, 𝑔(⋅) is an 𝑞 × 1 vector of unknown functions,
and 𝜀
𝑖𝑗
is a random error with mean 0 and finite variance 𝜎2,

assuming that 𝜀
𝑖𝑗
and (𝑥

𝑖𝑗
, 𝑧
𝑖𝑗
) are independent. For the sake

of identifiability, it is often assumed that ‖𝛽‖ = 1 and the first
nonzero element is positive, where ‖ ⋅ ‖ denotes the Euclidean
metric.

Obviously, model (1) includes a class of important sta-
tistical models. For example, if 𝑞 = 1 and 𝑧

𝑖𝑗
= 1,

model (1) reduces to the single-index longitudinal data
model which was proposed by Bai et al. [5] to estimate the
index coefficient and unknown link function in a single-
index model for longitudinal data by combining penalized
splines and quadratic inference functions. If 𝑝 = 1 and
𝛽 = 1, (1) is the varying-coefficient longitudinal data model
studied by Chiang et al. [6], Huang et al. [7], and Qu and
Li [8], among others. So model (1) is easily interpreted in
real applications because it has the features of the single-
index longitudinal data model and the varying-coefficient
longitudinal data model. In addition, model (1) may include
cross-product terms of some components of 𝑥

𝑖𝑗
and 𝑧

𝑖𝑗
.

Hence, it has considerable flexibility to cater for complex
multivariate nonlinear structure.

When 𝑛
𝑖
= 1, model (1) reduces to the nonlongitudinal

single-index varying-coefficient model. Some authors have
studied the estimation and application of themodel. Recently,
empirical likelihoodmethods have been applied to nonlongi-
tudinal single-index varying-coefficient model. For example,
Xue and Wang [9] developed statistical techniques for the
unknown coefficient functions and single-index parameters
in the single-index varying-coefficient models. They first
estimate the nonparametric component via the local linear
fitting, then construct an estimated empirical likelihood ratio
function, and hence obtain a maximum empirical likelihood
estimator for the parametric component. The motivation is
that empirical likelihood based inference has many desirable
statistical properties. For example, this method does not
involve any variance estimation which is rather complicated
in nonparametric or semiparametric regression settings and
hence are robust against the heteroscedasticity; confidence
region based on the empirical likelihood method does not
have predetermined symmetry so that it can better corre-
spond to the true shape of the underlying distribution, and
so on. Owen [10, 11] and many others developed this into a
general methodology. For example,Wang and Jing [12], Chen
and Qin [13], Shi and Lau [14], and Xue and Zhu [15–17],
among others. A recent survey on empirical likelihood can
be found in the monograph of Owen [18]. More methods
about the single-index varying-coefficient model have been
proposed, such as Huang and Zhang [19] and Feng and Xue
[20]. When 𝑛

𝑖
> 1, model (1) is the single-index longitudinal

datamodel.The usual empirical likelihoodmethod cannot be
applied, however, to the single-index longitudinal data model
(1) due to correlationwithin groups. In this paper, we propose
a block empirical likelihood procedure to accommodate this
correlation. A nonparametric version of the Wilks’ theorem
is derived, which can be used to construct confidence regions
with asymptotically correct coverage probabilities for the

parametric component in the model. Compared with normal
approximations, our method has the appealing feature that
it does not require one to construct a consistent estimator
for the asymptotic covariancematrix. Furthermore, the block
empirical likelihood method avoids intensive Monte Carlo
simulations usually required by the bootstrap method.

The rest of the paper is organized as follows. Section 2
introduces the estimated block empirical likelihood method.
Section 3 derives the nonparametric version of Wilks’ theo-
rem. Section 4 provides a data-driven procedure to choose
the tuning parameters. A simulation study is given in
Section 5. Proof of the main result is relegated to Section 6.

2. Block Empirical Likelihood Method

In this section, we are to extend the results of You et al. [21]
and Xue andWang [9] to the single-index varying-coefficient
longitudinal data model.

To apply the block empirical likelihood method to model
(1), we introduce an auxiliary random vector

𝜂
𝑖𝑗
(𝛽) = {𝑦

𝑖𝑗
− 𝑔
𝑇
(𝛽
𝑇
𝑥
𝑖𝑗
) 𝑧
𝑖𝑗
} ̇𝑔
𝑇
(𝛽
𝑇
𝑥
𝑖𝑗
) 𝑧
𝑖𝑗
𝑥
𝑖𝑗
𝜔 (𝛽
𝑇
𝑥
𝑖𝑗
) ,

(2)

where ̇𝑔(⋅) stands for the derivative of the function vector
𝑔(⋅), and 𝜔(⋅) is a bounded weight function with a bounded
support U

𝜔
, which is introduced to control the boundary

effect in the estimations of 𝑔(⋅) and ̇𝑔(⋅). For convenience,
we pointed that 𝜔(⋅) is the indicator function of the set U

𝜔
.

Note that 𝐸{𝜂
𝑖𝑗
(𝛽)} = 0 if 𝛽 = 𝛽

0
. Hence, the problem

of testing whether 𝛽 is the true parameter is equivalent to
testing whether 𝐸{𝜂

𝑖𝑗
(𝛽)} = 0, for 𝑖 = 1, . . . , 𝑁; 𝑗 =

1, . . . , 𝑛
𝑖
. Because of the unknowns 𝑔(⋅) and ̇𝑔(⋅), we cannot

directly use the block empirical likelihood method to make
statistical inference on 𝛽. A natural way is to replace 𝑔(⋅)

and ̇𝑔(⋅) by their estimators. In this paper, we estimate the
vector functions 𝑔(⋅) and ̇𝑔(⋅) via the local linear regression
technique (see, e.g., Fan and Gijbels [22]). The local linear
estimators for 𝑔(𝑢) and ̇𝑔(𝑢) are defined as 𝑔(𝑢; 𝛽) = 𝑎 and
̂̇𝑔(𝑢; 𝛽) = �̂� at the fixed point 𝛽

0
, where 𝑎 and �̂�minimize the

sum of weighted squares:

𝑁

∑

𝑖=1

𝑛𝑖

∑

𝑗=1

[𝑦
𝑖𝑗
− {𝑎 + 𝑏 (𝛽

𝑇
𝑥
𝑖𝑗
− 𝑢)}
𝑇

𝑧
𝑖𝑗
]

2

𝐾
ℎ
(𝛽
𝑇
𝑥
𝑖𝑗
− 𝑢) , (3)

where𝐾
ℎ
(⋅) = ℎ

−1
𝐾(⋅/ℎ),𝐾(⋅) is a kernel function, and ℎ = ℎ

𝑛

is a bandwidth sequence that decreases to 0 as 𝑛 increase to
∞. It follows from the least squares theory that

(𝑔
𝑇
(𝑢; 𝛽) , ℎ̂̇𝑔

𝑇

(𝑢; 𝛽))

𝑇

= 𝑆
−1

𝑛
(𝑢; 𝛽) 𝜉

𝑛
(𝑢; 𝛽) , (4)

where

𝑆
𝑛
(𝑢; 𝛽) = (

𝑆
𝑛,0

(𝑢; 𝛽) 𝑆
𝑛,1

(𝑢; 𝛽)

𝑆
𝑛,1

(𝑢; 𝛽) 𝑆
𝑛,2

(𝑢; 𝛽)
) ,

𝜉
𝑛
(𝑢; 𝛽) = (

𝜉
𝑛,0

(𝑢; 𝛽) 𝜉
𝑛,1

(𝑢; 𝛽)

𝜉
𝑛,1

(𝑢; 𝛽) 𝜉
𝑛,2

(𝑢; 𝛽)
)

(5)
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with

𝑆
𝑛,𝑘

(𝑢; 𝛽) =
1

𝑛

𝑁

∑

𝑖=1

𝑛𝑖

∑

𝑗=1

𝑧
𝑖𝑗
𝑧
𝑇

𝑖𝑗
(

𝛽
𝑇
𝑥
𝑖𝑗
− 𝑢

ℎ
)

𝑘

𝐾
ℎ
(𝛽
𝑇
𝑥
𝑖𝑗
− 𝑢) ,

𝜉
𝑛,𝑘

(𝑢; 𝛽) =
1

𝑛

𝑁

∑

𝑖=1

𝑛𝑖

∑

𝑗=1

𝑧
𝑖𝑗
𝑦
𝑖𝑗
(

𝛽
𝑇
𝑥
𝑖𝑗
− 𝑢

ℎ
)

𝑘

𝐾
ℎ
(𝛽
𝑇
𝑥
𝑖𝑗
− 𝑢) .

(6)

Remark 1. Since the convergence rate of the estimator of
̇𝑔


0
(𝑢) is slower than that of the estimator of 𝑔

0
(𝑢) if the same

bandwidth is used, this leads to a slower convergence rate for
the estimator𝛽 of𝛽 than√𝑛. To increase the convergence rate
of the estimator of ̇𝑔



0
(𝑢), we introduce the another bandwidth

ℎ
1
to replace ℎ in ̂̇𝑔(𝑢; 𝛽) and define it as ̂̇𝑔

ℎ1
(𝑢; 𝛽).

Similar to Owen [11] and Shi and Lau [14], {𝑟
𝑖𝑗
(𝛽) = 𝑦

𝑖𝑗
−

𝑔
𝑇
(𝛽
𝑇
𝑥
𝑖𝑗
)𝑧
𝑖𝑗
, 𝑖 = 1, . . . , 𝑁; 𝑗 = 1, . . . , 𝑛

𝑖
} can be treated as a

random sieve approximation of the random error sequence
{𝜀
𝑖𝑗
, 𝑖 = 1, . . . , 𝑁; 𝑗 = 1, . . . , 𝑛

𝑖
}. In order to deal with the

correlation within groups, we use the block empirical likeli-
hood procedure proposed by You et al. [21]. Unlike the usual
empirical likelihood method, the block empirical likelihood
procedure takes the “data” 𝑟

𝑖𝑗
(𝛽) for 𝑗 = 1, . . . , 𝑛

𝑖
into account

as a whole. Let 𝜂
𝑖𝑗
(𝛽) = 𝑟

𝑖𝑗
(𝛽)̂̇𝑔
𝑇

(𝛽
𝑇
𝑥
𝑖𝑗
)𝑧
𝑖𝑗
𝑥
𝑖𝑗
𝜔(𝛽
𝑇
𝑥
𝑖𝑗
) be

𝜂
𝑖𝑗
(𝛽), with 𝑔(𝛽

𝑇
𝑥
𝑖𝑗
) and ̇𝑔(𝛽

𝑇
𝑥
𝑖𝑗
) replaced by 𝑔(𝛽

𝑇
𝑥
𝑖𝑗
; 𝛽)

and ̂̇𝑔(𝛽
𝑇
𝑥
𝑖𝑗
; 𝛽), respectively, for 𝑖 = 1, . . . , 𝑁; 𝑗 = 1, . . . , 𝑛

𝑖
.

Then an estimated block empirical likelihood function for 𝛽
is defined as

�̂� (𝛽) = max
{

{

{

𝑛

∏

𝑖=1

𝑝
𝑖
| 𝑝
𝑖
≥ 0,

𝑘

∑

𝑖=1

𝑝
𝑖
= 1,

𝑘

∑

𝑖=1

𝑝
𝑖

𝑛𝑖

∑

𝑗=1

𝜂
𝑖𝑗
(𝛽) = 0

}

}

}

.

(7)

For a given 𝛽 a unique maximum exists, provided that 0
is inside the convex hull of the points ∑𝑛𝑖

𝑗=1
𝜂
𝑖𝑗
(𝛽) for 𝑖 =

1, . . . , 𝑁. The maximum of (7) may be found via the method
of Lagrange multipliers. The optimal value for 𝑝

𝑖
satisfying

(7) may be shown to be

𝑝
𝑖
=

1

𝑁
×

1

1 + 𝜆𝑇∑
𝑛𝑖

𝑗=1
𝜂
𝑖𝑗
(𝛽)

, (8)

where the Lagrange multiplier 𝜆 = (𝜆
1
, . . . , 𝜆

𝑝
)
𝑇 is the

solution of the following equation:

0 =
1

𝑁

𝑁

∑

𝑖=1

∑
𝑛𝑖

𝑗=1
𝜂
𝑖𝑗
(𝛽)

1 + 𝜆𝑇∑
𝑛𝑖

𝑗=1
𝜂
𝑖𝑗
(𝛽)

. (9)

Since 𝑝
1
× ⋅ ⋅ ⋅ × 𝑝

𝑁
is maximized for 𝑝

𝑖
= 1/𝑁 in the

absence of parametric constraints, we define the correspond-
ing estimated profile block empirical log-likelihood ratio as

�̂� (𝛽) = −

𝑁

∑

𝑖=1

log[

[

1 + 𝜆
𝑇

𝑛𝑖

∑

𝑗=1

𝜂
𝑖𝑗
(𝛽)]

]

. (10)

We will show in the next section that if 𝛽
0
is the

true parameter vector, �̂�(𝛽
0
) is asymptotically chi-square

distributed.

3. Theoretical Properties

Throughout this article, we assume that 𝑁 increases to push
up the total sample size 𝑛 = 𝑛

1
+ ⋅ ⋅ ⋅ + 𝑛

𝑁
, while the 𝑛

𝑖
is fixed.

To establish the nonparametric Wilks’ theorem for 𝐿𝑅(𝛽
0
),

we first make the following assumptions.

(A.1) The density function of 𝛽𝑇𝑥
𝑖𝑗
, 𝑓(𝑢), is bounded away

from zero for 𝑢 ∈ U
𝜔
and 𝛽 near 𝛽

0
and satisfies the

Lipschitz condition of order 1 onU
𝜔
, whereU

𝜔
is the

support of 𝜔(𝑢).

(A.2) The function 𝑔
𝑘
(𝑢), 1 ≤ 𝑘 ≤ 𝑞, have continuous

second derivatives on U
𝜔
, where 𝑔

𝑘
(𝑢) are the 𝑘th

components of 𝑔(𝑢).

(A.3) 𝐸(|‖𝑥
𝑖𝑗
‖
6
) < ∞, 𝐸(‖𝑧

𝑖𝑗
‖
6
) < ∞, and 𝐸(|𝜀

𝑖𝑗
|
6
) < ∞.

(A.4) 𝑁ℎ
2
/(log𝑁)

2
→ ∞, 𝑁ℎ

4 log𝑁 →

0; 𝑁ℎℎ
3

1
/(log𝑁)

2
→ ∞, 𝑁ℎ

5

1
= 𝑂(1).

(A.5) The kernel 𝐾(⋅) is a symmetric probability density
function with a bounded support and satisfies the
Lipschitz condition of order 1 and ∫ 𝑢2𝐾(𝑢)𝑑𝑢 ̸= 0.

(A.6) The matrix 𝐷(𝑢) = 𝐸(𝑧
𝑖𝑗
𝑧
𝑇

𝑖𝑗
| 𝛽
𝑇

0
𝑥
𝑖𝑗
= 𝑢) is positive

definite, and each entry of 𝐷(𝑢) and 𝐶(𝑢) = 𝐸(V
𝑖𝑗
𝑧
𝑇

𝑖𝑗
|

𝛽
𝑇

0
𝑥
𝑖𝑗
= 𝑢) satisfies the Lipschitz condition of order 1

on U
𝜔
, where V

𝑖𝑗
= 𝑥
𝑖𝑗

̇𝑔
𝑇

0
(𝛽
𝑇

0
𝑥
𝑖𝑗
)𝑧
𝑖𝑗
𝜔(𝛽
𝑇

0
𝑥
𝑖𝑗
), and U

𝜔

is defined in (A.1).

(A.7) The matrices 𝐵(𝛽
0
) = 𝐸(V

𝑖𝑗
V𝑇
𝑖𝑗
) and 𝐵

∗
(𝛽
0
) = 𝐵(𝛽

0
) −

𝐸{𝐶(𝛽
𝑇

0
𝑥
𝑖𝑗
) ̇𝑔
0
(𝛽
𝑇

0
𝑥
𝑖𝑗
)𝐸(𝑥
𝑇

𝑖𝑗
| 𝛽
𝑇

0
𝑥
𝑖𝑗
)} are positive defi-

nite, where V
𝑖𝑗
is defined in (A.6).

Remark 2. Condition (A.1) is used to bound the density
function of 𝛽

𝑇
𝑥
𝑖𝑗
away from zero. This ensures that the

denominators of 𝑔(𝑢; 𝛽) and ̂̇𝑔(𝑢; 𝛽) are, in probability one,
bounded away from 0 for 𝑢 ∈ U

𝜔
. The second derivatives

in (A.2) are standard smoothness conditions. (A.3)–(A.5)
are necessary conditions for the asymptotic normality or the
uniform consistency of the estimators. It should be pointed
out that the condition can be replaced by 𝐸(‖𝑥

𝑖𝑗
‖
6+𝛿

) < ∞,
𝐸(‖𝑧
𝑖𝑗
‖
6+𝛿

) < ∞, and 𝐸(|𝜀
𝑖𝑗
|
6+𝛿

) < ∞ for some 𝛿 > 0. In the
current work, the exponential index of the norm is set as 6
for it is the minimum value to meet the asymptotic normality
or the uniform consistency of the estimators. Conditions
(A.6) and (A.7) ensure that the asymptotic variance for the
estimator of 𝛽

0
exists.

LetB = {𝛽 ∈ 𝑅
𝑝
: ‖𝛽‖ = 1, and the first nonzero element

is positive}. Then 𝛽
0
is an inner point of setB. The following

theorem shows that −2�̂�(𝛽
0
) is asymptotically distributed as a

weighted sum of independent 𝜒2
1
variables.
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Theorem 3. Suppose that (A.1)–(A.7) hold, then as𝑁 → ∞,

−2�̂� (𝛽
0
)
𝐷

→ 𝜔
1
𝜒
2

1,1
+ ⋅ ⋅ ⋅ + 𝜔

𝑝
𝜒
2

1,𝑝
, (11)

where 𝐷→ represents convergence in distribution, 𝜒2
1,1
, . . . , 𝜒

2

1,𝑝

are independent𝜒2
1
variables, and the weights𝜔

𝑗
, for 1 ≤ 𝑗 ≤ 𝑝,

are the eigenvalues of 𝐺(𝛽
0
) = 𝐵

−1
(𝛽
0
)𝐴(𝛽
0
). Here 𝐵(𝛽

0
) is

defined in condition (A.7),

𝐴 (𝛽
0
) = 𝐵 (𝛽

0
) − 𝐸 {𝐶 (𝛽

𝑇

0
𝑥
𝑖𝑗
)𝐷
−1
(𝛽
𝑇

0
𝑥
𝑖𝑗
) 𝐶
𝑇
(𝛽
𝑇

0
𝑥
𝑖𝑗
)} ,

(12)

and 𝐶(𝑢) and 𝐷(𝑢) are defined in condition (A.6).

To apply Theorem 3 to construct a confidence region or
interval for 𝛽

0
, we need to consistently estimate the unknown

weights 𝜔
𝑗
. By the plug-in method, 𝐴(𝛽

0
) and 𝐵(𝛽

0
) can be

consistently estimated by

𝐴(𝛽)

=
1

𝑁

𝑁

∑

𝑖=1

𝑛𝑖

∑

𝑗=1

{V̂
𝑖𝑗
V̂𝑇
𝑖𝑗
− 𝐶 (𝛽

𝑇
𝑥
𝑖𝑗
)𝐷
−1
(𝛽
𝑇
𝑥
𝑖𝑗
) 𝐶
𝑇
(𝛽
𝑇
𝑥
𝑖𝑗
)} ,

(13)

𝐵 (𝛽) =
1

𝑁

𝑁

∑

𝑖=1

𝑛𝑖

∑

𝑗=1

V̂
𝑖𝑗
V̂𝑇
𝑖𝑗
, (14)

respectively, where 𝛽 is the maximum empirical
likelihood estimator of 𝛽

0
defined by (9), V̂

𝑖𝑗
=

𝑥
𝑖𝑗
̂̇𝑔
𝑇

(𝛽
𝑇
𝑥
𝑖𝑗
; 𝛽)𝑧
𝑖𝑗
𝜔(𝛽
𝑇
𝑥
𝑖𝑗
), 𝐶(⋅) = ∑

𝑛

𝑖=1
𝑊
𝑛𝑖
(⋅)V̂
𝑖𝑗
𝑧
𝑇

𝑖𝑗
, and

𝐷(⋅) = ∑
𝑛

𝑖=1
𝑊
𝑛𝑖
(⋅)𝑧
𝑖𝑗
𝑧
𝑇

𝑖𝑗
with

𝑊
𝑛𝑖𝑗 (⋅) =

𝐾
1
(𝛽
𝑇
𝑥
𝑖𝑗
− ⋅/𝑏
𝑛
)

∑
𝑁

𝑘=1
∑
𝑛𝑘

𝑙=1
𝐾
1
(𝛽𝑇𝑥
𝑘𝑙
− ⋅/𝑏
𝑛
)

, (15)

where 𝐾
1
(⋅) is a kernel function, and 𝑏

𝑛
is bandwidth with

0 < 𝑏
𝑛
→ 0.

This implies that the eigenvalues of 𝐺(𝛽) = 𝐵
−1
(𝛽)𝐴(𝛽),

say �̂�
𝑗
, consistently estimate 𝜔

𝑗
for 𝑗 = 1, . . . , 𝑝. Let 𝑐

1−𝛼

be the 1 − 𝛼 quantile of the conditional distribution of the
weighted sum 𝑠 = �̂�

1
𝜒
2

1,1
+ ⋅ ⋅ ⋅ + �̂�

𝑝
𝜒
2

1,𝑝
given the data. Then

an approximate 1−𝛼 confidence region for 𝛽
0
can be defined

as follows:

R (𝛼) = {𝛽 ∈ B : −2�̂� (𝛽) ≤ 𝐶
1−𝛼

} . (16)

In practice, the conditional distribution of the weighted
sum 𝑠, given the sample {(𝑦

𝑖𝑗
, 𝑥
𝑖𝑗
, 𝑧
𝑖𝑗
), 1 ≤ 𝑖 ≤ 𝑁; 1 ≤

𝑗 ≤ 𝑛
𝑖
}, can be calculated using Monte Carlo simulations

by repeatedly generating independent samples 𝜒2
1,1
, . . . , 𝜒

2

1,𝑝

from the 𝜒2
1
distribution.

In addition to the above, direct way of approximating the
asymptotic distributions, we can also consider the following
alternative. The alternative is motivated by the results of Rao

and Scott [24]. Now, we propose another adjusted empirical
log-likelihood, whose asymptotic distribution is chi-squared
with 𝑝 degrees of freedom. The adjustment technique is
developed by Wang and Rao [25] by using an approximate
result in Rao and Scott [24]. Note that 𝜌(𝛽) can be written as

𝜌 (𝛽) =

tr {𝐴− (𝛽)𝐴 (𝛽)}

tr {𝐵−1 (𝛽)𝐴 (𝛽)}

. (17)

By examining the asymptotic expansion of −2�̂�(𝛽), which
is specified in the proof of Theorem 4 below, we define an
adjustment factor

𝑟 (𝛽) =

tr {𝐴− (𝛽) Σ̂ (𝛽)}

tr {𝐵−1 (𝛽) Σ̂ (𝛽)}

, (18)

by replacing 𝐴(𝛽) in 𝜌(𝛽) by Σ̂(𝛽), where Σ̂(𝛽) =

{∑
𝑁

𝑖=1
∑
𝑛𝑖

𝑗=1
𝜂
𝑖𝑗
(𝛽)}{∑

𝑁

𝑖=1
∑
𝑛𝑖

𝑗=1
𝜂
𝑖𝑗
(𝛽)}
𝑇. The adjusted empirical

log-likelihood ration is defined by

�̂�
𝑎
(𝛽) = 𝑟 (𝛽) {−2�̂� (𝛽)} , (19)

where �̂�(𝛽) is defined in (10).

Theorem 4. Suppose that conditions (A.1)–(A.6) hold. Then,
�̂�
𝑎
(𝛽)
𝐷

→ 𝜒
2

𝑝
.

According to Theorem 4, �̂�
𝑎
(𝛽) can be used to construct

an approximate confidence region for 𝛽
0
. Let

R
𝑎 (𝛼) = {𝛽 ∈ B : �̂�

𝑎
(𝛽) ≤ 𝜒

2

𝑝
(1 − 𝛼)} . (20)

Then,R
𝑎
(𝛼) gives a confidence region for 𝛽

0
with asymptot-

ically correct coverage probability 1 − 𝛼.

4. Bandwidth Selection

For practical implementation, the tuning parameters need to
be decided. We employ a data-driven procedure to choose
the tuning parameter ℎ, where ℎ controls the smoothness of
𝑔(⋅) and ̂̇𝑔(⋅). We all know that various existing bandwidth
selection techniques for nonparametric regression, such as
the cross-validation, generalized cross-validation, and the
modifiedmultifold cross-validation criterion, can be adapted
for the estimation 𝑔(⋅) and ̂̇𝑔(⋅). Because the algorithm of
the modified multifold cross-validation criterion proposed
by Cai et al. [26] to select the optimal bandwidth is simple
and quick, throughout the empirical studies in this paper, we
consider the modified multifold cross-validation criterion.
Specifically, let 𝑚 and 𝑀 be two given positive integers and
𝑛 > 𝑚𝑀. The basic idea is first to use𝑀 subseries of lengths
𝑛 − 𝑘𝑚 (𝑘 = 1, . . . ,𝑀) to estimate the unknown coefficient
functions and then to compute the one-step forecasting error
of the next section of the sample of length 𝑚 based on
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the estimated models. More precisely, we choose ℎ which
minimizes

AMS (ℎ) =
𝑀

∑

𝑘=1

1

𝑚

𝑛−𝑘𝑚+𝑚

∑

𝑖=𝑛−𝑘𝑚+1

𝑛𝑖

∑

𝑗=1

{𝑦
𝑖𝑗
−

𝑞

∑

𝑙=1

𝑔
𝑙,𝑘
(𝛽
𝑇
𝑥
𝑖𝑗
) 𝑧
(𝑙)

𝑖𝑗
}

2

,

(21)

where 𝑔
𝑙,𝑘
(⋅) are computed from the sample {(𝑦

𝑖𝑗
, 𝑥
𝑖𝑗
, 𝑧
𝑖𝑗
), 1 ≤

𝑖 ≤ 𝑛 − 𝑘𝑚; 1 ≤ 𝑗 ≤ 𝑛
𝑖
} with bandwidth equal to

ℎ(𝑛/(𝑛 − 𝑘𝑚))
1/5. Note that for different sample size, we

rescale bandwidth according to its optimal rate, that is, ℎ ∝

𝑛
−1/5. Since the selected bandwidth does not depend critically

on the choice of 𝑚 and 𝑀, to computation expediency, we
take𝑚 = [0.1𝑛] and𝑀 = 5 in our simulation.

Let ℎopt be the bandwidth obtained by minimizing (21)
with respect to ℎ > 0; that is, ℎopt = inf

ℎ>0
AMS(ℎ).

Then ℎopt is the optimal bandwidth for estimating 𝑔(⋅).
When calculating the block empirical likelihood ratios and
estimator of 𝛽

0
, we use the approximation bandwidth

ℎ = ℎopt𝑛
−1/20

(log 𝑛)−1/2, ℎ
1
= ℎopt, (22)

because this insures that the required bandwidth has correct
order of magnitude for the optimal asymptotic performance
(see, e.g., Carroll et al. [27]), and the bandwidth ℎ̂ satisfies
condition (A.4).

5. A Simulation Study

In this section, we carry out some simulations to study the
finite sample performance of the estimated block empirical
likelihood method.

Example 5. The data are generated from

𝑌
𝑖𝑗
= 𝑔
0
(𝛽𝑋
𝑖𝑗
) + 𝑔
1
(𝛽𝑋
𝑖𝑗
)𝑍
𝑖𝑗
+ 𝜀
𝑖𝑗
,

𝑖 = 1, . . . , 𝑁, 𝑗 = 1, . . . , 𝑛
𝑖
,

(23)

where 𝑋
𝑖𝑗

∼ 𝑁(0, 1), 𝑍
𝑖𝑗

∼ 𝑁(0, 1), 𝑔(𝑡) = sin(2𝜋𝑡),
𝜀
𝑖𝑗

= 𝑎𝜀
𝑖,𝑗−1

+ 𝑒
𝑖𝑗
, and 𝑒



𝑖𝑗
𝑠 are i.i.d 𝑁(0, 1). For each

combination of 𝑁, 𝑛
𝑖
, and 𝑎, 1000 samples are generated

from the above model in all simulations. For each sample,
a 95% confidence interval for 𝛽 = 2 are computed using
our estimated block empirical likelihood method. For the
smoother, we used a local linear smoother with the Gaussian
kernel 𝐾

ℎ
(𝑡) = (1/ℎ√2𝜋) exp(−𝑡2/2ℎ2) with a modified

multifold cross-validation criterion bandwidth throughout
all smoothing steps. Some representative coverage proba-
bilities and coverage confidence intervals are reported in
Table 1. Simulation results show that our estimated block
empirical likelihood confidence regions have high coverage
probabilities and short average confidence interval lengths.

Example 6. Consider the regression model

𝑌
𝑖𝑗
= 𝑔
0
(𝛽
𝑇

0
𝑋
𝑖𝑗
) + 𝑔
1
(𝛽
𝑇

0
𝑋
𝑖𝑗
)𝑍
(1)

𝑖𝑗
+ 𝑔
2
(𝛽
𝑇

0
𝑋
𝑖𝑗
)𝑍
(2)

𝑖𝑗
+ 𝜀
𝑖𝑗
,

(24)
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Figure 1: Averages of 95% confidence regions of (𝛽
1
, 𝛽
2
), based on

EEL (solid curve) and AEL (dashed curve ) when 𝑛 = 100 in the
cases of Example 6.

where 𝛽
0
= (1/3, 2/3) and the 𝜀

𝑖𝑗
𝑠 are independent 𝑁(0, 1

2
)

random variables. The sample {𝑋
𝑖𝑗
= (𝑋
(1)

𝑖𝑗
, 𝑋
(2)

𝑖𝑗
)
𝑇
; 1 ≤ 𝑖 ≤

𝑁, 1 ≤ 𝑗 ≤ 𝑛
𝑖
} was generated from a bivariate uniform dis-

tribution on [−1, 1]
2 with independent components, {𝑍

𝑖𝑗
=

(𝑍
(1)

𝑖𝑗
, 𝑍
(2)

𝑖𝑗
)
𝑇
; 1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑗 ≤ 𝑛

𝑖
} was generated

from a bivariate normal distribution𝑁(0, Σ)with var(𝑍(1)
𝑖𝑗
) =

var(𝑍(2)
𝑖𝑗
) = 1, and correlation coefficient between 𝑍

(1)

𝑖𝑗
and

𝑍
(2)

𝑖𝑗
is 𝜌 = 0.5. In model (24), the coefficient functions are

𝑔
0
(𝑢) = 8 exp(−2𝑢2), 𝑔

1
(𝑢) = 6𝑢

2 and 𝑔
2
(𝑢) = 4 sin(𝜋𝑢).

For the smoother, we use a local linear smoother with a
Gaussian kernel 𝐾

ℎ
(𝑢) = (1/ℎ√2𝜋) exp(−𝑢2/2ℎ2), and use

themodifiedmultifold cross-validation criterion proposed by
Cai et al. [26] to select the optimal bandwidth throughout all
smoothing steps because the algorithm is simple and quick.
We take the weight function 𝜔(𝑢) = 𝐼

[−1,1]
. The sample size

for the simulated data is 100, and the run is 1000 times in all
simulations.

The confidence regions of 𝛽
0
and their coverage probabil-

ities, with nominal level 1 − 𝛼 = 0.95, were computed from
1000 runs.The estimated block empirical likelihood was used
to construct the confidence regions. The simulated results
are given in Figure 1. Simulation results show that our block
empirical likelihood confidence regions have high coverage
probabilities and short average confidence interval lengths.

The histograms of the 1000 estimators of the parameters
𝛽
1
and 𝛽

2
are in Figures 2(a) and 2(b), respectively. The Q-Q

plots of the 1000 estimators of the parameters 𝛽
1
and 𝛽

2
are

in Figures 3(a) and 3(b), respectively. Figures 2 and 3 show
empirically that these estimators are asymptotically normal.
The means of the estimates of the unknown parameters 𝛽

1

and 𝛽
2
are 0.33342 and 0.66673, respectively, and their biases

(standard deviations) are 0.000128 (0.00308) and 0.000603
(0.00352), respectively.
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Table 1: The selection probabilities of adaptive EL shrinkage estimation.

𝑁 Number of replicates CI CP
𝑎 = 0.2

50 𝑛
1
= ⋅ ⋅ ⋅ = 𝑛

25
= 4, 𝑛

26
= ⋅ ⋅ ⋅ = 𝑛

50
= 4 [1.645015, 2.349996] 0.9372

50 𝑛
1
= ⋅ ⋅ ⋅ = 𝑛

25
= 4, 𝑛

26
= ⋅ ⋅ ⋅ = 𝑛

50
= 5 [1.634619, 2.355068] 0.9270

100 𝑛
1
= ⋅ ⋅ ⋅ = 𝑛

25
= 4, 𝑛

26
= ⋅ ⋅ ⋅ = 𝑛

100
= 4 [1.634619, 2.355068] 0.9343

100 𝑛
1
= ⋅ ⋅ ⋅ = 𝑛

25
= 4, 𝑛

26
= ⋅ ⋅ ⋅ = 𝑛

100
= 5 [1.634619, 2.355068] 0.9424

𝑎 = 0.4

50 𝑛
1
= ⋅ ⋅ ⋅ = 𝑛

25
= 4, 𝑛

26
= ⋅ ⋅ ⋅ = 𝑛

50
= 4 [1.634619, 2.355068] 0.9428

50 𝑛
1
= ⋅ ⋅ ⋅ = 𝑛

25
= 4, 𝑛

26
= ⋅ ⋅ ⋅ = 𝑛

50
= 5 [1.634619, 2.355068] 0.9334

100 𝑛
1
= ⋅ ⋅ ⋅ = 𝑛

25
= 4, 𝑛

26
= ⋅ ⋅ ⋅ = 𝑛

100
= 4 [1.634619, 2.355068] 0.9427

100 𝑛
1
= ⋅ ⋅ ⋅ = 𝑛

25
= 4, 𝑛

26
= ⋅ ⋅ ⋅ = 𝑛

100
= 5 [1.634619, 2.355068] 0.9351
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Figure 2: The histograms of the 1000 estimators of every parameter, the estimated curve of density (solid curve) and the curve of normal
density (dased curve): (a) for 𝛽

1
and (b) for 𝛽
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2
: the Q-Q plot of the 1000 estimators of every parameter.
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Figure 4: The true curve (solid curve) and the estimated curve (dashed curve); (d) the boxplots of the 1000 RMSE values in estimations of
𝑔
0
(⋅), 𝑔
1
(⋅), and 𝑔

2
(⋅) and the sum of the three RMSEs.

We also consider the average estimates of the coefficient
functions𝑔

0
(𝑢),𝑔
1
(𝑢), and𝑔

2
(𝑢) over the 1000 replicates.The

estimators 𝑔
𝑗
(⋅) are assessed via the root mean squared errors

(RMSE); that is, RMSE = ∑
2

𝑗=0
RMSE

𝑗
, where

RMSE
𝑗
= [𝑛
−1

grid

𝑛grid

∑

𝑘=1

{𝑔
𝑗
(𝑢
𝑘
) − 𝑔
𝑗
(𝑢
𝑘
)}
2

]

1/2

, (25)

and {𝑢
𝑘
, 𝑘 = 1, . . . , 𝑛grid} are regular grid points. The boxplot

for the 1000 RMSEs is given in Figure 4. From Figures 4(a)–
4(c) we see that every estimated curve agrees with the true
function curve very closely. Figure 4(d) shows that all RMSEs
of estimates for the unknown functions are very small.

Example 7. We now apply the block empirical likelihood
method to analyze the data from a longitudinal hormone
study [28]. The study involved 34 women whose urine sam-
ples were collected in onemenstrual cycle and whose urinary

progesterone was assayed on alternate days. A total of 492
observations were obtained, with each woman contributing
from 11 to 28 observations over time. Each woman’s cycle
lengthwas standardized uniformly to a reference 28-day cycle
since the change of the progesterone level for each woman
depends on time during a menstrual cycle. In the following,
we consider the following model:

𝑌
𝑖𝑗
= 𝑔
0
(𝛽
1
AGE
𝑖𝑗
+ 𝛽
2
BMI
𝑖𝑗
)

+ 𝑔
1
(𝛽
1
AGE
𝑖𝑗
+ 𝛽
2
BMI
𝑖𝑗
) 𝑡
𝑖𝑗
+ 𝜀
𝑖𝑗
,

(26)

where 𝑌
𝑖𝑗

is the 𝑗th log-transformed progesterone value
measured at standardized day 𝑡

𝑖𝑗
since menstruation for 𝑖th

woman, and AGE
𝑖𝑗
and BMI

𝑖𝑗
are age and body mass index

for the 𝑖th individual at day 𝑡
𝑖𝑗
, respectively.

We apply the block empirical likelihood method to fit the
data. Because we focus on the estimators of𝛽

1
and𝛽
2
, we only
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Figure 5:The 0.95 confidence regions for the regression coefficients
𝛽
1
and 𝛽

2
with correlation structures being independence (dotted

curve) and first-autoregressive (sold curve).

summarize the estimators of 𝛽
1
and 𝛽

2
in Figure 5. Next, we

denote 𝛽ind and 𝛽AR as the estimators of 𝛽 = (𝛽
1
, 𝛽
2
), when

the correlation structures are specified as independence and
first-order autoregressive, respectively. We see from Figure 5
that both𝛽ind and𝛽AR are significant for neither of confidence
regions for the two estimators including (0,0). Therefore, we
conclude that the parameters 𝛽

1
and 𝛽

2
are not significant,

which is consistent with the conclusion of Zhang et al. [28].

6. Proof of the Theorem

In order to prove Theorem 3, we introduce the following
several lemmas. The following lemma gives uniformly con-
vergent rates of 𝑔(𝑢; 𝛽) and ̂̇𝑔(𝑢; 𝛽). This lemma is straight-
forward extension of known results in nonparametric func-
tion estimation. Moreover, the proofs of Lemma 9 and
Lemma 10 is similar with the corresponding Lemma 9 and
Lemma 10 of Xue andWang [9]. We hence omit these proofs.

Lemma 8. Let B
𝑛
= {𝛽 ∈ B : ‖𝛽 − 𝛽

0
‖ ≤ 𝑐
0
𝑛
−1/2

} for some
positive constant 𝑐

0
. Suppose that conditions (A.1)–(A.3), (A.5),

and (A.6) hold. Then

sup
𝑢∈U𝜔 ,𝛽∈B𝑛

𝑔 (𝑢; 𝛽) − 𝑔
0 (𝑢)



= 𝑂
𝑝
({

log (1/ℎ)
𝑛ℎ

}

1/2

+ ℎ
2
) ,

sup
𝑢∈U𝜔 ,𝛽∈B𝑛


̂̇𝑔 (𝑢; 𝛽) − ̇𝑔

0 (𝑢)


= 𝑂
𝑝
({

log (1/ℎ)
𝑛ℎ3

}

1/2

+ ℎ) .

(27)

In order to describe Lemma 9, we use the following
notations. Denote G = {𝑔 : U

𝜔
× B → 𝑅

𝑞
}, ‖𝑔‖G =

sup
𝑢∈U𝜔,𝛽∈B𝑛

‖𝑔(𝑢; 𝛽)‖. From Lemma 8, we have ||𝑔 − 𝑔
0
||G =

𝑜
𝑝
(1) and ‖̂̇𝑔− ̇𝑔

0
‖G = 𝑜

𝑝
(1); hence, we can assume that 𝑔 lies

inG
𝛿
with 𝛿 = 𝛿

𝑛
→ 0 and 𝛿 > 0, where

G
𝛿
= {𝑔 ∈ G :

𝑔 − 𝑔
0

𝑔
≤ 𝛿,


̇𝑔 − ̇𝑔
0

𝑔
≤ 𝛿} . (28)

Let 𝑔
0
(𝛽
𝑇X; 𝛽) = 𝐸{𝑔

0
(𝛽
𝑇

0
X)|𝛽
𝑇X} and ̇𝑔

0
(𝛽
𝑇X; 𝛽) =

𝐸{ ̇𝑔
0
(𝛽
𝑇

0
X)|𝛽
𝑇X},

𝑄 (𝑔, 𝛽)

= 𝐸 [{Y − 𝑔
𝑇
(𝛽
𝑇
X; 𝛽)Z} ̇𝑔

𝑇
(𝛽
𝑇
X; 𝛽)ZX𝜔 (𝛽

𝑇
X)] ,

(29)

𝑄
𝑛
(𝑔, 𝛽)

=
1

𝑛

𝑁

∑

𝑖=1

𝑛𝑖

∑

𝑗=1

{𝑦
𝑖𝑗
− 𝑔
𝑇
(𝛽
𝑇
𝑥
𝑖𝑗
; 𝛽) 𝑧
𝑖𝑗
} ̇𝑔
𝑇

× (𝛽
𝑇
𝑥
𝑖𝑗
; 𝛽) 𝑧
𝑖𝑗
𝑥
𝑖𝑗
𝜔 (𝛽
𝑇
𝑥
𝑖𝑗
) .

(30)

Lemma 9. Suppose that conditions (A.1)–(A.6) hold. Let

𝐽
1
(𝑔, 𝛽) = 𝑄

𝑛
(𝑔, 𝛽) − 𝑄 (𝑔, 𝛽) − 𝑄

𝑛
(𝑔
0
, 𝛽
0
) ,

𝐽
2
(𝑔, 𝛽) = 𝑄 (𝑔, 𝛽) − 𝑄 (𝑔

0
, 𝛽)

− 𝜛 (𝑔
0
(𝛽
𝑇
X; 𝛽) ; 𝛽)

× {𝑔 (𝛽
𝑇
X; 𝛽) − 𝑔

0
(𝛽
𝑇
X)} ,

𝐽
3
(𝑔, 𝛽) = 𝜛 (𝑔

0
(𝛽
𝑇
X) , 𝛽) {𝑔 (𝛽

𝑇
X; 𝛽) − 𝑔

0
(𝛽
𝑇
X)}

− 𝜛 (𝑔
0
(𝛽
𝑇
X; 𝛽
0
) , 𝛽
0
)

× {𝑔 (𝛽
𝑇

0
X; 𝛽
0
) − 𝑔
0
(𝛽
𝑇

0
X; 𝛽)} ,

𝐽
4
(𝑔, 𝛽
0
) = 𝑄

𝑛
(𝑔
0
, 𝛽
0
)

+ 𝜛 (𝑔
0
(𝛽
𝑇
X) , 𝛽) {𝑔 (𝛽

𝑇
X; 𝛽) − 𝑔

0
(𝛽
𝑇
X)} .

(31)

Then

sup
(𝑔,𝛽)∈G×B𝑛

𝐽1 (𝑔, 𝛽)
 = 𝑜
𝑝
(𝑛
1/2

) , (32)

sup
𝛽∈B𝑛

𝐽2 (𝑔, 𝛽)
 = 𝑜
𝑝
(𝑛
1/2

) , (33)

sup
(𝑔,𝛽)∈G×B𝑛

𝐽3 (𝑔, 𝛽)
 = 𝑜 (𝑛

1/2
) , (34)

√𝑛𝐽
4
(𝑔, 𝛽
0
)
𝐷

→ 𝑁(0, 𝜎
2
𝐴 (𝛽
0
)) , (35)

where 𝐴(𝛽
0
) is defined in (12).
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Lemma 10. Suppose that conditions (A.1)–(A.6) hold. Then

sup
𝛽∈B𝑛

𝑄𝑛 (𝑔, 𝛽)
 = 𝑂

𝑝
(𝑛
−1/2

) , (36)

sup
𝛽∈B𝑛


𝑅
𝑛
(𝛽) − 𝜎

2
𝐵 (𝛽
0
)

= 𝑜
𝑝 (1) , (37)

sup
𝛽∈B𝑛

max
1≤𝑖≤𝑁

1≤𝑗≤𝑛𝑖


𝜂
𝑖𝑗
(𝛽)


= 𝑜
𝑝
(𝑛
1/2

) , (38)

sup
𝛽∈B𝑛

𝜆 (𝛽)
 = 𝑜
𝑝
(𝑛
−1/2

) , (39)

where 𝑄
𝑛
(𝑔, 𝛽) is defined in (30), 𝑅

𝑛
(𝛽) =

𝑛
−1
∑
𝑁

𝑖=1
∑
𝑛𝑖

𝑗=1
𝜂
𝑖𝑗
(𝛽)𝜂
𝑇

𝑖𝑗
(𝛽), 𝐵(𝛽

0
) is defined in condition

(A.7), and 𝜂
𝑖𝑗
(𝛽) is defined in (2).

Proof of Theorem 3. Note that, when 𝛽 = 𝛽
0
, Lemma 10 also

holds. Applying the Taylor expansion to (7) and invoking
Lemma 10, we can obtain

−2�̂� (𝛽
0
) = −

𝑁

∑

𝑖=1

𝑛𝑖

∑

𝑗=1

[𝜆
𝑇
𝜂
𝑖𝑗
(𝛽
0
) −

1

2
{𝜆
𝑇
𝜂
𝑖𝑗
(𝛽
0
)}
2

] + 𝑜
𝑝 (1) .

(40)

By (9) and Lemma 10, we have

𝑁

∑

𝑖=1

𝑛𝑖

∑

𝑗=1

{𝜆
𝑇
𝜂
𝑖𝑗
(𝛽
0
)}
2

=

𝑁

∑

𝑖=1

𝑛𝑖

∑

𝑗=1

𝜆
𝑇
𝜂
𝑖𝑗
(𝛽
0
) + 𝑜
𝑝 (1) ,

𝜆 =
{

{

{

𝑁

∑

𝑖=1

𝑛𝑖

∑

𝑗=1

𝜂
𝑖𝑗
(𝛽
0
) 𝜂
𝑇

𝑖𝑗
(𝛽
0
)
}

}

}

−1

𝑁

∑

𝑖=1

𝑛𝑖

∑

𝑗=1

𝜂
𝑖𝑗
(𝛽
0
) + 𝑜
𝑝
(𝑛
−(1/2)

) .

(41)

This together with (40) proves that

−2�̂� (𝛽
0
) = 𝑛𝑄

𝑇

𝑛
(𝑔, 𝛽
0
) 𝑅
−1

𝑛
(𝛽
0
) 𝑄
𝑛
(𝑔, 𝛽
0
) + 𝑜
𝑝 (1) , (42)

where 𝑄
𝑛
(𝑔, 𝛽
0
) and 𝑅

𝑛
(𝛽
0
) are defined in (30) and (37),

respectively. From (37) of Lemma 10 and (42), we obtain

− 2�̂� (𝛽
0
) = {(𝜎

2
𝐴)
−1/2

√𝑛𝑄
𝑛
(𝑔, 𝛽
0
)}

𝑇

𝐺 (𝛽
0
)

× {(𝜎
2
𝐴)
−1/2

√𝑛𝑄
𝑛
(𝑔, 𝛽
0
)} + 𝑜

𝑝 (1) ,

(43)

where 𝐺(𝛽
0
) = 𝐴

1/2
(𝛽
0
)𝐵
−1
(𝛽
0
)𝐴
1/2

(𝛽
0
). Let 𝐺

0
=

diag(𝜔
1
, . . . , 𝜔

𝑛
), where 𝜔

𝑖
, 1 ≤ 𝑖 ≤ 𝑝, are the eigenvalues of

𝐺(𝛽
0
). Then there exists an orthogonal matrix 𝐻 such that

𝐻
𝑇
𝐺
0
𝐻. Using the notations of Lemma 9, we have

𝑄
𝑛
(𝑔, 𝛽) = 𝐽

1
(𝑔, 𝛽) + 𝐽

2
(𝑔, 𝛽) + 𝐽

3
(𝑔, 𝛽)

+ 𝐽
4
(𝑔, 𝛽) + 𝑄 (𝑔

0
, 𝛽) .

(44)

Noting that 𝑄(𝑔
0
, 𝛽
0
), from the above equation and

Lemma 9, we have

𝑄
𝑛
(𝑔, 𝛽
0
) = 𝐽
4
(𝑔, 𝛽
0
) + 𝑜
𝑝
(𝑛
−1/2

) . (45)

Hence, by (35) of Lemma 9, we have

𝐻{𝜎
−2
𝐴
−
(𝛽
0
)}
1/2

√𝑛𝑄
𝑛
(𝑔, 𝛽
0
)
𝐷

→ 𝑁(0, 𝐼
𝑝
) , (46)

where 𝐼
𝑝
is the 𝑝 × 𝑝 identity matrix. This together with (43)

proves Theorem 3.

Proof of Theorem 4. By Lemma 10 and, similarly to the proof
of (42), we can obtain

�̂� (𝛽) = −
𝑛

2
𝑄
𝑇

𝑛
(𝑔, 𝛽) {𝜎

2
𝐵 (𝛽)}

−1

𝑄
𝑛
(𝑔, 𝛽) + 𝑂

𝑝 (1) , (47)

uniformly for 𝛽 ∈ B
𝑛
, where 𝑜

𝑝
(1) tends to 0 in probability

uniformly for 𝛽 ∈ B
𝑛
. Note that 𝐴(𝛽

0
)
𝑝

→ 𝐴(𝛽
0
) and

𝐵(𝛽
0
)
𝑝

→ 𝐵(𝛽
0
). By the expansion of �̂�

𝑎
(𝛽
0
), defined in (19)

and (47), we get

�̂�
𝑎
(𝛽
0
) = 𝑄

𝑇

𝑛
(𝑔, 𝛽) {𝜎

−2
𝐴
−
(𝛽
0
)}𝑄
𝑛
(𝑔, 𝛽
0
) + 𝑂
𝑝 (1) . (48)

This together with (44) and (48) proves Theorem 4.
Then we complete the proof.
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