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Abstract. The problem of fault tolerant vibration-attenuation controller design for uncertain linear structural systems with control
input time-delay and saturation is investigated in this paper. The objective of designing controllers is to guarantee the asymptotic
stability of closed-loop systems while attenuate disturbance from earthquake excitation. Firstly, based on matrix transformation,
the structural system is described as state-space model, which contains actuator fault, input signal time-delay and saturation at the
same time. Based on the obtained model, an LMIs-based condition for the system to be stabilizable is deduced. By solving these
LMIs, the controller is established for the closed-loop system to be stable with a prescribed level of disturbance attenuation. The
condition is also extended to the uncertain case. Finally, an example is included to demonstrate the effectiveness of the proposed
theorems.
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1. Introduction

In recent years, because earthquake and tsunamis happen frequently, vibration control for buildings structure has
received considerable attention. However, as buildings become higher and higher, structural stability and solidity
of seismic-excited and wind-excited buildings are challenged and cannot be guaranteed only by architectural mate-
rials of high quality or those passive control methods. Therefore, research on the active vibration control of linear
structural systems has received increasing attention in the recent years. Many scholars have applied themselves to
the research of active vibration control strategies and many control techniques have been utilized, such as, classical
H∞ theories [1,2], Finite frequency H∞ control [3], sliding mode control [4,5], neural networks [6], optimal con-
trol [7], bang-bang control [8,9], Semiactive – passive control [10], Semi-decentralized Control [11], mixedH2/H∞
output-feedback control [12], etc., have been developed with the goal of protecting structures subjected to external
disturbance excitation. Accompanied with the development of structural control strategies, some active control de-
vices were designed for applying those control algorithms, for example, active brace system (ABS) [13,14], active
mass damper (AMD) [15], etc. have been widely studied and used for vibration attenuation.
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On the other hand, since unexpected faults or failures may result in substantial damage, and can even be haz-
ardous to human and environmental security, much effort has been devoted to the fault tolerant control or reliable
control during the past decades. A high degree of fault tolerance for the structural control systems is an essential and
integrated part of the overall control system design. Thus, the problem of fault tolerant control in buildings structural
systems has received considerable attention and various techniques have been developed. For example, by a DC-
motor based active mass driving device, [16] investigated fault tolerant control system design for structure based on
two experiments. [17] presented a direct adaptive fault-tolerant neural control scheme for the active control of non-
linear hysteretic base-isolated buildings using the recently developed extended minimal resource allocation network
(EMRAN). Based on LMI technique, [18] dealt with the problem of robust reliable energy-to-peak controller design
for seismic-excited buildings with actuator faults and parameter uncertainties.

In practice, time delay or transportation lag is commonly encountered when the control forces are applied to the
practical systems. Thus another important issue of structural control is the time delay problem when the control
forces are applied to the structures. The unavoidable time delays appearing in the control channel, manly include
data acquisition from sensors, filtering, processing of data, calculating control forces and transmitting the control
force signals from computer to the actuator, actuator response delay, A/D, and D/A conversion, etc. The time delay
may be short, which can nevertheless limit the control performance or even cause the instability of the system [19].
During the last decades, the study of structural systems with control input time-delay has received increasing atten-
tion. For example, in terms of the feasibility of certain delay-dependent linear matrix inequalities (LMIs), the robust
H∞ disturbance attenuation problem for uncertain structural systems with control input time-delay was researched
by [19]. [20] addressed a convex optimization approach to the problem of state-feedback H∞ control design for vi-
bration reduction of base-isolated building structures with delayed measurements. By combining the random search
of genetic algorithms and the solvability of LMIs, [2] investigated the H∞ controller design approach for vibration
attenuation of seismic-excited building structures with time delay in control input channel. Based on LMI technique,
the problem of robust active vibration control for a class of electro-hydraulic actuated structural systems with time
delay in the control input channel and parameter uncertainties appearing in all the mass, damping and stiffness ma-
trices is investigated in [21]. By considering the actuator saturation and control input time-delay, the active vibration
control for a class of earthquake-excited structural systems was presented in [22]. Furthermore, most of the actuation
devices are subject to amplitude saturation, that for the physical inputs such as force, torque, thrust, stroke, voltage,
current, and flow rate of all conceivable applications of current technology are ultimately limited, and unexpected
large amplitude disturbances can also push a system’s actuators into saturation, thus forcing the system to operate
in a nonlinear mode, for which it was not designed and in which it may be unstable [23]. Thus controller design
for buildings structural systems, which involves actuator saturation, is also needed. However, to the best of the au-
thors’ knowledge, the fault tolerant vibration-attenuation controller design for uncertain linear structural systems
with control input time-delay and saturation is still not fully investigated.

This paper is concerned with the problem of fault tolerant vibration-attenuation controller design for uncertain
linear structural systems with input time-delay and saturation. The main contribution of this paper consists in two as-
pects. First, based on matrix transformation, an improved actuator fault and saturation description is achieved. Then,
the state-space model of buildings with parameter uncertainties and input time-delay and saturation is established.
Second, a novel Lyapunov functional, which includes some non-positive items, is introduced to obtain the sufficient
conditions for stabilizability of the structural systems. By solving the LMIs, the controllers against actuator failures
and saturation are established for the closed-loop system to be stable with the performance ‖z‖2 < γ‖ω‖2.

The organization of this paper is as follows. Section 2 formulates the problem and presents the dynamic models.
The main results are given in Section 3. The illustrative examples are given in Section 4 to show the applicability
and improvement of the presented approaches. Finally, the paper is concluded in Section 5.

Notation: Throughout this paper, for real matrices X and Y , the notation X � Y (respectively, X > Y ) means
that the matrixX−Y is semi-positive definite (respectively, positive definite). I is the identity matrix with appropri-
ate dimension, and a superscript “T ” represents transpose. For a symmetric matrix, ∗ denotes the symmetric terms.
The symbol Rn stands for the n-dimensional Euclidean space, and Rn×m is the set of n×m real matrices.
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Fig. 1. n-d.o.f. structural system.

2. Problem formulation and dynamic models

Consider an n degree-of-freedom structural system. The system under consideration is depicted in Fig. 1. The
linear structural model equation can be written with [1,2,17–19,21,22]

Mẍm(t) + Cẋm(t) +Kxm(t) = H0u(t− τ) +Hωẍg(t), (1)

where xm(t) = [xm1(t), xm2(t), . . . , xmn(t)]
T , xmn(t) is the relative displacement of the nth storey to ground;

u(t − τ) is the control force input, and τ is the control forces input time-delay; ẍg(t) is the input disturbance
belongs to L2[0,∞), H0 ∈ Rn×m gives the locations of these controllers, Hω ∈ Rn×1 is an vector denoting
the influence of disturbance excitation, and M,C,K ∈ Rn×n are the mass, damping and stiffness matrices of the
system, respectively. From Fig. 1, we can obtain

M = diag {m1,m2, . . . ,mn} , Hω = − [m1,m2, . . . ,mn]
T
,

C =

⎡
⎢⎢⎢⎢⎣
c1 + c2 −c2 . . . 0

−c2 c2 + c3 . . .
...

...
... . . . −cn

0 0 . . . cn

⎤
⎥⎥⎥⎥⎦ ,K =

⎡
⎢⎢⎢⎢⎣
k1 + k2 −k2 . . . 0

−k2 k2 + k3 . . .
...

...
... . . . −kn

0 0 . . . kn

⎤
⎥⎥⎥⎥⎦ .

Defining the state variables as x(t) =
[
xm(t)T , ẋm(t)T

]T , the system Eq. (1) can be written in the following
state-space form:

Eẋ(t) = Ax(t) +Bu(t− τ) +Bωω(t),

z(t) = Czx(t),

x(t) = Φ(t), ∀t ∈ [−τ, 0] ,
(2)

where z(t) is the control output,Cz is a real constant matrix with appropriate dimensions,Φ(t) is the initial condition
on the segment [−τ, 0], and

E =

[
I 0
0M

]
, A =

[
0 I

−K −C
]
, B =

[
0
H0

]
, Bω =

[
0
Hω

]
, ω(t) = ẍg(t).
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When considering possible actuator fault and control force saturation, we introduce a state-feedback controller in
the form of

u(t) = σ (υ(t)Fx(t)) , (3)

where F is the actuator fault-tolerant controller gain to be design later. Actuator failures are described by fault matrix
υ(t) = diag {υ1(t), υ2(t), . . . υm(t)}, 0 � υi � υi(t) � ῡi < ∞. υi and ῡi represent the lower and upper bounds
of υi(t), respectively. If υi = ῡi = 1, then there is no failure for the ith actuator. When υi = ῡi = 0, the ith actuator
is in outage. Otherwise, if 0 < υi � ῡi and υi(t) �= 1, it corresponds to the case of partial degradation of the ith
actuator. The function σ(·): Rm → Rm is a standard saturation function with the limit of ulimi

for the ith actuator.
u(t) can be expressed as

u(t) = [σ (u1(t)) , σ (u2(t)) , . . . , σ (um(t))]
T

where σ (ui(t)) = sign (ui(t))min {|ui(t)| , ulimi
}.

Remark 1: It is worth to point out that υ(t) and σ(·) in Eq. (3) denote the possible failure and saturation existing
in a practical actuator. We need to obtain a state-feedback controller, which has a fixed gain F , such that the corre-
sponding closed-loop system can tolerate the possible actuator failure and saturation. Thus, how to deal with υ(t)
and σ(·) is the key to achieve a satisfying controller.

Using the transform σ (υ(t)Fx(t)) = ψ(t)υ(t)Fx(t) [24–26], where ψ(t) = diag {ψ1(t), ψ2(t), . . . ψm(t)},
ψi(t) = σ (ui(t))/ui(t) with ψi(t) = 1 if ui(t) = 0. To obtain the high gain controller as that in [24], the command
to the ith actuator is allowed to be εiulimi

for an arbitrary scalar εi > 1. Therefore, the resulting ψi(t) will be
bounded by 1/εi and 1, that is, 1/εi � ψi(t) � 1, i = 1, 2, . . . ,m. Thus, we have

ψ(t)υ(t)=diag {ψ1(t)υ1(t), ψ2(t)υ2(t), . . . , ψm(t)υm(t)} , and υi/εi � ψi(t)υi(t) � ῡi, i = 1, 2, . . . ,m.

For notational simplicity, in the sequel, the matrix ψ(t)υ(t) will be denoted by Γ(t). Then, we have Γ(t) =
diag {Γ1(t),Γ2(t), . . . ,Γm(t)}, satisfying Γi � Γi(t) � Γ̄i, where Γi(t) = ψi(t)υi(t), Γi =

υi

εi
, and Γ̄i = ῡi.

By defining Γ0i =
(
Γi + Γ̄i

)
/2, ΔΓi = δi(t)Γ0i, |δi(t)| � δ̄i � 1, δ̄i =

(
Γ̄i − Γi

)
/
(
Γi + Γ̄i

)
, i = 1, 2, . . .m,

we can depict the controller Eq. (3) as u(t) = (Γ0 +ΔΓ)Fx(t), where Γ0 = diag {Γ01,Γ02, . . . ,Γ0m}, ΔΓ =

diag {ΔΓ1,ΔΓ2, . . . ,ΔΓm} =
∑m

i=1 δ̄iΓ0e0i
δi(t)

δ̄i
fT
0i. e0i and f0i are all column vectors with the ith items to be 1,

and others to be 0. Obviously, there has δi(t)/δ̄i � 1.
In practice, the mass, damping and stiffness are usually subjected to possible perturbations, such as measurement

error, the changes in environmental temperature and plastic deformation, etc. By assuming that the uncertain mj ∈[
mj , m̄j

]
, kj ∈ [

kj , k̄j
]
, cj ∈ [

cj , c̄j
]
, j = 1, 2, . . . n, where mj, kj , cj

(
m̄j , k̄j , c̄j

)
are the lower (upper) bounds

of the mass, stiffness and damping respectively, and denoting

m̂j =
1

2

(
mj + m̄j

)
,Δm̂j = θ1jm̂j , |θ1j | � θ̄1j < 1, θ̄1j =

(
m̄j −mj

)
/
(
m̄j +mj

)
, j = 1, 2, . . . n,

k̂j =
1

2

(
kj + k̄j

)
,Δk̂j = θ2j k̂j , |θ2j | � θ̄2j < 1, θ̄2j =

(
k̄ − k

)
/
(
k̄ + k

)
, j = 1, 2, . . . n,

ĉj =
1

2

(
cj + c̄j

)
,Δĉj = θ2(n+j)ĉj ,

∣∣θ2(n+j)

∣∣ � θ̄2(n+j) < 1, θ̄2(n+j) = (c̄− c)/(c̄+ c), j = 1, 2, . . . n,

we can describe the uncertain system by state space equation of the form:

E(θ1)ẋ(t) = A(θ2)x(t) +Bu(t− τ) +Bω(θ1)ω(t),

u(t) = (Γ0 +ΔΓ)Fx(t)

z(t) = Czx(t),

x(t) = Φ(t), ∀t ∈ [−τ, 0] ,

(4)
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where uncertain matrices E(θ1), A(θ2), Bω(θ1) satisfying

E(θ1) = E0 +
n∑

j=1

θ1jEj , A (θ2) = A0 +
2n∑
j=1

θ2jAj , Bω (θ1) = Bω0 +
n∑

j=1

θ1jBωj ,

E0 = diag

⎧⎨
⎩1, 1, . . . 1︸ ︷︷ ︸

n

, m̂1, m̂2, . . . m̂n

⎫⎬
⎭ , Bω0 =

⎡
⎣0, 0, . . . , 0︸ ︷︷ ︸

n

,−m̂1,−m̂2, . . . ,−m̂n

⎤
⎦T

,

Ej = m̂je1jf
T
1j, Bωj = −m̂je3jf

T
3j ,

A0 =

[
0 I

−K̂ −Ĉ
]
, K̂ =

⎡
⎢⎢⎢⎢⎣
k̂1 + k̂2 −k̂2 . . . 0

−k̂2 k̂2 + k̂3 . . .
...

...
... . . . −k̂n

0 0 . . . k̂n

⎤
⎥⎥⎥⎥⎦ , Ĉ =

⎡
⎢⎢⎢⎢⎣
ĉ1 + ĉ2 −ĉ2 . . . 0

−ĉ2 ĉ2 + ĉ3 . . .
...

...
... . . . −ĉn

0 0 . . . ĉn

⎤
⎥⎥⎥⎥⎦ ,

Aj = k̂je2jf
T
2j , An+j = ĉje2(n+j)f

T
2(n+j), (j = 1, 2, . . . , n) .

e1j ∈ R2n(j = 1, 2, . . . , n), f1j ∈ R2n(j = 1, 2, . . . , n), e2j ∈ R2n(j = 1, 2, . . . , 2n), f2j ∈ R2n(j = 1, 2, . . . ,
2n), e3j ∈ R2n(j = 1, 2, . . . , n), f3j ∈ R1(j = 1, 2, . . . , n) are all column vectors. In this paper, the aim is to find
a controller gain F such that the closed-loop system has the following properties: (i) asymptotically stable; (ii) for
all non-zero ω ∈ L2[0,∞) and the prescribed constant γ > 0, it has the performance ‖z‖2 < γ‖ω‖2.

Lemma 1 [27]: Given any matrices X , V and U with appropriate dimensions such that U > 0. Then we have

−XUXT � XV T + V XT + V U−1V T . (5)

Lemma 2 [28]: Given matrices χ, μ and ν with appropriate dimensions and with χ symmetrical, then

χ+ μF (t)ν + νTF (t)TμT < 0 (6)

holds for any F (t) satisfying F (t)TF (t) � I , if and only if there exists a scalar λ > 0 such that

χ+ λμμT + λ−1νT ν < 0. (7)

3. Main results

Theorem 1: The system Eq. (4) without uncertainties is asymptotically stabilizable with constant time-delay τ and
performance ‖z‖2 < γ‖ω‖2 for all non-zero ω ∈ L2[0,∞), and constant γ > 0, if there exist positive definite
symmetric matrices P , U , V1, V2, Q, matrices Z1, Z2, Z3, Z4, Z5, S, Yi (i = 1, 2, 3, 4, 5), Hi (i = 1, 2, 3, 4, 5),
positive scalars r01, r02, . . . , r0m and scalars β1, β2, β3 satisfying the following LMIs

Ξ1 =

⎡
⎢⎢⎢⎢⎣

Π τH τY Bω Ξ19

∗ −τV2 0 0 0
∗ ∗ −τV1 0 0
∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ Ξ99

⎤
⎥⎥⎥⎥⎦ < 0, (8)

Ξ2 =

⎡
⎢⎣ P + V1 + τZ3 + τZT

3 + τ2Z5 + 2V2 Z2 − Z3 + τZT
4 − τZ5 − 2

τ
V2

∗ 1

τ
U +

1

τ
V1 + Z1 − Z4 − ZT

4 + Z5 +
2

τ2
V2

⎤
⎥⎦ > 0, (9)
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where

Π =

⎡
⎢⎢⎢⎢⎢⎢⎣

Ξ11 Ξ12 Ξ13 Ξ14 SCT
z +HT

5

∗ Ξ22 Ξ23 Ξ24 β1SC
T
z −HT

5

∗ ∗ Ξ33 Ξ34 β2SC
T
z

∗ ∗ ∗ Y4 + Y T
4 −Q β3SC

T
z + Y T

5

∗ ∗ ∗ ∗ −γ2I

⎤
⎥⎥⎥⎥⎥⎥⎦+

m∑
i=1

r0iΥ0iΥ
T
0i,

Ξ11 = U+τV1+Z2+Z
T
2 −Z3 − ZT

3 + τZ4 + τZT
4 − τZ5 − τZT

5 − τ2Q+ SAT
0 +A0S

T +H1 +HT
1 ,

Ξ12 = −Z2 + Z3 − τZ4 + τZT
5 + T TΓT

0 B
T + β1A0S

T −H1 +HT
2 ,

Ξ13 = P + τZT
3 + τZ3 + τ2ZT

5 + τZT
5 − SET

0 + β2A0S
T +HT

3 ,

Ξ14 = Y1 + Z1 − Z4 − ZT
4 + Z5 + τQ + β3A0S

T +HT
4 ,

Ξ22 = −U + β1T
TΓT

0 B
T + β1BΓ0T −H2 −HT

2 , Ξ23 = −β1SET
0 + β2BΓ0T −HT

3 ,

Ξ24 = Y2 − Z1 + Z4 + ZT
4 − Z5 + β3BΓ0T −HT

4 , Ξ33 =
1

4
τ4Q+ τV2 − β2SE

T
0 − β2E0S

T ,

Ξ34 = Y3 + Z2 − Z3 + τZT
4 − τZT

5 − β3E0S
T ,

H =
[
HT

1 HT
2 HT

3 HT
4 HT

5

]T
, Y =

[
Y T
1 Y T

2 Y T
3 Y T

4 Y T
5

]T
,

Ξ19 = [Λ01,Λ02, . . . ,Λ0m] , Ξ99 = diag {−r01,−r02, . . . ,−r0m} ,
Υ0i =

[
0 δ̄ie

T
0iΓ

T
0 B

T 0 0 0
]T
, Λ0i =

[
fT
0iT β1f

T
0iT β2f

T
0iT β3f

T
0iT 0 0 0 0

]T
.

Furthermore, the state-feedback controller is described as F = TS−T .

Proof: We first consider the system Eq. (4) without uncertainties, that is, θ1i = 0(i = 1, 2, . . . n), θ2i = 0(i =
1, 2, . . .2n). Substituting the control law u(t) = (Γ0 +ΔΓ)Fx(t) into the system Eq. (4) results in the following
closed-loop system

E0ẋ(t) = A0x(t) +B (Γ0 +ΔΓ)Fx(t− τ) +Bω0ω(t),

z(t) = Czx(t).
(10)

Noting that the solutions to det(SE−A−BFe−sτ ) = 0 are the same as those of det(SET−AT−FTBT e−sτ ) = 0,
and ‖Tzω‖∞ = ‖T T

zω‖∞, as long as theH∞ performance and stability are concerned, we can consider the following
system instead of Eq. (10)

ET
0 ẋ(t) = AT

0 x(t) + FT (Γ0 +ΔΓ)
T
BTx(t− τ) + CT

z ω(t),

z(t) = BT
ω0x(t).

(11)

Choose a Lyapunov-Krasovskii functional candidate as

V (t) = V1(t) + V2(t) + V3 (t) , (12)

where

V1(t) = x(t)TPx(t) +

∫ t

t−τ

xT (s)Ux(s)ds +

∫ 0

−τ

∫ t

t+ε

xT(s)V1x(s)dsdε +

∫ 0

−τ

∫ t

t+ε

ẋT (s)V2ẋ(s)dsdε,

V2(t) =

∫ t

t−τ

xT(s)dsZ1

∫ t

t−τ

x(s)ds+ 2xT(t)Z2

∫ t

t−τ

x(s)ds+ 2xT(t)Z3

∫ 0

−τ

∫ t

t+θ

ẋ(s)dsdθ
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+ 2

∫ t

t−τ

xT(s)dsZ4

∫ 0

−τ

∫ t

t+θ

ẋ(s)dsdθ +

∫ 0

−τ

∫ t

t+θ

ẋT(s)dsdθZ5

∫ 0

−τ

∫ t

t+θ

ẋ(s)dsdθ,

V3(t) =
1

2
τ2

∫ 0

−τ

∫ 0

θ

∫ t

t+ε

ẋT(s)Qẋ(s)dsdεdθ,

and P > 0, U > 0, V1 > 0, V2 > 0, Q > 0, Z1, Z5, are symmetric matrices to be determined. Obviously, from
Eq. (9), we have

V (t) � x(t)TPx(t) +

∫ t

t−τ

xT (s)Ux(s)ds +

∫ 0

−τ

∫ t

t+ε

xT(s)V1x(s)dsdε

+
2

τ2

(
τ2

2

∫ 0

−τ

∫ t

t+ε

ẋT (s)V2ẋ(s)dsdε

)
+ V2(t)

� x(t)T (P + V1)x(t) +

∫ t

t−τ

xT(s)ds

(
1

τ
U +

1

τ
V1

)∫ t

t−τ

xT(s)ds

+
2

τ2

(
τxT(t) −

∫ t

t−τ

xT(s)ds

)
V2

(
τx(t) −

∫ t

t−τ

x(s)ds

)
+ V2(t)

= ζ(t)TΞ2ζ(t) > 0,

where ζ(t) =
[
x(t)T

∫ t

t−τ x
T
(s)ds

]T
. Then, the derivative of V (t) along the solution of system Eq. (11) is given

by

V̇1(t) = ẋT (t)Px(t) + xT (t)P ẋ(t) + xT (t)Ux(t) − xT (t− τ)Ux(t− τ)

+ τxT(t)V1x(t) −
∫ t

t+τ

xT(s)V1x(s)ds+ τẋT (t)V2ẋ(t)−
∫ t

t−τ

ẋT (ε)V2ẋ(ε)dε,
(13)

V̇2(t) = 2
(
x(t) − x(t−τ)

)T
Z1

∫ t

t−τ

x(s)ds+ 2ẋT(t)Z2

∫ t

t−τ

x(s)ds+ 2xT(t)Z2

(
x(t) − x(t−τ)

)
+ 2ẋT(t)Z3

(
τx(t) −

∫ t

t−τ

x(s)ds

)
+ 2xT(t)Z3

(
τẋT (t)− (

x(t) − x(t−τ)

))
+ 2

(
x(t) − x(t−τ)

)
Z4

(
τx(t) −

∫ t

t−τ

x(s)ds

)
+ 2

∫ t

t−τ

xT(s)dsZ4

(
τẋ(t)− (

x(t) − x(t−τ)

))
+ 2

(
τẋT (t)− x(t) + x(t−τ)

)
Z5

(
τx(t) −

∫ t

t−τ

x(s)ds

)
,

(14)

V̇3(t) =
1

4
τ4ẋT(t)Qẋ(t) −

1

2
τ2

∫ 0

−τ

∫ t

t+θ

ẋT(s)Qẋ(s)dsdθ

� 1

4
τ4ẋT(t)Qẋ(t) −

∫ 0

−τ

∫ t

t+θ

ẋT(s)dsdθQ

∫ 0

−τ

∫ t

t+θ

ẋT(s)dsdθ

=
1

4
τ4ẋT(t)Qẋ(t) −

(
τxT(t) −

∫ t

t−τ

xT(s)ds

)
Q

(
τx(t) −

∫ t

t−τ

x(s)ds

)
.

(15)

Then for any matrices S and scalars β1, β2, β3, we obtain(
xT (t) + β1x

T (t− τ) + β2ẋ
T (t) + β3

∫ t

t−τ

xT (s)ds

)

S
(
AT

0 x(t) + FT (Γ0 +ΔΓ)T BTx(t− τ) − ET
0 ẋ(t) + CT

z ω(t)
)
= 0.

(16)
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For any matrices Hi (i = 1, 2, . . . 5), there holds

2

(
xT (t)H1 + xT (t− τ)H2 + ẋT (t)H3 +

∫ t

t−τ

xT (s)dsH4 + ωT (t)H5

)
(
x(t) − x(t− τ)−

∫ t

t−τ

ẋ(ε)dε

)
= 0.

(17)

For any V2 > 0, we can obtain

− 2

(
xT (t)H1 + xT (t− τ)H2 + ẋT (t)H3 +

∫ t

t−τ

xT (s)dsH4 + ωT (t)H5

)∫ t

t−τ

ẋ(ε)dε

� τξ(t)THV −1
2 HT ξ(t) +

∫ t

t−τ

ẋ(ε)TV2ẋ(ε)dε,

(18)

where ξ(t) =
[
xT (t) xT (t− τ) ẋT (t)

∫ t

t−τ
x(s)T ds ωT (t)

]T
. According to Lemma 1, for any matrices

Y =
[
Y T
1 Y T

2 Y T
3 Y T

4 Y T
5

]T , there holds

−
∫ t

t−τ

xT(s)V1x(s)ds � 2ξT(t)Y

∫ t

t−τ

x(s)ds+ τξT(t)Y V
−1
1 Y T ξ(t). (19)

Next, we will establish the ‖z‖2 < γ‖ω‖2 performance of the system under zero initial condition, that is, Φ(t) =
0, ∀t ∈ [−τ, 0], and V (t) |t=0 = 0 . Consider the following index:

J =

∫ ∞

0

[
ZT (t)Z(t)− γ2ω(t)Tω(t)

]
dt. (20)

Then, for any non-zero ω(t) ∈ L2[0,∞), there holds

J �
∫ ∞

0

(
ZT (t)Z(t)− γ2ω(t)Tω(t)

)
dt+ V (t) |t=∞ − V (t) |t=0

=

∫ ∞

0

(
ZT (t)Z(t)− γ2ω(t)Tω(t) + V̇ (t)

)
dt.

(21)

Choosing FST = T , and Noting Eqs (13)–(21), after some algebraic manipulations, we obtain

ZT (t)Z(t)− γ2ω(t)Tω(t) + V̇ (t) � ξ(t)T Ξ̃1ξ(t), (22)

where

Ξ̃1 = Π+ τHV −1
2 HT + τY V −1

1 Y T +ΩΩT +

m∑
i=1

(
Υ0i

δi(t)

δ̄i
ΛT
0i + Λ0i

δi(t)

δ̄i
ΥT

0i

)
,Ω =

[
BT

ω 0 0 0 0
]T
.

Then, if Ξ̃1 < 0, we have
∫∞
0

[
ZT (t)Z(t)− γ2ω(t)Tω(t) + V̇ (t)

]
dt < 0. Thus J < 0, and ‖z‖2 < γ‖ω‖2 is

satisfied for any non-zero ω ∈ L2[0,∞). Assuming the zero disturbance input, i.e. ω(t) ≡ 0, if Ξ̃1 < 0, we can
easily obtain V̇ (t) < 0, and the asymptotic stabilizability of system Eq. (4) is established. According to the Schur
compliment and Lemma 2, we can obtain Ξ̃1 < 0 from Eq. (8). This completes the proof.

Theorem 2: The system Eq. (4) is robustly stabilizable with constant time-delay τ and performance ‖z‖2 < γ‖ω‖2
for all non-zero ω ∈ L2[0,∞), and constant γ > 0, if there exist positive definite symmetric matrices P , U , V1,
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V2, Q, matrices Z1, Z2, Z3, Z4, Z5, S, Yi (i = 1, 2, 3, 4, 5), Hi (i = 1, 2, 3, 4, 5), scalars β1, β2, β3, positive scalars
r01, r02, . . . , r0m, r11, r12, . . . , r1n, r21, r22, . . . , r2(2n), r31, r32, . . . , r3n satisfying Eq. (9) and the following LMI[

Υ M12

∗ M22

]
< 0, (23)

where

Υ = Ξ1 +

n∑
j=1

(
r1jm̂

2
j θ̄

2
1jΥ1jΥ

T
1j + r2j k̂

2
j θ̄

2
2jΥ2jΥ

T
2j

+r2(n+j)ĉ
2
j θ̄

2
2(n+j)Υ2(n+j)Υ

T
2(n+j) + r3jm̂

2
j θ̄

2
1jΥ3jΥ

T
3j

)
,

Υ1j =
[
0 0 eT1j 0 0 0 0 0 01×m

]T
,Υ2j =

[
eT2j 0 0 0 0 0 0 0 01×m

]T
,Υ3j =

[
eT3j 0 0 0 0 0 0 0 01×m

]T
,

M12 =
[
Λ11,Λ12, . . . ,Λ1n,Λ21,Λ22, . . . ,Λ2(2n),Λ31,Λ32, . . . ,Λ3n

]
,

Λ1j =
[
fT
1jS

T β1f
T
1jS

T β2f
T
1jS

T β3f
T
1jS

T 0 0 0 0 01×m

]T
,

Λ2j =
[
fT
2jS

T β1f
T
2jS

T β2f
T
2jS

T β3f
T
2jS

T 0 0 0 0 01×m

]T
,Λ3j =

[
0 0 0 0 0 0 0 fT

3j 01×m

]T
,

M22 = diag {−r11,−r12, . . .− r1n,−r21, −r22, . . .− r2(2n),−r31,−r32, . . .− r3n
}
.

Furthermore, the state-feedback controller is described as F = TS−T .

Proof: ReplacingE0,A0 andBω0 withE0+
∑n

j=1 θ1jEj ,A0+
∑2n

j=1 θ2jAj andBω0+
∑n

j=1 θ1jBωj , respectively,
Eq. (8) can be expressed as

Ξ1 +
n∑

j=1

(
θ1jm̂jΥ1jΛ

T
1j + θ2j k̂jΥ2jΛ

T
2j + θ2(n+j)ĉjΥ2(n+j)Λ

T
2(n+j) + θ1jm̂jΥ3jΛ

T
3j

+θ1jm̂jΛ1jΥ
T
1j + θ2j k̂jΛ2jΥ

T
2j + θ2(n+j)ĉjΛ2(n+j)Υ

T
2(n+j) + θ1jm̂jΛ3jΥ

T
3j

)
< 0.

(24)

By Lemma 2, Eq. (24) holds if and only if there exist positive scalars r11, r12, . . . , r1n, r21, r22, . . . , r2(2n), r31,
r32, . . . , r3n such that

Ξ1 +
n∑

j=1

(
r1j θ̄

2
1jm̂

2
jΥ1jΥ

T
1j + r−1

1j Λ1jΛ
T
1j + r2j θ̄

2
2j k̂

2
jΥ2jΥ

T
2j + r−1

2j Λ2jΛ
T
2j

+r2(n+j)θ̄
2
2(n+j)ĉ

2
jΥ2(n+j)Υ

T
2(n+j) + r−1

2(n+j)Λ2(n+j)Λ
T
2(n+j) + r3j θ̄

2
1jm̂

2
jΥ3jΥ

T
3j + r−1

3j Λ3jΛ
T
3j

)
< 0.

(25)

Applying the Schur complement, LMI Eq. (25) is equivalent to LMI Eq. (23). This completes the proof.

4. Illustrative example

Consider the structural system with n = 3. The structural parameters are m̂i = 1000 kg, k̂i = 980 kN/m, and
ĉi = 1.407 kNs/m (i = 1, 2, 3). Then the state space Eq. (4) has the following parameters [19]:

H0 = diag {1, 1, 1} , x =
[
x1 x2 x3 ẋ1 ẋ2 ẋ3

]T
, E (θ1) = E0 +

3∑
j=1

θ1jm̂je1jf
T
1j ,

A (θ2) = A0 +

3∑
j=1

(
θ2j k̂je2jf

T
2j + θ2(3+j)ĉje2(3+j)f

T
2(3+j)

)
, Bω (θ1) = Bω0 −

3∑
j=1

θ1jm̂je3jf
T
3j ,
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Fig. 2. Displacements of the first storey in case A1 (τ = 25 ms). Fig. 3. Displacements of the first storey in case A2 (τ = 25 ms).

Fig. 4. Displacements of the first storey in case A3 (τ = 25 ms). Fig. 5. Displacements of the first storey in case A4 (τ = 25 ms).

where

E0 = diag {1, 1, 1, m̂1, m̂2, m̂3} ,
e11 = f11 =

[
0 0 0 1 0 0

]T
, e12 = f12 =

[
0 0 0 0 1 0

]T
, e13 = f13 =

[
0 0 0 0 0 1

]T
,

A0 =

[
0 I

K̂ Ĉ

]
, K̂ =

⎡
⎣ k̂1 + k̂2 −k̂2 0

−k̂2 k̂2 + k̂3 −k̂3
0 −k̂3 k̂3

⎤
⎦ , Ĉ =

⎡
⎣ ĉ1 + ĉ2 −ĉ2 0

−ĉ2 ĉ2 + ĉ3 −ĉ3
0 −ĉ3 ĉ3

⎤
⎦ .

e21 = e24 = [0, 0, 0, 1, 0, 0]
T
, e22 = e25 = [0, 0, 0,−1, 1, 0]

T
, e23 = e26 = [0, 0, 0, 0,−1, 1]

T
,

f21 = [1, 0, 0, 0, 0, 0]
T
, f22 = [−1, 1, 0, 0, 0, 0]

T
, f23 = [0,−1, 1, 0, 0, 0] , f24 = [0, 0, 0, 1, 0, 0]

T
,

f25 = [0, 0, 0,−1, 1, 0]T , f26 = [0, 0, 0, 0,−1, 1] , Bω0 = [0, 0, 0,−m̂1,−m̂2,−m̂3]
T ,

e31 = [0, 0, 0, 1, 0, 0]T , e32 = [0, 0, 0, 0, 1, 0]T , e33 = [0, 0, 0, 0, 0, 1]T , f31 = f32 = f33 = 1.

Assume that the displacements and velocities of the three storeys are all measurable for feedback in this case. The
controlled output is chosen to be the relative displacements of each storey, that is, z(t) =

[
xm1(t) xm2(t) xm3(t)

]T .
Consider the maximum actuator output force limit ulimi

as 400 N, and suppose that υi = 0.2, ῡi = 1.2, εi = 10
where i = 1, 2, 3. Furthermore, we can get the maximum control signal before saturation ubeflim i

= εiulimi
=

10 × 400 = 4000 N, that is, when the control signals before saturation ubefi satisfy ubefi � 4000 N, the designed
controllers should have the desired performances. Firstly, consider the system without uncertainties, that is θ1i =
0 (i = 1, 2, 3), θ2i = 0 (i = 1, 2, . . . , 6). By choosing τ = 25 ms, β1 = 1, β2 = 5, β3 = 10, γ = 0.15, we solve the
LMIs Eqs (8) and (9) and obtain the state feedback controller which has the following gain matrix

F =

⎡
⎣ −2.013 −1.545 4.159 −1438.8 −435.10 −362.48

3.1274 −4.7112 4.380 −440.49 −1816.9 −809.31
0.6730 3.160 −2.058 −369.65 −820.04 −2278.78

⎤
⎦ . (26)

For description in brevity, we denote this designed controller as controller I thereafter.
In order to verify the dynamics of the closed-loop system, a time history of acceleration from EI Centro 1940

earthquake excitation is applied to this system. To simulate the actuator faults conditions, it is assumed that faults
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Table 1
The maximum responses of the displacements and accelerations (τ = 25 ms)

Open-loop Case A1 Case A2 Case A3 Case A4
x1max (cm) 4.14 2.01 2.43 2.80 3.06
x2max (cm) 7.29 3.49 4.24 4.92 5.30
x3max (cm) 8.95 4.19 5.18 6.05 6.42
ẍ1max (m/s2) 8.58 5.20 5.53 5.96 6.99
ẍ2max (m/s2) 13.4 7.46 8.00 9.15 10.16
ẍ3max (m/s2) 17.7 9.44 9.39 10.99 12.66

Table 2
The maximum control forces before saturation (τ = 25 ms)

Case A1 Case A2 Case A3 Case A4
u1 732.6 912.8 1064.9 0
u2 1344.5 1687.2 2008.1 0
u3 1741.3 2151.5 2586.0 2633.2

Fig. 6. Control forces in case A1 (τ = 25 ms). Fig. 7. Control forces in case A2 (τ = 25 ms).

occur periodically, and the percentage scalar Ψ(t) of the signal is defined as

Ψ(t) =

{
α, kT < t � kT +Δ(t), k = 0, 1, 2, 3, . . . ,

1, kT +Δ(t) < t � (k + 1)T, k = 0, 1, 2, 3, . . . ,

where T is a known time period, Δ(t) is a section of T , which informs how much time there exists faults in a period,
and α is the percentage of the signal when faults exist. According to the definition above, the fault condition can
be described as: during the first part kT < t � kT +Δ(t) of each period, faults exist and the percentage of signal
is α; in the second part kT + Δ(t) < t � (k + 1)T of each period, no faults exist and the control system works
normally.

For brevity, we consider four cases in this example. Case A1: the control system works normally; case A2:
T = 3 s, Δ(t) = 1.5 s, and α = 20 percent (80 percent loss of the actuator thrusts); case A3: T = 3 s, Δ(t) = 1.5 s,
and α = 0 percent (100 percent loss of the actuator thrusts); case A4: 100 percent loss of the actuator thrusts in
storey 1 and 2, and the actuator in storey 3 works normally.

The first storey displacements of open-loop and closed-loop systems which are composed with the controller I in
the four cases are compared in Figs 2 to 5. The displacements of the other two storeys have the similar varying trend,
which are omitted here for brevity. In addition, the accelerations of the three storeys can give us the same information
to explain our results, which are also omitted here. The maximum displacements and accelerations of the open-loop
and closed-loop systems in the four cases are compared in Table 1. From Figs 2 to 5 and Table 1, we can obtain that
controller I is effective to attenuate the displacements and accelerations in the four cases when control forces input
time-delay τ = 25 ms. The control forces in four cases are plotted in Figs 6 to 9, and the maximum control forces
are shown in Table 2. From Figs 6 to 9 and Table 2, we can obtain that the maximum control signal before saturation
is 2633.2 N, which is less than the permissible limitation 4000 N.
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Fig. 8. Control forces in case A3 (τ = 25 ms). Fig. 9. Control forces in case A4 (τ = 25 ms).

Fig. 10. Maximum response ratio ximax(τ)/ximax(0) vs time de-
lay τ .

Fig. 11. Displacements of the first floor (τ = 0 ms).

Fig. 12. Comparison of maximum response ratios ximax(τ)/
ximax(0) vs time delay τ .

Fig. 13. Displacements of the first storey (τ = 25 ms) in case B1.

To further express the effectiveness of controller I in dealing with the time delay, the effect of time delay on the
response of the structural system is studied by calculating the response ratio ximax(τ)/ximax(0) (i = 1, 2, 3) vs the
time delay τ , where ximax(τ) (i = 1, 2, 3) denotes the maximum displacement of the closed-loop system when the
input time delay is τ . ximax(0) (i = 1, 2, 3) denotes the maximum displacement of the open-loop system. Figure 10
shows the plot of the response ratio ximax(τ)/ximax(0) (i = 1, 2, 3) in case A2 as a function of the time delay τ .
The other three cases have the similar results, which are omitted here. It is observed from Fig. 10 that there is no
degradation in the displacement attenuation performance of the control system up to the obtained maximal time
delay τ = 25 ms. When the time delay exceeds 65 ms, the degradation of the control performance increases.

In order to facilitate the comparison, we obtain another state feedback controller, which does not consider the
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Table 3
The maximum responses of the displacements and accelerations (τ = 25 ms)

Cases Case B1 Case B2 Case B3 Case B4 Case B5
Open Closed Open Closed Open Closed Open Closed Open Closed

x1max (cm) 4.14 2.69 7.30 4.31 4.14 3.03 1.47 0.82 3.19 1.76
x2max (cm) 7.29 4.69 13.3 7.66 7.29 5.32 2.61 1.46 5.62 3.04
x3max (cm) 8.95 5.74 16.8 10.0 8.95 6.52 3.25 1.82 6.88 3.69
ẍ1max (m/s2) 8.58 5.81 7.05 6.53 8.58 6.83 7.15 4.80 6.57 3.89
ẍ2max (m/s2) 13.4 8.69 11.8 8.33 13.4 9.83 11.8 8.90 10.5 6.19
ẍ3max (m/s2) 17.7 10.2 15.9 11.5 17.7 11.9 14.6 11.3 11.8 8.54

control input time-delay, by solving Theorem 2 in [29] with γ = 0.15, and this controller has the following gain

F =

⎡
⎣ −104451 −980.13 −0.1193 −190.5 −1.4079 −0.835× 10−3

−980.11 −104451 −980.11 −1.4077 −190.50 −1.4078
−0.11738 −980.12 −105431 −0.8216× 10−3 −1.4079 −191.91

⎤
⎦ . (27)

For description in brevity, this state feedback controller is denoted as controller II thereafter. We take the EI Centro
1940 earthquake as the disturbance excitation. When there are no control forces input time-delay and saturation in
this system, we can obtain the first storey displacements of open-loop and closed-loop systems which are composed
with the controller I and II from Fig. 11. The displacements of the other two storeys and the accelerations of three
storeys have a similar varying trend, which are omitted here. Form Fig. 11, we can obtain that controller I and II are
all effective to attenuate the displacements and accelerations of the system when τ = 0 ms.

We introduce the actuator saturation ulimi = 400 N (i = 1, 2, 3) into this system. Figure 12 shows the plot
of the response ratios ximax(τ)/ximax(0) (i = 1, 2, 3) of the closed-loop systems which are composed with the
controller I and II in case A1. It is observed from Fig. 12 that the degradation in control performance of controller II
increases rapidly when the time delay is increasing. However, there is no significant degradation in the displacement
attenuation performance of the controller I up to time delay τ = 75 ms.

Now, let us consider the uncertain system. Consider the uncertainties are applied to the mass, stiffness and damp-
ing coefficients of the first storey, and assume the parameter uncertainties satisfying |θ11| � 0.4, |θ21| � 0.4,
|θ24| � 0.4. By choosing τ = 25 ms, β1 = 1, β2 = 10, β3 = 10 γ = 0.15, we solve the LMIs Eqs (9) and (23), and
obtain a robust state feedback controller has the following gain matrix

F =

⎡
⎣ −1.3007 0.3681 −0.0874 −682.61 −778.75 161.175

−0.3698 0.2892 −0.1256 148.262 −1506.7 −200.80
−0.3585 −0.1516 0.1813 45.425 −195.48 −1557.98

⎤
⎦ . (28)

For description in brevity, we denote this designed controller as controller III thereafter.
Set T = 3 s, Δ(t) = 1.5 s, and α = 20 percent (80 percent loss of the actuator thrusts). For brevity, we consider

the nominal case (θ1i = 0 (i = 1, 2, 3) , θ2i = 0 (i = 1, 2, 3, 4, 5, 6), corresponds to case B1) and four-vertex cases
where the first storey’s mass, stiffness and damping coefficients are given as their vertex values, respectively.

Case B2 corresponds to m̂1 = 1.4× 1000 kg, k̂1 = 0.6× 980 kN/m, and ĉ1 = 0.6× 1.407 kNs/m.
Case B3 corresponds to m̂1 = 1.4× 1000 kg, k̂1 = 1.4× 980 kN/m, and ĉ1 = 1.4× 1.407 kNs/m.
Case B4 corresponds to m̂1 = 0.6× 1000 kg, k̂1 = 1.4× 980 kN/m, and ĉ1 = 0.6× 1.407 kNs/m.
Case B5 corresponds to m̂1 = 0.6× 1000 kg, k̂1 = 0.6× 980 kN/m, and ĉ1 = 1.4× 1.407 kNs/m.
Under the same earthquake excitation, the responses of the first storey displacements in case B1 are plotted in

Fig. 13. It can be seen from Fig. 13 that the better responses are obtained for the closed-loop system when τ =
25 ms. For detailed comparison, the maximum displacements and accelerations of the open-loop and closed-loop
systems are shown in Table 3, where Open means Open-loop system and Closed means Closed-loop system. We can
obtain from Table 3 that better responses are reached for all closed-loop cases no matter the parameter uncertainties
exist or not. Thus, it is validated that the designed controller III is robust to parameter uncertainties. The control
forces in case B1 are plotted in Fig. 14, and the maximum control forces in five cases are shown in Table 4. From
Fig. 14 and Table 4, we can obtain that the maximum control signal before saturation is 1492.5 N, which is less than
the permissible limitation 4000 N.
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Table 4
The maximum control forces before satuaration (τ = 25 ms)

Case B1 Case B2 Case B3 Case B4 Case B5
u1 552.49 803.97 619.03 297.71 373.25
u2 1002.3 1173.0 1137.3 522.76 685.13
u3 1281.3 1492.5 1478.2 670.14 880.52

Fig. 14. Control forces in case B1 (τ = 25 ms).

5. Conclusion

In terms of an LMI approach, the problem of fault tolerant vibration control for a class of uncertain structural
systems with control input time-delay and saturation is considered in this paper. Based on Newton’s second law,
the structural system is described as state-space model, which contains actuator fault, input signal saturation and
time-delay at the same time. Furthermore, a special Lyapunov functional, which includes some non-positive items,
is introduced to research the stability of the structural system, and the LMIs-based conditions for the system to
be stabilizable are established. If the feasibility problem of these conditions is solvable, the desired fault tolerant
controller can be obtained for the closed-loop system with control input time-delay and saturation to be stable with
the performance ‖z‖2 < γ‖ω‖2. The condition is also extended to the uncertain case. Finally, simulation results
show that the controllers designed using the presented approach can effectively achieve the attenuation objective
when there are actuator failures, control signal input time-delay and saturation.
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