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Separable nonlinear equations have the form 𝐹(𝑦, 𝑧) ≡ 𝐴(𝑦)𝑧 + 𝑏(𝑦) = 0, where the matrix 𝐴(𝑦) ∈ R𝑚×𝑁 and the vector 𝑏(𝑦) ∈ R𝑚
are continuously differentiable functions of 𝑦 ∈ R𝑛 and 𝑧 ∈ R𝑁. We assume that𝑚 ≥ 𝑁 + 𝑛, and 𝐹󸀠(𝑦, 𝑧) has full rank. We present
a numerical method to compute the solution (𝑦∗, 𝑧∗) for fully determined systems (𝑚 = 𝑁 + 𝑛) and compatible overdetermined
systems (𝑚 > 𝑁+𝑛). Our method reduces the original system to a smaller system 𝑓(𝑦) = 0 of𝑚−𝑁 ≥ 𝑛 equations in 𝑦 alone.The
iterative process to solve the smaller system only requires the LU factorization of one𝑚×𝑚matrix per step, and the convergence is
quadratic. Once𝑦∗ has been obtained, 𝑧∗ is computed by direct solution of a linear system.Details of the numerical implementation
are provided and several examples are presented.

1. Introduction

Many applications [1, 2] lead to a system of separable
nonlinear equations:

𝐹 (𝑦, 𝑧) ≡ 𝐴 (𝑦) 𝑧 + 𝑏 (𝑦) = 0, (1)

where the matrix 𝐴(𝑦) ∈ R𝑚×𝑁 and the vector 𝑏(𝑦) ∈

R𝑚 are continuously differentiable functions of 𝑦 ∈ R𝑛
and 𝑧 ∈ R𝑁 with 𝑚 ≥ 𝑁 + 𝑛. Typically 𝑛 is very small, and
for compatible systems (i.e., those with exact solutions) 𝑚 is
usually close to 𝑁. We assume that 𝐹󸀠(𝑦, 𝑧) is Lipschitz
continuous and has full rank 𝑁 + 𝑛 in a neighborhood
of a solution (𝑦∗, 𝑧∗); thus, we assume that 𝐴(𝑦) has full
rank 𝑁 in this neighborhood.

Standard projection methods, such as VARPRO [3, 4],
transform the problem (1) to the minimization of a function
in 𝑦 alone:

min
𝑦

󵄩󵄩󵄩󵄩[𝐼 − 𝐴 (𝑦)𝐴
+

(𝑦)] 𝑏 (𝑦)
󵄩󵄩󵄩󵄩 , (2)

where we use the Euclidean norm throughout this paper.

In [5, 6], we proposed a different method, using left
orthonormal null vectors of 𝐴(𝑦), to reduce (1) to an equation
of the form

𝑓 (𝑦) = 0 (3)

in 𝑦 alone. We assumed that the system is fully determined
(𝑚 = 𝑁 + 𝑛), and 𝐴(𝑦) has full rank 𝑁. That algorithm was
extended to overdetermined systems (𝑚 > 𝑁 + 𝑛) with full
rank 𝐴(𝑦) in [7]. One QR factorization of 𝐴(𝑦) is required
in each iterative step of the methods used to solve these
smaller systems for 𝑦. For details of these methods and their
relationship to other methods, see [1, 7].

In this paper, we use a special set of linearly inde-
pendent left null vectors of 𝐴(𝑦) to construct a bordered
matrix 𝑀(𝑦) = [𝐴(𝑦) | 𝐾] which inherits the smooth-
ness of 𝐴(𝑦). We use this to construct a system of 𝑚 −

𝑁 equations of the form 𝑓(𝑦) = 0 in the 𝑛 unknowns 𝑦
alone. The smaller system inherits the Lipschitz continuity
and nonsingularity of the Jacobian matrix of the original
system (1) so that quadratic convergence of the Newton or
Gauss-Newton method for solving 𝑓(𝑦) = 0 is guaranteed.
The QR factorization of 𝐴(𝑦) used in previous methods is
here replaced by an LU factorization of 𝑀(𝑦), so the cost of
each iterative step may be significantly reduced. The method
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works for both fully determined systems and compatible
overdetermined systems. This paper extends the work using
borderedmatrices and LU factorization for underdetermined
systems in [8] (𝑚 < 𝑁+𝑛) to fully determined and compatible
overdetermined systems.

In the next section, we show how to reduce the
original system to a new system in the variables 𝑦 only.
The corresponding numerical algorithm is presented in
Section 3. Examples and computational results are provided
in Section 4.

2. Analysis

Assume that (𝑦∗, 𝑧∗) is an exact solution of (1), and
that 𝐹󸀠(𝑦, 𝑧) is Lipschitz continuous and has full rank 𝑁 in
a neighborhood of (𝑦∗, 𝑧∗). For all 𝑦 in this neighborhood,
we write the singular value decomposition of 𝐴(𝑦) as

𝐴 (𝑦) = 𝑈 (𝑦) Σ (𝑦)𝑉
𝑇

(𝑦)

≡ [𝑢
1
(𝑦) , . . . , 𝑢

𝑚
(𝑦)]

[
[
[
[
[
[
[
[

[

𝜎
1
(𝑦)

d
𝜎
𝑁
(𝑦)

0 ⋅ ⋅ ⋅ 0

...
0 ⋅ ⋅ ⋅ 0

]
]
]
]
]
]
]
]

]

× [V
1
(𝑦) , . . . , V

𝑁
(𝑦)]
𝑇

,

(4)

where 𝑈(𝑦) and 𝑉(𝑦) are orthogonal matrices and 𝜎
1
(𝑦) ≥

⋅ ⋅ ⋅ ≥ 𝜎
𝑁
(𝑦) > 0. Since the singular values 𝜎

1
(𝑦), . . . , 𝜎

𝑁
(𝑦)

are continuously dependent on 𝑦, and 𝐴(𝑦
∗

) has full
rank 𝑁 and thus 𝜎

𝑁
(𝑦
∗

) > 0, we have

𝜎
𝑁
(𝑦) ≥

1

2
𝜎
𝑁
(𝑦
∗

) (5)

in a small neighborhood of 𝑦∗. In this neighborhood, the
following result holds.

Theorem 1. Let 𝐴(𝑦) be continuously differentiable and full
rank in a neighborhood of 𝑦∗. Then, there exists an 𝑚 × (𝑚 −
𝑁) constant matrix 𝐾 such that the bordered matrix

𝑀(𝑦) = [𝐴 (𝑦) | 𝐾] (6)

has full rank in a neighborhood of 𝑦∗.

Proof. Let 𝑦 be a point near 𝑦∗ for which the singular
value 𝜎

𝑁
(𝑦) satisfies (5). Let

𝐾 = [𝑢
𝑁+1

(𝑦) , . . . , 𝑢
𝑚
(𝑦)] . (7)

Then,

𝑀(𝑦) = [𝐴 (𝑦) | 𝐾]

= [𝑈 (𝑦) Σ (𝑦)𝑉
𝑇

(𝑦) | 𝑢
𝑁+1

(𝑦) , . . . , 𝑢
𝑚
(𝑦)]

=𝑈 (𝑦)

[
[
[

[

[

[

𝜎
1
(𝑦)

d
𝜎
𝑁
(𝑦)

]

]

𝑉
𝑇

(𝑦) 0
𝑁×(𝑚−𝑁)

0
(𝑚−𝑁)×𝑁

𝐼
(𝑚−𝑁)×(𝑚−𝑁)

]
]
]

]

(8)

which implies that 𝑀(𝑦) is invertible with ‖𝑀−1(𝑦)‖ ≤

max{1, 2/𝜎
𝑁
(𝑦
∗

)} by (5). For all 𝑦, 𝑦 in a sufficiently small
neighborhood of 𝑦∗ continuity ensures that we can satisfy

󵄩󵄩󵄩󵄩𝑀 (𝑦) −𝑀(𝑦)
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩 [𝐴 (𝑦) − 𝐴 (𝑦) | 0𝑚×(𝑚−𝑁)]

󵄩󵄩󵄩󵄩 < 𝜖

=
1

(max {1, 2/𝜎
𝑁
(𝑦∗)})

.

(9)

This guarantees that for all such 𝑦, 𝑦

󵄩󵄩󵄩󵄩󵄩
[𝑀 (𝑦)]

−1

(𝑀 (𝑦) −𝑀(𝑦))
󵄩󵄩󵄩󵄩󵄩

≤ (max{1, 2

𝜎
𝑁
(𝑦∗)

}) 𝜖 < 1;

(10)

hence by theNeumann Lemma [9], 𝑀(𝑦) is invertible in this
neighborhood.

Since 𝑀(𝑦) in invertible, there exists an 𝑚 ×

𝑁 matrix 𝑃(𝑦) and an 𝑚 × (𝑚 − 𝑁) matrix 𝐶(𝑦) with
linearly independent columns that satisfy

[
𝑃
𝑇

(𝑦)

𝐶
𝑇

(𝑦)
]𝑀(𝑦) = 𝐼

𝑚
. (11)

We use this to reduce the original system (1) to the form
(3) for fully determined systems and compatible overdeter-
mined systems with full rank 𝐹󸀠(𝑦, 𝑧) as follows.

Theorem 2. (a) 𝐹(𝑦, 𝑧) = 𝐴(𝑦)𝑧 + 𝑏(𝑦) = 0 if and only if

𝑓 (𝑦) ≡ 𝐶
𝑇

(𝑦) 𝑏 (𝑦) = 0, 𝑧 = −𝜁 (𝑦) ≡ −𝑃
𝑇

(𝑦) 𝑏 (𝑦) .

(12)

(b) 𝐹󸀠(𝑦∗, 𝑧∗) has full rank if and only if 𝑓󸀠(𝑦∗) has full
rank.

Proof. (a) Using (6) and (11), we have

[
𝑃
𝑇

(𝑦)

𝐶
𝑇

(𝑦)
] [𝐴 (𝑦) 𝑧 + 𝑏 (𝑦)] = [

𝑧 + 𝑃
𝑇

(𝑦) 𝑏 (𝑦)

𝐶
𝑇

(𝑦) 𝑏 (𝑦)
] , (13)

which implies the result since [ 𝑃
𝑇
(𝑦)

𝐶
𝑇
(𝑦)

] is nonsingular.
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(b) Differentiating (13) and using 𝐹(𝑦∗, 𝑧∗) = 𝐴(𝑦∗)𝑧∗ +
𝑏(𝑦
∗

) = 0, we have

[
𝑃
𝑇

(𝑦
∗

)

𝐶
𝑇

(𝑦
∗

)
] 𝐹
󸀠

(𝑦
∗

, 𝑧
∗

) = [
𝜁
󸀠

(𝑦
∗

) 𝐼
𝑁

𝑓
󸀠

(𝑦
∗

) 0
(𝑚−𝑁)×𝑁

] , (14)

which implies that 𝐹󸀠(𝑦∗, 𝑧∗) has full rank if and only
if 𝑓󸀠(𝑦∗) has full rank.

3. Computation

Based on (12), we solve the 𝑚 − 𝑁 equations
in 𝑛 unknowns 𝑓(𝑦) = 0 for 𝑦∗ and then compute 𝑧∗ =
−𝜁(𝑦
∗

) = −𝑃
𝑇

(𝑦
∗

)𝑏(𝑦
∗

). For the fully determined system,
we use Newton’s method

𝑓
󸀠

(𝑦
(𝑘)

) (𝑦
(𝑘+1)

− 𝑦
(𝑘)

) = −𝑓 (𝑦
(𝑘)

) (15)

to compute 𝑦∗, and for compatible overdetermined systems,
we use the Gauss-Newton method

[(𝑓
󸀠

(𝑦
(𝑘)

))
𝑇

𝑓
󸀠

(𝑦
(𝑘)

)] (𝑦
(𝑘+1)

− 𝑦
(𝑘)

)

= −(𝑓
󸀠

(𝑦
(𝑘)

))
𝑇

𝑓 (𝑦
(𝑘)

) .

(16)

To evaluate

𝑓 (𝑦) = 𝐶
𝑇

(𝑦) 𝑏 (𝑦) , (17)

we use an LU factorization of 𝑀(𝑦) ≡ [𝐴(𝑦) | 𝐾] to solve
for 𝐶𝑇(𝑦) from (11):

𝐶
𝑇

(𝑦)𝑀 (𝑦) = [0
(𝑚−𝑁)×𝑁

| 𝐼
𝑚−𝑁

] . (18)

Now, consider 𝑓󸀠(𝑦). Use the following notation: (𝐵(𝑦))󸀠
𝑗

denotes a matrix of the same size as a given matrix 𝐵(𝑦)
but with each entry being the partial derivative of the
corresponding entry of 𝐵(𝑦) with respect to 𝑦

𝑗
. Then,

𝑓
󸀠

(𝑦) = [(𝐶
𝑇

(𝑦))
󸀠

1

𝑏 (𝑦) , . . . , (𝐶
𝑇

(𝑦))
󸀠

𝑛

𝑏 (𝑦)]

+ 𝐶
𝑇

(𝑦) 𝑏
󸀠

(𝑦) .

(19)

Differentiating (18), the matrices (𝐶𝑇(𝑦))󸀠
𝑗
, 𝑗 = 1, . . . , 𝑛 can

be computed by solving

(𝐶
𝑇

(𝑦))
󸀠

𝑗

𝑀(𝑦) = −𝐶
𝑇

(𝑦) [(𝐴 (𝑦))
󸀠

𝑗
| 0] , (20)

using the previously computed 𝐶𝑇(𝑦) and the LU factoriza-
tion of 𝑀(𝑦).

Notice that Lipschitz continuity of 𝐹󸀠(𝑦, 𝑧) implies Lip-
schitz continuity of (𝐴(𝑦))󸀠

𝑗
, 𝑗 = 1, . . . , 𝑛 and 𝑏󸀠(𝑦), and

also of 𝑀(𝑦) and 𝑀−1(𝑦). By (18) this implies Lipschitz
continuity of 𝐶𝑇(𝑦) and (20) then implies Lipschitz con-
tinuity of (𝐶𝑇(𝑦))󸀠

𝑗
, 𝑗 = 1, . . . , 𝑛. Using (19), it follows

that 𝑓󸀠(𝑦) is Lipschitz continuous. Now,Theorem 2(b) guar-
antees quadratic convergence of the Newton and Gauss-
Newton methods for 𝑦(0) sufficiently near 𝑦∗ since the cor-
responding convergence conditions are satisfied [9–12]. In
particular, for the Gauss-Newton method, our assumption
that we have a compatible overdetermined system implies
that we have a zero residual problem.

An outline of our algorithm follows.

Algorithm 3. Given: 𝐹(𝑦, 𝑧) = 𝐴(𝑦)𝑧 + 𝑏(𝑦) with the
corresponding positive integers 𝑚,𝑁, 𝑛, a small positive
number 𝜖, and a point 𝑦(0) near the solution 𝑦∗. Compute an
SVD factorization of 𝐴(𝑦(0)) and use it to form 𝐾 as in (7).
For 𝑘 = 0, 1, 2, . . ., do steps (a)–(e).

(a) Form 𝑀(𝑦
(𝑘)

) as in (6) and compute its LU factors.

(b) Form 𝑓(𝑦
(𝑘)

) as in (17) and (18).

(c) Form 𝑓
󸀠

(𝑦
(𝑘)

) as in (19) and (20).

(d) Find 𝑦(𝑘+1) using (15) if 𝑚 = 𝑁 + 𝑛 or (16) if 𝑚 >

𝑁 + 𝑛.

(e) If ‖𝑦(𝑘+1) − 𝑦(𝑘)‖ < 𝜖 stop, output 𝑦∗ ≈ 𝑦
(𝑘+1) and

obtain 𝑧∗ from (12). Otherwise replace 𝑘 by 𝑘 +

1 and go to (a).

By (11), in step (e) 𝑧∗ = −𝜁(𝑦𝑘+1) = −𝑃𝑇(𝑦𝑘+1)𝑏(𝑦𝑘+1) =
−[𝐼
𝑁
, 0]𝑀
−1

(𝑦
𝑘+1

)𝑏(𝑦
𝑘+1

). Thus, 𝑧∗is the first 𝑁 component
of −𝑀−1(𝑦𝑘+1)𝑏(𝑦𝑘+1), which can be computed by using an
LU decomposition of 𝑀(𝑦𝑘+1).

Each iteration of our method requires one LU factoriza-
tion of 𝑀(𝑦(𝑘)) or about (2/3)𝑚3 flops [13]. A QR factor-
ization of the 𝑚 × 𝑁 matrix 𝐴(𝑦(𝑘)) costs about 2𝑁2(𝑚 −

𝑁/3) flops [13], so if 𝑚 is close to 𝑁 the new method
approximately halves this cost. The matrix to be factored
in step (d) is only 𝑛 × 𝑛 and typically 𝑛 is very small, so
this cost is negligible. Since 𝑚 and 𝑁 are typically large, the
computational cost of the other steps is also small relative to
the cost of the matrix factorization.

4. Examples

The following three examples illustrate the method.

Example 1. Consider

𝐴 (𝑦) 𝑧 + 𝑏 (𝑦) ≡

[
[
[

[

𝑦
2

1
+ 𝑦
2

2
− 𝑦
1
− 𝑦
2
− 2 2

2 2

𝑦
2

1
+ 𝑦
2

2
0

0 𝑦
1
+ 𝑦
2

]
]
]

]

𝑧

+

[
[
[

[

0

0

−2𝑦
1
+ 𝑦
2

1

]
]
]

]

= 0.

(21)
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This equation has a solution (𝑦∗
1
, 𝑦
∗

2
) = (2, −1), (𝑧∗

1
, 𝑧
∗

2
) =

(1, −1), at which 𝐴(𝑦∗) has full rank 𝑁 = 2. We choose 𝑦 =
𝑦
(0)

= [
2.1

−1.1
]. An SVD of 𝐴(𝑦(0)) produces the matrix block

𝐾 =

[
[
[

[

0.2935 −0.6780

0.1668 0.7264

−0.1962 0.0576

−0.9206 −0.0968

]
]
]

]

. (22)

We list the errors in 𝑦(𝑘) in Table 1, which clearly shows
quadratic convergence of the Newton iteration. Using 𝑦(3) ≈
𝑦
∗ gives 𝑧∗ ≈ −𝜁(𝑦(3)) with || − 𝜁(𝑦(3))−𝑧∗|| = 4.0868𝑒−12.
The next example is a discretized version of an inter-

face eigenvalue problem for a differential equation on two
intervals. For references on interface problems in differential
equations, see [14].

Example 2. Consider

𝐴 (𝑦) 𝑧 + 𝑏 (𝑦) ≡

[
[
[
[
[
[
[

[

𝑦
1
𝐸
2𝑘+1

− 𝐼
2𝑘+1

0
(2𝑘+1)×(2𝑘+1)

0
(2𝑘+1)×(2𝑘+1)

𝑦
2
𝐸
2𝑘+1

− 𝐼
2𝑘+1

𝑒
𝑇

𝑘+1
0

0 𝑒
𝑇

𝑘+1

]
]
]
]
]
]
]

]

𝑧

+

[
[
[

[

0
(2𝑘+1)×1

0
(2𝑘+1)×1

−1

1

]
]
]

]

= 0,

(23)

where the (2𝑘 + 1) × (2𝑘 + 1) tridiagonal matrix

𝐸
2𝑘+1

=

[
[
[

[

2 −1

−1 2 −1

. . .

−1 2

]
]
]

]

. (24)

For eigenvalues of such matrices, see [15]. We use 𝑘 =

9 so that 𝑛 = 2, 𝑚 = 40, and 𝑁 = 38. This equation has a
solution (𝑦∗)𝑇 = (csc2(𝜋/40)/4, csc2(3𝜋/40)/4) and for 𝑖 =
1, . . . , 19, 𝑧∗(𝑖) = sin(𝑖𝜋/20) and 𝑧∗(𝑖 + 19) = sin(3𝑖𝜋/20), at
which 𝐴(𝑦∗) has full rank 𝑁 = 38. We choose 𝑦 = 𝑦(0) =
[
41.5

4.75
]. An SVD of 𝐴(𝑦(0)) produces an appropriate 40 ×

2 matrix block 𝐾. We list the errors in 𝑦(𝑘) in Table 2, again
showing quadratic convergence. Using 𝑦(3) ≈ 𝑦∗ gives 𝑧∗ ≈
−𝜁(𝑦
(3)

) with ‖ − 𝜁(𝑦(3)) − 𝑧∗‖ = 9.9027𝑒 − 15.

The relative flop count

[2𝑁
2

(𝑚 − 𝑁/3) − 2𝑚
3

/3]

[2𝑁2 (𝑚 − 𝑁/3)]

(25)

shows that in this example using one LU factorization
of 𝑀(𝑦(𝑘)) instead of a QR factorization of 𝐴(𝑦(𝑘)), as used
in alternative methods, reduces the flop count per iteration
by approximately 46%. In general, if 𝑚 and 𝑁 are large and

Table 1: Newton iterations for Example 1.

𝑘 𝑦
(𝑘)

1
− 𝑦
∗

1
𝑦
(𝑘)

2
− 𝑦
∗

2
‖𝑦
(𝑘)

− 𝑦
(𝑘−1)

‖

0 1.0000𝑒 − 001 −1.0000𝑒 − 001 —
1 −2.3657𝑒 − 003 4.4412𝑒 − 003 1.4624𝑒 − 001

2 −5.7794𝑒 − 006 1.8337𝑒 − 008 5.0292𝑒 − 003

3 2.5508𝑒 − 012 7.5073𝑒 − 012 5.7794𝑒 − 006

Table 2: Newton iterations for Example 2.

𝑘 𝑦
(𝑘)

1
− 𝑦
∗

1
𝑦
(𝑘)

2
− 𝑦
∗

2
‖𝑦
(𝑘)

− 𝑦
(𝑘−1)

‖

0 8.8809𝑒 − 001 1.6257𝑒 − 001 —
1 −4.2544𝑒 − 003 −2.3859𝑒 − 003 9.0746𝑒 − 001

2 −9.7644𝑒 − 008 −5.1531𝑒 − 007 4.8774𝑒 − 003

3 7.1054𝑒 − 015 −2.3981𝑒 − 014 5.2448𝑒 − 007

Table 3: Gauss-Newton iterations for Example 3.

𝑘 𝑦
(𝑘)

1
− 𝑦
∗

1
𝑦
(𝑘)

2
− 𝑦
∗

2
‖𝑦
(𝑘)

− 𝑦
(𝑘−1)

‖

0 2.0000𝑒 − 001 2.0000𝑒 − 001 —
1 −6.7103𝑒 − 003 −1.7935𝑒 − 004 2.8775𝑒 − 001

2 −6.2985𝑒 − 006 −1.7406𝑒 − 005 6.7060𝑒 − 003

3 −3.5553𝑒 − 011 6.2474𝑒 − 011 1.8511𝑒 − 005

4 0.0000𝑒 + 000 −8.8818𝑒 − 016 7.1883𝑒 − 011

close to each other, as is usually the case in compatible
systems, the flop count is approximately halved.

We now give an example of a compatible overdetermined
system.

Example 3. Consider

𝐴 (𝑦) 𝑧 + 𝑏 (𝑦) ≡ [
𝐴
1
(𝑦
1
, 𝑦
2
)

𝐴
2
(𝑦
1
, 𝑦
2
)
] 𝑧 + [

𝑏
1
(𝑦
1
, 𝑦
2
)

𝑏
2
(𝑦
1
, 𝑦
2
)
] = 0, (26)

where the (𝑁 − 2) × 𝑁 matrix 𝐴
1
(𝑦
1
, 𝑦
2
), the 5 × 𝑁 matrix

𝐴
2
(𝑦
1
, 𝑦
2
), and 𝑏

2
(𝑦
1
, 𝑦
2
) ∈ R5 are, respectively,

[
[
[

[

𝑦
1
−𝑦
2

1

𝑦
1
−𝑦
2
1

d d d
𝑦
1
−𝑦
2
1

]
]
]

]

,

[
[
[
[
[

[

0 ⋅ ⋅ ⋅ 0 𝑦
2

1
1

0 0 2 𝑦
2

0 ⋅ ⋅ ⋅ 0 1 1

0 0 −𝑦
1
𝑦
2

2

0 0 1 1

]
]
]
]
]

]

,

[
[
[
[
[

[

−5

−2 − 𝑦
2

−2

−7

−𝑦
1

]
]
]
]
]

]

(27)

and 𝑏
1
(𝑦
1
, 𝑦
2
) = 0 ∈ R𝑁−2. Here, 𝑛 = 2 and 𝑚 = 𝑁 + 3.

We choose 𝑁 = 77 so that 𝑚 = 80. This equation has
a solution (𝑦∗

1
, 𝑦
∗

2
) = (2, 3) and 𝑧∗

𝑗
= 1 for 𝑗 = 1, . . . , 77,

at which 𝐴(𝑦∗) has full rank. We choose 𝑦 = 𝑦(0) = [ 2.2
3.2
].

An SVD of 𝐴(𝑦(0)) produces an appropriate 80 × 3 matrix
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block 𝐾. We list the errors in 𝑦(𝑘) in Table 3, clearly show-
ing quadratic convergence of the Gauss-Newton method.
Using 𝑦(4) ≈ 𝑦∗ gives 𝑧∗ ≈ −𝜁(𝑦(4)) with ‖ − 𝜁(𝑦(4)) − 𝑧∗‖ =
3.4101𝑒 − 13. In each iteration of this example, using one
LU factorization of 𝑀(𝑦(𝑘)) instead of one QR factorization
of 𝐴(𝑦(𝑘)) reduces the flop count by approximately 47%,
measured by (25).

5. Conclusions

We present an algorithm for solving the separable equation

𝐹 (𝑦, 𝑧) ≡ 𝐴 (𝑦) 𝑧 + 𝑏 (𝑦) = 0, (28)

where the matrix 𝐴(𝑦) ∈ R𝑚×𝑁 and the vector 𝑏(𝑦) ∈

R𝑚 are continuously differentiable functions of 𝑦 ∈ R𝑛
and 𝑧 ∈ R𝑁 with 𝑚 ≥ 𝑁 + 𝑛. We assume that 𝐹󸀠(𝑦, 𝑧) is
Lipschitz continuous and has full rank 𝑁 + 𝑛 in a neighbor-
hood of a solution (𝑦∗, 𝑧∗); thus, 𝐴(𝑦) has full rank 𝑁 in
this neighborhood. Our technique replaces (28) by 𝑚 −

𝑁 equations in 𝑛 unknowns 𝑓(𝑦) = 0 which we solve by
either the Newton or the Gauss-Newton iterative method, in
both cases with quadratic convergence. Ourmethod uses one
LU factorization of an 𝑚 × 𝑚 matrix

𝑀(𝑦) = [𝐴 (𝑦) | 𝐾] (29)

instead of aQR factorization of thematrix 𝐴(𝑦) per iteration,
and may thus be substantially more efficient than competing
methods (approximately halving the cost) when 𝑚 is close
to 𝑁 and 𝑁 is large, as is usually the case in compatible
systems. The method is applicable to fully determined sep-
arable systems and to compatible overdetermined separable
systems.
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