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The chosen rectangular and fractal microstrip patch antennas above an infinite ground plane are analyzed by the theory of
characteristic modes. The resonant frequencies and radiation Q are evaluated. A novel method by Vandenbosch for rigorous
evaluation of the radiation Q is employed for modal currents on a Rao-Wilton-Glisson (RWG) mesh. It is found that the
resonant frequency of a rectangular patch antenna with a dominant mode presents quite complicated behaviour including having
a minimum at a specific height. Similarly, as predicted from the simple wire model, the radiation Q exhibits a minimum too. It is
observed that the presence of out-of-phase currents flowing along the patch antenna leads to a significant increase of the Q factor.

1. Introduction

Evaluation of the basic properties of microstrip patch
antennas (MPA) has been numerously discussed in literature,
see, for example, [1–3]. The two main MPA attributes are
resonant frequency (or frequencies but we will deal mostly
with the dominant mode) and the radiation Q factor. So far,
only approximate results and semianalytic equations have
been published. To our knowledge, this is the first time
that these important characteristics have been studied in a
rigorous way. The antennas are treated by using a modal
approach (hence we do not a priori consider any feeding
to be connected), namely, by the theory of characteristic
modes (TCM), [4, 5]. Evaluation of the radiation Q is
performed both by the TCM from the eigenvalues slope and
by novel rigorous equations derived by Vandenbosch [6] and
Vandenbosch and Volski [7].

2. The Theory of Characteristic Modes

For completeness, let us formulate the basics of the charac-
teristic modes for perfectly conducting bodies of area S. The
scattered field Es is related to the electric surface currents J by
the electric field integral equation (EFIE) [8]

[
L(J)− Ei

]
tan
= 0. (1)

Equation (1) is usually treated within the method of
moments (MoMs) [8] framework and, due to the structure
discretization, the L operator is known as the “complex
impedance matrix” [Z] = [R] + j[X].

Then the associated Euler’s equation to be solved is

XJn = λnRJn. (2)

Equation (2) is a standard weighted eigenvalue equation
leading to a set of real characteristic eigencurrents Jn and
associated eigenvalues λn. Properties of eigenvalues are
described in [9], at this moment it is important to note
that λn reflects the amount of net reactive power (thus λn =
0 means resonance). Instead of eigenvalues, the so-called
characteristic angles αn are introduced to show more visible
behavior with frequency [9]. Characteristic currents form a
complete orthogonal set, and hence the total current on a
conducting body may be expressed as a linear combination
of these mode currents [10].

2.1. Implementation of the Characteristic Modes Theory.
Implementation of the modal decomposition process has
been done in the MATLAB [11] environment using Makarov
EFIE codes [12] with the RWG basis functions [13]. This
usage is restricted to arbitrary 3D PEC structures with air
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dielectrics. Our developed TCM tool [14] has the following
main advantages:

(i) Comsol Multiphysics [15]/MATLAB’s PDE TooLbox
mesh import,

(ii) Optional Green’s function for infinite ground plane
simulations,

(iii) Single solver/multicore solver/distributed solver
(within a computer network with installed
MATLAB).

3. The Radiation Q Factor

In [6] a novel theory able to rigorously calculate radiated
power and stored energies directly from currents flowing
along the antenna has been presented. The radiation Q factor
is then readily evaluated by the definition [16]:

Q = 2ω
max

(
W̃m, W̃e

)

Pr
. (3)

The equations for radiated power Pr and stored electric and
magnetic energies W̃e, W̃m are

Pr =
(

1
8πωε0

)∫

Ω1

∫

Ω2

[
k2J(r1)J(r2)−∇ · J(r1)∇ · J(r2)

]

× sin(kr21)
r21

dΩ1dΩ2,

(4)

W̃e = 1
16πω2ε0

(Ie − IR), (5)

W̃m = 1
16πω2ε0

(Im − IR), (6)

where

IR = k

2

∫

Ω1

∫

Ω2

[
k2J(r1)J(r2)−∇ · J(r1)∇ · J(r2)

]

× sin(kr21)dΩ1dΩ2,
(7)

Ie =
∫

Ω1

∫

Ω2
∇ · J(r1)∇ · J(r2)

cos(kr21)
r21

dΩ1dΩ2, (8)

Im = k2
∫

Ω1

∫

Ω2
J(r1)J(r2)

cos(kr21)
r21

dΩ1dΩ2, (9)

where k is a free-space wavenumber, J is the surface current
density, and r21 is the distance between interacting current
elements. The tilde denotes that the radiation contribution IR
has been subtracted from the stored energies at every point
in space [17]. It is assumed that the currents are flowing in a
vacuum.

3.1. The Modal Radiation Q Factor. The modal radiation Q
factor may be evaluated from the slope of modal eigenvalues
[18]:

Qeig = ω0

2
dλ

dω
. (10)
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Figure 1: Distance between nonoverlapping current elements [23].

In [18], (10) is supposed to be an approximation of the
radiation Q, but in resonance it is actually exact.

Since characteristic modes are normalized to radiate unit
power Pr = 1 [4], (3) reduces to

Q = 2ωmax
(
W̃e, W̃m

)
. (11)

For parallel or series RLC circuit (hence, for one mode), the
“impedance QZ” equals the exact “current Q” [6]:

Q = QZ = ω0

2

∣∣∣∣
∂Z

∂ω

∣∣∣∣ =
ω0

2

∣∣∣∣
∂R

∂ω
+
∂X

∂ω

∣∣∣∣. (12)

Inserting

Z = R + jX = 1
|I2|

[
Pr + j2ω

(
W̃m − W̃e

)]
(13)

valid for lossless antennas [19] and using the fact that Pr = 1,
(12) results in

Q = QX = ω0

2

∣∣∣∣
∂X

∂ω

∣∣∣∣ =
ω0

2
∂

∂ω

[
2ω
(
W̃m − W̃e

)]

= ω0

2
∂λ

∂ω
= Qeig,

(14)

providing that

λ = 2ω
(
W̃m − W̃e

)
. (15)

It is therefore concluded that the modal Qeig equals the QX by
definition, and it can be proven (using the reactance theorem
[20, 21]) that in resonance it also equals the radiation Q
defined from energies by (11).

3.2. Software Implementation. The above equations were
implemented in MATLAB for the RWG triangular mesh
where two different interaction situations occur:

(a) Distant Elements. When the triangular elements are not
overlapping, current density on triangles may be simply
approximated as point sources located at the centre of
triangles [22], see Figure 1. No actual integration is then
needed. This centroid approach is very fast with satisfactory
accuracy as will be shown later (however it may fail for
patches located very close to the ground plane).
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Figure 2: Self-term evaluation. (a) Original problem, (b) simplex
coordinates transformation [23].

(b) Overlapping (Self) Elements. As known from the method
of moments, the so-called “self” contributions are of great
importance when dealing with calculations on discrete
elements (meshes).

Here, the self-interaction occurs when two triangles are
overlapping each other. Due to the behavior of integral
kernels, only rapidly varying term cos(kr21)/r21 has to be
carefully treated. Since k0R21 → 0 (R21 being the longest side
of the triangle T) is satisfied, one needs only to use the first
term in the Taylor series expansion. The dominant singular
static part is 1/r21 and the integral to be worked out is

I =
∫

T

∫

T′

1√
(x − x′)2 +

(
y − y′

)2
dx dy dx′ dy′, (16)

where T = T′ is a triangular area. Using simplex coordinates
transformation (Figure 2), the result is [23, 24]

I=−4
3
A2
[

ln(1−2h12/L)
h12

+
ln(1−2h13/L)

h13
+

ln(1−2h23/L)
h23

]
,

(17)

where A is the triangle area, hi j are the edge lengths (see
Figure 2), and L is the perimeter of the triangle.

4. Applications: Rectangular Patch Antenna

Let us first concentrate on a rectangular patch antenna of
dimensions L = 50 mm and W = 30 mm (further noted as
R50× 30) placed in air at a heightH above an infinite ground
plane. Only the dominant TM01 mode will be studied. The
reason for choosing a patch with L/W /= 1 is that we do not
have to deal with degenerated modes.

Using the image theory, the radiator in the XY plane
at height z = H above an infinite electric ground plane is
modelled as two patches separated by 2H . The total number
of triangular elements is 676. In the TCM analyser, a proper
out-of-phase mode is selected (Figure 3).

The resonant frequency of the dominant mode is shown
as a function of height H , see Figure 4. It has been evaluated
from a modal resonant condition for eigenvalues λ =
2ω(W̃m − W̃e) = 0 employing an adaptive frequency
sweep for each height. The behaviour is quite peculiar,
especially for greater heights. For low heights (H < 10 mm or
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Figure 3: Model of MPA above infinite ground plane for H =
10 mm, dominant mode TM01 shown.
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Figure 4: R50 × 30 resonant frequency of the dominant TM01

mode. The dashed red curve is a quasianalytical equation from [1].

H/λres < 0.08), the resonant frequency decreases “regularly,”
and quasianalytical formulas (see, e.g., [1, 3]) based on
the fringing field concept are valid below this range. For
H ∼= 25 mm (H/λres

∼= 0.188) there is absolute minimum
of the TM01 resonant frequency. Further on, the resonant
frequency rises to reach its maximum for H ∼= 40 mm
(H/λres

∼= 0.51). Around this specific height the patch also
shows the minimum of the radiation Q. The above described
process repeats periodically. It is yet unclear to the authors
as what is the physical background to the resonant frequency
discontinuity around H/λres

∼= 0.5.
The terms 2ωW̃m, 2ωW̃e, and 2ω(W̃m − W̃e) obtained

from (5)–(9) and eigenvalues λ are plotted at Figure 5 for
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Figure 5: Reactive energies and their differences for an R50 × 30
patch at height of 25 mm.

0 5 10 15 20 25 30 35 40 45 50 55 60
0

5

10

15

20

25

30

35

40

45

50

H (mm)

Qeig

Q J

Q
 (

–)

Figure 6: The radiation Q for dominant mode of an R50× 30 patch
as a function of height H .

H = 25 mm as a function of frequency. There is excellent
agreement between the difference in stored energies and the
eigenvalues, both obtained in a completely different manner.

There is also very good agreement between the exact QJ

and Qeig confirming the validity of the proposed algorithm
via (14), see Figure 6. Note that Qeig in (10) does not require
the currents to be calculated on the structure while QJ is
evaluated in a rigorous way from modal currents (11).

From Figure 6 it is seen that the radiation Q has a
minimum for a specific height. It is deduced that the reason
lies in the cancelling of the radiated power between the two
out-of-phase currents. Similar behaviour has been observed
in the case of two half-wave thin-wire dipoles with opposite
sinusoidal currents, separated by d = 2H , see [25] for details.
Actually these two out-of-phase dipoles may serve as a very
simple model for a patch antenna with a dominant mode.
When the dipoles are reduced to elementary (Hertzian) ones,

an approximate analytical solution is available and in [25] we
showed that the Q is led by the function

fQ(H) ∼= 2H
k2H − sin(k2H)

. (18)

After deriving (18), the condition is worked-out

tan(k2H) = k2H , (19)

and the first nontrivial root of (19) could be approximated
as [25]

(
H

λ

)

min

∼= 3
8
− 1

6π2
= 0.358. (20)

For sinusoidal currents on dipoles the minimum (evaluated
numerically) occurs for H = 0.36λ.

The minimum of the patch under study is obtained at
H ∼= 0.4λ, a value that is remarkably close to the simple
dipole model.

4.1. Algorithm Convergence. Since no other methods for
calculating modal Q are available, Qeig is taken as a reference,
and the relative error percentage is defined as:

relative error =
∣∣∣QJ −Qeig

∣∣∣
Qeig

· 100, (21)

where QJ is calculated from the currents using (11). Four
different heights H were chosen, H = 1 mm (0.01λ), H =
2 mm (0.0185λ), H = 10 mm (0.0803λ), and H = 20 mm
(0.151λ), and the relative error was evaluated as a function of
total triangular elements (including the mirror), see Figure 7.
All quality factors were evaluated at the resonant frequency
of the dominant mode for the R50 × 30 patch. As discussed
earlier, the centroid approximation became more inaccurate
with low heights H . However, even for the lowest analyzed
value H = 0.01λ, the relative error is in the order of
a few percent for reasonable mesh density (hundreds of
elements). Further improvements to the integration routine
are considered for the future.

4.2. Fractional Bandwidth of the R50 × 30 Patch Antenna. It
is known that the fractional bandwidth (FBW) is related to
the unloaded Q factor and the desired matching VSWR level.
For VSWR < s we have [26]

FBW ∼= s− 1
Q
√
s

[%]. (22)

Using a full-wave simulator CST-MWS [27], an R50 × 30
patch has been simulated and the FBWCST for VSWR < 2 was
calculated as:

FBWCST = f2 − f1
f0

, (23)

where f2 and f1 are margins for VSWR < 2 and f0 is
the centre frequency. Only very low heights were studied
since we used a simple probe feed which introduces an
inductance component to the total input impedance. The
comparison in Figure 8 shows good agreement of both
fractional bandwidths.
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5. Applications: Fractal Antennas

In this section, a bit more complex structures will be studied.
The first one (the “Self Affine U” fractal, SAU), has been
described in [28] and further analyzed in [29]. This kind
of radiating motif is employed as a dual-band radiator
with mutually orthogonal radiation patterns at both bands.
Therefore we are analyzing the first two modes, where the
currents are orthogonal. These are depicted in Figures 9
and 10 for first (SAU1) and second (SAU2) fractal iteration,
respectively. The current of the first (lower) mode J1 has
two out-of-phase components (see Figure 11 for schematic
current paths) while the second mode comprises inphase
currents only. As we know from previous studies, opposite
currents contribute to a rapid increase of the radiation Q,
and it is expected that J1 will have a much higher Q than J2.

J1 J2

σ1 σ2

Figure 9: The first two characteristic modes (currents and charges)
for the SAU1 structure.

J
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L

0 0

2J1

σ1 σ2

Figure 10: The first two characteristic modes (currents and
charges) for the SAU2 structure.
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Image

Figure 11: The main current paths for the first two modes of the
SAU1/2 structure.
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Figure 12: Characteristic angles (left) and radiation Q for the SAU2.
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Figure 13: Degenerated dominant mode J1, and J2 of the FCL2 antenna (currents and charges).

Figure 11 presents a very simple concept showing the
main current paths for the J1 and J2 modes discussed above
including the mirroring effect of the infinite ground plane. It
could be simply stated that more opposing current paths lead
to significant increase in Q.

We show detailed behaviour only for SAU2 (the situation
is similar for SAU1)—see Figure 12 that confirms high Q for
the J1 mode. Characteristic angles are calculated for H =
29 mm, the actual height for which the dual-band antenna
was designed [29].

5.1. The FCL-2 Fractal Antenna. The second presented struc-
ture is the so-called fractal clover leaf (FCL) of the second
iteration, [14]. The antenna is fed by an L-probe [30] that
excites its dominant mode and is located at height H =
36 mm. Actually, the dominant mode is composed of two
degenerated modes J1 and J2 (Figure 13). The second higher
mode J3 is shown at Figure 14 for completeness.

Figure 15 shows the main current paths of these modes,
and we can again deduce that the dominant mode will exhibit
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Figure 15: Schematic depiction of the dominant current paths for the dominant (J1 + J2) and the second higher J3 modes together with their
modal radiation patterns.

lower Q compared to J3. This is confirmed by Figure 16—J3

has more than 200x higher radiation Q.

6. Resonant Properties of Studied Antennas

The properties of studied antennas are summarized in this
section. At first we observed that microstrip antenna could
support different kinds of modes regarding their Q factors
(see Figure 17):

(a) low Q modes with the current flowing in one direc-
tion and not changing its phase (dominant modes of
simple shapes like rectangular, circular patch, and so
forth.)

(b) high Q modes with part of the currents flowing in the
opposite direction. These modes exist even on simple
“U” shaped patch (Figure 9 left) and on complex
(fractal) geometries.

Secondly, it has been observed that resonant frequency is
quite a complicated function of height. Unfortunately we do
not yet have any physical explanation as to why some modes
present minimum values of fr .

Looking at Figure 18, it is clear (and interesting) that
the resonant frequency behaves quite differently for low-
Q and high-Q modes. The resonant frequency of low-Q
modes is much more sensitive to the height, whereas high-Q
modes exhibit almost constant fr when the height is varied.
The proposed explanation is that the opposite currents
(responsible for high Q) keep reactive fields very close to the
radiating structure so the effect of a fringing field coupled to
the ground plane becomes almost negligible.

7. Conclusions

Modal resonant properties of selected microstrip patch
antennas have been studied with the help of characteristic
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modes and the novel theory published by Vandenbosch. It
has been found that the resonant frequency of a simple
rectangular patch antenna is quite a complicated function
of its height above the infinite ground. Moreover, the
dependency of resonant frequency is also found to be a
function of the radiation Q factor (which is now possible to
calculate in a rigorous way). Due to the complexity of the
problem, no physical explanation for the resonant frequency
behaviour has yet been found.

It is observed that the radiation Q factor decreases
for “standard” heights (<∼0.1λ), however there exists an
absolute minimum value ofQ that has already been predicted
by simple modeling of two elementary out-of-phase dipoles.
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Using proper feeding techniques (like the L-probe) allows us
to design wideband compact antennas.

The theory now puts current distribution and the radi-
ation Q factor into objective context. Whenever the current
mode exhibits opposite components, high Q may appear.

Future work is needed to connect the presented theory
with parameter sweeps or even optimization, so we will be
able to design novel wideband/multimode compact anten-
nas.
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