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Summary

A method of genetic evaluation for multiple binary responses is presented. An underlying
multivariate normal distribution is rendered discrete, in m dimensions, via a set of m fixed
thresholds. There are 2"’ categories of response and the probability of response in a given category
is modeled with an m-dimensional multivariate normal integral. The argument of this integral
follows a multivariate mixed linear model. The randomness of some elements in the model is
taken into account using a Bayesian argument. Assuming that the variance-covariance structure is
known, the mode of the joint posterior distribution of the fixed and random effects is taken as a

point estimator. The problem is non-linear and iteration is required. The resulting equations
indicate that the approach falls in the class of generalized linear models, with additional generali-
zation stemming from the accommodation of random effects. A remarkable similarity with multiple
trait evaluation via mixed linear models is observed. Important numerical issues arise in the

implementation of the procedure and these are discussed in detail. An application of the method
to data on calving preparation, calving difficulties and calf viability is presented.
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Résumé

Estimation de la valeur génétique
à partir de réponses binaires multidimensionnelles

Cet article présente une méthode d’évaluation génétique multidimensionnelle de caractères
binaires. La distribution multinormale sous-jacente est discrétisée en m dimensions par le biais de
m seuils. On considère les 2"’ catégories de réponse et la probabilité de réponse dans une

catégorie est modélisée par une intégrale d’une densité multinormale de dimension m.

L’argument de cette intégrale est décomposé suivant un modèle mixte multidimensionnel. Le
caractère aléatoire de certains éléments du modèle est pris en compte par une approche bayé-
sienne. Le mode de la distribution conjointe a posteriori est choisi comme estimateur de position
des effets fixes et aléatoires sachant la structure de variances-covariances connue. Le système
obtenu est non linéaire et résolu par itérations. La forme des équations montre que cette approche



fait partie de la classe des modèles linéraires généralisés avec l’extension supplémentaire au

traitement de facteurs aléatoires. Le système présente en outre une analogie remarquable avec
celui de l’évaluation multi-caractère par modèle mixte linéraire. La résolution soulève d’impor-
tantes difficultés numériques. La méthode est illustrée par une application numérique à des
données de préparation au vêlage, de difficulté de celui-ci et de viabilité des veaux.

Mots clés : Evaluation multicaractère, caractère tout-ou-rien, méthode bayésienne.

I. Introduction

Many categorical traits encountered in animal breeding are of economic impor-
tance, e.g., fertility, prolificacy, calving difficulty and viability. As their statistical
treatment appears more complex than that of continuous variates, efforts have been
made recently to develop procedures of analysis especially in the area of prediction of
breeding values (SCHAEFFER & WILTON, 1976 ; BERGER & FREEMAN, 1978 ; QUAAS &
VAN VLECK, 1980 ; GIANOLA, 1980a, b). A general approach to prediction of genetic
merit from categorical data has been proposed by GIANOLA & FOULLEY (1982,
1983a, b). This method, based primarily on the threshold concept, employs a Bayesian
procedure for statistical inference which allows us to treat a large range of data
structures and models. The method extends best linear unbiased prediction and the
mixed model equations developed by HENDERSON (1973) to a type of nonlinear

problcm. Further, it can also be regarded as an extension of estimation by maximum
likelihood in « generalized linear models » (MCCut.LnGH 8c NELDER, 1983) so that fixed
and random effects can be accommodated.

Different situations of single trait (GIANOLA & FOULLEY, 1982, 1983a, 1983b) and
multiple trait evaluations (FOULLEY et al. , 1983 ; FOULLEY & GIANOLA, 1984) have

already been considered. Single trait results have also been derived by Gtt.ntouR (1983)
and HARVILLE & MEE (1984).

This report deals with the evaluation of multiple traits when each variate is a

binary response. The approach is a generalization of the results in FOULLEY & GIANOLA

(1984).

II. Methodology

A. Data

The data can be arranged in an s x 2m contingency table, where m is the number
of traits and s is the number of elementary subpopulations, i.e. combinations of levels
of factors or, in the most extreme form, individuals themselves. Let nj.k be the number
of responses in subclass j (j = 1, ..., s) falling in the k‘&dquo; category. The marginal totals
by row (n,,, n2+, ..., n!+, ..., ns+) will be assumed non-null and fixed by the sampling
procedure. The kll category can be designated by an m-bit-digit, with a 0 and a 1 for

the attributes coded [0] and [1] respectively in trait i (i = 1, 2, ..., m). The data Y can
be presented as a s x 2m matrix



where Yj is a 2&dquo;’ x 1 vector

and Y!q is a 2m x 1 vector having a 1 in the position of the category of response and 0
elsewhere.

B. Model

The model is based on the threshold and liability concepts commonly used in

quantitative genetics for the analysis of categorical responses (WRIGHT, 1934 ; ROBERT-
SON & LERNER, 1949 ; DEMPSTER & LERNER, 19SO ; TALLIS, 1962 ; FALCONER, 1965 ; §
THOMSON, 1972 ; CURNOW & SMITH, 1975).

It is assumed that the probability that an experimental unit responds in category
k (k = 1, ..., c) is related to the values of m continuous underlying variables

(e&dquo; !2, ..., em) with thresholds (Tj, T2, ..., Tm). The model for the underlying variables
can be written as

Under polygenic inheritance, it may be assumed that the residuals eijq have a

multivariate normal distribution. We write :

Given the location parameters qij, the probability that an experimental unit of

subclass j responses in category k is mapped via the thresholds by :

with r(’) = (0,1). Because of the multivariate normality assumption, one may write for a
given category, e.g., [000...0] :

<. 1. «

is a multivariate normal density function with means
and variance-covariance matrix E as in (4).

Letting yi = (xi - 11q)/u!,, (6) becomes :



where lL¡j = (Ti - 11,)/u!, and R is a matrix of residual correlations. In general, the

probability of response in any category [r)kl ... r!k) ... rfl] is :

The next step is to model the Vii ’s, i.e., the distance between the threshold for the
ill underlying variate and the mean of the jll subpopulation in units of residual standard
deviation. Because of the assumption of multivariate normality, it is sensible to employ
a linear model. Let :

where tti is an s x 1 vector, Xi (Zi) is a known incidence matrix of order s x p, (s x q),
[3; is a vector of « fixed » effects and u, is a vector of « random » effects. In animal

breeding, the p’s are usually effects of environmental factors such as herd-year-seasons
or age at calving, or of sub-populations (group of sires), which affect the data. The u’s
can be breeding values, transmitting abilities or producing abilities.

More generally :

and # is the direct-sum operator.

C. Statistical inference

Inferences are based on Bayes theorem :

where 0’ = [(3’, u’] is a vector of parameters and

f (6 ! Y) : posterior density,
g (Y 6) : likelihood function,

and

h (0) : prior density.

It is assumed that all required variances and covariances are known at least to

proportionality.



The prior density is taken as multivariate normal so :

where I

where

with i

When the u’s are breeding values or transmitting abilities, we can write :

with or, = f, when i = i’. Above, A is the matrix of additive genetic relationships
between the q individuals we wish to evaluate, and u§ and (r.,,, are the additive genetic
variance for trait i, and the additive genetic covariance between traits i and i’,
respectively.

More generally :

is an mq x mq matric where So is the m x m additive genetic variance-covariance
matrix.

The prior density is proportional to :

Given 0, the data in Y are conditionally independent following a multinominal
distribution. The likelihood function is :



Because the posterior mean E (0 Y) is technically difficult to evaluate, the

posterior mode is taken as a Bayes point estimator. The mode minimizes expected loss
when the loss function is :

Above, e is an arbitrarily small number (Box & TIAO, 1973).

D. Computation of the mode of the posterior distribution

1. General considerations

Suppose, a priori, that all vectors p are equally likely, i.e., prior knowledge about
(3 is vague. This is equivalent to letting r-, ! 0, in which case (16) reduces to :

In order to get the mode of the posterior density, the derivatives of (17) with
respect to 0 are equated to zero. However, the equations are not explicit in 0. The

resulting non-linear system can be solved iteratively using the Newton-Raphson algo-
rithm. This consists of iterating with :

where 0!’! = 9!’! - 6[1-11, and 8!’! is a solution at the t’h iterate. Iterations were stopped
when [!’!/(!;p; + mq)]°5 was srnaller than an arbitrarily small number.

2. First derivatives

The first derivatives of the log-posterior in (17) with respect to 13¡ can be written
as :

where X;j is a p; x 1 vector containing the elements of the jlh row of the s x p, incidence
matrix X;, and v; is an s x 1 vector with elements vii which have the form :



where Kij is the j’&dquo; element in Ri of (9).
If the subscript j is ignored, one can write :

where :

In order to illustrate (20), let m = 3 and c = 8, i.e., 3 binary traits so that there
are 23 = 8 response categories. Application of (20) to the 3-bit-digit [101] yields :

Similarly, suppose m = 4 and c = 24 = 16. Application of (20) to the 4-bit-digit
[0110] gives :

It should be mentioned that the expression in (20) is consistent with notation

employed by Joarrsorr & KOTZ (1972) for bivariate and trivariate normal integrals.

The first derivatives of the log-posterior with respect to ui are :

where Gii’ is the block corresponding to traits i and i’ in the inverse of G defined in

(13).

3. Second derivatives

First, consider :



where Wii, is an s x s diagonal matrix with elements :

The form of the second derivative in the preceding expression is described in the
appendix. Similarly :

4. Equations

First, we observe that (18) can be written as :

Collecting the first and second derivatives in (19) through (24), the system of
equations requiring solution can be written as :



where :

are « working variates ». Note that the system in (25) has a remarkable parallel with
the equations arising in multiple-trait evaluation via mixed linear models (HENDERSON &

QUAAS, 1976). Also, observe that the inverse matrix required in (26) is easy to obtain
because the W;;, submatrices are diagonal.

III. Numerical application to three binary traits

A. Data

Data on 3 binary traits - calving preparation, calving difficulty and calf viability
- were obtained from 48 Blonde d’Aquitaine heifers mated to the same bull and
assembled to calve in the Casteljaloux Station, France. Each record on an individual
included information about region of origin, season of calving, sex of calf, sire of

heifer, calving preparation (« bad » or « good »), calving difficulty score (1 : normal

birth, 2 : slight assistance, 3 : assisted, 4 : mechanical aid, 5 : caesarean) and calf

viability (dead, « poor » or « good » viability). For the purpose of the analysis « bad »
calving preparation was coded as 0, « good » preparation as 1 ; calving difficulty scores
1-3 were recoded as 0 and 4-5 as 1 ; dead or « poor » viable calves were coded as 0
and calves having « good » viability were coded as 1. The data were arranged in an
30 x 23 contingency array presented in table 1.

Raw frequencies in the 8 categories of response and summed over traits for each
level of the factors considered are shown in table 2. Overall, only 25 p. 100 of the
heifers had a « good » calving preparation, 75 p. 100 of the calvings were normal or
slightly assisted, and 79 p. 100 of the calves had « good » viability. Differences between
sires suggest a variation for all traits which could be used for selection. The data

suggest an association between « good » preparation and « easy » calving, « good »
preparation and viability and especially between « easy » calving and « good viability.



B. Model

The same model was used to describe the 3 underlying variables for calving
preparation, calving difficulty and calf viability. The model for the distance between the
threshold and the mean of subpopulations j for the i’&dquo; underlying variate was :





where rik is the effect of the k’th region of origin (k = 1,2), ti, is the effect of the t’th
season of calving (I = 1,2), gi. is the effect of the m’th sex of calf (m = male, female)
and si. is the effect of the n’th sire of heifer.

In order to reparameterize the models to full rank, the [3; vectors were taken as :

The first two elements of [3; correspond to the distance between threshold and

subpopulation mean for female calves born in season 2 out of heifers coming from
regions 1 and 2, respectively. The third and fourth elements represent the difference
between calving seasons and between male and female calves, respectively.

The diagonal elements are heritabilities of the 3 traits in the underlying scale ; the
elements above and below the diagonal represent genetic and residual correlations,
respectively. These values were taken from GOGUE (1975, unpublished Charolais data)
after an approximate transformation to the conceptual scale. Prior knowledge about J3
was assumed to be vague, so the log prior density function is :



D. Iteration

Iteration was carried out with equations (18). The starting values were obtained by
applying in (18) :

Using the above values, Newton-Raphson yields as a first iterate solutions to

univariate linear « mixed model » equations applied to (0, 1) data. The criterion to stop
iteration was :

where A is the vector of corrections in (18), p is the order of (3; and q is the order of
ui. The required bivariate and trivariate normal integrals were calculated using formulae
described by !DucxocQ (1984) based on the method of Du!-r & Soms (1976).

E. Results

The Newton-Raphson-algorithm required 6 iterations to satisfy the above conver-
gence criterion. From previous investigations it is known that the number of iterates is
nearly independent of the initial values for p and u used to start iteration. For sire
ranking purposes iteration could have stopped after the 3m or 411 round as it can be
seen in table 3.

For interpretation of the results it must be taken into account that the higher the
value of IL;j or of elements contributing to w;!, the higher is the probability of response
in categories coded as 0. This implies that low values of ILl (calving preparation) and w,
(calf viability) are desirable while high values of !L2 (calving ease) are desirable. For
example, cows having male calves had a better calving preparation, male calves had a
higher viability but caused more calving difficulty than female calves.

Sires can be ranked using the estimated effects in the conceptual scale presented in
tables 3 and 4, or by using estimated response probabilities as pointed out in GIANOLA
& FOULLEY (1983 a, 1983 b), FOULLEY et al. (1983) and in FOULLEY & GIANOLA (1984).
Marginal probabilities estimated for the 6 sires using the trivariate evaluation, raw



frequencies and marginal probabilities estimated from univariate analyses are presented
in table 5. Trivariate probabilities for each sire were estimated as :

where n is sire (n = 1, ..., 6), c is a given category, aklm is a weight such that
III aklm = 1 and Rij = rik + til + gi. + Sin; a was taken as 1/8 for all combinations of
klm

(k, 1, m) because there were 8 region x season x sex of calf subclasses per sire. For
reasons described above the sires with the highest response probability in the desirable



categories (table 5) were sires 5 and 1 for calving preparation and calf viability,
respectively - the sires with the smallest values in the conceptual scale - and sire 1
for calving difficulty - the sire with the highest value in the conceptual scale.

Sire rankings for all 3 traits were similar but not the same in univariate and
trivariate evaluations as is can be seen in tables 4 and 5. The discrepancy between
rankings based on raw frequencies and those obtained using proposed procedure is due
to the fact that the unequal distribution of sires among region x season x sex of calf
subclasses is not taken into account when raw frequencies are used. The approximate
standard errors in table 4 indicate a very slight increase in accuracy in the trivariate

analysis.



IV. Discussion

This paper presents a further extension of the methodology developed by GIANOLA
& FOULLEY (1982, 1983a, 1983b) and HARVILLE & MEE (1984) aimed to predict merit of
animals assuming a multifactorial genetic model and categorical phenotyp’c values. An
alternative approach has been presented by GILMOUR (1983).

The threshold model provides a conceptual basis to dichotomize (in m dimensions)
a multivariate normal distribution. Non-linearity arises when the distribution is rendered
discrete, and a multidimensional normal integral provides the link between values in the
normal scale and the realizations in the discrete (observed scale). Nevertheless, there is
a linear component in the model : the argument of the integral consists of m variates
which follow an m-dimensional linear model. Hence, the approach can be regarded as
belonging to the class of generalized linear models (MCCULLAGH & NELDER, 1983). The
Bayesian treatment of « random » effects provides an additional level of generalization,
and the procedure described in this paper can be viewed as belonging to a class of
« generalized mixed linear models » of which the multiple trait mixed linear model is

only an individual member. These relationships become explicit in the system of

equations used for iteration.



The non-linearity arising in the problem has important implications which merit
discussion. First, it is possible to evaluate candidates for selection, e.g., sires, directly in
the probability scale. As pointed out by GIANOLA & FOULLEY (1983a, 1983b) and

FOULLEY et al. (1983), the selection criterion would involve a weighted linear function
of probabilities. For example, the probability that the progeny of a particular sire has a
certain combination of attributes could be averaged out over factors such as age at

calving or herd-year-seasons. The weights for the « elementary » probabilities can be
chosen arbitrarily so they may differ, depending on the formulation of the problem,
from the weights suggested by the relative frequencies appearing in the data set

analyzed. In traits such as prolificacy, viability and calving ease, comparisons among
sires depend greatly on « environmental » conditions such as age at calving, so there is

a need for averaging out probabilities with respect to certain levels of « fixed » effects.
In the numerical example presented, elementary probabilities were estimated for the
sake of simplicity by evaluating integrals with !Lij parameters replaced by posterior
modes. Because modes are not known to be functionally invariant, the estimates so

obtained may not always be satisfactory. In addition, this procedure does not take into
account uncertainty associated with the estimates of w;!. The approach followed by
HARVILLE & MEE (1984) might be more appropriate although tedious to compute.
Computationally, the problem could be tackled by deriving a point estimator obtained
from the posterior distribution of elementary probabilities.

Second, iteration with (25) has important numerical consequences. In principle,
s x 2&dquo;’ multidimensional normal integrals need to be evaluated at each iterate. This

implies that computing time and precision may become limiting factors. Fortunately,
reasonably efficient algorithms exist for computation of low (m < 6, DUTT & Soms,
1976) or high (6 ! m S 20, DEAK, 1980) multivariate normal integrals. The method of
DuTr & Soms (1976) has been described and applied to animal breeding situations by
DUCROCQ (1984). An additional problem is the number of equations requiring solution,
and the number of iterations until convergence. The order of the computations is

comparable to that arising in multiple trait evaluations via mixed linear model, times
the number of iterates. Hence, considerable research in the area of numerical analysis
is warranted to make the proposed multidimensional evaluation procedure feasible in
the large scale data sets usually employed in, e.g., progeny testing programs.

In the example considered, the non-linear system of equations was solved using
Newton-Raphson and this required 6 iterates and 306 seconds of CPU. We also used
Fisher’s scoring procedure with :

1 ..,.n ...n

and this algorithm satisfied the convergence criterion after 10 iterates and 545 seconds.
This illustrates that scoring, although algebraically appealing, may have undesirable
effects on the cost of the evaluations obtained.

A multivariate evaluation requires knowledge of genetic and residual correlations
among traits. In this paper, as in the case of multiple trait evaluation by mixed linear
models, the required covariance matrices have been assumed to be known. Univariate
versus multivariate analyses have been discussed in the context of continuous data by,
among others, POLLAK et at. (1984), SCHAEFFER (1984) and THOMPSON & MEYER (1985).
Reduction of prediction error variance due to use of correlated information depends on
the form of the genetic and residual variances and covariances. The most gain is
achieved when genetic and residual correlations are large and opposite in sign and



when progeny group sizes are small. This theoretical advantage may dissipate when
correlations are either small or estimated imprecisely. Hence, multivariate analyses do
not necessarily lead to more precise predictors. On the other hand, a multivariate

approach can help to correct biases from selection on correlated traits if the analysis
includes the records used for selection decisions. This is also true beyond the multiva-
riate normal distribution (FERNANDO & GIANOLA, 1986 ; GIANOLA & FERNANDO, 1986).
Because selection (especially sequential) results in missing information, it would be

useful to extend the methodology developed in this paper to accommodate this case.

This has been done by FOULLEY & GIANOLA (1986) and this will be reported elsewhere.
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Appendix

Derivation of second derivatives

Ignoring subscripts j and k, and using logarithmic derivatives, we can write :

Because P’! is given in (20), only P!/P! needs to be computed for all

(i, i’) = 1,...,m. In view of (20) :



where <l>m!1 (.) is an m - 1 multivariate normal integral with argument as in (20).

is the standard partial regression of ym on y, ; also P!.t¡ is the squared multiple
correlation coefficient obtained in the regression of y. on y, and y;. Further,

where Pmnl. is the partial correlation between ym and y. given y, and yi, If R is the
residual correlation matrix between variates (i, e, m) and R = T’T, then T is the upper
triangular matrix in the Cholesky decomposition, and h.,i is the third element of the



with i,i’ being any permutation of 1, 2, 3.
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