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Abstract

We extend to the Heston stochastic volatility framework the parity result of McDonald and Schroder (1998)

for American call and put options.
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1 Introduction

Several authors have studied American options within the Heston model (see for instance Broadie and Kaya

(2006), Andersen (2008), Vellekoop and Nieuwenhuis (2009) and the references therein). This paper con-

tributes to the literature on American options in the Heston model by providing the link between American

put options and American call options in this framework. In the European case, the put-call parity relates

the prices of European call and put options on the same underlying asset, with the same maturity and the

same strike via the law of one price. Violations of the put-call parity lead to arbitrages that are eagerly
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exploited by investors. When the options are American, early exercise is possible before maturity. Buy-and-

holding an American option therefore is not anymore a self-�nancing strategy. The put-call parity fails in

the American case. However it is possible to derive a symmetry relation (see Carr and Chesney (1996) and

Schroder (1999)) that is very signi�cant, since American options are vastly traded. Moreover, the symmetry

relation is useful for the analysis of optimal decision making for real option holders (see for instance Battauz

and alii, 2012 and 2014). In the standard Black-Scholes model the American put-call symmetry relates the

price of an American call option to the price of an American put option by swapping the initial underlying

price with the strike price and the dividend yield with the interest rate. Similar symmetry results have been

obtained by Fajardo and Mordecki (2008) when the underlying asset follows a Levy process. In this paper

we provide a simple proof of the symmetry relation between American call and put options in the Heston

stochastic volatility model. Our result is obtained by applying the change of numeraire (see Geman, et alii,

(1995) for a discussion on the change of numeraire technique and A. Battauz (2002) for appilications to

American options). See also Meyer (2013) for an alternative proof based on partial di¤erential equations.

2 The American put-call symmetry in the Heston model.

In the Heston model (see Heston (1993)) the stock price S is described by the following stochastic di¤erential

equation with respect to the risk-neutral measure Q

dS (s)

S (s)
= (r � q) ds+

p
v (s)dW1 (s) ; S (0) = S0 for any s � 0 (1)

dv (s) = k (v � v (s)) ds+ �
p
v (s)

�
�dW1 (s) +

p
1� �2dW2 (s)

�
v (0) = v0 (2)

where W1 and W2 are two independent standard Brownian motions under the risk neutral measure Q and

the �ltration F ; r is the riskless interest rate; q is the dividend yield of the stock;
p
v (s) is the stochastic

volatility of S at time s; v is the long variance; k is the speed of mean reversion of v towards v; � is the

vol of vol ; � is the correlation between S and v: We assume that 2kv > �2; to ensure that the volatility is

always positive.

We denote by B (t) = ert the riskless bond at date t:

Consider now an American call option on S: Its no-arbitrage price is

c (t) = ess sup
t���T

E
h
e�r(��t) (S(�)�K)+

���Fti (3)

for any t 2 [0; T ] ; where E [�] denotes the (conditional) risk neutral expectation, and � denotes a stopping

time with respect to the �ltration F . It can be shown that c (t) is a deterministic function of t; S (t) and
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current levels of volatility
p
v (t): With a small abuse of notations we write

c (t) = c (t; S (t) ; v (t)) :

The function c depends on the values of the fundamental parameters. We denote such dependence by writing

c (t) = c (t; S (t) ; v (t) ; r; q; v; k; �; �;K) :

The no-arbitrage price of the American put option on S is

p (t) = ess sup
t���T

E
h
e�r(��t) (K � S(�))+

���Fti (4)

for any t 2 [0; T ] : It can be shown that p (t) is a deterministic function of t; S (t) and current levels of

volatility
p
v (t): With a small abuse of notations we write

p (t) = p (t; S (t) ; v (t)) = p (t; S (t) ; v (t) ; r; q; v; k; �; �;K) :

As we already anticipated, in the American it is possible to write c (t) in terms of a symmetric American

put option,whose de�nition in the stochastic volatility setting is provided here follows:

De�nition 1 (The symmetric put option) The symmetric American put option associated to the Amer-

ican call option (3) is the American put option on a Heston underlying Sput driven by the following equations

for s � t

dSput (s)

Sput (s)
= �putds+

q
vput (s)dW1 (s) ; (5)

dvput (s) = kput (vput � vput (s)) ds+ �put
q
vput (s)

�
�putdW1 (s) +

q
1� �2putdW2 (s)

�
(6)

where the values for the fundamental parameters are: Sput (t) = K; �put = q�r; vput (t) = v (t) ; vput = kv
k��� ;

kput = (k � ��) ; �put = �; �put = ��; rput = q; and Kput = S (t) :

In the next theorem we provide the fundamental symmetry result that relates the time�t price of the

American call option c (t) to the time�t price of the symmetric American put option.

Theorem 2 (American put-call symmetry) Consider the American call option de�ned in (3) whose

value at time t 2 [0;T ] is denoted with c (t) = c (t; S (t) ; v (t) ; r; q; v; k; �; �;K).

Consider the symmetric American put option de�ned in De�nition 1, whose value at time t 2 [0;T ] is

denoted with

p (t) = p (t; Sput (t) ; vput (t) ; rput; qput; vput; kput; �put; �put;Kput) :
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The value of the American call coincides with the value of the symmetric American put as de�ned in De�-

nition 1. More precisely, for any 0 � t � T we have

c (t; S (t) ; v (t) ; r; q; v; k; �; �;K) = p (t; Sput (t) ; vput (t) ; rput; qput; vput; kput; �put; �put;Kput) (7)

Moreover, given x = S (t) ; K and v = v (t) ; for any bxput; bKput such that x
K =

bKputbxput we have that

c (t; x; v; r; q; v; k; �; �;K) =
p
xK

p
�
t; bxput; vput; rput; qput; vput; kput; �put; �put; bKput�qbxput bKput ; (8)

where bxput replaces Sput (t) and bKput replaces Kput in De�nition 1.
Proof. De�ne the numeraire (see Battauz (2002)) N (t) = S (t) e�(r�q)t;which is a Q�martingale, since
dN(t)
N(t) =

p
v (t)dW1 (t) : The numeraire N is associated to the equivalent martingale measure QN whose

density with respect to Q is L (T ) = dQN
dQ = N(T )

N(0) : Girsanov theorem ensures that

dWN
1 (t) = �

p
v (t) dt + dW1 (t) ; dWN

2 (t) = dW2 (t) (9)

are the di¤erentials of two standard independent QN Brownian motions.

We apply the change of numeraire to c (t) in (3).

To evaluate the American call option at any t; we consider a generic stopping time t � � � T and com-

pute E
�
e�r(��t) (S(�)�K)+

��Ft� = EQ
N
h

1
L(T )

e�r(��t)(S(�)�K)+
���Fti

EQ
N
h

1
L(T )

���Fti =
EQ

N
h
EQ

N
h

1
L(T )

e�r(��t)(S(�)�K)+
���F�i���Fti

EQ
N
h

1
L(T )

���Fti ;

where the �rst equation follows from Bayes theorem, and the second from the law of iterated condi-

tional expectation. Since e�r(��t) (S(�)�K)+ is F��measurable and 1
L(t) is a Q

N�martingale we get

E
�
e�r(��t) (S(�)�K)+

��Ft� = EQ
N
h
e�r(��t)(S(�)�K)+ 1

L(�)

���Fti
1

L(t)

= L (t)EQN
h
e�r(��t) (S(�)�K)+ 1

L(�)

���Fti :
Recalling the de�nition of L we obtain E

�
e�r(��t) (S(�)�K)+

��Ft� = S(t)e�(r�q)t

S(0) EQN
�
e�r(��t) (S(�)�K)+ �

S(0)

S(�)e�(r�q)�

���Fti = S(t)
S(0)E

QN
�
e�q(��t)

�
S (0)� S(0)K

S(�)

�+����Ft� = EQN �e�q(��t) �S (t)� S(t)K
S(�)

�+����Ft� :
Passing to the essential supremum over all stopping times t � � � T we get that

c (t) = ess sup
t���T

EQ
N

"
e�q(��t)

�
S (t)� S (t)K

S (�)

�+�����Ft
#

(10)

The argument of the Ft�expectation under QN in Equation (10) is the payo¤ at � � t of an American

put option with maturity T; interest rate rput = q; strike Kput = S (t) = x on the asset Sput (s) = xK
S(s) :

Applying Ito formula we derive the stochastic di¤erential of Sput for any s � t : dSput (s) = xK � d
�

1
S(s)

�
=

xK
S(s) �

�
� (r � q) ds�

p
v (s)dW1 (s) + v (s) ds

�
= Sput (s) �

�
� (r � q) ds�

p
v (s)dW1 (s) + v (s) ds

�
. From

Equation (9) we substitute dW1 (s) =
p
v (s) ds + dWN

1 (s) and get
dSput(s)
Sput(s)

= � (r � q) ds �
p
v (s)�
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�p
v (s) ds + dWN

1 (s)
�
+v (s) ds = (q � r) ds�

p
v (s)dWN

1 (s) : Therefore the underlying of the American

put option is driven under the evaluation measure QN by the �Heston dynamics�of type (1)

dSput (s)

Sput (s)
= (q � r) ds�

p
v (s)dWN

1 (s) ;

with rput = q and qput = r. We verify now that the volatility term follows a dynamics of the same type of

Equation (2) : By Girsanov theorem (9) ; v (s) is driven by dv (s) = k (v � v (s)) ds+ �
p
v (s) (�dW1 (s) +p

1� �2dW2 (s)
�
= (k � ��)

�
kv
k��� � v (s)

�
ds+�

p
v (s)

�
�dWN

1 (s) +
p
1� �2dWN

2 (s)
�
:Since dcWN

1 (s) =

�dWN
1 (s) de�nes a standard QN�Brownian motion that is QN�independent of WN

2 we have that

dSput (s)

Sput (s)
= (q � r) ds+

p
v (s)dcWN

1 (s) and

dv (s) = (k � ��)
�

kv

k � �� � v (s)
�
ds+ �

p
v (s)

�
(��) dcWN

1 (s) +
p
1� �2dWN

2 (s)
�
:

Therefore under QN the underlying of the put option Sput follows an Heston dynamics with Sput (t) = K;

vput =
kv
k��� ; kput = (k � ��) ; �put = �; and �put = ��; as in De�nition 1. We conclude that Equation

(10) can be rewritten as c (t) = ess supt���T EQ
N �
e�q(��t) (Kput � Sput (�))+

��Ft� = p (t; Sput (t) ; vput (t) ;

rput; qput; vput; kput; �put; �put;Kput), which is (4) :

To prove (8) ; take a � > 0 such that bKput = x
� ; is an unconstrained strike for the put option, and letbxput = Sput(t)

� = K
� : The remaining parameters for the symmetric put are rput; qput; vput; kput; �put; �put;Kput

as before: for simplicity we omit them. By formula (7) c (t; x; :::;K) = p (t;K; :::; x) = �p
�
t; K� ; :::;

x
�

�
=

� � p
�
t; bxput; :::; bKput� ; where the second equality follows from the homogeneity property of the put option.

Since � = xbKput
= Kbxput ; writing � = p� � � =

q
xbKput
� Kbxput ; we arrive at (8). �

In the constant volatility framework, the optimal exercise policy for an American call option is the �rst

time the underlying asset exceeds the critical price. The critical price is time-varying, and its graph in

the plane (t; S) separating the continuation region from the immediate exercise region is called the free

boundary. In the Heston model, the free boundary is a surface in the space (t; S; v): The free boundary

of the American call option is linked to the free boundary of the symmetric American put option via the

following theorem:

Theorem 3 (The free boundary) Consider the American call option de�ned in (3) whose value at time

t 2 [0;T ] is denoted with c (t) = c (t; S (t) ; v (t) ; r; q; v; k; �; �;K) = c(t; x; v; :::;K). The free boundary for

the American call option at t and v = v (t) is

fb(t; v) = inf
�
x � 0 : c(t; x; v; :::;K) = (x�K)+

	
:

5



Let bKput = 1 and consider the symmetric American put option where bxput replaces Sput (t) and bKput =
1 replaces Kput in De�nition 1 as for (8). The free boundary of the symmetric American put option

vput (t; bxput; vput; rput; qput; vput; kput; �put; �put; 1) = vput (t; bxput; vput; :::; 1) is
fbput(t; vput) = sup

�bxput � 0 : vput (t; bxput; vput; :::; 1) = (1� bxput)+	 :
Then

fb(t; v) = K � fbput(t; vput)

Proof. The parameters x;K ; and bxput are constrained by the equality x
K = 1bxput : It follows that fb(t; v) =

inf

�
Kbxput � 0 : pxK p(t;bxput;vput;:::;1)pbxput bKput

=
�

Kbxput �K
�+�

=K sup

�bxput � 0 : pxK vput(t;bxputvput;:::;1)pbxput = Kbxput (1� bxput)+�
= K sup

�bxput � 0 :q KbxputK vput(t;bxput;vput;:::;1)pbxput = Kbxput (1� bxput)+� ; since x = Kbxput : Therefore fb(t; v) =
K � sup

�bxput � 0 : vput (t; bxput; vput; :::; 1) = (1� bxput)+	 = K � fbput (t; bxput; vput; :::; 1) :�

3 Conclusions

In this paper we provide a simple proof for the symmetry between American call and put options in the

Heston stochastic volatility framework, relying on the change of numeraire technique. We supply also the

link between the free boundaries of the symmetric American options.
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