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From model, signal to knowledge: A data-driven

perspective of fault detection and diagnosis
Xuewu Dai,Member IEEE and Zhiwei Gao*, Senidvlember, IEEE

Abstract— This review paper is to give a full picture of fault
detection and diagnosis (FDD) in complex systems from the
per spective of data processing. As a matter of fact, a FDD system
is a data processing system on the basis of information
redundancy, in which the data and human’s under standing of the
data ar e two fundamental elements. Human’s understanding may
be an explicit input-output model representing the relationship
among the system’s variables. It may also be presented as
knowledge implicitly (e.g. the connection weights of a neural
network). Therefore, FDD is done through some kinds of
modeling, signal-processing and intelligence computation. In this
paper, a variety of FDD techniques are reviewed within the
unified data-processing framework to give a full picture of FDD
and achieve a new level of understanding. According to types of
the data and how the data are processed, the FDD methods are
classified into three categories. model-based on-line data driven
methods, signal-based methods and knowledge-based history data
driven methods. An outlook to the possible evolution of FDD in
industrial automation, including the hybrid FDD and the
emerging networked FDD, are also presented to reveal the future
development direction in thisfield.

Index Terms—Fault detection and diagnosis, model-based,
signal-based, knowledge-based, data-driven, complex systems.

|I. INTRODUCTION

automation community5[1][42][13][52] and finds its success
in many engineering areas. FDD studies how to detect the
occurrence of a failure as early as possible and how to identify
the location and type of the fault as accurate as possible. In the
early stage a primitive FDD is simply alimit checler of
measurements Unfortunately, the simple over-threshold
checking method becomes invalid as the system complexity
increases. Analytical model-based fault detection methods
were proposed to overcome difficulties raised with limit
checking. With the mature of state-space modeling and system
identification techniques in 1970s, model-based FDD has
become the main stream of research since 1980s. The
model-based method involves rigorous development of process
models either derived from first principles or identified from
measured data. The representative work of model-based FDD
includes parameter identification method, observer-based
method and parity space method. At nearly the same period,
the signal-based FDD method was developed due to the
significant improvement of digital signal processing
techniqgues. One of the most successful applications of
signal-based FDD is the motor current signature analysis
(MCSA) for electric motors and generators.

Recently, with the rapid development of smart instruments
digital communication networks and computer techniques,

I NDUSTRIAL systems have been becoming more complex amiistributed control systems (DCSs) have been widely deployed
expensive with less tolerance for performance degradatian, advanced industrial systems and provided the ability to
productivity decrease and safety hazards, such as wind faroedlect and store a huge amount of process data. The emerging
[98] [28], aircraft engines(] [53], petrochemical production DCSs and networked control systems (NCSs) make the data
[89] and metallurgical productior®]]. This leads to an ever acquisition much easier. The amount of the collected, data
increasing requirement on reliability and safety of contrdlowever, is too much to be fully and effectively utilized by
systems subjected to faults and failures. With the advent mibst existing FDD methodas a result, ‘large volumes of data

computerized control, communication networks

anekith very little information’ is a quite common phenomenon in

information techniquesa huge volume of operation datatoday’s industrial automation. For instance, in the condition

relating to the process’s conditions and status have been

monitoring of wind farms, there are a number of various

collected, which not only makes new fault detection andatabases with data and statistics, but it is difficult to get an
diagnosis (FDD) methods possible, but also brings challengesverall picture of the relationship between failures and data

As an effective means to ensure the reliability and safety [#1].

industrial systems and reduce the

Enabled by the ever increasing computational power

risk of unplannggbverned by Moore's law, many artificial intelligence (Al)

breakdowns, FDD has been the subject of interest in control aedhniques in computer science have been introduced tdaé-DD
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deal with the huge amount of data and extraseful
information (or termed by knowledge) from dat&3][8].
Particularly, h 1990s machine learningsometime referred to

as soft computingor computing intelligencg97] [55]) were
developed, which mimidsuman’s abilities of logic reasoning

by numeric computing and connections, rather than by the
traditional logic algebra developed in 1950gpical examples

of soft computing are neural networks and fuzzy logt. [
The introduction of computing intelligence develops a new
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trend of knowledge-based FDD metho8§|] a mathematic model, or hidden behind the huge amdw#ta

The new trend in FDD seems to integrate various strategiesan implicit form.
to form a hierarchical structure with mixture of various Since most FDD algorithms nowadays are carried out by
homogeneous and/or heterogeneous FDD methodhgital processors in the discrete-time domain on the basis of
Consequently, the study of FDD has been a multidisciplinasampled data, only discrete systems are included herein.
field involving control engineering, signal processing anconsider a system with m inputs  (denoted by
artificial intelligence. The diversity of the FDD methods makeu[k] = [u1[k] ... u,»[k]]T ) and p outputs (denoted by
it difficult for an engineer to master all of the techniques any[k] = [y1[k]...y,[k]]") wherek is the discrete time, the
trends in different fields. In particular, it seems that results frorelationship betweery[k] aru[%] is written as a function
artificial intelligence play and will continue to play an y[k] = F(A(2)y(k), B(z)u[k]. 6) 1)
important role in FDD. It is necessary to find their common

features and difference and build a systematic view to repres\évrqere A() and B(z) are polynomial with respect to the

. -1 .
the new trends in FDD under a unified framework. ackward shift operatar -, § is the systems parameters.

Nevertheless, the fact is that any FDD system is a systemlgf (1), the known functionF represents the analytical

data processing on the basis of information redundahdy [ redundancy explicityWhen the dynamic system gets more

[35], in which the data itself and the understanding of the d gmplex it becomes impossible to have such an explicit

. . unction Defining the measurements of variables as signal o
are two fundamental elemenBifferent FDD strategies vary at ; S .
data and referring the implicit dependency behind data as

the way of how the data is understood and how the informati Howledge, we can tell if the dynamic system has faults by

behind the data is exploited. In this survey, with the purpbse qwecking consistence between the data and knowledge. The

providing a full picture of FDD including these signal basedgata should match with the expected knowledge if the system
model-based and knowledge-based approaches, we study these . . .
. . ) orks in good condition as expected. In this sense, knowledge
strategies from the viewpoint of how the data are processed ior
and data are redundant to some extent.

fault detection and diagnosis. This is a systematic and . . .
. . . - In the context of information redundancy, an analytical FDD
comparative study of various FDD strategies by examining the . . . ;
a data (signal) processing with one search engine to check

. . ) . . i
relationship among mformat!on, data, model, signal arlra1format|on redundancy between the data and explicit model or
knowledge under the data-driven framework. We attempt tg . . ;
. . : ... _Implicit knowledge. Here, redundancy checking means to
present a data-driven perspective showing how these differe . .
. check the consistence of the data against a model or knowledge,
methods relate to and differ from each other. : .
or to directly check the consistence among the data themselves.

The r_est of thls paper 1 orgamze_d as follows: - As fh this sense, FDD methods are always data-driven on the base
preparation, sectiol examines the relationship among data

models, sighals and knowledge in FDD. Sectlbmeviews the of model or knowledge.

: . . In this paper, we investigate the analytic FDD methods from
model-based online-data-driven FDD followed by S|gnal—baseEHe viewpoint of how the data are processed for fault detection
FDD in section IV. In Section V, knowledge-based

. ) o . . and diagnosis. Depending on how the data and the dependency
history-data drlyen FDD |s.|nvest|gated_. Sect\dnpre;ents a :flre deployed, FDD methods can be classified into three
outlook of possible evolution of FDD in advanced industria

) , L . categories, namely model-based (online-data-driven) FDD,
automation The paper ends with the conclusion in section V”signal—based (data-driven) FDD and knowledge-based

(history-data-driven) FDDThis concept is illustrated in Figure
[I. CATEGORIES OFFDD 1 schematically.

In this section, we start from the viewpoint of information The bottom of Figure 1 depicts the model-based FDD, in
redundancy and data-driven, where a FDD always makes usevbich only a small amount of online data is used to detect and
data and models either explicitly or implicitly. We then classifgiagnose faultsA mathematic model M with paramef:r has
FDD into three categories, investigate the core concepts bieen available from first principles or identified through system
these categories and study their relationship. identification techniques. He data of system input and output

In industrial automation, FDD is to monitor the behavior of are then fedinto the data-processing engine that generates
process that is usually described as a dynamic system.aleregsiduals by comparing the measured data amndel’s
dynamic system is a process producing outputs from injputs,predictions. A residual classifier ¢  classifier is next
which variables of different kinds interact and the outputmployed to check if there is a fault and decide what fault it
variables depend on the present and past values of the inpald be.A good model-based FDD ideally has residuals
variables. From the viewpoint of information theory, thesensitive only to system faults but not to disturbances or
correlation and dependences among these variables dewiations in system inputs (such as motor power supply
information redundancy, which is the basis of all FDD. Ambalance or motor load variations).
traditional approach to have information redundancy is The block diagram of the signal-based FDD is shown in the
physical redundancy that is the duplication of hardwammiddle of Figure 1 The information redundancy in
components (controllers and sensors, etc.). Another form sifnal-based FDD methods is the relationship between faults
redundancy is analytical redundancy, in which the correlatiand the signal patterns. Since the faults within the system
among the related variables are represented either explicitly sually have direct influences on output variagie , it is



in signal-based FDD is larger than the model-based method, but

Huge amount of p| Check consistence with || much smaller than the knowledge-based method
historic data O~ KB assilier .
Figure 1 also shows thatFDD has three elements: (1) a
& learning

representation of information redundancy, which can be
explicit mathematic models, known signal patterns or implicit
i Signal || Check consistence with o | |decisio KB derived from data(2) data collected during operation
onllmeldata or | _,{ Classifier % i ) . : ]
historc data | Processing signal pattom ot which will be checked against the information redundancy; (3)

v

Knowledge base (KB) | Search enginé

Input

: an consistence-check engine with classifiers. The
Small amount_of N Check consistence with M Residual : H H
online data — > ¥ Classife consistence-check engine in turn depends on the type of data
ystem ; - . . . .
0 Classier available and the form of information redundancy. From this
Search engin

point of view, we classify the data-driven FDDs into these three

Figure1 Data flow in fauit detection and diagnosis (FDD) tegories according to the type of data and form of information
straightforward that the signal used in most signal-based FlifeB u% dancy 9 yp

methods is the sampled output variayie  and there is no neea . . .
for an input-output model of the dynamic system. This is N th? following thrge sectpns, m'three categon'es of

.- . . . data-driven FDD techniques will be reviewed, respectively.
beneficial for complex industrial process or machine systems
where accurate input-output models are usually unavailable
and/or their parameters are hard to estimate.

When a process iS too Comp|ex to be mode|ed ana|ytica”yThe model-based FDD methods have been fruitful and, for
and the signal analysis does not yield an unambiguoti¥ sake of analysis, the input-output mof(-) ~ of system (1)
diagnosis, a sophistic FDD approach aided by expert systemésoiransformed into a general state-space model:
artificial intelligence has to be used, which usually involves a yi = F(ug, xg, di, £, 0) (2)
huge amount of history data. This leads to the knowledge-badugere subscript,  denotes time index, € R™ is a n
(historic) data driven FDD, of which the block diagram isdimensional state vector aid;,  is the unknown input denoting
shown at the top of Figure 1n a narrow sense, ¢h modelling errors, measurement noises and external
knowledgebased FDD is often referred to as ‘data-driven’ disturbancesf, represents possible faults to be detected
FDD, since it is very common in a complex industrial process Since faults usually cause changes in state vargble
that only a huge amount of data is provided and the expli€itodel parameter§  and/or have outpjt derivate from
models or signal patterns of a system are not availarggpected values, one can check these changes/derivations to tell
straightforward. Such a data-driven FDD is based on thethe system has a fault. Based on the explicit model (2), the
implicit knowledge mined from the huge amount of history dat@odel-based FDD methods generate output estimites
through some intelligent training or machine learning methodgarameter estimatets ~and/or state estimates from the data
Once the knowledge is developed from the history data to fofPair {us, ¥« }. Checking these estimates with respect to their
a knowledge-base (KB) implicitly representing the dependen&xpected nominal values, a residual is generated and
of system’s variables, the consistence between the recent data  classifed Accordingly, model-based FDD consists of three
and the KB is checked and a classifier follows to make fin&hain branches: (1) parameter estimation method resting from
decision. system identificationq1]; (2) parity relation approacii 4, 42];

In signal-based FDD, the relationship between output sigri@) observer/filter-based approad4].

Yr and faults are built updm human’s priori understanding of

3.1 Parameter estimation for FDD
the system. On the other hand, knowledge-based FDD licati the parameters are unmeasurable. but
discovers the dependency from a huge amount of dahaIn most applica lons, P L '
autonomously This is a distinguishing character Oft ey can be det(_ermlned with parameter estimation methods
knowledge-based FDD different from signal-based FDD. T pem measured inputioutput da{ui,y:} . The parameter

measured signé¥k  possess some features in the time dont4i ”"!"’.‘“Of‘ methods havg been. ex_tenswely studied in gystem
entification B4] and its application to FDD was first

and/or frequency domain, which can in many cases be megn, .
d y y igscribed by 91] as follows: The model’s parameters

i f i h . A
variance, frequency, magnitude and phase etc. And m 8 = f() are related to physically defined process coefficients

importantly, these features are linked to the faults. Differer’.: lik ist tiff d 10ads). Eaults within th ¢
faults result in different combinations of these features and tl’.’e(I e resistance, stiffness and loads). Faults within the system

combination of features is referred to as signal pattern or sig |llﬂhave a Chfr(;gé;\“’n ||n?,9Vl/henﬂ6') 1S ezt]ima};[ed ar;)d, (|jn :urrtn d
signature. Obviously, different faults have related signals 1o, |3_compu3 Hy S0 V'?r!] _Fg)l(; i? atu Caf‘te etec et
show different patterns. As a result, the basic data processin% ) dlaghosed. Hence, the problem furns into parameter
signal-based FDD is to extract the featumesnfthe signal to | stimation, which can be solved bY least square error (LSE) and
get their patterns, and compare the signal pattern with kno R derlyed met';hods6[4], Sl:;hdas wgrur\n/en_tal vanablestand
pattern to detect and diagnose faults. Depending on the sig Stf.:urstl.ve) suthspéicef m'e:DS S € ].'[ ago;f pa;am; e
processing techniques (statistical or non-statistical) and t gumation methods for are reviewe land p2].
patterns used in FDD, the data required for signal-based F fespective to the parameter estimation methods employed, the

can be on-line data or history data. In most cases, the data PRRCS .Of FDD are the same as sugggste&lh [ o
high-gain observer-based on-line parameter estimation

I1l. MODEL-BASED ON-LINE DATA DRIVEN FDD



method was recently proposed #0] for a system subject to disturbances, but has a low sensitivity to disturbances and high
bounded process and measurement noises. In this approachsémsitivity to faultsit becomes an optimization problem and
parameter changes are modeled as an unknown disturbahas been studied both in time domain and in frequency domain.

A(t). A high gain observer is then applied to estind(t} arflome researchers applied multi-objective optimization to solve
a linear square estimation method is applied to estimate tiés problem 12] [33]. To address the nonlinearity of complex
parameter changes frod(t). systems, sliding mode observers was developed for fault

The main advantages of parameter identificati@msed detection in 29]. .. optimisation and LMI (Linear matrix
method are that the fault diagnosis is very straightforward if theequality) for robust residual generationvbaeceived more
model parameter has a oteeene mapping with the physical attention recently54].
coefficients. For example, functicf(¢:) is an identity matrix Note that the gairK of the observer (4) is a numerical
or the model is a gray-box model. Detecting sensor/actuatoatrix which simply amplifiesr /A when feeding back the
faults by parameter identification may be complicated, asbserved information to update the observer. Since the
sensor/actuator faults may influence the input/output in tHeequency response of the feedback path is a constant Kalue
same way as the process (parameter) faults. over all frequencies, the feedback gain does not change the

3.2 Observers and Filters for EDD frequency shape of selectivelyhis kind of observer is

i termed astatic observerof which zeros are invarian2f]. In
The Kalman filter and Luenberger observer based methogg., ¢, improve the observer’s frequency response, the

have been widely accepted for state estimation and reSidHthept of dynamic observerwas developed and a joint
generation 75] [13]. For the illustration purpose, we considerp0|e_Zero assignment was proposed 1] where the

system in (2as a linear state-state space model, numerical gain matrbK  is replaced with a dynamic system
Xe+1 = AXy + Bug + Bady + Byfi 3) spr1 = Kisy, + Koy
Vi = Cxp + Duy + Dgd;g + fok ' 2 = K;.;S,rl- + K,y (8)

For non-linear systems, the basic steps and concepts are simigfyre 2 (b) illustrates the structure of the dynamic observer
but with nonlinear observer or extended Kalman filter rathq§y introducing a dynamic system into the observer’s feedback
than linear ones. The observer (filter) for system (3) is path, the observer has some desired ability of frequency

{ Xpt1 = jhc’*‘- + Bu, + K(ye —yi) (4) shaping to improvethe residual’s robustness against the

Yr = Cxi + Duy disturbances but keep the information of faults.

where X andy are the estimates of the state and outputanother branch of observer-based FDD is fault estimation
respectively. K is theobserver gainto be designed. The including proportional integral observeBH[38], adaptive
diagram of the observer is illustrated in Figure 2 (a). €.et gpserver 92] and sliding mode observe8g]. They were
denote the state estimation erre, = a; — 25 ) @3d  denofgsyeloped for fault diagnosis and fault-tolerance control and
the output estimation errory = yi. — yx ), the dynamics of th@aye the ability to estimate the actuator/sensor faults. For a

observer (4) are governed by ) system subjected to input noises and sensor noises, it is more
ert1 = (A = KC)ey i3 (By — KDq)dy challenging to estimate the fault. Another approach is the
+(By — KDy)f, (5) descriptor observeBp] [37] where derivative gain is tuned to
ri = Cej + Dadi + Df} attenuate sensor noises and high-gain proportional gains to

Applying the z -transform to (5), the relationship freds, fr ~ toattenuate process noises.
residualry in thez -domaiis

() = G(2)f(2) + Gal2)d(z) © 3.3 Parity equations for FDD
where the transfer function matrices are '
Gi(z)=C(zI — A+ KC)"\(B; — KD;) + Dy Another main approach in model-base FDD is parity
Ga(2) =C(zI —A+ KC)Y(By; — KDy) + Dy @) equations. The data process in parity methods is to check the

Eq. (6) suggests that the residral s related to both the fal@ity (consistency) of the models with sensor output and
and disturbancesThe heart of the observer-based FDD is t§nown inputs. The idea of parity space approaches can be
make r; sensitive to faults fx but insensitive (robust) t§XPlained as follows1H] [52]: Consider the state-space model
disturbanced, . As one of dominant FDD approaches, tf@). after observing3  pairs of input output d{us+;.yi+;},
de-coupling approach has been developed in last tw! < j <, the input-output relationship can be rearranged into
decades[3], in which the disturbances and model uncertainties compact form

are treated sasunknown inputs and de-coupled from residuals . . imput actuator

UlOs (Unknown Input Observers) was first employeddf| [ R T e R PR

where the insensitivity to disturbances was achieved indirec —»L»L _.LL

System v 7 System v y

by making the state estimation error de-coupled fdxm . Tl ) |

_ _ K ] =yIE o 2[SmKaFK] | =y e
direct UIO decouplingr, frond;, was proposed B8] and <X 4 2 =K +Kil, ¢
[95] by using eigenstructure assignment. However the perfe (AB.C,D)H—7 (ascD) | Y

. . . . . >
de-coupling may not be possible, when required sufficier
(a) Static Observer (b) Dynamic Observer

condition is not met13]. An approximate de-coupling should
be taken, where the residual is not perfectly de-coupled frc Figure 2 (a) static observer and (b) dynamic observer for FDD



Y. = Txp—5 + QUy (9) domain, such as period, peak, mean and standard deviation
whereT andQ are defined &2]. Left-multiplying (9) with a  [13]. Higher order statistics such as root-mean-square (RMS)
vectorw” gives a scalar equation: skewness, and kurtosis and crest factor have been used as we

wl'Y;, =w!/Tx;_5 +w! QU; (100 [12].

When the state variables;—s  is eliminated, BG) becomes Cross-correlation analysis is a widely accepted technique in

a parity equation and the residual is generated as time-domain fault detectioq and classification. The cross-
rr =wl (Y, — QUy) (11)  correlation coefficienr,, = (U”;U:’ provides a dimensionless

Eliminating the state variablex; s requiw”Q =0 , whichneasurement of linear dependency between two siznals and

can be solved if the system is observable. Under healthyFor fault detection and classification, a set of baseline signals
condition, the residuat; of the parity equations is zerdn various known conditions are first collected{x}  and the
Dynamic parity relations was studied 4] and significantly correlation analysis between the signal to be monitored and
developed in42]. the baseline signal{x} are carried out. Thasulting

There have been many survey papers for model-based FB&relation coefficientr,,  indicates the possibility of the
[51], [39], [34], [89] by Isermann, Patton, Frank and Ding etc.present condition is. |r.,| approaches 1, it is highly possible
respectively. Recent books likeld and 2] provide a that the system is in the condition corresponding to r.;f  is
comprehensive overview of model-based FDI, which are gogglyynd zero, the system is not in the condition associatect with
references for further readings The negative log-likelihood value is recently proposed for

vibration signal-based FDD of mechanic systei®g.[The
IV. SIGNAL-BASED DATA DRIVEN FDD Weibull negative log-likelihood value (Wnl) and the normal

Signal-based FDD is based on analysis of the output signaksgative log-likelihood value (Nnl) of the time domain signals
y[k] and does not involves an explicit input-output mc/'(-)  are statistical features, which represents the likelihood of the
of the target system. As shown in Eqg. (2), the system outpignal’s distribution. Combined with neural network classifier,
depends on the system parame#:rs . Since a fault within the introduction of Wnl and Nnl benefits fewer input features to
system usually makefs  deviate from its nominal value, tlmeural network and was demonstrated the potential suitability
system’s output will change accordingly. More specifically, the for detecting bearing fault87].
pattern and features of the system output signal usually haveMost signal-based FDD treat the signal in one-dimension
correlation with faults Such correlation is the basis oftime domain. Recently, an interesting time signal to
signal-based FDDThus one can monitor and analyze théwo-dimension image translation approach is demonstrated in
output signals, find their feature patterns and links to faultR24]. As illustrated in Figure 3, the magnitudes lofdata
which will provide useful indication of the faults and theirsamples in a time series are treated as pixel intensity and the
types. data are rearranged into m x n  grey imam X n =L ).

Typical signals are vibration, speed, force, current arithe features of the image are extracted through a scale
magnetic flux density etc. Even though thermal and oth@wvariant feature transform (SIFT) is applied to the image to
signals have been utilized in FDDsignal-based FDD methodstract the 2D local features, which are correlated to faulty
are particularly interesting for motors and rotary machines asgmptoms Therefore, faults can be detected and diagnosed by
mainly focuses on electronic signals and vibratiomhe using advanced image processing and pattern recognition
overwhelming majority of motor FDD systems use motoalgonthms
measurements, such as motor curremisgative sequence
currents, and or vibration levels.

Features of the monitored signals are extracted to analyze
patterns, which can be in time and/or frequency domair -
Examples of features are signal means, variance, tren °
instantaneous power FFT or the spectra in a frequency banc
interest. Typical signal analysis techniques include FFT

128

spectral estimation, wavelet transform [5] and sequengguyre 3 an example of a 16k vibration signal trareslanto a 128x128 gray
analysis 71], etc. Moreover, parametric signal models (e.g. aimage p4].

ARMA model) can be used5p], which allow the main
frequencies and their amplitudes to be directly estimated. This

4.2 Frequency-domain signal-based FDD

Signals related to many mechanical and electrical faults

approach is especially sensitive to small frequency changes. tain feature frequency components and different faults ma
Depending on the types of signal patterns and signal analy%?é1 q y P y

techniques, the signal-based FDD methods can be cIassﬁ@ﬁuIt in different signal pattern in frequency domain. In most

into three categories: time-domain, frequency-domain aff@>%>: these frequencies can be determined from a priori
C knowledge or known parameters of the target system, e.g. the
joint-time-frequency methods.

number of poles of a motor. The use of the frequency analysis
4.1 Time-domain signal-based FDD of vibration and current signals has been heavily researched to
It is straightforward to regard a signal as a time-domaf#etect bearing, stator, rotor and eccentricity faults.
waveform and a signal with many characteristics in time Frequency domain analysis begins by converting a time



domain waveform into its frequency domain equivalence armbntinuous wavelet transform (CWT) of sigz(t)  given by

the discrete Fourier transformation (DFT) is the most common - oo L , T 1
. " L : Xwrl(t,s) = —= [ x(r) " (—

method used for online condition monitoring. Since the pattern V8| 5

of the dominant frequency components is likely to be thgheres is the scaling factor ay*(==£) s the basis wavelet
signature of fault, when the frequency spectrum is availablginction. Different from STFT, the wavelet transform uses
peak detection can be used to identify the dominant frequenci@siable basis functiors*(}  and variable size windows,
and envelope analysisl7] can be utilized to describe the gjiowing for the acquisition of multi-scale resolutions [20]. The
patterns including the spacing of sidebands and the presencgigfrete wavelet transform (DWT) has also received praise fo
harmonics. Silva et.allf] obtained the envelope by usingits computation efficiency and ability to reduce noise in raw
sampled positive peaks of the stator current and extracted faigfnals [12]. DWT has been performed on the vibration and
signature from the envelope using a statistical clusteringotor current signals and various basis wavelet functions have
technique called Gaussian Mixture Model (GMM). Theyeen proposed for FDD, such as Gaussian-enveloped
signature was then fed to a maximum-likelihood Bayesiagscijlation wavelet]5], Daubechies family, Symlets family [9]
classifier for diagnosis, which was found to be 99% accurate dizg B-spline (FBS) wavelets that enable an efficient filtering in
detecting a single turn short under 50% rated load. the region neighboring the main frequency, as well as enable a
As one of the most successful signal-based FDDs, the MOAGh level of details in the timérequency maps4p). Discrete
current signature analysis (MCSA) has been widely used \avelet packet transform (DWPT) was proposed to enhance
modern industrial drive systemgl]. Recent development in the power and the flexibility of the DWT [9]. Various adaptive
MCSA is motor fault detection under unbalanced conditions [#hethods have been proposed for the selection of optimal basis
[16] and condition monitoring of wind generators, such agavelets [9(99.
doubly-fed induction generator (DFIG. In [2], anadaptive  Although it has been demonstrated that the three
algorithm for fault detection in DFIG was proposed for FDQiignal-based approaches are able to work individually to
under dynamic conditions. [4]1@] studied the multiple etection and diagnose faults, there have been many reports in
reference frames theory that was shown to be immune |igrature that combine these methods together. For instance, in
voltage unbalances or non-stationary conditions.28},[the  [5] [93], the wavelet analysis and MCSA are integrated. More

experiment results validated the theory analysis that the curregtent development of the hybrid FDD methods will be
spectrum for a 30kW DFIG with one broken bar showing thgjscussed in Section 6.2.

characteristicl £+ 2s broken bardsbands around the 50Hz

peak. This frequency pattern can be employed to detection v, KNowLEDGE-BASED HISTORIC DATA DRIVEN FDD
broken bar faults in wind generators.

ydr

For those systems which are too complicated to have an
4.3 Joint Time-Frequency-domain signal-based FDD  explicit system model or signal symptoradearnby-example
Individual features in either time domain or frequencynechanism is desirable to automate FDD. In contrast to the

domain are generally unable to extract all underlying signgtodel/signal-based FDD which requires priori known
information. Time-frequency analysis combines both the tinf80dels or signal patterns, the knowledge-based FDD starts
domain waveform and the corresponding frequency spectruffPm where only a large amount of historic data is available.
This enables the examination of transient features, such Efzgabled by the advanced artificial intelligence, the
impacts and fault events, as well the ability to monitdknowledge-based FDD learns from empirical data to
frequency content over t|mg(E| ‘discovery the underlying knowledge that represents the
The short-time Fourier transform (STFT) is a commo#nformation redundancy among system’s variables. The
technique, where the signal is divided up into Short_tim.@teuigent Iearning from a vast volume of data is the definition
segments, and then a FFT is applied to each window. Tfeature  distinguishing  knowledge-based FDD  from
Wigner-Ville distribution (WVD) overcomes this resolutionmodel-based and signal-based ones, as the latter only require a
limitation in STFT, but it sufers from interference terms forcedsmall amount of data for redundancy checking rather than
by the transform itself. Improved transforms, such a&dundancy learning. Due to this fact, knowledge-based FDD
Choi-Willams  distribution ~ Zao-Atlas-Marks ~ (ZAM) has been commonly referred to as ‘data-driven FDD and this
distribution and cone-shaped distribution, have been develogedme has been widely accep_ted. However, the term
to further advance time-frequency analy3ig[In [93], STFT, ‘data-driven’ is confusing and less rigorous, as every FDD
wavelet transform and the pseudo-Wigner-Ville distribution ar@€thods, including model-based and signal-based @es,
investigated for condition diagnosis of rotating machinery. Iflata processing procedure driven by data. In this paper, it is

[3], the stochastic subspabased identification method wasmore scientific to use the full naménowledge-based
developed. historic-data-driverFDD or shortlyknowledge-base&DD.

The trend in signal-based FDD is moving towards The knowledge-based FDD becomes a hot interdisciplinary
application of non-traditional computational techniques in th@search topic in last decade, due to the rapid development of
subject areas such as finite elements and more recently wavElgchine learning (ML) in artificial intelligence (Al) since
signal processing that has been receiving much attention fg390s. It can be seen that these newly proposed intelligent FDD
[15]. For the purpose of analysis, consideredimensional Methods are always lighted by new technicieveloped in Al.



Because of the close links between knowledge-based FDD ¢~

. . . Ki 1 - FDD
Al, in order to give reader a full picture of the knowledge-base M

FDD and its trend, it is helpful for such a survey paper to fir| Qualitative FDD Quantitative FDD

review the links between Al and FDD briefly followed byl (Symbolic Al) (machine learning)
detailed discussion on various knowledge-based FC ol ol = / \A\A
H = x [V -
techniques. % § % Supervieed Uanupewised i 3 |
5.1Artificial intelligence and machine learning in FDD o HBE Learning eam'”g\ Y
The knowledge in FDD can be either quantitative c |%| |3 ‘/g{ é : 18]
qualitative and is usually organized as a knowledge-base (KI [> 5.8 i '3 |
The KB can be in very different forms, for example, the fau g; & :5:
tree is a typical qualitative KB, and a neural network wit 3 g :g.i
8 o

weighted links forms a quantitative KB. On the other hand, a:

Figure 4 Knowledge-based history-data driven FDD
knowledge development and management method, Al huo wiedae-based FDD. the historv data is first transformed b
adopted two main paradigms: symbolic intelligence ang‘O edge-base  (he history data 1S Tirst transtormed by

connectionist intelligence. The first is based on symboli L into knowledge. This procedure is known @aining or

algebra to manipulate symbols. The second is also referred t Earning Since the do.mlnant mgchlne Iearnlng'technlque{s used
in FDD are unsupervised learning and supervised learning, we

computational intelligence, as it is based on computatiorp—I discuss these two methods in this paper
intensive machine learning techniques. These two paradigl%@y Iscu W In thiS paper.
are associated to qualitative knowledge and quantitatie2 Supervised Learning for FDD

knowledge, respectively. In supervised learning FDD, the dasafirst classified and
Consequently, it is intuitive to group the knowledge-basedpeled with tags that indicate the systeroonditions and
FDD into two groups (as shown in Figure 4): qualitativgymptoms, such as healthy, faulty and the type of faulte Th
methods on the basis of symbolic intelligence and quantitatiygye|s are also known to the machine learner. Here, by
methods on _the. basis of mac_hine learning intelligence: ‘machine learner’ we mean the machine learning algorithms
The qualitative methods include three subcategories: fatlhe machine learner's task is to search for patterns and rules
tree (FT), signed diagraph (SDG) and expert system (ES). Fdpresenting the information redundancy and relationship
originally developed at Bell Lab in 1960s is a logic cause-effegbtyween data patterns and faulfgpical machine learner in
tree that propagates primary events (faults) from bottom to tRgowledge-based FDD are neural nework, fuzzy logics, and
top level events (symptoms). A recent applicatiorFo$ in PCA, etc.
FDD was reported in5[7] for reliability analysis and fault (1) Neural networks (NNs) are one of most well-established
diagnosis. SGD is a graph with directed arcs leading frompggchine learning techniques for monitoring complex nonlinear
‘cause” node to ‘effect” nodes and these arcs are given a  processes. AnN is a set of nodes linked by connections with
positive or negative sign. SDG have been the most widely usggightsrepresenting the “strength” of those connections. The
form of qualitative knowledge in FDD. ES is generally &odes are organized into layers and data is propagated through

tailored system containing deep, but in a narrow domaigyccessive layers. The input-output relationshia of -th node at
expertise of a system. The expert system indeed is a rule-bajaf{ |ayer is a nonlinear function

system presenting human’s expertise in a set of rules. Initial _ _ SN _ _

attempts at the application of expert systems to fault diagnosis wp=fls= f;"(z u:;’ﬂj.flyf;‘,eg) (12)

can be found in73]. In [10Q, a methodology was presented for , =1 .

formulating diagnostic rules from the knowledge of systewherey] is the output ci-th node jit -th layw; s the

structures and component functions. A fuzzy expert system wegnnection weight from thk  -th node(j — 1)  -th layer to the

proposed in30], and interested readers should referetd.[ +-th node atj -th layeN is the number of inputs (usually equal
These qualitative FDD are based on the traditional symbolic the number of preceding nodes) aéd is tlode’s

Al that was first developed in 1950-60s and revived in 198Q@mrameter. It can be seen that the overall function of NNs is a

due to the success application of experts system in conditigéries of superposition and composite functiorf; (:) _The

monitoring. Nowadays, enabled by the exponentiallf,ost common f-f(') is the sigmoid transfer function

increasing computation power, computational intelligence (algf(m) —1/(1+e %) or a (Gaussian) radial basis function

called machine learningr ‘soft computing’ [55]) becomes the f(z) = exp[—4 ||z — ¢|[*].

most attractive Al techniques. As the ML is an effective way to | | FDD, the input to the NN s the history data set and the

obtain knowledge from a huge amount of empirical data at tlﬂﬁal output is an indication of the target system’s status

cost of intensive computatipit is straightforward to apply ML (healthy or faulty). Given the dimension of the data sefiis

for detecting and diagnosing faults from data without the ne%gild the number of possible type of faultnis , the relationship

for ?Xp“C't model. . _— ___can be expressed by m to-(1 + 1) functionG : m — n +1
Figure 4 shows a schematic classification of the quanntatly]qapping fromm -dimensional data (n+ 1} -dimensional

:<novv_ledge-bas¢d FDI_:) ;romh the _wewrp])omt of m"’_‘Ch_m?]ealth/fault status. Due to the complexity of the target system,
earning. It is noticed that, in these quantitativg,,qiiqn i usually very complicated and highly non-linear



and getting an analytic form « is extrdyndifficult or Least Squares (PLS) are two typical multivariate statistical
impossible. Since NNs have shown its good ability tapproaches in FDD6B]. Successful applications have been
approximate complex nolimear functions, it is feasible and extensively reported in the literature. First attempt of applying
straightforward to use an NN to approximGe The most PCA in FDD can be found ir2f], where overviews of using
important stage in NN-based FDD is training which the PCA and PLS in FDD were given. This method was extended
connection weightaw} and node’s parameters 87 are adjusted to multi-way PCA [74]. In order to handle nonlinearity in batch
by some training algorithm to have the NN approxinGite processes, a nonlinear PCA method was proposezbinAn
More specifically, the training is an optimization process t#itegral statistical methodology combining PCA and
minimize the approximation error between NN and the desirgliscriminate analysis techniques was developeddh [n [27],
functionG. The most popular supervised learning strategy IRCA was discussed from a geometric point of view and
NNsis back-propagation algorithré%| [67]. methodology that analyzed fault subspace for process and
Due to its powerful nonlinear function approximation angensor fault detection was addressed
adaptive learning capabilities, NNs have drawn great attentionA major limitation of conventional PCA monitoring is that
in FDD. In chemical engineering, one pilot study of neurdhe PCA model is time invariant, while most real processes are
networks for FDD was reported i#g. The NN method was time-varying. Hence the PCA model should also be recursively
later extended to utilize dynamic process daéi.[ updated [101]. An adaptive monitoring approach using
Most of the work on improvement of NNs for FDD is based#ecursive PLS was presented &4,
onthe selection and modification of functif(.). References  (4) Other supervised methods include Support Vector
[72] and [56] suggested the use of radial basis function fdflachine (SVM), Bayesian classifier and rough set etc.
FDD. In [59], the radial function was extended to GaussiaRRecently, there are a lot of papers showing the application of
functions and the hidden node problem was addressed f&¥M to FDD [7Q], including diagnosis of the bars in the
large-scale fault diagnosis. machine B2]. In [60], a single-class SVM was developed for
Different network architectures have also been proposed fault detection. In46], the Bayes decision theory and Bayes
FDD [44]. NNs are also integrated with other machine learninglinimum error classifier were applied to FDD. 183] a
algorithms to improve the fault diagnosis performance. A veiyvo-step fuzzy/Bayesian formulation for changing point
common one is the combination of fuzzy logics with neurdletection in time series was proposed and applied for incipient
networks In [55], a typical fuzzy-neural network was proposedau|t detection in dynamical systems. On decision tree analysis,
and a number of successful applications can be foufidl]. a spatial decision tree was recently developed for movement
(2) Fuzzy logic (FZ) is a means of partitioning a featuremonitoring f3]. A recent interesting study is the application of
space into fuzzy classes and using fuzzy rules for reasoninghiiden Markov model and parameter estimation techniques for
contrast to neural networks in which the knowledge igondition monitoring of rotary machine4]].
implicitly represented by a netvyo_rk of connections imp"CiF'y5.3Unsupervised Learning for FDD
FZ has advantages of describing human knowledge in
straightforward and linguistic wayb¥$]. Due to its linguistic
features, FZ has attracted considerable interests in
literature. Similar to the fault tree and expert systems, fuz
logics adopt thé-then reasoning rule which is a common an
straightforward form of human knowledge. Howevé&iZ

stands out at its definition feature of using membershﬁ?f’ on its oyvnd laorith I K out similarity bet
functions to describe the uncertainties and possibilities of nsupervised aigorithms usually seek out similanty between

events and rules5§. As a result, FZ is able to easilypleces of data in order to determine whether they can be

incorporated uncertainties and possibilities, which are unih/ersfé‘ara“enzed as forming a group (termed by “cluster’). Thus,

in data observation and decision makiigo the diagnosis is process is also referred to as ‘clustering’. In FDD, these
system For example, a nonlinear fuzzy model [1] Withdifferent groups usually associate with different faults and,

transparent inner structuxeas used for the generation of six!?ea"y’ e}acll'l gLOUD IS exp;(;cted to havg adtn HI € r_r':spp?g o i
different symptoms in electro-pneumatic valve. ItS own Tault. However, the unsupervised algorithm does no

Due to the linguistic representation of human knowledge, parantee this and may converge to solutions that are not

has shown its success in FDB]. A FZ system was developed optimal. For example, the selection of the number of clsister
in [80] for space monitoring and fault detection supported inas been a potential difficult problem.

K-means is one of the best known and most popular
E A E 7 f I
uropean Space Agency (ESA) [76], a fuzzy spectral and %%;stering algorithms, which has found application to FDD

aThe distinction between supervised and unsupervised
rning is whethethe training data provided for the ‘machine
rner’ has been labeled Unsupervised learners are provided
ith the training data without classification tags. The
unsupervised learner has to develop and selessification

spatial classifier was used for feature extraction. Fuzzy FD g self . | netwaslsuch ART network
was applied to induction motors, where the fuzzy bases w . Self-organizing neural netwasisuch as / networ
have also been extensively used in fault diagn@&dk [In

extracted from the current analysis of the fault mod In I . . i )
y esil Sfst(g)jfd|t|0n, in [16] L], the integration of wavelets with ART

[69] a fuzzy-based classifier was developed to estimate type work : tinated for the devel t of di i
actuator failure in aircraft armlgenetic algorithm was adopted gjsz\éor;ss was investigated for the development of diagnostic

to achieve an optimal fuzzy rule set for the classifier.
(3) Principal Component Analysis (PCA) and Partial



VI. HYBRID AND NETWORKED FDD IN INDUSTRIAL disadvantages. The model-based FDD is able to detect and
AUTOMATION diagnose faults from small amount of online data in real time.

As these model-based, signal-based and knowledge-badéegel-based methods have the ability to detect unknown type
FDD technigueavetheir pros and cons, it is a trend that thes8f fault, but it requires an explicit input-output model of the
three complementary techniques are usually integrated togetfgget system and its performance depends how good the model
to achievea better performance. This is particularly true whertS: On the contrary, the signal-based and knowledge-based
the industrial processes have evolved from a set of looséfigthods are supposed not to require an explicit or complete

connected individual systems into multitier networkednodel of the system. Specifically, the signal-based methods
automation system. focus on the analysis of the systerautput signals with less

attention to the dynamics of the inplis performance may
6.1 Multi-tier FDD in industrial automation degrade when the system works in an unknown or unbalanced
In the fast changing industry automation, a large-scat®ndition, whilas the knowledge-based methods rely on the
complex automation system comprises of three layers and thege amount of high dimensional history data and are paid at
data flows from bottom to top to drive different FDDthe highest computational costs the knowledge-based FDD
algorithms. As illustrated in Figure 5, gedayers are: is on the basis of leartny-example, its performance heavily
1) Field Control System (FCS). The field devices such aglies on training data and is not good at detecting unknown
controllers, actuators and sensors are connected faylts [102).
correspondent field buses to form various control loops. It is commonly agreed that hybrid schemes would provide
Raw data is first sampled here and sent up for controllingetter solutionso a complex systenfor instance, in model-
and monitoring. Typical FCS are programmable logibased FDD, parameter identification is usually integrated into
controllers (PLC) and distributed control systems (DCS) observer and parity space approaches to automate the process
2) Process management system (PMS). The fundamentaloffmodeling. In signal-based FDD, the time-frequency wavelet
this layer is a supervisory control and data acquisitioanalysisis integrated with the MCSA in the frequency domain
(SCADA) system to collect and analyze the dat§] [93). In knowledge-based FDD, FZs are usually integrated
distributed in FCSs. The safety and reliability are usuallinto other methodsAn ANFIS is a typical examplép], which
monitored at this layer and appropriate supervisory contreéts up a neural network according to fuzzy rules and the
decisions and actions are taken to keep the process ipamameters of fuzzy rules are calibrabgthackpropagation.
working state. In particular, as fuzzy logics have easy representation of
3) Business management system (BMS) is the top layknowledge which usually is a drawback of other machine
usually consisting of ERP (Enterprise Resource Plannin@@arning techniquesFZs are integrated into other methods
system and maintenance management system, etc. Statistical methods like PCA and PLS are also combined with
NNs [44] [77], where PCA/PLS works as a feature extraction
and selection tool to select statistical features and NN works as
a classifier. Supervised and unsupervised methods can also be
integrated. In82], [68], the unsupervised neural network with
clustering was proposeth [83], three techniques (PCA, FZ,
C-means clustering) are integrated to identify faults and

% onar-|History-Data-
ignal- .
based| driven FDD

Online-Data-
driven FDD

BMS: Business Management System
PMS: Process Management System
FCS: Field Control System

ERP: Enterprise Resource Planning
MES: Manufacturing Execution System
MMS: Maintenance Management System

Figure 5 Data flow and FDD in industrial automation

develop operational strategy. The machine learning techniques
were also integrated into the qualitative methods. For example
a fuzzy expert system was proposed3@ |

Not only are various FDD technigues within the same
category combined, but also there is a sign of integrate different
methods cross-over categories to overcome the cons of

A large-scale industrial system is a networked informatiomdividual methods. 193], various model-based, signal-based
system, where the raw data sampled at the lowest devide lemad knowledge-based FDD are integrated into a distributed
flows up to upper-layersVarious data acquisition and aero-engine health monitoring system (DAME). In motor
processing tasks are carried out at different layers for differesiindition monitoring, the signal-based methods are integrated
purposes. At the lowest FCS level, on-line data is processednith model-based or knowledge-based methods, such as fuzzy
real-time for model/signal-based FDD. At the middle PM$ogics [LO3 and neural networks5f]. In [84], combined with
layer, a huge amount of on-line data are collected and stoMd€CSA, fuzzy min-max (FMM) neural network and
over a longer period and processed later in a batch fashictassification and regression tree (CART) were addressed to
Depending on what type of data and how many data adetect induction motor’s faults. In [93], time-frequenyg
available, the three FDD approaches reviewed in this paper ar@alysis was usetd extract the features of rotary machine’s
slotted into different layers but with quite a lot of overlaps. vibration signal followed by a fuzzy sequential inference and
6.2. Hybrid FDD diagnosis system to isolate the fault. The combination of

_ _ model-based and signal-based FDD has shown its ability to
Different methods have their own advantages angktect faults under unbalanced conditiord§] [and have
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attracted more attention recently. impossible to include all of them in a review due to the tough

. limit of space. However, this paper sheds light on how the

6'3'.FDD in networked control s'ysterTws (NCSs) _different methods relate and differ from one another within the
With the success of the real-time fieldbus network designgghified framework of data processing. The trend of FDD in

for control systems and the rapid development of communyiti-tier industrial automation is also analyzed and the

cation networks, more non-realtime general networks, such &ential research directions, such as hybrid methods and FDD

Ethernet and WiFi, are introduced into industrial automatioky, networked control systems, are presented

which opens up a new field of networked control system (NCS)
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