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A hybrid Data Quality Indicator and statistical method for improving 

uncertainty analysis in LCA of a small off-grid wind turbine 

Matthew Ozoemena, W.M. Cheung, Reaz Hasan and Phil Hackney  

Department of Mechanical and Construction Engineering, Faculty of Engineering and Environment,                                      

Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK.  

In Life Cycle Assessment (LCA) uncertainty analysis has been recommended when 

choosing sustainable products. Both Data Quality Indicator and statistical methods are 

used to estimate data uncertainties in LCA. Neither of these alone is however 

adequate enough to address the challenges in LCA of a complex system due to data 

scarcity and large quantity of material types. This paper applies a hybrid stochastic 

method, combining the statistical and Data Quality Indicator methods by using a pre-

screening process based on Monte Carlo rank-order correlation sensitivity analysis, to 

improve the uncertainty estimate in wind turbine LCA with data limitations. In the 

presented case study which performed the stochastic estimation of CO2 emissions, 

similar results from the hybrid method were observed compared to the pure Data 

Quality Indicator method. Summarily, the presented hybrid method can be used as a 

possible alternative for evaluating deterministic LCA results like CO2 emissions, 

when results that are more reliable are desired with limited availability of data. 

Keywords: CO2 emission, data quality indicator, lca, statistical, monte carlo 

simulation. 

INTRODUCTION 

Estimating CO2 emissions is a significant part of wind energy LCA’s. Traditionally 
CO2 emission is estimated with a deterministic approach which uses a fixed point 

value to represent emission factor and generate a single fixed point result. Due to 

differences in emission factors which may vary by industrial process (Wang and Sun, 

2012), there could be significant variations in emission factors among different life 

cycle inventory (LCI) databases. These variations can affect the results of CO2 

emissions significantly. Incorporating the analysis of data uncertainty of emission 

factors could be an important improvement to the deterministic approach as it can 

provide more information for decision making. According to Wang and Sun (2012), 

CO2 emission is given by the following formula: 

 

                      (1) 

Where, 

Emission i: Amount of CO2 emitted from the consumption of material i (e.g. iron)                                         

Activity level i: Material consumption for material i                                                                     

Emission factor i: Consumption of material i’s emission factor 
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Data quality indicator (DQI) and statistical methods are often used to estimate data 

uncertainty in LCA with differing shortcomings and advantages (Sugiyama et al., 

2005; Junnila and Horvath, 2003; EPA, 1995; Hanssen and Asbjørnsen, 1996). DQI 

estimates the uncertainty and reliability of data based on expert knowledge and 

descriptive metadata such as the data’s completeness, geographical correlation, etc. It 
is mentioned in Coulon et al., (2011) and Junnila and Horvath (2003) that DQI can be 

used both quantitatively and qualitatively in LCA studies. On the other hand, the 

statistical method fits data samples with a goodness of fit test to characterize data 

range with probabilistic distributions if enough data samples are available. DQI 

although less accurate than the statistical method costs less compared to the statistical 

method (Venkatesh et al., 2011; Tan et al., 2002b). Due to the high cost of 

implementing the statistical method, though it is desirable when high accuracy is 

required, DQI is extensively applied when high accuracy of an uncertainty estimate is 

not critical or the size of a data sample is not large enough for meaningful statistical 

analysis (Sugiyama et al., 2005). Considering the trade-offs between cost of 

implementation and accuracy, Wang and Shen (2013) presented an alternative 

stochastic solution using a hybrid DQI-statistical (HDS) approach to improve the 

quality of pure DQI method while reducing the cost of the pure statistical method in 

whole-building LCA. The key departure from previous works being the stochastic pre-

screening process using quantitative DQI and Monte Carlo simulation (MCS) to 

determine the influence of the contribution of parameters. After the categorization, the 

statistical method is adopted for the critical parameters, and DQI based distributions 

are used for non-critical parameters. An application test case to wind turbine LCA is 

presented to validate the presented solution. The aim of this paper is to present the 

hybrid DQI-statistical (HDS) method to improve the uncertainty estimate of CO2 

emissions of a small off-grid wind turbine combining the advantages of the traditional 

DQI and the statistical method to develop a more practical approach. This method can 

be used as a valuable tool to evaluate deterministic results of CO2 emissions when 

uncertainty information is needed for decision making. 

 

METHODOLOGY 

The DQI Method 

DQI characterizes the quality of data using descriptive indicators often formatted as a 

data quality pedigree matrix (DQPM) as shown in Table 1. Columns in the matrix 

represent data quality indicators such as data’s completeness, age etc. while rows 
represent the quality scale from 1 – 5. The overall quality of data can be characterized 

by an aggregated number that takes into account all the individual indicators (Junnila 

and Horvath, 2003). All the indicators are treated equal in weight, for example, if (5, 

4, 3) are assigned to three indicators respectively, the aggregated DQI score for the 

parameter is T = 5 × 1/3 + 4 × 1/3 + 3 × 1/3 = 1.61. 

Quantitative DQI  

Quantitative DQI enables the transformation of aggregated DQI scores to probability 

density functions for the quantification of uncertainty (Weidema and Wesnæs, 1996; 

Tan et al., 2002b, Maurice et al., 2000; May and Brennan, 2003). The idea being to 

characterize data of different quality by probability density functions based on the 

“rule of thumb” (Finnveden and Lindfors, 1998). The DQI transformation matrix is 

often used to convert aggregated DQI scores into beta functions (May and Brennan, 
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2003; Canter et al., 2002; Tan et al., 2002b; Kennedy et al., 1997; Kennedy et al., 

1996).  

                (2) 

                               

Where α, β are distribution shape parameters and a, b are selected range endpoints. 

Canter et al. (2002) suggests the use of the beta function due to the fact that “shape 
parameters and range end points allow virtually any shape probability distributions to 

be represented”.  As expressed by Canter et al., (2002), “the shape parameters 
establish the shape of the distribution and thus the location of the probability mass, 

whereas the endpoints limit the range of possible values”. 

 

HDS Approach  

Wang and Shen (2013) states that the HDS approach consists of four steps: (a) 

Quantitative DQI with MCS; (b) Parameter characterization; (c) Detailed probability 

distributions estimation for parameters; and (d) Final MCS calculation. The parameter 

characterization identifies the critical parameters based on the parameters’ degree of 
uncertainty and their influences. The final stochastic results will be produced through 

a MCS calculation.  

Table 1: Data quality pedigree matrix (DQPM) based on National Energy Technology 

Laboratory (NETL) LCI&C Guideline Document 

1 2 3 4 5

data verified based 

on measurements

data verified based on  

some assumptions and/or 

standard science and 

engineering calculations 

data verified with many 

assumptions, or non-

verified but from quality 

source qualified estimate non-qualified estimate

data cross checks, 

greater than or equal 

to 3 quality sources

Completeness

representative data 

from a sufficient 

sample of sites over 

an adequate period of 

time 

smaller number of site but 

an adequate period of time

 sufficient number of sites 

but a less adequate 

period of time

smaller number of sites 

and shorter periods or 

incomplete data from an 

adequate number of sites 

or periods

representativeness 

unknown or incomplete 

data sets

Temporal 

Correlation

less than three years 

of difference to year of 

study/current year

less than 6 years of 

difference

less than 10 years 

difference

less than 15 years 

difference

age of data unknown or 

more than 15 years 

difference

Geographical 

Correlation

data from area under 

study

average data from larger 

area or specific data from a 

close area

data from area with 

similar production 

conditions

data from area with slightly 

similar production 

conditions

data from unknown area or 

area with very different 

production conditions

Technological 

Correlation

data from technology, 

process or materials 

being studied

data on related process or 

material using the same 

technology

data or related process or 

material using a different 

technology

Indicator

Score

Source Reliability 

(for most 

applications, 

source quality 

guidelines only 

factor)

source quality guidelines met source quality guidelines not met

2 or less data sources availab le for cross check, or 

data sources availab le that do not meet quality 

standards no data availab le for cross check

data from a different technology using the same 

process and/or materials  
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a) Quantitative DQI with MCS 

This step follows Canter et al. (2002)’s methodology beginning with data quality 
assessment using DQI. All parameters used for the deterministic calculations are 

evaluated based on the DQPM. After the calculation of aggregated DQI scores, 

probability distributions for each of the parameters are estimated based on the 

transformation matrix (Table 2), and used as inputs for the MCS to perform an 

influence analysis. 

b) Parameter characterization 

The degree of parameter uncertainty can be obtained in the process of data quality 

assessment. Accordingly, parameters will be classified into groups of four with DQI 

scores belonging to the intervals of (Alcorn and Baird, 1996; Ortiz et al., 2009), (4, 5), 

(3, 4), (2, 3) and (1, 2) respectively. The group containing parameters with DQI scores 

within the interval of (1, 2) and (2, 3) show the highest uncertainty, and the group with 

parameters scored within the (3, 4) and (4, 5) interval depict the highest certainty. 

Sugiyama et al. (2005) shows that a parameter’s influence on the final resulting 
uncertainty comes from a rank-order correlation analysis in MCS (Equations (3) and 

(4)).  

                             (3) 

Where IAp,q is the influence of input parameter p to output q; rp,q is the rank-order 

correlation factor between input p and the output q. rp,q can be computed via: 

    (4) 

Where rank (pi) and rank (qi) are the ranks of pi and qi among the N tuple data points. 

Table 2: Transformation matrix based on (Canter et al., 2002 and Weidema and 

Wesnæs, 1996). 

Aggregated DQI scores Beta distribution function 

                                                Shape parameters (α, β)             Range endpoints (+/- %) 

5.0    (5, 5)        10 

4.5     (4, 4)                              15  

4.0    (3, 3)                             20 

3.5     (2, 2)                             25  

3.0     (1, 1)                              30 

2.5     (1, 1)                              35  

2.0    (1, 1)                             40  

1.5     (1, 1)                              45                                       

1.0     (1, 1)                              50 

 

c) Detailed probability distributions estimation for parameters 

The statistical method will be applied, after the parameter categorization, to the 

process of fitting probability distributions of the identified critical parameters. 

Kolmogorov-Smirnov goodness of fit test (K-S test) is a statistical tool that can be 
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applied for determining whether a data sample is drawn from a population with a 

specifically hypothesized distribution by measuring the maximum vertical distance 

between the two cumulative distribution functions (Massey, 1951). If this distance is 

smaller than the designated critical table value, the null hypothesis that “The data 
sample follows the hypothesized distribution” can be accepted (Massey, 1951). The 
K-S test statistic is defined as: 

 

            (5)  

Where F is the theoretical cumulative distribution of the distribution being tested; N 

meaning N ordered data points Y1, Y2 … Yi …, YN. For the non-critical parameters 

of lower uncertainty and influence, the probability distribution will be estimated based 

on the DQI scores and the transformation matrix.  

d) Final MCS calculation 

The final step is calculating the stochastic results by MCS algorithm, according to the 

relationship between inputs and outputs, using the elaborately estimated parameter 

probability distributions as inputs. The probability distributions of non-critical 

parameters are obtained from the quantitative DQI.  

Validation  

To validate benefits of the HDS, it is compared to the pure DQI using two 

measurements to measure the difference between the results. Mean Magnitude of 

Relative Error (MRE) (Eq. (6)) (Abdou et al., 2004) and Coefficient of Variation (CV) 

(Eq. (7)) (Venkatesh et al. 2010). A large CV value indicates wide spread of a 

distribution.  

                      (6) 

Where MHDS is the mean of the HDS results and MDQI is the mean of the pure DQI 

results 

                                    (7) 

Where SD is the standard deviation and M is the mean. 

TEST CASE RESULTS AND DISCUSSION 

Estimation of the CO2 emissions for three unit processes (Produce Air-X-9, Produce 

Tower and Produce Batteries), out of six, of a wind turbine LCA test case adopted 

from Fleck and Huot (2009) was performed. The reason only three of the processes 

were considered is in a large part, due to time constraints regarding the deadline for 

the submission of this paper. Since the quantities of the wind turbine components were 

from the same data source, they have very little or no variations. The deterministic 

estimate result was used as a benchmark for comparison of the stochastic estimation 

outputs. 

Quantitative DQI transformation 

Aggregated DQI scores were rounded off to the nearest nominal value in order to use 

the transformation matrix. Figure 1 shows the aggregated DQI scores. Because most 

of the parameters used in this test case were adopted from the same data source they 

showed the same DQI score of 4 and the same transformation beta function 
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parameters (α = 3, β = 3), with the exception of battery and galvanized steel with DQI 
scores of 3.5 and 3 respectively. 

 

Figure 1: Aggregated DQI scores 

  

Categorizing Parameters 

The influence analysis results (2,000 runs MCS) are shown in figure 2. Aluminium 

emission factor shows the largest influence contributing 25% of the resulting 

uncertainty. The following parameter is plastic emission factor, contributing 21% of 

the resulting uncertainty. Majority of the data are of good quality with corresponding 

DQI scores of 4. The parameter galvanized steel emission factor is the most uncertain 

with a DQI score of 3. With these results aluminium emission factor and plastic 

emission factor were positioned for further analysis using the statistical method, while 

others obtained their values from the quantitative DQI.  

 

Figure 2: Influence Analysis 
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Probability Distributions Estimation 

Beta (4.5, 5.2) was fitted to 32 data points manually collected from previous studies 

for aluminium emission factor with a mean value of 11.58 kg CO2eq/kg. While for 

plastic emission factor, beta (1.8, 11.3) was fitted to 33 data points manually collected 

from literature with a mean value of 3.8 kg CO2eq/kg. 

Comparison of the HDS, Pure DQI and Deterministic Results 

Figure 3 shows the stochastic result (2,000 runs MCS) using DQI. Beta distribution 

(4.5, 4) (K-S test) was fitted, with a mean value of 3531 kg CO2eq and standard 

deviation of 401 kg CO2eq. The HDS result follows a beta distribution (6.9, 9.7) (K-S 

test), with a mean value of 3535 kg CO2eq and standard deviation of 327 kg CO2eq. 

Thus, there is little difference in the dispersion from the DQI result. The CV value of 

the HDS result is 0.09, about 81% less than the value of 0.11 for the pure DQI result. 

The (10%, 90%) certainty interval for the output of the DQI is (3,032 kg CO2eq, 

4,083 kg CO2eq) with a span of 1051 kg CO2eq, while a slightly narrower (10%, 

90%) certainty interval of (3,117 kg CO2eq, 3,961 kg CO2eq) with a span of 844 kg 

CO2eq is presented for the HDS result. In terms of MRE, 0.11% difference was 

observed between the HDS and pure DQI result. This indicates that HDS, given the 

scope of this study, does not capture more possible outcomes than pure DQI, i.e. pure 

DQI does not underestimate the uncertainty of the result. The differences between the 

three results (deterministic, pure DQI and HDS) can also be seen from the cumulative 

distribution function. As seen in Figure 4, it can be concluded that about 50% of the 

possible results are smaller than the obtained deterministic result based on the HDS 

and pure DQI result curves. From the procedure of HDS which identifies critical 

parameters and handles them with the statistical method, which is presumed accurate, 

it can be seen that the final results generated from HDS are somewhat jeopardized. 

Since the identified critical parameters that explained the majority of the overall 

uncertainty was around 46%, it can be hypothesized that there is not much uncertainty 

in the data related to these processes given the little differences in the influences 

between the parameters. Consideration of the three remaining transport processes, 

where the data might have significant scatter, could meaningfully influence the result.    

 

Figure 3: Comparison of resulting probability distributions between HDS and pure 

DQI   
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Figure 4: Comparison of cumulative probability results between HDS and pure DQI  

 

CONCLUSIONS 

The presented hybrid approach using a pre-screening technique based on Monte Carlo 

rank-order correlation sensitivity analysis did not demonstrate its effectiveness in 

evaluating deterministic results of CO2 emissions emitted. The quantitative DQI 

method did not underestimate the data uncertainties compared to the HDS, which used 

the statistical method to estimate the most influential parameters. The results 

measured by MRE and CV between both methods indicate that HDS did not capture a 

wider range of uncertainties when compared to pure DQI. Evaluating the reliability of 

the deterministic value of CO2 emissions, HDS did not show improved estimate of 

data uncertainties compared to DQI, meaning HDS approach did not mitigate the 

uncertainty underestimation deficiency of DQI. From Figure 4 it can be seen there is 

about 50% chance that the deterministic result is greater than the actual value using 

both methods. Thus decisions based on either approach are reliable.   
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