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1 State of the art 
 

Computer-based surgery is a rapidly emerging and increasingly important area 

of research that combines a number of disciplines for the common purpose of 

improving healthcare1.  

Indeed, due to the recent development of 3-dimensional technology for 

cranio-maxillo-facial surgery, computer software is increasingly being used for 

diagnosis, analysis,   data documentation, and surgical planning to elaborate virtual 

simulations of patient’s skeletal changes and new soft tissue profiles2.  

Many applications for computer-based diagnosis and cranio maxillo-facial 

surgery have been proposed3-4-5-6-7-8-9-10-11. The goal of computer-based surgery 

simulation for treating maxillofacial anomalies, tumors and trauma is to enable the 

surgeon to experiment with different surgical procedures (osteotomies, grafts, 

implants, surgical approach etc.) in an artificial environment and to predict the 

outcome of a craniofacial intervention before the actual surgery.  

Computer-aided operations are increasingly being used to obtain a final result 

as similar as possible to the simulated results. Good software needs to be highly 

reliable to obtain a realistic simulation, but the simulation quality is related to the 

surgeon’s ability to reproduce the planned surgery. Many techniques have been 

proposed to help the surgeon improve reproducibility.  

Currently in orthognathic surgery the typical method to reposition jaws in the 

correct and planned location is based on the use of surgical splints. This procedure 
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clearly has a quite high level of imprecision, particularly because it is not easy to 

correlate the facial bow to the cephalometric data in a surgical plan that is 

performed based on the cephalometric data, which are normally bi-dimensional and 

characterized by some x-rays distortion, while dental casts are three-dimensional, 

are mounted on a facial articulator, and are quite different from the facial 

skeleton.12 

If interocclusal wafers are used, standard and simple transverse and sagittal 

maxillary repositioning is well predictable.13  

The most important differences between planned and achieved maxillary 

movements are in the vertical and rotational positioning14-15 of complex skeletal 

three-dimensional movements. 

Recently, surgical splints have been processed using stereolithografic 

systems16 or computer-aided design and manufacturing techniques17. Virtual 

computer-assisted models can improve splint accuracy, especially in terms of the 

correlation with the skeletal structure, but do not improve vertical control of the 

maxilla18. 

Several methods have been described for intraoperative maxillary control 

including intraoral reference points (IRP), extraoral reference points (ERF), 

intraoperative face-bow transfer, and the three-splint technique with positioning 

plates 14-19. None of these procedures is able to control the real position of the 

mobilized fragment in the three-dimensional facial skeleton frame. In general, it is 
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difficult to intraoperatively trace an osteotomy parallel to the skeletal Frankfurt 

Plane at the Le Fort I level. The obliquity of the osteotomized skeletal surface 

introduces unavoidable errors when the planned movements are reproduced. 

Computer-aided surgery should be used more in the coming years to check these 

three-dimensional movements.   

Computerized navigation surgery is a surgical modality based on synchronizing 

the intraoperative position of the instruments with the imaging of the patient’s 

anatomy obtained by computed tomography.20-21-22-23  

             During orthognathic surgery, and in the same way in trauma surgery, a 

navigation system controls the position of the mobilized bone and eventually 

verifies the new bone location. Each bone segment shift can be controlled and 

modified with the navigation system, synchronizing the intraoperative position of 

the instruments to a preplanned location within the surgical field. 

            In the field of traumatology  surgeon tries to restore the anatomical situation 

present before the trauma. If this procedure  is generally an easy procedure in a  

monofocal fracture with low degree of displacement it becomes more and more 

difficult in plurifragmentary or in a panfacial trauma where  it is sometimes difficult 

to achieve the exact position for each bone fragment. Three dimensional positioning 

of the fragment via navigation could help the surgeon to reposition the more 

displaced bone surface; computer mirroring or other technical procedure can help 

to  obtain symmetry and restore the previous anatomy. 
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              In oncology navigation can help to compare the boundaries of the tumor in 

vivo with CT, MRI, angiography images obtaining a more accurate tumor removal; in 

the chapter of reconstructive surgery navigation can be useful in  positioning bone 

flap (i.e. to decide in which exact  site perform the bone cut in a fibular 

microvascular flap for mandibular or maxillary reconstruction).      
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Project description 

              There are three main field of research in which the  concept of “Simulation 

Guided Navigation” procedures in cranio-maxillofacial surgery have been widely 

introduced and  this approach in the research project has been validated: 

 

1) Navigation in Orthognathic Surgery.  

In this field the objective  was to validate these applications: 

 to improve the accuracy in simulation guided navigation; 

 bone segments navigation; 

 mandibular condyle navigation; 

 to develop more accurate surgical intruments (i. e. saw) tracking. 

2) Navigation in H&N Oncology.  

Oncology is the first surgical field where computer-aided surgery has been 

developed and applied. Navigation of the tumor mass and the surrounding tissues, 

seeking safe margins, has been the inspirational concept that lays at the root of this 

technology. 

Nowadays oncology is still the head and neck surgical field where navigation is 

mostly used. Especially for tumors of the splancnocranium or the skull base. 

Objective of the project was: 

 developement of computer planned resection; 
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 developement of computer planned reconstruction; 

 more accurate navigation of soft tissues. 

3) Navigation in H&N Traumatology.  

Navigation has been recently applied also to complex bone traumatology, especially 

orbital fractures. One major use of navigation has always been the research of foreign 

bodies, which are so frequent in the traumatology of the head. 

Objective of the project was: 

 developement of more accurate computer planned bone repair and 

reconstruction; 

 navigation of the mandibular condyle. 



10 

 

Final objective that the research project should achieve 

The final objective was to introduce the concept that many cranio-maxillo-facial 

surgery procedures  could be performed applying the final goal of reproducibility of 

a presurgical plan and overwhelm the approximate approach based on the 

surgeon’s skill.  This final objective has been reached using a validation protocol. 
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Project articulation  and  fulfillment time 

 

Patients: 

       We have enrolled patients with dento-facial deformities, trauma  and tumors  

from January 2011 to December 2013 which would be operated on at the Oral and 

Maxillofacial Surgery Unit of the S. Orsola-Malpighi University Hospital, Bologna, 

Italy. 

After a clinical evaluation and an approach of many consultants, all patients  

underwent CT (CBCT – Cone Beam Computer Tomography,  for orthognathic surgery 

procedures  and MSCT - Multi Slice Computer Tomography,  for traumatology and 

oncology). 

The surgical simulation has ben mapped in all patients with SurgiCase 5.0 by 

Materialise® (Leuven, Belgium) and the eNlite Navigation System by Stryker® 

(Freiburg, Germany) with the iNtellect Cranial Navigation platform has been used 

during each operation (FIG. 1). 

 

 

Procedures: 

 All patients were studied and treated according to the following steps: 

1. Imaging: cone-beam computerized tomography (CBCT) or multi-slice computer 

tomography  (MSCT)  data acquisition; 
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2. Planning: virtual simulation of the surgical procedure using Materialise® 

SurgiCase; 

3. Intraoperative navigation: performed using the Stryker® eNlite Navigation System, 

including pre-registration and intraoperative registration, performed using point-to-

point and surface registration methods; 

4. Validation: after the CBCT/MSCT postoperative scan, a validation will be  

performed to assess reproducibility. 

 

 

1_Imaging: a CBCT/MSCT scan of the orthognathic surgery patient was performed 

before surgery using the Newtom 3G Maxiscan (QR - Quantitative Radiology, 

Verona, Italy). This tool is designed to study the maxillofacial area. The main feature 

of the Newtom 3G Maxiscan® is its ability to obtain a complete acquisition of the 

patient in a single rotation. Furthermore, this tool allows the scan to be performed 

with the patient in a prone position, which is comparable to the operating theatre 

position and particularly useful for soft tissue accommodation. 

 

Other features are: 

-     extremely low radiation dose administered as compared with MSCT.24-25-26 

- the scanned mass can be virtually “dissected” in all dimensions due the 

possibility of actively working on the entire volume; 
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- the safe-beam device used by Newtom 3G Maxiscan® automatically adjusts 

the emitted radiation dose based on the body’s mass and dimensions. 

 

In the patients affected by trauma or tumor  a MSCT will be perform (mainly a 

General Electric Hi Speed CT, USA) as in this kind of patients it is mandatory to  use a 

more detailed x-rays analysis even accepting a greater radiation exposure. 

 

2_Planning: CBCT or MSCT scan data were loaded on Surgicase CMF 5.0 by 

Materialise®, which allows the surgeon to virtually plan and realize the osteotomies 

to be performed in the operating room according to the analysis and the presurgical 

planning.  

 Materialise® Surgicase allows a virtual outcome of the surgery for the surgeon 

(skeletal surgical simulation). Furthermore, the software elaborates facial soft tissue 

appearance after repositioning of the bone segments due to an algorithm published 

by our group in 200627. 

 After creating the virtual osteotomy plan, Materialise provided a conversion 

from the work-on file to a 3D virtual object in a standard and internationally 

accepted file format (STL). 

 

3_Intraoperative Navigation  

 A. Preregistration and Registration  
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 Registration is a crucial procedure and a fundamental preliminary step for the 

navigation technique, which consists of making the real patient visible and his/her 

orientation in the space of the operating theatre decipherable by the navigation 

software in the same coordinate system as the preoperative CT scan.  

 This technique orients the patient according to the CT scans by indicating well 

identifiable points on the face and relating them to the virtual patient image shown 

on the navigator screen. The preregistration process consists of identifying these 

points on the virtual model of the patient’s face. The registration process consists of 

identifying the same points on the real patient’s face (point-to-point registration). 

The procedure is refined with a surface registration, which consists of collecting 

casual points on a patient’s face and defining a virtual model of the facial surface. 

The system subsequently identifies relationships between this model and the 

surface of a patient’s 3D CT scan reconstruction28-29-30-31. 

 Before preregistration, we  have uploaded the STL file of the osteotomized 

skull or other surgical plan. The system is able to perfectly overlap the fixed bone 

segments to the native skull and show the spatial discrepancy between the 

mobilized bone segments before and after repositioning (FIG. 2). 

 This process  have been continued in the operating theatre. First, the tracker 

have beeb screwed into the patient skull. Then, the registration have been 

performed according to the preregistration. We have verified  the accuracy of the 

registration procedure by pointing to anatomical landmarks on a patient’s face with 
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the pointer tool (we usually chose the teeth of the upper maxilla and eyelid canti). If 

correct overlap was  observed between the real patient’s landmarks and the virtual 

ones, we have  confirmed the procedure and we  conducted  the surgery. 

 

 B. Navigation 

 The surgery wasn’t different from routine maxilla-facial surgical procedures. 

However, with the Navigation System, each bone segment shift could be controlled 

by pointing to the mobilized position and checking the overlap precision between 

the planned position, shown on the LCD screen, and the achieved position. If the 

positions shouldn’t been coordinated, the surgeon would have moved the bone 

until the required position would been obtained. This checking process would have 

been conducted using the “pointer” of the Stryker eNlite Navigation System as a 

mobile tracking system (FIG. 3). 

 The landmarks that usually have been used to check surgical movement were, 

in orthognathic surgery procedures, the anterior nasal spine, superior and inferior 

incisors, osteotomy lines, teeth cusps (orthodontic brackets for orthognathic 

procedures), and mandibular angles. For oncological reconstruction we used the 

osteotomy cuts designed on the fibular model or the bony part of the flap and in 

traumatology  with the pointer we have checked the surface of the fragment till 

reaching the planned position. The pointer tip was used to touch these landmarks 

on the mobilized bony parts, visualizing the navigation system monitor if the 
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corresponding “virtual pointer” touched the analogous virtual landmark, initially on 

the native bone (native CT scan) and then (after repositioning of the fragment) on 

the mobilized bone (simulation object overlapped to the native CT scan). 
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4_Validation:  Proposed measures  to verify the obtained results: 

 

we have focused this evaluation on “reproducibility,” i.e., the capacity of the 

procedure to reach the virtually planned bone segment positions during the 

operation.  

 In this case, the validation have evaluate the increase in effective 

reproducibility provided by the Stryker® eNlite Navigation System compared to the 

reproducibility we had obtained in a previous study group for the orthognathic 

procedures, in which no intraoperative navigation was performed, and planned 

positions were reached only by surgical splints28.  In oncology and traumatology we 

have used the pre-operative anatomical structures and, when possible, we have 

used the unaffected side of the face as a template. In oncology we have compared 

the presurgical CT data with the reconstructive plan and the post-surgical final 

result. 

A post-operative CT has been conducted from 1 to 6 months after surgery with the 

same acquisition protocol. The CT has been compared to the 3D virtual object STL 

file to calculate the overlap error between the images. This procedure has been 

performed with 3-Matic software, (Materialise®), which matches the two surfaces, 

and computes the difference in the overlap. The program  created an overlapping 

image for each patient (FIG. 4), in which the operator saw the preoperative 

simulation surface highlighted with a specific color scale. Each color, as shown in the 
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image, corresponds to a matching error value with respect to the actual 

postoperative patient’s bony surface.  



19 

 

 

 

FIG.1
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FIG. 3 The correct position of the maxilla is plotted using known landmarks including 

the anterior nasal spine ( A) , the brackets of the incisors ( B) , canines and molars ( 

C) . 

 

FIG.4
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1) Navigation in Orthognathic Surgery.  

       In this field the objective  was  to validate these applications: 

 

 to improve the accuracy in simulation guided navigation we have developed a 

project Called: 

“New Method of  Validation for  3D Simulation Guided Navigation in   Facial 

Anomalies  Surgery “ 

With this aim we analized retrospectively 20 patients enrolled with dento-facial 

anomalies and treated at the Oral and Maxillofacial Surgery Unit of the University 

Hospital S. Orsola -Malpighi  (Bologna ) from November 2008 to December 2011 . 

The clinical characteristics of the patients are summarized in Table 1. 

Patient Sex Age Diagnosis 

1 M 43 class III ( hypoplasia of the maxillary+ prognathism  ) 

2 F 18 class III ( hypoplasia of the maxillary +prognathism  ) 

3 M 35  hypoplasia of the maxillary +prognathism   

4 M 25 class II (OSAS ) 

5 F 17 outcomes of bilateral hemimandibular hypoplasia  

6 F 18 class III dentoscheletrica ( Sd. Crouzon ) 
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7 F 33 class III ( hypoplasia of the maxillary prognathism + ) 

8 F 18 class II 

9 F 22 class III ( hypoplasia of the maxillary + prognathism  ) 

10 M 38 class III ( hypoplastic maxillary + prognathism  ) 

11 M 22 
mandibular asimmetry, Class III  ( hypoplastic maxillary 

+prognathism  ) 

12 M 32 class II ( maxillo- mandibular hypoplasia ) 

13 F 44 mandibular deviation  in short face type 

14 F 18 class III ( hypoplasia of the maxillary + prognathism  ) 

15 M 26 class III ( hypoplasia of the maxillary + prognathism  ) 

16 F 29 
mandibular asimmetry, Class III ( hypoplastic maxillary + 

prognathism  ) 

17 F 22 class III ( hypoplasia of the maxillary + prognathism  ) 

18 F 40 class III ( hypoplasia of the maxillary + prognathism  ) 

19 F 45 class III ( hypoplasia of the maxillary + prognathism  ) 

20 F 49 class II ( maxillo- mandibular hypoplasia ) 

 

Table 1 

 

After the analysis of the orthodontic and surgical treatment , all patients 

underwent orthognathic surgery as planned preoperatively , all patients were 
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operated on by the same surgeon . The surgical simulations , performed by 

the same researcher , were produced with the software SurgiCase 5.0        

(Materialise - Leuven , Belgium) on the basis of a cone-beam CT ( CBCT ) 

preoperatively. All patients were subjected to computer - assisted 

intervention according to the method of the Simulation Guided Navigation; all 

patients were subjected to cone-beam CT to 6 months postoperative , used 

for the validation procedure . 

 

IMAGING 

 

The preoperative and postoperative CBCT were performed , for the first 10 

patients using the system Newtom 3Gmaxiscan ( Quantitative Radiology , 

Verona, Italy ) , while the latter 10 patients using the system Newtom VG 

(Quantitative Radiology , Verona, Italy ), which represents an evolution of the 

first . This change was motivated by an update of the machines in the 

structure of Radiology where the examinations were conducted , so it is 

independent of our search intentions . Nevertheless, these devices are both 

designed specifically for the acquisition of the maxillofacial complex and 

represent the evolution of each other. Therefore we can assume with good 

approximation the change does not affect the acquisition system . The only 

real practical difference between the machines is that the first acquires in the 
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prone position, while the second upright. Since the bony structures our target 

and being insensitive to the navigation system cervical rotations, we can 

affirm that there is no difference. 

The use of CBCT for this type of procedure is imposed according to the current 

international standards. Indeed CBCT provides optimal scan of the bony 

structures of the face in front of a relatively low radioesposizione.15 A 

multislice CT certainly increase the accuracy of the reconstruction, but given 

the high level of radiation exposure does not appear adequate for this type of 

surgery, whereas, moreover, there is also a CT scan at 6 months 

postoperatively. The timing of 6 months was motivated by the fact that with 

the same TC our group also performs the validation of soft tissue ( according 

to another research protocol). Six months is a reasonable time in order to 

minimize the effects of postoperative edema . 

 

PLANNING 

 

The data of CBCT scans were loaded on SurgiCase 5.0 ( Materialise , Leuven , 

Belgium). This software allows you to virtually reconstruct the facial skeleton 

of the patient and perform on it osteotomies and displacements of the bone 

segments . This procedure allows you to run an entire orthognathic surgery in 

a virtual way and save the result in a format file owner (SGC) . In order to 
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convert the file into STL was necessary to send the file to Materialise SGC so 

that may be performing conversion using the 3Matic software ( Materialise, 

Leuven, Belgium). It ' was specifically asked to produce STL files with a 

resolution that does not exceed 10Mb of memory. This is because the 

browser software would be significantly slowed down by the management of 

a larger file . 

 

NAVIGATION INTRAOPERATIVE 

 

Transfer of STL files 

 

The system navigazone is not natively able to load the STL file in your desktop 

environment . To achieve this , engineers have provided us with Stryker , 

under the research collaboration with our group , a string of additional 

control . The program is then able to place objects in STL format into space 

graph of TC and the matching is guaranteed by the perfect correspondence 

between the coordinates of the DICOM CT and STL planning. The result of this 

command is shown in Fig. 5 . 
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FIG. 5 

As represented in the figure, the portions of the skeleton  that were not 

moved coincide perfectly, while the portions which have undergone a shift 

according to the operative program show a discrepancy relative to the bone 

that accurately represents the native portion of displacement to be imparted . 

 

REGISTRATION 

 

As explained above, in order to navigate a surgery is necessary to register the 

patient and CT. The process of registration, or the creation of spatial 

correspondence between the two coordinate systems (real and virtual ), it can 
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be based on several methods. For our study, we used the combined use of a 

recording point to point and a surface scan . This procedure can be carried out 

both on the soft tissues both hard tissue . In our experience, browsing , using 

CBCT, recording the soft tissue becomes less accurate in terms of Target 

Registration Error ( TRE) calculated by the system, compared to that on the 

hard tissues . This figure seems intuitive when you consider the relative 

deformability of the soft tissues compared to hard tissue. In an earlier 

evaluation, 10 patients ( mismatched patients in the present study ) recorded 

through the soft tissues, the final values of TRE ranged between 0.60 mm and 

1.00mm with a mean TRE of 0.77 mm (SD 0.13mm ) . In contrast, 10 patients   

(mismatched patients in the present study ) recorded through the bone 

tissues, we obtained values of TRE between 0.10mm and 0.50 mm, with a TRE 

average 0.32 mm (SD 0:06 mm). The difference is significant, so where 

possible we prefer to register on the bone tissue . 

 

Registration on soft tissue 

 

Point To Point 

The points considered are the medial and lateral eyelid songs to both eyes , 

the subnasale point (moderately distorted by the presence of naso-tracheal 
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intubation ) and left and right earphones traghi. If the patient has more points 

easy to localize (eg a detected nevus) we use also them (Fig. 6A). 

 

 

 

 

 

                                                                   

A                                                                        B 

      FIG. 6   Soft tissues: A. Point-to-Point Registration; B. Surface Registration 

 

 

Surface Refinement 

With extreme care to not deform the skin ( the tip of the scanning tool , which 

is the pointer must touch the skin and plotted it only slightly ) , we proceed to 
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draw random points on the forehead, periorbital regions, the bridge of the 

nose and temporo- zygomatic regions (Fig. 6B ) . 

 

 

Registration on hard tissue 

 

Point To Point 

This procedure takes advantage of the presence of orthodontic brackets . 

Infact they represent fixed points with a relatively stable support to the tip of 

the pointer. We used the central incisor and canine brackets and bands on the 

first or second molars on both sides, and will last with the nasal spine and 

both infraorbital foramina. It goes without saying that this process can be 

completed only when the skeletonization of the maxilla occurred (Fig. 7 ) . 
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Fig 7 Hard tissues : Point- to-Point Registration 

 

Surface Refinement 

The procedure is completed by scanning the anterolateral surface of the 

maxilla skeletonized, in a manner not different from what happens for the 

registration of the soft tissues, with the important advantage of not deform 

the surface that you are scanning . 

In both cases, the proper registration occurs on the surfaces and cusps of the 

dental surface,  as well as - in the second case -  on the bone surface. 

 

ACTUAL NAVIGATION 

 

The surgery is conducted in a manner no different from a normal orthognathic 

surgery . Having mobilized the maxillary bone segment, it is tracked in space 

and in its movements by the pointer, which goes to locate known points ( or 

cusps dental brackets , anterior nasal spine , ...) or surfaces in order to verify 

that the newly - position corresponds to that represented in the project ( Fig. 

3, 8). This procedure allows to adjust the position of the jaw to obtain a good 

position. If the system should find out that the programmed position is not 

reachable ( can not be eliminated  bone pre-contacts, soft tissue resistance, 

...), the case was excluded from the study and the decision taken in the 
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operating room can not be changed anymore. This exclusion criterion in 

retrospect is important because what we are going to test is not the ability to 

move the upper jaw exactly where we planned regardless of any other factor, 

but the ability to verify that the jaw, positioned to the programmed position,  

is faithful, and the system can further increase the accuracy.  If there are 

extrinsic factors that prevent a shift whole, it is therefore appropriate to 

exclude cases in which this is done, although it could be argued, however, the 

utility of the navigator, showing it the objective impossibility of achieving the 

result . 
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FIG. 8. The correct position of the upper jaw is drawn also by scanning the 

surface of the bone segment osteotomized and mobilized . 

 

VALIDATION 

 

The validation procedure was performed for all patients by the same operator 

(Mr. Andrea Roncari, BIC) . 

We will look at the method, but it is primarily present the software with which 

this validation was conducted. 
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Lhp Builder 

 

Lph Builder is an application developed by the Multimod Application 

Framework (MAF), whose specific objective is to provide a supportive 

environment for rapid development of applications for CAM / CAS computer 

aided medicine / surgery . MAF is currently undergoing further development 

through collaborative development initiative OpenMAF Open Source and 

distributed under a BSD-like license, which allows for the development of 

using MAF royalty -free commercial applications. Lhp Builder is compatible 

with the Microsoft Windows platform. 

The software was developed at the Laboratory of Medical Technology ( LTM ) 

of the Rizzoli Orthopedic Institute (Bologna ), and then transformed into a 

commercial product Scs (Bologna). The use of this software it was possible 

through the collaboration in the BIC (Laboratory of Computational 

Bioengineering ) , part of  LTM . 

An essential feature of lph Builder is the ability to import any type of 

biomedical data in a hierarchical structure in which each block of data is called 

Virtual Medical Entity (VME) . Each VME contains the dataset, the array of 

poses that defines the position and orientation of the dataset , and a number 

of metadata attributes ( textual data associated with the data itself) . 
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The software can import 3D volumes generated by nearly every type of 

imaging ( CT, MRI , PET, SPECT , ultrasound 3D ) and written in DICOM format , 

the input can also be formed by dynamic MRI , cardioTC, and other 4D 

imaging modalities. Finally you can import STL files from polygonal surfaces or 

VMRL . 

The software is currently used by the BIC for numerous studies in orthopedics 

(Fig. 9) . The collaboration with our group represents its first use in 

maxillofacial surgery . 

 

 

 

 

 

 

 

 

 

 

FIG. 9 
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In Figure 9 is shown as figure shows the lph Builder graphic setting  ( in the 

specific example, in a case of testing of musculoskeletal models ) : on the right 

you can see the tree hierarchically ordered VME . 

 

 

 

Procedure 

 

To assess the reproducibility of the planned bone surgery, the bone surface 

extracted from postoperative CT is compared with that of the STL of the 

simulation. 

 

STEP 1: The STL file of the simulation ( hereafter referred to as SIM file ) is 

imported to Lhp Builder ( Fig.10). 
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 FIG. 10 

 

STEP 2: Take a postoperative CT DICOM data , we extract the 3D volume of 

the patient's skull (the file named POST) , choosing the best thesholding based 

on the skill of the operator and the similarity with the look and feel STL , 

having given for thesholding assumed that the latter is the optimal choice for 

the  operator (Fig. 11) . 



38 

 

 

FIG. 11 

 

STEP 3: It reduces the resolution POST from 3,000,000 to 1,000,000 ca of 

triangles so that it is easily manageable by Lhp Builder ( this reduction is the 

ideal solution to make the file "light" but very accurate) . 
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STEP 4: This segment metallic components (POST osteosynthesis titanium ) 

(Fig. 12). 

 

FIG. 12 

 

 

 

STEP 5 : You remove the plates osteosynthesis by POST, after incremental 

offset of the surface , to be sure to remove all their volume and any artifacts 

(Figs. 13-14 ) . 
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 FIG. 13  Offset of osteosynthesis 
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 FIG. 14 Removing the means of osteosynthesis . 

 

 

 

 

STEP 6 : It will fill the gap left by the previous operation subtractive through a 

linear function of connect between edges, in this way the gap are occupied by 

flat surfaces, probably less likely, but more standardizable of a curved surface 

drawn by the operator (Fig. 15 ) . 
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 FIG. 15 

 

STEP 7: You build the Frankfurt plane, using its bony points ( Or Right Or Left 

and the midpoint between left and right Po) on both SIM and POST (Fig. 16) . 

                  

FIG. 16 
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STEP 8: Subtract from the region of the skull base SIM and POST a spherical 

volume centered on the midpoint of the center and radius Po -Po. In this way 

you delete a region that is not affected by the validation but could generate 

significant discrepancies overlap (eg . Mobility of the cervical vertebrae ) (Fig. 

17). 

           

FIG. 17 

 

STEP 9: We dissect the 3D models on the basis of the Frankfurt plane in Orbito 

- cranial portion and the jaw portion (Fig. 18) . 
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FIG. 18 

 

STEP 10: Continue recording Orbito - cranial portions of a point cloud using 

standard ( glabellar point average, sovraorbitari foramina, fronto - zygomatic 

sutures, angle between the bridge and the posterior edge of the zygomatic 

frame, side of the orbit and any additional points that are well recognizable 

on both surfaces ) and a procedure ICP ( Iterative Closest Point ) that also 

returns the value of the error of recording (Fig. 19) . 

 

           

FIG. 19 
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STEP 11: It is the same matrix of laying the jaw portion, also obtaining the 

registration of these two segments (Fig. 20). 

 

FIG. 20 

 

STEP 12: You draw a cutting plane common to both SIM and POST on the 

braces and making the separation of the maxilla from all that is under the top 

or upper portion of the crown of teeth and the entire mandible ( Fig . 21 ) . 
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FIG. 21 

At this point we have two 3D objects of the maxilla, one derived from SIM 

(MxSIM ) and one derived from (POST MxPOST ) (Fig. 22). 

  

 FIG. 22 

These two - dimensional surfaces are then being compared with Hausdorff 

Distance ( HD ) . The Hd is calculated for each vertex of the triangle. Each 

validation provides a very high number of measurements. We evaluated the 

minimum and maximum values and the mean values. For the purpose of 

validation we consider only the mean values ( Fig. 23). 

 



47 

 

 

FIG. 23 

As previously said , the Hd is not equal if using as a reference the first surface 

or the second . In symbols Hd ( A, B ) ≠ Hd ( B, A), that it means that  the 

procedure is not symmetric. The concept is intuitive if you think about how 

the function Hd: the distance is calculated by measuring the distance between 

each vertex of a triangle surface and the closest point ( perpendicular ) of the 

other surface . It 's obvious that the two surfaces do not have the same spatial 

arrangement of the triangles . It follows that the perpendicular constructed 

on the vertices of the area A will be different from those built on the vertices 

of the surface B and will touch the other surface at different points, realizing 

different distances . Therefore, for each comparison we obtained two values ( 

SIM to postop and postop to SIM). It was decided to choose the worst of the 

two values. 
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Once you have the distance, was carried out the % of measurements below 

the threshold of 1mm, considered by AA . as appropriate  limit to consider the 

result  as " accurate " . Obviously in this case we got two values ( SIM towards 

postop and postop towards SIM ) and also in this case we chose the worse of 

the two . 

 

The Problem of Thesholding 

 

As stated previously, the degree of thesholding with which is extracted from 

the 3D TC surfece is potentially different for each patient, since the operator 

chooses subjectively the threshold that makes the best 3D reconstruction 

from the graphical point of view. Normally the values chosen roam all around 

a number of Hounsfield Units, but can vary significantly. In addition, the 

threshold values for CBCT are different and much more unstable comparing  

the traditional CT threshold values .  

It is  evident that this may create a discrepancy between a validation and an 

other. To analyze how this factor might affect we have made some tests 

varying in excess and defect in the Hounsfiled Unit around a value subjectively 

considered as optimal threshold. In the case of our study, the problem is 

affecting POSTOP, because SIM is  already supplied in STL format. During the 

simulation performed with SurgiCase 5.0, the operator chooses by itself  to 
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use a thesholding reconstruction.  You may, however, consider the operator 

as an "expert " in the choice of a value graphically optimal and consider it as a 

standard of comparison: for postop was chosen value of thesholding as similar 

as possible to the SIM and in any case that  it could return a good result in 

graphic terms. Then we were able to conduct the analysis by changing only 

the values of the second surface and observed how they vary Hausdorff 

distances . 

 

RECORDING  ERROR  

 

The procedure included in the ICP software Lhp Builder provides the value of 

the error logging. In addition we have also calculated the HD for the orbital- 

cranial segments . This calculation expresses intuitively ( also expressed as % 

under 1 mm ), the goodness of the recording and associated with the error 

makes the procedure very solid . 

 

 

 RESULTS 

 

The results are shown in Tables  2, 3, 4 and 5. 
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In Table 2 are gathered the results of the recording of the orbital- cranial 

segment. The table also contains columns for the thesholding used, and error 

logging . 

Table 3 contains the most important data on the other hand , since Hd 

collects the maxillary segments . 

In both tables shows the maximum and minimum values of HD and the 

average value . The last section contains the percentages of the error below 1 

mm. Each section is divided into two sub-columns, which represent the 

different comparisons SIM to POST and POST to SIM ( please note that the HD 

is not symmetric). Of these two sets of values we always chose the worst , 

highlighted by a colored box. 

Table 4 summarizes the averages of those assessments. Then contains the 

actual results expressed in the work,  which is the average error and the mean 

% of distances < 1 mm. 

Table 5 contains an example of a thresholding analysis ( patient 1 ) . It shows 

how to change the thesholding in default or in excess of 100 HU, Hd values do 

not vary as significantly . 
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TABLE 2: ANALYSIS OF ORBITO-CRANIAL PORTIONS  

 

 

 

  Max Hausdorff  Min Hausdorff Mean Hausdorff %<1 Hausdorff 

Pts Thesholding Registration Err. sim > post post > sim sim > post post > sim sim > post post > sim sim > post post > sim 

1 710 0,416507 8,28959 7,47755 9,86E-06 1,46E-06 0,442212 0,400142 90,63 93,812 

2 700 0,334961 4,2163 11,7923 5,55E-06 3,27E-07 0,328554 0,364395 94,1727 93,986 

3 550 0,388194 9,73516 10,484 1,03E-05 1,22E-06 0,416126 0,40415 92,0561 92,7656 

4 710 0,459846 6,03007 9,96279 4,35E-05 3,11E-06 0,502648 0,501029 87,5031 88,991 

5 700 0,74706 7,57571 6,44455 2,26E-04 2,85E-06 0,845805 0,606748 75,0666 83,2491 

6 700 0,609507 6,30253 10,5213 1,13E-05 1,18E-05 0,665027 0,696421 80,0233 80,3985 

7 800 0,522494 8,32787 9,07556 1,05E-04 4,18E-06 0,585261 0,754869 83,098 78,3423 

8 700 0,859879 6,49702 7,85217 1,39E-05 6,08E-06 1,02774 1,06627 63,8828 67,1093 

9 700 0,344228 8,89965 9,94617 4,45E-06 1,05E-06 0,332947 0,634513 95,3081 79,2767 

10 600 0,36744 6,48721 6,31681 1,92E-05 3,82E-07 0,373715 0,695087 92,8523 78,032 

11 750 0,379831 5,12222 6,16356 2,00E-05 3,33E-07 0,402618 0,713764 92,0739 75,7329 

12 750 0,446596 7,73181 7,42255 2,78E-05 5,21E-07 0,412761 0,380503 91,9621 94,8804 

13 800 0,482026 7,62776 7,34107 4,16E-06 2,14E-06 0,440745 0,287865 91,9073 96,9003 

14 750 0,554368 7,29266 6,71196 1,96E-05 3,96E-07 0,525072 0,320162 87,7382 96,3313 

15 700 0,421456 5,33607 4,81844 8,31E-06 2,10E-05 0,477864 0,831098 90,8898 71,7476 

16 700 0,550944 4,51196 6,31188 4,64E-04 2,22E-05 0,799229 1,1471 73,8895 56,6806 

17 600 0,460645 4,39796 5,73273 9,67E-05 3,35E-05 0,656348 0,854028 84,8508 73,4376 

18 500 0,313056 4,43813 6,22556 8,83E-05 1,88E-05 0,325316 0,449792 94,8075 88,5336 

19 500 0,821053 8,09085 7,81271 9,76E-06 2,54E-07 0,957483 0,676552 67,5476 82,3182 

20 700 0,322579 4,64831 10,8666 2,01E-05 3,68E-06 0,364013 0,649296 95,9533 84,5008 
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TAB . 3 ANALYSIS  OF MAXILLARY PORTIONS  

 

  Max Hausdorff  Min Hausdorff Mean Hausdorff %<1 Hausdorff 

Pts Thesholding Registration Err. sim > post post > sim sim > post post > sim sim > post post > sim sim > post post > sim 

1 - - 13,9604 7,38307 0,000103723 6,57E-06 1,31135 1,11265 59,6434 62,9286 

2 - - 7,86154 6,63615 1,80E-05 5,28E-05 1,07098 0,989446 60,558 63,7187 

3 - - 6,78077 6,2751 3,80E-05 9,10E-06 0,735118 0,733596 76,0051 76,1747 

4 - - 7,65546 4,9962 5,85E-05 2,55E-05 0,790782 0,769994 70,7434 71,5273 

5 - - 12,3013 16,0275 4,03E-05 1,25E-07 0,901015 0,79201 64,9705 71,184 

6 - - 6,06041 6,94549 0,000219247 1,33E-05 0,810408 1,10333 71,4357 59,1598 

7 - - 8,98814 9,39591 7,36E-05 9,18E-05 0,954985 0,937854 72,6474 70,5232 

8 - - 4,16773 8,85705 1,43E-04 9,18E-06 0,7854 1,04301 70,5053 59,794 

9 - - 5,21005 6,1745 2,38E-05 3,20E-06 0,629698 0,994021 78,9137 63,6343 

10 - - 5,51114 4,50106 3,37E-05 9,27E-06 0,761876 0,747768 71,2268 71,9463 

11 - - 5,42102 6,04491 2,20E-05 1,79E-06 0,915649 1,05513 66,4947 57,4725 

12 - - 15,913 18,321 2,66E-05 1,80E-05 0,821026 0,652553 72,3554 78,6209 

13 - - 7,61646 9,35328 0,000251847 2,01E-05 1,22116 1,16267 59,3552 60,9312 

14 - - 8,66294 6,64724 1,87E-05 1,08E-05 1,24069 1,14244 55,5168 61,2553 

15 - - 7,75536 6,69326 3,75E-05 1,17E-05 0,745265 0,92756 76,4742 66,5853 

16 - - 10,1964 15,7054 0,000173848 8,31E-05 0,924179 1,42485 67,3854 50,0976 

17 - - 8,92052 13,9538 0,000166323 1,54E-05 1,00403 1,41403 63,6766 48,0653 

18 - - 5,4509 12,1805 6,10E-05 1,28E-05 0,609733 0,689108 82,9242 77,0257 

19 - - 10,4458 8,55773 0,000143372 4,00E-05 2,07901 1,57724 40,6563 50,4503 

20 - - 6,50922 6,40913 7,64E-07 3,09E-06 0,895876 0,83204 70,3802 73,6721 

 

  

 

 

 



53 

 

TAB . 4 SYNTHETIC MEANS 

 Media DS 

ORBITO-CRANIAL     

Hausdorff Distance (Hd) 0,669974 0,228971 

% di Hd <1 80,42936 10,42234 

Registration Error 0,490134 0,160861 

      

MAXILLA     

 Hausdorff Distance (Hd) 1,071745 0,321583 

% di Hd <1 62,68844 9,564548 

 

TAB. 5   EXAMPLE OF THRESHOLDING ANALYSIS (PTS. 1) 

 

   Max Hausdorff  Min Hausdorff Mean Hausdorff %<1 Hausdorff 

Δ Thesholding Registration Error sim > post post > sim sim > post post > sim sim > post post > sim sim > post post > sim 

610 -100 0,476051 4,17715 11,1225 1,60E-06 2,03E-06 0,508888 0,967469 86,054 78,2837 

660 -50 0,384668 7,6096 10,2262 1,25E-06 7,45E-07 0,391817 0,551769 91,8108 88,1863 

710  0,416507 8,28959 7,47755 9,86E-06 1,46E-06 0,442212 0,400142 90,63 93,812 

760 +50 0,640738 10,8482 5,62975 8,57E-06 5,42E-06 0,725713 0,474486 79,0881 91,7398 

810 +100 0,769344 6,43962 7,9664 5,56E-05 8,21E-06 0,966622 0,627196 65,7052 85,5989 
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 bone segments navigation; is still a field of research 

 mandibular condyle navigation; is still a field of research 

 do develop more accurate surgical intruments (i. e. saw) tracking. 

a. Development of a way to control and apply the cutting guide and the prebended 

plates  

b. Development of the  Piezonavigated approach 
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Regarding point (a): Development of a way to control and apply the cutting guide 

and the prebended plates, a research project is been designed. This project has 

been called: 

“CAD-CAM Cutting Guides and Customized Titanium Plates for Upper Maxilla 

Waferless Repositioning” 

 

 

Introduction 

 

Recent advances in computer-assisted orthognathic surgery, especially virtual 

planning software tools, have provided a valuable aid for diagnosis, treatment 

planning and outcome evaluation in the therapy of maxillofacial deformities 31.  

The goals of computer assisted surgery for maxillofacial anomalies are to let the 

surgeon experiment with different surgical procedures and to predict the outcome 

of an intervention before the actual surgery. However, an innovation comparable to 

the virtual planning technology which could help the surgeon in the operative room 

is still lacking. 

To achieve satisfactory occlusal function and facial aesthetics, a high degree of 

precision and predictability is required in positioning the jawbones. Quality of the 
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result is nowadays still related to the surgeon’s ability to reproduce the planned 

surgery.  

Currently, the typical method to reposition jaws in the correct and planned location 

is based on the use of surgical splints. This procedure includes face bow transfer, use 

of  a semi-adjustable articulator and measurement of surgical movements on plaster 

cast: errors may be introduced  during each part of this process 32.  

Surgical splints, manufactured using the computer-aided design and manufacturing 

(CAD-CAM) technique, have been developed to avoid some errors of the traditional 

model process. However additional preparatory work, such as dental plaster casts 

scanning, is still necessary; moreover, instability of the mandible, where the 

intermediate splint is placed on, may directly interfere with the repositioning of the 

maxilla in the desired position. Furthermore, the use of CAD-CAM surgical splints 

could not improve vertical control of the maxilla 33 as well as other mistakes are 

introduced when the planning based on standard 2D cephalometric tracings and 

subsequent 2D movements are transferred on the patient who is three-dimensional. 

This leads to an intrinsically wrong procedure. 

The purpose of this study was to develop a CAD-CAM technique for the fabrication 

of surgical cutting guides and fixation titanium plates to reposition the upper maxilla 

in the correct planned position without the aid of a surgical splint. In our intention, 

the surgical cutting guides pilot the virtually planned osteotomy line during surgery 
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and the custom made fixation titanium plates allow the desired reposition of the 

maxilla.  

 

Materials and Methods 

 

To evaluate the benefit of the presented procedure, we analysed the reproducibility 

of the computer-aided surgical plan in a group of patients submitted to orthognathic 

surgery at the Oral and Maxillofacial Surgery Unit of S.Orsola-Malpighi University 

Hospital in Bologna (Italy) and we compared the results with a published previously 

operated sample of similar patients in which the maxillary repositioning was 

obtained with a standard surgical intraoperative dental splint and the aid of a 

surgical navigation system 40. The protocol was submitted and approved by the 

Institutional Review Board (Ethical Committee) of our Institution and compliance 

with the World Medical Association Declaration of Helsinki on medical research 

protocols and ethics was granted. 

The group of 10 patients was recruited during the pre-surgical orthognathic clinical 

examination at our surgical Unit; patients were informed regarding the procedures 

and we obtained their permission. 

The complete CAD-CAM Workflow in orthognathic surgery involved, as usual, three 

steps: 1) Virtual Planning of the surgical treatment; 2) CAD-CAM and 3D Printing of 

the customized surgical devices; and 3) Computer-Aided Surgery. 
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Virtual planning 

Planning began with the acquisition of a CBCT scan of the patient’s craniofacial 

skeleton and soft tissue. Patient’s specific imaging was obtained using the CBCT 

scanner New Tom VGI (QR, Verona, Italy). Voxel-based data were acquired following 

these parameters: 0.625mm slice thickness; 0.312 slice spacing; 0° gantry tilt; 512 × 

512 pixel resolution. Data were exported in DICOM format and processed by the 

surgeon using Surgicase CMF 5.0 software (Materialise, Lueven, Belgium). After a 

suitable threshold value was set, the software allowed the volumes segmentation 

and creation of 3D virtual models of the maxillofacial skeleton and facial soft tissues. 

This led the surgeon to a complete 3D planning of surgery: 3D cephalometric 

analysis, 3D simulation of the maxilla and mandible planned movements and, if 

required, simulation of soft tissues appearance after surgery 41,42 (fig. 24-1 a,b). The 

planned movements were exported as both numerical data and sent to the 

laboratory for the CAD-CAM device production, together with the DICOM data of 

the CT scan. 
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FIG. 24 a                                                                          FIG. 24 b 

 

 

CAD/CAM and 3D Printing  

The laboratory which provided the CAD-CAM device production was SINTAC (Padua, 
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Italy). The surgical planning data were sent to the laboratory and used to design and 

manufacture the customized surgical devices: a) cutting guides and b) fixation bone 

plates. 

The computer-aided design of the surgical devices was provided by Rhino 4.0 

software (Robert McNeel & Associates, Seattle, WA, USA). DICOM data were used to 

obtain the three-dimensional virtual model of the patient’s facial skeleton in this 

specific 3D environment.  

After that, customized cutting guides were designed to let the surgeon precisely 

transfer the site and orientation of the osteotomy line from the virtual plan into the 

surgical environment. Cutting guides were virtually modeled on the two sides of the 

maxilla, trying to cover most of the bone surface exposed during surgery, and were 

designed following the natural curvature of the maxillary-zygomatic buttress and the 

anterior maxillary walls. This was the assumption to obtain the best stability, 

adhesion and correct positioning during the actual surgery. The exact position of the 

osteotomy line was drawn by the surgeon using a web-based remote control service 

(e-works meeting by e-works srl, Campogalliano, Modena, Italy), provided by the 

SINTAC laboratory. Eight holes (2.0-mm diameter) were inserted to allow fixation of 

the guide with titanium screws (fig. 25a).  

                                                                                                                             CAM 

   



61 

 

 

FIG. 25 a 

 

The holes for screw fixation were carefully placed to avoid damaging of tooth roots, 

while inserting screws. 

The customized fixation bone plates are the second component of the device. The 

plates permit the reposition of the upper maxilla in the planned location. They were 

designed following the desired sagittal, transverse and vertical movement of the 

maxilla. The planning was transmitted as numerical data to the SINTAC laboratory 

and inserted in the 3D virtual environment used for the design process. The virtual 
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osteotomized maxilla was moved following these indications and using the standard 

3D coordinates system based on Frankfort Plane (Right Orbitale - Left Orbitale – 

middle point between Right Porion and Left Porion). All virtual operations were 

followed by the surgeons using the web-based remote connection. This way, the 

whole planned spatial movement of the maxilla was completely stored in the 

fixation plate. Holes created for cutting guide positioning were also used to fix the 

plates (“Transferring Principle”) (fig. 25 b,c,). 

 

 

 

FIG. 25 b 
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FIG. 25 c 

 

The STL files of the cutting guides and plates were then manufactured through 

Direct Metal Laser Sintering (DMLS) using the EOSINT M270 system (Electro-Optical 

Systems, GmbH, Munich, Germany). DMLS process fuses metal powder into a solid 

form and melt it locally with a focused laser beam. Like other additive 

manufacturing technologies, the components were built up additively in layers. The 

cutting guide (fig. 25a) was created using EOS CobaltChrome MP1 (Electro-Optical 

Systems), a multipurpose cobalt–chrome– molybdenum-based superalloy powder 

that has been optimized for DMLS on EOSINT M systems. The bone plates (fig. 25 c) 

was produced using EOS Titanium Ti64 (Electro-Optical Systems), a pre-alloyed 

Ti6AIV4 alloy in fine-powder form with excellent mechanical properties and 

corrosion resistance, low specific weight, and good biocompatibility, which make it 

particularly suitable for the production of biomedical implants. 
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To let the surgeons train themselves preoperatively and achieve a better 

understanding of the intervention, “biomodels” of the maxilla in preoperative 

conditions and after the planned osteotomy were manufactured directly using a 3D 

Dimension Soluble Support Technology (SST) RP machine (Stratasys, Eden Prairie, 

MN, USA). 

All physical parts of the device were then sent to the surgeons before the actual 

surgery. Surgeons received also an STL file of the cutting guides in the planned 

position, which was used for the computer-aided surgery. 

 

Computer-aided Surgery 

The upper maxilla repositioning was performed wafer-less using the CAD-CAM 

device under the control of a navigation tool, according to the Simulation-Guided 

Navigation concept 39. The navigation tool was the eNlite Navigation System with 

the iNtellect Cranial Navigation Platform 1.0 (Stryker, Freiburg, Germany). 

The upper maxilla was accessed through an intraoral incision. The cutting guides 

were introduced into the field and stabilized in the correct position using the good 

anatomical engagement granted by the natural curvature of the maxillary-zygomatic 

buttress and the anterior maxillary walls. The use of the navigation tool ensured the 

correct allocation of the guide. Cutting guides boundaries, surfaces and screw holes 

were used as reference. When the surgeon was induced by the navigation check to 

slightly move the guide from the initial manually obtained position, the event was 
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recorded. The cutting guide was fixed with titanium screws, and a piezoelectric saw 

was used to create the osteotomy (Mectron, Sestri Levante, Genova, Italy). The 

cutting guides were then removed and the Le Fort I osteotomy was completed (26 

a).  

 

 

FIG. 26 a 

 

After that, the fixation bone plates was used to reposition the upper maxillary bone 

in the correct location. As mentioned above, bone plates were designed to fix the 

maxilla using the same holes through which the cutting guides had been previously 

fixed. This ensured the correct mutual positions of the two components (fig. 26 b).  
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FIG. 26 b 

The surgical team was always the same with same roles on the operative field. 

 

Accuracy evaluation 

To evaluate the accuracy in reproducibility according to the CAD-CAM Orthognathic 

Surgery method, the virtually planned position of the upper maxilla and actually 

achieved one were compared. 

A postoperative CT scan was obtained 1 month after surgery using the same 

machine and parameters of the preoperative CT scan. After setting suitable 

threshold values, the DICOM dataset was processed to create a 3D model of the 

postoperative maxillofacial skeleton (300 Hounsfield Units (HU) and a 3D model of 

the positioned bone plates alone (1900 HU). The pre- and postoperative datasets 

were compared using Rapidform XOS2 software (INUS Technology, Seoul, Korea), 
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evaluating the discrepancy between the virtual and actual positions of the upper 

maxilla and fixation plates (fig. 27 a, b, c) using the Hausdorf function.  

 

FIG. 27 a: virtual planning 

FIG. 27 b: post-operative CBCT Data 
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FIG. 27 c: discrepancy between the virtual and  actual positions of the upper maxilla 

and fixation plates 

 

Surface deviation was also represented on a color map (fig. 28). 
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Results 

 

Results are represented in Table 6. 

 

Patients  Sex  Diagnosis  Error  % E<2mm  %E<1mm  

1  M  III classe Angle  -3.4 / +3.2  72  22  

2  M  III classe    -2.0 / +1.2  100  53  

3  M  III classe    -0.6 / +0.7  100  100  

4  F  III classe + asimmetria     -0.08 / 0  100  100  

5  F  II classe    0 / +2.4  93  52  

6  F  III classe   -0.07 / 0.02  100  100  

7  M  III classe    -1.6 / +1.2  100  83  

8  F  III classe       -1.6 / 0  100  87  

9  M III classe   -1.0/+6.0 62 20 

10 F III classe + asimmetria    - 0.8 / +1.4  100  83  

TABLE 6 
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We have evaluated the overlapping error considering a threshold value < to 2 mm. 

Following this definition. We obtained an error of 100% in 7 patient; values ranged 

between 62% and 100%, with a medium value of 92,7%. The error interval was 

maximum in patient n. 1 from -3,4 to 3,2 and minimum in patient n.6 from 0,07 to 

0,02. 

Cutting guides initial positioning was found correct by the navigation check in 7 

cases and required small adjustments in 3 cases. The number of holes on the plates 

was always sufficient to grant a stable fixation even if one or more holes were 

excessively drilled and the screw failed to fix. No plate was unused or substituted 

with standard plates intraoperatively. All the patients healed uneventfully with no 

infection of the DMLS bone plates. 

 

Discussion 

 

For good aesthetic and functional results in orthognathic surgery, the correct 

reposition of the upper maxilla according to the preoperative plan is essential. The 

maxillary relocation is the keypoint in orthognathic surgery, because this bone 

segment is the center of the face and usually guides all other movements of the 

facial bones, particularly for the opposite jaw. Nevertheless, the three-dimensional 

control of intraoperative maxillary movements during surgery still remains 
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controversial. 

The traditional method used to reposition the maxilla intraoperatively is based on 

the use of surgical splints and intra or extra-oral measurements. These 

measurements are roughly inaccurate and the splints are typically made manually 

using model surgery, so that many potential errors may be introduced and could 

lead to unsatisfactory outcomes with a 5 mm maximum maxillary malposition 44 . 

However, the greatest part of maxillofacial surgeons around the world still use this 

method. 

In 2010, our group tried to overcome this problem introducing the routine use of 

the assistance of a navigation system during orthognathic surgery, a procedure 

called Simulation-Guided Navigation 39. The 3D preoperative planning, loaded as a 

3D object in the software of the navigation system, let the surgeon visualize the 

mismatch between the native bone and the planned position of the osteotomized 

fragment and allowed the operator to check real-time if the actual repositioning 

respected the planned one. Using this method we found a 86.5% mean 

reproducibility (error <2mm) of the preoperative surgical plan. Those results were 

especially promising for the vertical control of the maxilla, because the method, 

despite the intrinsic limitations of a multiple not-simultaneous reference points 

check, was the first concrete attempt to introduce a strict reproduction of the 

vertical movements. 

In spite of this, navigation has not become a standard yet, even if many groups have 
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been working on it since then. This is probably related to both the high costs of 

navigation systems available for purchase and the requested investments in 

research to overcome the current technical limitations. 

Therefore, nowadays, splints fabricated using modern CAD-CAM techniques are 

making their way in orthognathic surgery as a new affordable solution to bridge the 

gap between the virtual planning and the operating room. In fact, virtual casts can 

definitely improve splint accuracy, especially in terms of correlation with the skeletal 

structure; however they do not improve the vertical control of the maxilla 35. 

To avoid this limit, Zinser et al. 31 described a system, adopted in eight patients, to 

reposition skeletal segments using 3 sequential occlusal wafers: the first splint for 

the definition of reference points on the skull, the second splint for the reposition of 

the maxilla, the third splint for the final occlusion.  The advantage of this technique 

was that the maxilla could be relocated independently in all positions permitting,  

according the authors,  a precise vertical and horizontal leveling in relation to the 

cranial base. 

Polley et al. 36 introduced the concept of an occlusal-based devices to transfer virtual 

surgical planning to the operating field. An initial drilling guide is used to establish 

stable references or landmarks. After mobilization of the skeletal segment, a final 

positioning guide, referred to the drilled landmarks, is used to transfer the skeletal 

segment according to the virtual surgical planning. The device was designed using a 

three-dimensional CAD-CAM technology and manufactured with stereolithographic 
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techniques. It was adopted successfully in 24 patients. 

Bai et al. 37 introduced in their case series the use of a CAD-CAM locating guide 

accompanied with pre-bent titanium plates on stereolitographic model. 

In a preliminary study, Li et al. 38 presented their experience in six patients with a 

new CAD-CAM template to guide the osteotomy and the repositioning of the upper 

maxilla during bimaxillary orthognathic surgery. The preliminary results obtained 

comparing the postoperative CT scan with the virtual plane showed an “error” in the 

position of the maxilla < 1mm. 

However, all these protocols seemed relatively complex or time-consuming if 

compared to standard surgical splints. Moreover, we aimed to overcome the results 

obtained with navigation finding a faster and less expensive method. Therefore we 

developed this CAD-CAM method based on the use of surgical cutting guide and 

customized bone fixation plate to reposition the maxillary bone. 

The results that we obtained with this method are promising: we improved our 

reproducibility from 86,5% to 92%. 

The cutting guides were found to be easy to place and relatively able to ensure a 

univocal positioning. They definitely helped the surgeon to reproduce the planned 

Le Fort I osteotomy line, allowing the exact bone removal if the maxilla had to be 

moved upwards or a tilting of the occlusal plane was necessary. Moreover, the 

method allowed to carefully design the position of the predrilled holes in order to 

choose sites where the anterior walls of the maxillary sinus were thick enough to 



74 

 

ensure a stable fixation of the bone plates and  to avoid tooth roots. 

But the real innovation of this method is represented by the fixation bone plates 

that guide the maxillary repositioning phase. Using the predrilled holes derived from 

the cutting guide, CAD-CAM plates revealed to be very easy to be placed. This made 

possible to control  the sagittal, transversal and vertical movements according to the 

preoperative virtual plan avoiding all potential errors caused by the autorotation of 

the mandible.  

All the papers cited above defined a reference system for the cutting or 

repositioning guides, mainly an occlusal reference. In our device, cutting guides 

were placed manually without any mechanical reference system. However, we used 

a navigation system to check if this positioning was correct. We found that in most 

cases this condition occurred, but not in all cases. This suggests we must improve 

the shape-related positioning feature in the future. 

Operative times were found to be shortened by the procedure, which certainly 

lengthened the phase of the osteotomy but made much shorter the modeling of 

plates and the check of the final maxillary position. 

 

Conclusion 

 

In conclusion, these results seem to confirm that CAD-CAM cutting guides and 

customized titanium plates for upper maxilla repositioning are a promising method 
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to realize an accurate reproduction of the preoperative virtual planning without the 

use of a surgical splint. Benefits of this technique are several: it allows direct 

operative transfer of virtual surgical plans in the operating room, it is easy to use, 

relatively inexpensive, clinically efficient and it can shorten surgical times. 
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Regarding point (b): the Development of the  Piezonavigated approach a 

research project is been designed. This project has been called: 

“Computer-assisted Piezoelectric Surgery: A Navigated Approach toward 

Performance of Cranio-maxillofacial Osteotomies” 

 

Introduction 

The anatomical field of the cranio-maxillo-facial area is characterized by the 

presence of many extremely delicate vascular and nervous structures which must be 

preserved during surgery. Many procedures including orthognathic surgery, 

craniofacial surgery, tumor resection, those required to treat trauma sequelae, oral 

surgery, and pre-prosthetic surgery, require bone osteotomies. However, manual or 

standard electric instruments (drills or burrs) can damage nerves, vessels, and (in 

the upper part of the face) the orbits and meninges.  Use of piezoelectric 

instruments renders it possible to greatly improve the accuracy of bone cuts. The 

tips of the instruments are very thin, greatly reducing the numbers of soft tissue 

lesions created during osteotomies in the oral and maxillofacial areas 43, 44, 45, 46, 

particularly in orthopedic patients 47, 48. 

Piezoelectric tools have changed the manner in which osteotomies are performed 

during maxillofacial surgery. Surgeons can now reduce the extent of bone exposure 

and (sometimes) perform flapless procedures 49, 50. The use of such tools in 
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orthognathic surgery seems to significantly reduce damage to the mandibular 

nerves 51, 52, 53, 54. Similarly, many orthodontic surgeons now use piezoelectric 

scalpels 55, 56, 57. Several applications of such tools have been reported in the fields of 

craniofacial surgery 58, 59, 60, 61, 62 and pediatric maxillofacial surgery 63, 64, 65. In the ENT 

field, piezosurgery has increased the approaches available for treatment of the 

middle and inner ear 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, and the technique has found 

ready application in neurosurgery 79. 

These developments strongly suggested to us that piezosurgery should be employed 

to render cranio-maxillofacial surgery less invasive than is currently the case. 

Piezoelectric osteotomy should be particularly valuable in this context. The 

procedure we have developed is termed Computer-Assisted Piezoelectric Surgery 

(CAPS), which combines effective during-surgery navigation with use of a 

piezosurgical tool. Commencing in November 2008, the Unit of Oral and 

Maxillofacial Surgery at the S.Orsola- Malpighi University Hospital in Bologna (Italy) 

has performed a large number of surgical procedures with the aid of simulation-

guided navigation (SGN) 38. Simultaneously, piezosurgical instruments were used 

daily over many years in oral and cranio-maxillofacial surgeries, including bone 

harvesting 70, 71, 72, 73, 74, 75, 76; inlay placement in pre-prosthetic surgeries 77, 78; sinus 

lift augmentation techniques 79, 80, 81, 82, 83, 84, 85, 86; various osteotomies of the maxilla 

and mandible 41, 42, 87, 88, 89, 90, 91 (especially when it was essential to avoid teeth roots, 

for example during multi-segmented maxillary osteotomy 39, 42); surgically assisted 
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rapid maxillary expansion; and mandibular symphyseal distraction 92. In the field of 

pediatric craniofacial surgery, piezoelectric tools have been used to perform 

corticotomies, distraction osteogenesis procedures 53, 54 and osteotomies to treat 

craniosynostosis or cranio-facial stenosis 48, 49, 50, 51. In oncology, piezosurgery has 

been used to safely perform bone osteotomies 93, resections, and microvascular 

bone flap modeling during mandibular and maxillary reconstruction 94. 

However, in several of these procedures, use of a piezosurgical instrument (although 

safe) 95, 96, 97, 98, 99 requires construction of a wide-open field so that the precise 

position of the tip of the instrument can be directly viewed. We sought to combine 

the safety of the piezosurgical instrument with precise three-dimensional (3D) tip 

localization afforded by a navigation tool. CAPS was the result and, herein, we 

present some applications of the technique.  

 

Materials and Methods 

CAPS combines a piezosurgical instrument with a navigation system featuring a 

general instrument-tracking tool and a calibration device. The piezoelectric 

instrument used was the Piezosurgery Medical (Mectron, Genoa, Italy) . The 

navigation system employed was the eNlite System with inbuilt iNtellect Cranial 

Software 1.0 (Stryker, Freiburg, Germany). CAPS employs standard surgical 

navigation and features the following steps, which can be performed outside the 

operating theater unless stated otherwise. 
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1. Data acquisition via CT or MRI DICOM. 

2. Importation of DICOM data to the navigation software suite. 

3. Three-dimensional virtual reconstruction using the software suite. 

4. (SGN only) Loading a virtual simulation (created using third-party software) to the 

navigation software suite. 

5. (Theater) Registration to ensure precise tracking of the patient. 

6. (Theater) Linking of the tracking tool to the handpiece of the piezoelectric 

instrument and registration and calibration of the cutting tip. 

7. (Theater) Surgery using CAPS. 

 

Tracking the Piezosurgical Instrument 

The piezosurgical instrument and the navigation system are linked using the Stryker 

NavLock clamp, an adaptable tool that can be mounted on any instrument 13–20 

mm in caliber (Fig. 29A). Instrument tip registration is achieved with the aid of the 

Stryker eNlite calibration tool (Fig. 29B-C), completing the set-up procedure. 
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FIG. 29 
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In this figure the connection between the piezoelectric instrument and the 

navigation system is showed; A shows the piezoelectric handpiece with the clamp-

mounted tracker; B shows the calibration tool of the navigation kit, which is used in 

C to realize the registration process of the piezoelectric instrument tip.  

 

 

 

Eighteen (18) patients were treated using the CAPS technique in the interval 2010–

2013, and may be divided into the following four groups: 

 

A. Orthognathic surgery (LeFort 1 osteotomy); 10 patients; 

B. Mandibular distraction osteogenesis corticotomy, 6 patients; 

C. Orthodontic corticotomy, 1 patient; 

D. Oncology (tumor resection), 1 patient. 

 

Group A. Orthognathic Surgery 

Ten patients underwent orthognathic surgery performed with the aid of CAPS. All 

DICOM data were obtained using a cone-beam CT-scanner, the NewTom VGi (QR, 

Verona, Italy). We always used the SGN protocol 38. Virtual surgery was performed 

using Surgicase 5.0 (Materialise, Leuven, Belgium). Each surgical plan was converted 

to an .STL file and loaded into the eNlite Navigation System. iNtellect Cranial 
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Software was used to superimpose the plan onto patient-specific CT scan data (Fig. 

30A), and the surgeon could thus follow the planned osteotomy line. The skull was 

used for patient tracking. Registration employed dental and bone reference points 

refined using bone surface data. The mean target registration error (TRE) was 0.30 

mm (SD 0.12 mm). Le Fort 1 osteotomy was performed with the aid of the 

navigation system. The Stryker navigation software displays the tip of the 

instrument as a yellow cross centered on the apex of the tip per se (Fig. 30B). The 

2D/3D images can be zoomed without loss of precision. CAPS was used to correctly 

reproduce the osteotomy line created in the virtual project. During surgery, CAPS 

was also used to check the instrument tip position in real time, ensuring that the tip 

was always in a safe region and that significant anatomical structures were avoided. 

Figure 31 shows one clinical case where CAPS has been performed.  
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FIG. 30 

This figure shows in A the virtual surgical planning of the orthognathic procedure (in 

blue) matched with the native CT scan; in B the virtual appearance of the navigated 
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tip of the piezoelectric instrument is showed as a yellow cross on the navigation 

system screen; again, the planning is in blue. 
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FIG. 31 

This figure shows the clinical application of the CAPS to an orthognathic surgery 

procedure; A shows the handpiece with another version of the clamp-mounted 

tracker, which works in the same way; B shows once more the virtual appearance of 

the navigated tip of the piezoelectric instrument on the navigation system screen; C 

shows the detail of the piezoelectric saw on the patient’s maxilla during the LeFort1 

osteotomy in the same position showed in B. 

 

 

 

Group B. Distraction Osteogenesis 

Six patients underwent distraction osteogenesis of the mandible with the aid of 

CAPS. DICOM data were obtained in different ways. Four patients underwent 

multislice CT scanning (slice depth 1.25 mm) using the Optima CT 660 (General 

Electric, Fairfield, CT; and two cone-beam CT scanning using the QR NewTom VGi. 

Virtual surgery was performed in three cases using Surgicase 5.0 and in the other 

three employing LHP Builder (SCS, Bologna, Italy). The latter software is 

experimental in nature and was used in collaboration with the Rizzoli Orthopedic 

Institute of Bologna (Italy). Surgical planning considered the position of the 

distractor and the cutting plane to be used for corticotomy (Fig. 32A). Surgical 

planning data were converted to .STL files and loaded into the eNlite Navigation 
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System. Also, iNtellect Cranial Software was used to superimpose plans on real CT 

data to allow the surgeon to follow planned osteotomy lines. The skull was used for 

patient tracking. Registration of pediatric mandibular surgery patients was achieved 

using upper-face soft tissue reference points, refined by reference to the skin 

surface. The mandible was next indirectly registered using a dental splint. The mean 

TRE was 0.73 mm (SD 0.21 mm) and a TRE over 1.0 mm was not accepted. 

Mandibular corticotomy was performed with the aid of the navigation system. CAPS 

was used to correctly reproduce the corticotomy lines devised in the virtual projects 

(Fig. 32B) and to check the position of the tip of the instrument in real time, 

ensuring that the tip was always in a safe region (thus away from significant 

anatomical structures, such as the germ of wisdom teeth; Fig. 32C) and to check the 

position of the distractor (Fig. 32D). Figure 33 shows one clinical case where CAPS 

has been performed. 
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FIG. 32 

This figure shows the use of CAPS in distraction osteogenesis of the mandibular 

ramus; A shows the virtual surgical planning with the osteotomy line (designed to 

avoid dental germs and mandibular nerve) and the position of the distractor vector; 

B shows the navigated tip following the osteotomy line; the same in C where the 

wisdom tooth germ is avoided by keeping the tip on the planned osteotomy line; in 
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D surgery has been performed and the realized distractor vector is detected and 

outlined by the navigation system and compared to the virtual project. 
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FIG. 33 

This figure shows CAPS applied to a distraction osteogenesis clinical case of 

Treacher-Collins-Franceschetti Syndrome; CAPS is performed bilaterally; A shows 

the surgeon performing the mandibular ramus osteotomy with navigated 

piezoelectric instrument; B shows the navigated tip during the osteotomy; C shows 

the navigation system screen where the piezoelectric instrument tip is displayed as a 

yellow cross inside the mandible; the osteotomy line is here represented as a 

discontinuity of the virtual planning in blue; D shows the three-dimensional result of 

the distraction compared to the preoperative CT scan.  

 

 

Group C. Orthodontic Corticotomy 

One patient underwent mandibular orthodontic corticotomy with the aid of CAPS. 

DICOM data were obtained using the QR NewTom VGi cone beam CT scanner. The 

skull was used for patient tracking. Registration employed upper-face soft tissue 

reference points refined by reference to the skin surface. The mandible was next 

indirectly registered using a dental splint. The TRE was 0.50 mm. A vestibular 

corticotomy (from the inferior right to the left canine) was performed with the aid of 

the navigation system (Fig. 34). Three vertical mucosal incisions were made and the 

dental roots were avoided despite use of a semi-buried approach.  
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FIG. 34 
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This figure shows CAPS used for orthodontic surgery (corticotomies); A shows the 

comparison btween the preoperative mandibular arch and the virtually planned goal 

of orthodontic therapy; B shows the three vertical incisions used to perform surgery 

in a semi-buried approach; C shows the navigation system screen durging CAPS, 

where the technique allows to check real-time if the piezoelectric tip is cutting the 

interproximal alveolar bone; D shows the three-dimensional reconstruction of the 

surgical result. 

 

 

 

 

Group D. Oncology 

One patient underwent oncologic surgery with the aid of CAPS. A total hemi-

maxillectomy was  performed to resect a large mixoma. DICOM data (slice depth: 

1.25 mm) were obtained using the multislice Optima CT 660 CT scanner of General 

Electric. The skull was used for patient tracking. Registration employed upper-face 

soft tissue reference points refined by reference to the skin surface. The TRE was 

0.60 mm. Surgical planning was performed with the aid of the Sintac Company 

(Sintac, Trento, Italy) because reconstruction involved formation of a CAD-CAD mesh 

plate. The surgical plan was converted into a .STL file and loaded into the eNlite 
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Navigation System. Maxillary osteotomies (palatal, orbital, and malar) were 

performed with the aid of CAPS. Figures 35-36 show the case. 
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FIG. 35 

This figure shows a clinical case of large mixoma of the maxilla; A shows the lesion 

and the preoperative virtual plan of the osteotomies (alveolar, zygomatic and nasal 
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are mainly visible and have been performed with CAPS – see Fig.8); B shows the 

CAD-CAM mesh plate used for the reconstruction in the planned position; C shows 

the intraoperative check of the correct positioning of the mesh plate in the orbital 

region. 
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FIG. 36 

This figure shows CAPS applied to the clinical case of Fig.7; A shows the alveolar 

osteotomy through CAPS displayed on the navigation system screen and the actual 
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osteotomy on the maxilla; similarly, B shows the zygomatic osteotomy and the 

actual osteotomy on the zygomatic arch; similarly again, C shows the nasal 

osteotomy and the actual osteotomy on the nasal root.  

 

 

 

 

 

The present study is retrospective in nature. The study was conducted in accordance 

with the tenets of the WMA Declaration of Helsinki in the context of Ethical 

Principles for Medical Research Involving Human Subjects and was granted 

exemption by the local IRB of our Institution. 

 

 

Results 

We seek to introduce our new technique, which will be further refined in future. We 

present our initial clinical and surgical data. Use of CAPS in the treatment of Group A 

and C patients allowed us to use minimal mucosal incisions when performing Le Fort 

I osteotomies and orthodontic corticotomies in a semi-buried manner. During Le 

Fort I procedures, CAPS afforded 3D control of the cutting instrument, allowing 

dental roots to be avoided and ensuring that no fistula was created in the palatal 
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mucosa. Osteotomy could be more readily performed when the cutting tip was kept 

in the pterygoid area and the region surrounding the palatine channel. This ensured 

that no vascular lesion would be created. When surgery was performed under SGN, 

CAPS rendered it possible for the surgeon to follow osteotomy lines planned during 

3D virtual surgery, thus maximizing the quality of operation. CAPS afforded even 

greater advantages in Group B patients. During pediatric skeletal distraction, it is 

essential to avoid dental germs and the thin neurovascular structure of the 

mandible. Our technique allows a surgeon to perform both corticotomy and 

osteotomy, if necessary, in a safe and reliable manner. Again, surgery can be 

conducted in a semi-buried manner, avoiding extensive periosteal detachment, and 

reducing tissue exposure and scarring. In Group C patients, CAPS allowed use of a 

semi-buried approach with minimal periosteal detachment. The risk of tooth 

damage during inter-radicular corticotomy was greatly reduced. CAPS allowed the 

surgeon treating the Group D patient to check the limit of the lesion on bony 

surfaces and (and much more relevantly) deep inner bone structures, and to choose 

generous resection margins 

 

Discussion 

A major fear of the maxillofacial surgeon using a standard drill with rotating tips is 

creation of soft tissue lesions triggering major hemorrhage or nervous impairment 

(at worst), or dental injury (at best). Damage to the cranial and orbital area caused 
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by a rotating drill can include meningeal or brain lesions, CSF leakage, hemorrhage, 

and insult to the orbital or optic nerves. Some surgeons prefer to use reciprocating 

saws, the safe use of which requires a great deal of experience. Soft tissue lesions 

caused by rotation and grinding may thus be reduced in extent, but, paradoxically, 

the saw causes tissue contusions and compression 68, 79. 

Piezoelectric tools have dramatically changed the manner in which bone surgery is 

performed, as evidenced by the explosion of literature on the topic over the past 10 

years. The tools allow surgical approaches to be both precise and minimally invasive, 

affording better bone recovery because a cavitation mechanism is employed 69. 

However, even if the piezoelectric instrument is both small and thin, wide exposure 

of the surgical field is often necessary. If, however, the tool is employed in concert 

with surgical navigation, the precise anatomical site requiring surgical attention is 

defined, and the position of the tip can be precisely checked by reference to CT data 

from the patient. This ensures safety and precise surgical orientation, even in 

deep regions. A semi-flapless approach is possible. Combination of the two 

technologies is synergistic. First, the piezoelectric instrument is the only saw that 

can be safely tracked using a navigation system. It might be observed that standard 

surgical micro-saws, drills, or burrs can in fact be tracked, but movement of the 

micro-saw tip, vibration of the handpiece, and the danger of taking the eyes away 

from the surgical field to watch a monitor, combine to render such techniques 

unacceptable. The piezoelectric instrument is steady, barely vibrates, and the 
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surgeon can safely pause to look at a screen. Second, use of a piezoelectric 

instrument is associated with a degree of precision allowing it to be used in 

combination with SGN. The surgeon can follow virtually planned osteotomy lines or 

planes, displayed in 3D on a screen. It is easy to avoid important anatomical 

structures (because osteotomy was planned with this in mind) and the preoperative 

plan can be precisely fulfilled. Third, even when SGN is not used, CAPS helps a 

surgeon to avoid tissue damage, because the technique affords real-time control of 

the position of the saw tip. This is particularly helpful when deep bone surgery is 

underway; the surgeon cannot see clearly even if the field is wide open. Fourth, a 

combination of the second and third points above means that CAPS allows the 

surgeon to cut bone located in semi- or fully buried sites. Fifth, in the oncological 

field, CAPS allows the surgeon to change his approach to a bone cut if the navigation 

system shows that the tip of the instrument tip is too close to pathological tissue. 

 

 

Conclusion 

Computer-aided piezoelectric surgery (CAPS) is a new surgical approach useful when 

osteotomies are required in oral and cranio-maxillofacial regions. CAPS features 

marriage of a piezoelectric instrument and a navigation system. The surgeon can 

work more safely when the two devices form a single synthetic tool. Moreover, 

CAPS should find ready applications in Schools of Medicine and Teaching Hospitals, 



100 

 

allowing younger or less-experienced surgeons to approach deep and highly 

sensitive anatomical structures more safely. More studies are planned. In particular, 

the use of SGN within CAPS shows great promise. The accuracy and reproducibility 

of surgery conducted in this manner are presently under meticulous evaluation in 

our hospital. 
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Navigation in H&N Oncology.  

 

Oncology is the first surgical field where computer-aided surgery has been 

developed and applied. Navigation of the tumor mass and the surrounding tissues, 

seeking safe margins, has been the inspirational concept that lays at the root of this 

technology. 

Nowadays oncology is still the head and neck surgical field where navigation is 

mostly used. Especially for tumors of the splancnocranium or the skull base. 

Objective of the project was: 

 developement of computer planned resection; 

 developement of computer planned reconstruction;  

 more accurate navigation of soft tissues. 

This study was developed by a PHd Thesis by Dr. Simona Mazzoni, MD, PhD at  

our post-graduated PhD School in Surgical Science, University of Bologna. 

Here we show just an exemplification case of tumor resection and 

reconstruction according to the Simulation Guided Navigation Project. 
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FIG. 37, a,b,c: presurgical view of a  pt. with an orbito-maxillo-zigomatic 

tumor. 
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FIG.38: intraoral view 

  

FIG. 39: MSCT data 3D reconstruction with the resection project 
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FIG. 40: cutting guides (above) and CAD-CAM laser sintering reconstruction 

plate (below). 
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FIG. 41: intraoperative piezonavigated resection (left), intraoral resection  

view (right) 
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FIG. 42: Simulation Guided Navigation Project 
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FIG. 43: Validation of the positioning of the reconstruction plate compared 

with the post-operative result 
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a b   

c  

   FIG. 44 a, b, c : post operative result before implant positioning
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Navigation in H&N Traumatology.  

Navigation has been recently applied also to complex bone traumatology, especially 

orbital fractures. One major use of navigation has always been the research of 

foreign bodies, which are so frequent in the traumatology of the head. 

Objective of the project was: 

 developement of more accurate computer planned bone repair and 

reconstructionnavigation of the mandibular condyle. (research in fieri) 
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Final objective that the research project should achieve 

 

 

The final objective was to introduce the concept that many cranio-maxillo-facial 

surgery procedures  could be performed applying the final goal of reproducibility of 

a presurgical plan and overwhelm the approximate approach based on the 

surgeon’s skill.  This final objective has been reached using a validation protocol. 
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