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Zinc or 55%Al-Zn alloy-coated steel sheets, either bare or covered by different painting systems, have been exposed for 12 years to
the action of the urban atmosphere at the CIDEPINT station located in La Plata (34◦ 50′ South, 57◦ 53′, West), province of Buenos
Aires, Argentina. The samples exposed surface was evaluated through periodical visual inspections, standardized adhesion tests,
and electrochemical impedance measurements. The ambient variables monitored were average annual rains and temperatures,
time of wetness, sulphur and chloride concentration, relative humidity, and speed and direction of the winds. It was found that
in this atmosphere, the corrosion resistance of the bare 55% Al-Zn/steel sheets was higher than of the galvanized steel, and the
polyurethane painting system was more protective than the alkyd and epoxy ones, which degraded after 6-7 years of exposure.

1. Introduction

Exposed to specific aggressive media, metal or alloy stability
depends upon the protective properties of the surface film
formed, because its chemical composition, conductivity, ad-
herence, solubility, hygroscopicity, and morphological char-
acteristics determine the film capacity to work as a control-
ling barrier [1]. In such a sense, steel galvanic protection by
means of zinc or zinc alloys is a common example, owing not
only to the fact that the zinc, being electrochemically more
active than the steel, corrodes preferentially, but also to the
barrier effect of the corrosion products precipitated on the
metallic surface. In particular, the coatings based on zinc are
widely used to protect steel structures against atmospheric
corrosion [2], because of the protective properties afforded
by an insoluble film of basic carbonate. However, if the
exposure conditions are such that there is changes of the
ambient variables like atmospheric conditions, UV radia-
tion intensity, type and level of pollutants, wet-dry cycles,
depletion of air but high humidity, or a medium containing
strongly aggressive species like chloride or sulphate ions,
the zinc could dissolve forming soluble, less dense, and
scarcely protective corrosion products, which sometimes lead
to localized corrosion [2–5]. This condition can be reached

during the storage and transportation of galvanized steel
sheets or when they are exposed to marine and/or industrial
environments [6]. Aluminium coatings have overcome these
two factors. Nevertheless, as they cannot provide cathodic
protection to exposed steel in most environments, early
rusting occurs at coating defects and cut edges; besides, these
coatings are also subjected to crevice corrosion in marine
environmental [7].

For years, many attempts to improve the corrosion resis-
tance of zinc and aluminium coatings through alloying were
carried out. Although the protective effect of combinations of
these two elements was known, they were not used until the
discovery that silicon inhibits the fast alloying reaction with
steel [8]. Thus, the alloy commercially known as Galvalume
or Zincalum arose, and its composition: 55% Al, 1.6% Si, the
rest zinc, was selected from a systematic study, providing an
excellent combination of galvanic protection and low corro-
sion rate.

When a higher degree of protection of these metallic
surfaces is of concern, properly chosen painting systems
can provide a more effective corrosion-inhibiting barrier
and also a better aesthetic appearance [9]. Some exposure
conditions are so aggressive that both protective systems
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(metallic + organic coatings) must be applied to get longer
effectiveness. Such a combination, referred to as a duplex
system, has demonstrated a synergistic effect when compared
to the individual coating systems. This better corrosion pro-
tection is attributed to the double action afforded by the
zinc or 55%Al-Zn layer (cathodic protection + blockage
of its defects by the corrosion products), and also by the
pigmented paint system (barrier effect + steel corrosion-
inhibition) [10]. Besides, this duplex system requires less
reconditioning and repairs of coating systems after trans-
portation and assembly on site.

The mechanism responsible for the protective action of
paint coatings is highly complex because it depends upon the
simultaneous action of different factors. Irrespective of their
intended function (functional, decorative, or protective), the
paint must adhere satisfactorily to the underlying substrate
[11, 12].

The organic film permeability is important in metallic
substrate corrosion, since this property is directly connected
to the permeation of environmental corrosion-inducing
chemicals through the polymeric matrix, the chemical com-
position of the latter, and the presence of pores, voids, or
other defects in the coating. It is important to note that
particularly water and oxygen can permeate the film, at least
to some extent, even if none of the intrinsic structural defects
are present. For these reasons, the painted metal’s resistance
to degradation produced by weathering is a very important
variable, since it defines the material’s durability. Within this
concept, the corrosion and resistance to weathering (degra-
dation due to UV radiation, oxygen, humidity, etc.) are
separately evaluated. The corrosion resistance depends upon
the permeability (barrier effect) of the primer and galvanic
layer as well as of the inhibitive capacity of the contained
anticorrosive pigments. The weathering degradation (loss of
gloss and/or adhesion, chalking, cracking, blistering, etc.)
takes place at shorter times and depends mainly on the
topcoat paint properties.

The still unsolved paint delamination or blistering
problem, due to a bad bond at the substrate/paint interface,
depends upon the chemical nature and crosslinking degree
of the polymer as well as the metal substrate and its
surface treatment [13]. In principle, paint adhesion can be
improved by providing the substrate with a pretreatment
layer, followed by applying a corrosion inhibiting primer
+ intermediate and/or topcoat paints. In line with this
definition, the primer is considered the critical element in
most paint systems because it is mainly responsible for
preserving the metallic state of the substrate, and it must
also anchor the total paint coating to the steel. Most coatings
adhere to the metal via purely physical attractions (e.g.,
hydrogen bonds) that develop when two surfaces are brought
closely together [14, 15]. Paint vehicles with polar groups
(–OH, –COOH, etc.) have good wetting properties and show
excellent physical adhesion characteristics (epoxies, alkyds,
oil paints, etc.). Much stronger chemically bonded adhesion
is possible when the primer can actually react with the metal,
as is the case of several pretreatments [16–18].

Paint life depends on several factors such as the metallic
substrate, the selected paint system, and the paint-substrate

interface [19]. Paint selection is generally based on the ag-
gressive medium properties, while the metal treatment be-
fore painting has a substantial impact on the useful life of the
selected system.

The susceptibility to degradation of painted metals is es-
timated by accelerated laboratory tests and natural atmo-
spheric exposure for several years [20–31]. Although the
extrapolation of accelerated test results do not compare
linearly to the actual performance of the coatings in their
service life, it can supply useful information related to the
rate and form of the corrosion-inhibiting system degrada-
tion. In most cases, such information can help to improve
the paint formulation and/or the painting scheme design.
Consequently, a comparative evaluation of the protective
performance of either bare or covered with three different
painting systems is reported in this paper. The corrosion
resistance of these samples was tested by exposure for 12
years to the action of the urban atmosphere at the CIDEPINT
station located in La Plata (34◦ 50′ South, 57◦ 53′, West),
province of Buenos Aires, Argentina.

The evolution of the samples exposed surface was evalu-
ated through periodical visual inspections, adhesion tests ac-
cording to the ASTM D-3359/09 standard, and electrochem-
ical impedance measurements applied to samples immersed
for 1 h in 0.5 M Na2SO4 solution. The ambient variables
monitored were average annual rains and temperatures, time
of wetness, sulphur and chloride concentration, relative hu-
midity, and speed and direction of the winds.

2. Experimental Details

A total of 280 commercial-grade steel sheets (15 × 8 ×
0.2 cm) hot-dip coated with zinc or 55%Al-Zn plates were
used as the metallic substrate. They were degreased by
immersion in 5% Na2CO3 solution and then rinsed with dis-
tilled water to eliminate any possible surface contamination.

The commercial-grade protective painting systems
(Table 1) were applied by brushing to maintain the same
conditions for all the samples. After applying the painting
system, the painted plates were placed in a dessicator cabinet
at controlled temperature (30 ± 2◦C) until completely dry.
Next, measurements of dry film thickness (Table 1) were
taken with an Elcometer 300 coating thickness gauge, using
a bare sanded plate and standards of known thickness as
references. Plates were exposed at 45◦ from the horizontal
and they were oriented East allowing a maximum insolation
on them. The test site was formed by wooden structures,
where the flat plates were set on. Location coordinates,
meteorological data, atmospheric pollutants, time of wetness
and corrosion category of the place of location according
to ISO 9223 are given in Figure 1 and Tables 2 and 3,
respectively. All environmentally data were available from
the Seismology and Meteorological Department of the
Astronomic and Geophysics Science Faculty of the National
University of La Plata, placed very near CIDEPINT Station.

To check reproducibility, a total of 280 samples including
bare or painted steel/zinc or steel/55%Al-Zn sheets were
exposed to natural weathering in La Plata station for 12 years.
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Table 1: Mean thicknesses (μm).

Metal/paint system Metallic coating Primer Topcoat Total thickness

S/Z/AS 18± 0.9 22± 0.9 52± 2.6 92± 4.5

S/ZA/AS 20± 0.9 22± 0.9 52± 2.6 94± 4.5

S/Z/ES 18± 0.9 4± 0.2 87± 2.6 109± 5.1

S/ZA/ES 20± 0.9 4± 0.2 87± 2.6 111± 5.1

S/Z/PS 18± 0.9 4± 0.2 48± 2.6 70± 3.5

S/ZA/PS 20± 0.9 4± 0.2 48± 2.6 72± 3.5

Note: S/Z/AS: galvanized steel/alkyd-based paint system; S/ZA/AS: steel/55%Al-Zn alloy/alkyd-based paint system; S/Z/ES: galvanized steel/epoxy-based
paint system; S/ZA/ES: steel/55%Al-Zn alloy/epoxy-based paint system; S/Z/PS: galvanized steel/polyurethane-based paint system; S/ZA/PS: steel/55%Al-Zn
alloy/polyurethane-based paint system.
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Figure 1: Location of the CIDEPINT station in La Plata, Buenos Aires, Argentina.

The painted samples were build-up with the three painting
systems mentioned in Table 1, and their edges were masked
with a thick wax base coating to avoid edge effect.

Gravimetric determinations for measuring weight-loss
of bare steel/metallic coating samples were carried out in
triplicate for each material tested.

The visual inspections and samplings took place accord-
ing to the following program: during the first year each 1st,
3rd, 6th, 9th, 12th month, and then each 2nd, 4th, 8th, and
12th year. At the same times, adhesion tests according to the
Test Tape ASTM D-3359/09 Standard on replicates of each
type of painted samples were also performed.

2.1. Electrochemical Measurements. For the impedance mea-
surements periodically carried out on other replicates of each
type of samples, a cylindrical clamp-on acrylic (polymethyl
methacrylate) cell was positioned on the painted panel by an

O-ring defining a surface area of 15.9 cm2. An aperture in
the top of this three electrode electrochemical cell contained
a Pt-Rh mesh counter-electrode with negligible impedance,
oriented parallel to the working electrode (painted metal
surface). A glass-linear Saturated Hg/HgSO4 tipped Refer-
ence Electrode was positioned, together with the counter-
electrode, close to the exposed painted steel surface panel.
For further easy comparison with previous information, all
the potential data in the text and figures were referred to the
Saturated Calomel Electrode (SCE). Before the electrochem-
ical impedance spectrum of each replicate was obtained,
the sample was subjected to 1 hour of wetting in 0.5 M
Na2SO4 solution. Impedance spectra were obtained from a
Solartron 1255 FRA coupled to a Solartron EI 1286 and a
PC, all controlled by the Zplot software. Impedance spectra
collected in the frequency range 10−2 ≤ f (Hz) ≤ 106 were
analyzed and interpreted on the basis of equivalent electrical
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Figure 2: Plots showing the time dependence of the weight loss suffered by the bare S/Z and S/ZA sheets.
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Figure 3: Photographs and SEM images of the bare metallic coatings after 12 years of exposure.

circuits, optimizing the values of the circuit parameters by
using Boukamp’ program [32].

All the electrochemical experiments were carried out at
laboratory temperature (23 ± 2◦C) and with the electro-
chemical cell in a Faraday cage to reduce external interfer-
ences as much as possible.

To improve the experimental data reliability, three repli-
cates of each sample type were measured in all the tests.

3. Experimental Results and Discussion

3.1. Atmospheric Exposure Test

3.1.1. Corrosion of the Metallic Coatings. It is known that all
the materials degrade under the influence of atmospheric
factors such as oxygen, humidity, and/or pollutants (SO2,
NaCl, NOx, etc.). Another important degradation source
is the sun radiation, particularly its UV rays. All these
influences compose the so-called “Macroclimate” of a deter-
mined zone [33]. In change, “Microclimate” is defined as the
specific climate formed around an object and it results of
vital importance to understand the atmospheric mechanisms

causing the materials degradation. Among the parameters
used to define it are the surface time of wetness (TOW),
the heating by sun radiation, mainly the infrared, and the
acidic nature ions (SO3

2−, NO2
−, Cl−) gathering within the

aqueous layer deposited on the object. On the other hand, the
atmospheric corrosion process is the sum of partial corrosion
processes taking place each time an electrolyte layer deposits
on the surface metal. The rain, snow, fog, and/or humidity
condensation produced by temperature changes are the main
promoters of atmospheric corrosion. In such sense, the value
of some climatological variables characterizing the average
exposure conditions corresponding to the station used in the
present work are shown in Tables 2 and 3. The aggressiveness
of La Plata station was attributed to its high relative humidity,
severe and lengthy TOW as well as surface runoff supported
by the tested replicates.

Hot-dip zinc is widely used as a coating for carbon steel
because of its good corrosion resistance and relatively
low price [34]. Due to its practical use, zinc atmospheric
corrosion has been studied in field exposures as well as in
laboratory with controlled environments [35, 36]. Zincite,
ZnO, is the first product formed when the naked metal is
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Table 2: Meteorological data for the 12 years of exposure in the CIDEPINT Station, La Plata, Argentina.

Year Mean temperature (◦C) Mean relative humidity (%) Precipitation (mm) Days of rain

1 16.5 80.8 943.1 90.0

2 16.8 80.7 1042.8 94.0

3 16.3 80.4 927.0 93.0

4 15.8 81.8 1342.1 90.0

5 16.4 84.4 1316.6 98.0

6 16.0 82.7 1611.8 107.0

7 15.8 81.1 924.5 98.0

8 16.1 80.8 881.7 88.0

9 15.9 79.4 926.6 91.0

10 16.0 79.0 1083.4 81.0

11 15.4 77.5 1153.2 85.0

12 16.3 78.3 775.1 70.0

Table 3: Average levels of chemical agents, time of wetness and corrosion category of CIDEPINT Station.

Year
Deposition rate of SO2

(mg·m−2·d−1)
Deposition rate of chloride

(mg·m−2·d−1)
Time of wetness fraction

Corrosion category according
to ISO 9223

1 6.22 Negligible 0.61 P0S0τ4/C2

2 7.25 Negligible 0.62 P0S0τ4/C2

3 6.81 Negligible 0.61 P0S0τ4/C2

4 6.53 Negligible 0.65 P0S0τ5/C2

5 7.42 Negligible 0.63 P0S0τ5/C2

6 6.94 Negligible 0.69 P0S0τ5/C2

7 7.60 Negligible 0.59 P0S0τ4/C2

8 8.12 Negligible 0.57 P0S0τ4/C2

9 7.93 Negligible 0.61 P0S0τ4/C2

10 6.82 Negligible 0.62 P0S0τ4/C2

11 7.45 Negligible 0.62 P0S0τ4/C2

12 8.01 Negligible 0.55 P0S0τ4/C2

exposed to the air, creating a protective film that inhibits
corrosion process. Under humidity conditions higher than
80%, zinc is oxidized forming zinc hydroxide. If the pH
on the surface is high enough, this hydroxide can react
with atmospheric components such as CO2, SOx, and Cl−,
forming, in the hydroxide/air interface, the corresponding
zinc basic salts [37]. Some of these products form a com-
pact film that protects the metal against later corrosive
attacks [38]. An important intermediate in the subsequent
formation of other corrosion products is hydrozincite
Zn4CO3(OH)6·H2O [39, 40]. If the pH of the humid surface
is low, neither hydroxide nor basic salts are formed [37]. In
presence of SO2 polluted air, the main corrosion product is
hydroxysulfate Zn4SO4(OH)6·4H2O, and in presence of Cl−

contamination, the precipitation of insoluble hydroxychlo-
ride Zn5(OH)8Cl2·H2O is possible.

The hot-dip aluminium-zinc alloy, known as Zincalume,
actually contains about 55% aluminium, 1.5% silicon, and
the balance zinc. A microstructure of the alloy-coated steel
which forms on cooling is essentially two phase, comprising
about 80% by volume of a dendritic aluminium-rich phase
and the remainder an interdendritic zinc-rich phase with

a thin intermetallic layer next to the steel substrate. When
the coating corrodes initially, the zinc phase corrodes pref-
erentially until the formation of corrosion products reduces
further activity in these areas. During the initial stage of
corrosion, the coating behaves like zinc coating. In the later
stages of corrosion when the coating is essentially comprised
of zinc corrosion products carried in an aluminium-rich
matrix, the corrosion becomes more characteristic of the
aluminium-rich phase, resulting in a lower corrosion rate,
more typical of aluminium [41, 42].

Weight-loss measurements provide the most reliable fig-
ure concerning the aggressiveness of a given atmosphere, so
that the corresponding corrosion data approach to the ser-
vice conditions more than any other test. In the present case,
as it is shown in Figure 2 both materials presented a linear
relationship between its weight-loss and the weathering time
and, considering the 12 years exposure, the galvanized coat-
ing exhibited a degree of corrosion 4.94 times greater than
that of the 55%Al-Zn coating.

In general, the zinc coating suffered uniform corrosion
with the development of a layer of corrosion products,
mainly ZnO and Zn4CO3(OH)6·H2O, but in particular
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Figure 4: Photographs of the scribed area of bare metallic coatings after 12 years of exposure.

places of the surface, the accumulation of atmospheric dust
produced localized corrosion as it is possible to see in the
SEM images shown in Figure 3. On the other hand, on
the 55%Al-Zn coating and due to the complex structure
of the alloy, the development of localized corrosion was
observed as a consequence of the preferential dissolution
of the interdendritic Zn-rich phase, which provoked loss of
surface’ brightness and the development of thin dark lines
related to the aluminium corrosion process.

During all the weathering period, both metallic coatings
were able to afford cathodic protection to the substrate as it
is shown in Figure 4.

These results can be explained by considering the climatic
conditions prevailing during the outdoor exposure prior
to samples removal, that is, level of sulphur compounds,
wet/dry cycles, high TOW, and pluvial precipitations dissolv-
ing the zinc corrosion products and releasing zinc ions from
the corroded surface, which are dispersed to the environ-
ment. This phenomenon is known today as a metal runoff
process [43–50].

3.1.2. Duplex Systems. As a direct way of evaluating the anti-
corrosive performance of organic coatings, the exposure test
to natural atmospheres either for intact or scribed painted
surfaces is, without any doubt, the best.

Experimental results coming from exposure tests to nat-
ural weather conditions are further representative of the
protective and aesthetic properties provided by the topcoat
paint. In such a sense, the results obtained from visual
inspections periodically carried out for 12 years of exposure
in La Plata station confirmed that weathering of the con-
sidered duplex systems proceeds very slowly. The periodical
visual inspection put in evidence that no sample presented
underrusting, peeling, cracking, or checking. From the 4th
year weathering and due to the effect of the UV radiation,
the Epoxy paint systems showed significant deterioration
by chalking, and the topcoat Alkyd paint began to show
significant changes of color, brightness, and chalking that
led to the exposure of the primer from the 8th year of
test. In any case, blistering or filiform corrosion near the
scribed cross was observed. Examples of this behavior are

presented on Figures 5 and 6. These results were attributed
to the highest resistance of the polyurethane topcoat paint to
the UV radiation, rain and temperature changes due to the
strong interaction between the reactive components of the
polymer and the chemically stable pigment (TiO2) added to
the effective anticorrosive protection offered by the primer.

At this point, it is noteworthy to remark that besides
knowing the behavior of painting systems when they are
intact, it is important to evaluate how they performed when
mechanical damage occurs. For that purpose, some of the
samples were scribed in an X-shape before being exposed to
the natural atmosphere.

The main characteristic of duplex systems is to get and
maintain good adhesion to the metallic-coated steel surface
during its weathering period. As it is shown in Figure 7, inde-
pendent of the metallic substrate the polyurethane coating
presented the largest adhesion loss during the weathering.
Due to the previously mentioned behavior of Epoxy and
Alkyd paint systems from the 4th year of weathering, is
important to mention that in the case of both Alkyd systems
the adhesion test considered mainly the primer and in the
case of the Epoxy-based samples the evaluation was inter-
rupted as a consequence of the observed chalking degree.

3.2. Electrochemical Tests. During atmospheric corrosion, in
general, the metal is not immersed in large quantities of
electrolyte but in contact with thin layers or monolayers of
moisture, due to that the corrosion process develops as local-
ized corrosion cells. In that situation, the measurement of the
corrosion potential as well as of the resistive and capacitive
parameters governing the electrochemical behavior of the
metal/coating interface is not always possible during the
atmospheric corrosion [51, 52].

According to Zhang and Lyon [52], the cathodic process
for metals like steel, zinc, and copper coated with thin
(<100 μm) water films reveals a diffusional limiting current
whose value depends on the water film thickness. For thinner
thicknesses, like in most of the atmospheric corrosion cases,
the main cathodic process is controlled by activation. In the
case of zinc, due to its high electronegativity, the cathodic
process is not sensitive to the water film thickness present on
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Figure 5: Photographs showing the evolution of S/Z/painting systems as a function of the exposure time.

the surface. On the other hand, as it was mentioned earlier,
the protective capacity of the corrosion products formed
during the atmospheric exposure depends on a variety of
properties, which are also dependent on the composition and
metallurgical history of the metal as well as on the atmo-
spheric variables [1, 5, 53].

3.2.1. Corrosion Potential and Impedance Results for Bare S/Z
and S/ZA Sheets. The measured corrosion potential values
(Ecorr) point out the metal susceptibility to be corroded. In
general, when a value for a given medium is nobler (positive),
it will result more resistant to corrosion. As it is possible to
see in Figure 8, the corrosion potential evolution for the bare
coating materials (Z and ZA) along the 12 years of exposure
was quite similar. In this case, the surface of both the bare
S/Z and the S/ZA sheets remained active up to the end
of the test exposure with potential values ranging between
−1.04 V/SCE and −1.00 V/SCE, which are characteristics of
these metals under free corrosion processes. [54]. The con-
tinuous electrochemical reactivity was attributed to the rain
runoff effect on the corrosion products, which avoided the
formation of an oxide, hydroxide, and/or passive protective
layer on the bare surfaces.

These data are in accordance not only with the visual
inspection but also with the results obtained elsewhere [55]
by optic and electronic microscopy techniques, which put
in evidence a developed corrosion process. The surface had
hollows and corrosion products characterized as oxides and
basic carbonates. On the other hand, the 55%Al-Zn alloy had
a big cathodic area where the metals exposed to the atmo-
sphere will corrode by coupling with the oxygen cathodic
reduction reaction:

O2 + 2H2O + 4e− −→ 4OH− (1)

although when the level of contamination with acid products
is high, the hydrogen evolution gets importance as cathodic
reaction:

2H+ + 2e− −→ H2 (2)

regardless of which reaction prevails, the pH on the cathodic
region increases. From a certain level of acidity, it is possible
that the SO2 of a polluted atmosphere acts as an oxidant able
to impart a great acceleration to the cathodic process.

The impedance spectra of the coating Zn (Figure 9) may
be interpreted in terms of the corrosion products film
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0 1000 2000 3000 4000
0

20

40

60

80

100

S/Z/AS

S/ZA/PS
S/ZA/AS
S/Z/ES

S/ZA/ES
S/Z/PS

A
dh

es
io

n
 lo

ss
 (

%
)

Time (days)

Figure 7: Plots showing the time dependence of the adhesion loss suffered by the painted S/Z and S/ZA sheets.

structure that is usually formed on the surface. The first
time constant (R1C1) may be linked with the compact
inner layer of ZnO and the second one (R2C2) with the
external and porous layer of Zn4CO3(OH)6·H2O [55, 56].
This surface film seems to inhibit further metal dissolution,
although the environmental conditions determine the extent
of corrosion progress due to a competition between film

formation and film removal reactions. It was found that
data of zinc corrosion measurements correlate with the air
pollution levels given as a function of the SO2 and Cl−

concentrations [57].
For similar exposure conditions, the influence of the

coating composition on the bare sheet impedance values is
shown in Figure 10. In it can be seen that the charge transfer
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Figure 9: Equivalent circuit model used for fitting the tested bare S/Z and S/ZA sheets.

resistance (R1) values shown by the 55%Al-Zn alloy was
slightly higher than that of the zinc layer but the resistive
contribution (R2) of the external and porous layer to the
system total impedance was very similar. These results are
in accordance with the electrochemical activation demon-
strated by both metallic surfaces.

3.2.2. Corrosion Potential and Impedance Results for Painted
S/Z and S/ZA Sheets. Rest or corrosion potential (Ecorr)
measurements for painted metals and their time dependence
have been questioned with regard to their use as a technique
for evaluating the anticorrosive resistance of organic coatings
[58]. However, its changes as a function of the exposure time
to aqueous media have been successfully used as a simple
tool to study the corrosion protection afforded by organic
coatings [59–62]. Depending upon the microstructure of
the paint coating, especially its polymerization degree, a
certain period elapses until electrolyte penetration channels
are established through which the underlying metal comes

into contact with the medium. So, it is not surprising that,
when a compact structure and high crosslinking level are
accompanied by an also high film thickness, a few days of
testing is not enough time for the electrolyte to enter in
contact with the base metal of coated specimens, form the
electrochemical double layer, and enable the measurement of
a corrosion potential.

Figure 11 shows the corrosion potential (Ecorr) values
measured for each coated steel sheet exposed to the natural
atmosphere of La Plata station. As can be seen, the Ecorr

values measured almost from the beginning and up to the
end of the test for S/Z/AS, S/ZA/AS, S/Z/ES, and S/ZA/ES
were quite similar to those obtained for the bare S/Z and
S/ZA sheets (between −0.9 and −1.1 V/SCE). This means
that, at least from the thermodynamic point of view, the
protective properties offered by the alkyd- and epoxy-based
painting systems were not sufficiently effective as to avoid the
onset of the underlying zinc or 55%Al-Zn corrosion. On the
other hand, the polyurethane-based painting system offered
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Figure 10: Evolution of log R1, log C1, log R2, and log C2 parameters of the tested bare S/Z and S/ZA sheets.
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much more promising protective properties, particularly
when applied on S/Z sheets, since the S/Z/PS system potential
values remained in an electrochemically passive zone. A
similar performance was supplied by the S/ZA/PS up to
almost reaching the 12 years of exposure where together with
the measurement of an Ecorr ≈ −1.00 V/SCE, the first sign of
a localized corrosion was detected by EIS.

Since the main difference among the S/Z/painting sys-
tems and S/ZA/painting systems was the applied paint for-
mulation used in each case, it is assumed that the magnitude
of the Ecorr displacements may be particularly associated with
both the relative easiness with which the climatic variables
affect the paint film structure and, hence, its protective
properties. However, and it will be discussed in the next
paragraph, except in the case of the epoxy-based painting
system, the other two were able to protect relatively (AS)
and effectively (PS) the metallic substrate from the corrosive
atmosphere. This conclusion arises from the fact that the cor-
rosion potential values measured for the S/Z/PS and S/ZA/PS
panels were mostly nobler than the corresponding to bare
S/Z or S/ZA sheets subjected to the same experimental
conditions. This effective protection was mainly attributed to
the PS barrier painting system, which could resist the strong
aggressive action coming from the atmospheric conditions.

The impedance modulus (|Z|) of replicated samples as a
function of their exposure time to the natural atmosphere
of La Plata station illustrates Figure 12. A fast and simple
qualitative analysis of this figure allows to infer that both
the shape of all the experimental diagrams was fairly similar
and it is possible to presume the presence of at least two
time constants, one at low frequencies and another at high
frequencies.

As seen in Figure 12, all the tested systems showed
changes more or less significant of their (|Z|) and phase
angle (Theta) during the weathering period. The fluctuating
impedance values can be attributed to the dynamic behavior
of the painting system structure frequently subjected to
wet/dry cycles and/or other climatic changes as well as of the
metal/paint interface through which the corrosion products
gathered at the bottom and/or within the coating defects
enhanced the coating barrier protection and, therefore,
contribute to an increase in the impedance of the protective
system at medium and low frequencies; however, as the time
elapses, new defects appear at the weaker (less protective
areas) paint layer allowing the inducing corrosion species
permeation, and, consequently, the development of new
electrochemically active zones.

The fact that the initial substrate attack is localized could
be ascribed to the presence of very small defects in the paint
layer, which act as an electrical shunt. As the exposure time
goes on, the equilibrium between the development rate of
the corrosion products and their diffusion rate towards the
outdoor medium may be reached and, consequently, the total
impedance fluctuations become small.

(1) Equivalent Circuit Models. The painting system as well
as the S/Z or S/ZA substrates deterioration takes place
from processes having a complex nature. Consequently, to

interpret and explain in electrochemical terms the time
dependence of the acquired impedance data, it has been
necessary to propose appropriate equivalent circuit models.

Impedance spectra provide useful information concern-
ing the evolution of both the protective features of the
organic coating and the kinetics of the underlying metallic
substrate corrosion process as a function of the exposure
time to experimental or real service conditions. Thus, the
dynamic character of the painting system barrier properties,
the anticorrosive action of specific pigments, the corrosion
products formation, and also changes in the disbonded
area are accounted for the time dependence of the coated
steel/medium impedance spectra. In general, an explanation
of why and how such changes take place can be given by
associating them to the resistive and capacitive parameters
derived from fitting impedance data with nonlinear least
squares algorithms involving the transfer function of the
equivalent circuit model shown in Figure 13, [63–67]. They
represent the parallel and/or series connection of some resis-
tors and capacitors, simulating a heterogeneous arrangement
of electrolytically conducting paths, where R represents the
electrolyte resistance between the reference and working
(coated steel) electrodes, Rc (resistance to the ionic flux)
describes paths (pores, low crosslinking) of lower resistance
to the electrolyte diffusion short-circuiting the paint film,
and Cc is the dielectric capacitance representing the intact
part of the same paint film [68]. Once the permeating
and corrosion-inducing chemicals (water, oxygen and ionic
species) reach electrochemically active areas of the substrate,
particularly at the bottom of the paint film defects, the metal-
lic corrosion become to be measurable so that its associated
parameters, the electrochemical double-layer capacitance,
Cdl, and the charge transfer resistance, Rt, can be estimated.
It is important to remark that the values of these parameters
vary direct (Cdl) and inversely (Rt) with the size of the
corroding area.

On the other hand, distortions observed in these resist-
ive-capacitive contributions indicate a deviation from the
theoretical models in terms of a time constants distribution
due to either lateral penetration of the electrolyte at the
steel/paint interface (usually started at the base of intrinsic
or artificial coating defects), underlying metallic substrate
surface heterogeneity (topological, chemical composition,
surface energy), and/or diffusion processes that could take
place along the test [69, 70]. Since all these factors make
the impedance/frequency relationship nonlinear, they are
taken into consideration by replacing one or more capacitive
components (Ci) of the equivalent circuit transfer function
by the corresponding constant phase element Qi (CPE),
whose impedance dispersion relation is given by Z =
( jω)−n/Y0 and n = CPE power = α/(π/2) [32, 71].

Difficulties in providing an accurate physical description
of the occurred processes are sometimes found. In such
cases, a standard deviation value (χ2 < 5 × 10−4) between
experimental and fitted impedance data may be used as final
criterion to define the most probable circuit.

According to the impedance data dispersion, the fitting
process was performed using either the dielectric capacitance
Ci or the phase constant element Qi; however, the Ci
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Figure 12: Bode plots showing the time dependence of the duplex systems impedance during their exposure to the natural atmosphere of
La Plata station for 12 years.
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Figure 14: Evolution of Rc, Cc, Rt , and Cdl parameters of the duplex systems impedance during their exposure to the natural atmosphere of
La Plata station for 12 years.

parameter was used in the following plots to facilitate the
results visualization and interpretation.

(2) Time Dependence of the Impedance Resistive and Capac-
itive Components. The values of the resistive and capacitive
components of the impedance corresponding to all the
painted samples exposed to the natural atmosphere of
La Plata station for 12 years are shown in Figure 14. As
seen, the S/Z/PS and S/ZA/PS samples offered an excellent
anticorrosive performance up to the end of the exposure.

This behavior could be attributed to its excellent barrier
effect due to the structurally homogeneous and strong paint
film (Rc ≈ 107–108 Ωcm2, Cc ≈ 10−10–10−9 Fcm−2), which
was able to counteract the significant adhesion loss suffered
by this painting system during weathering and slowed down
the development of the alloy coating corrosion process up to
the end of the exposure.

For the other two sample types, a rather highly fluctu-
ating Rc values (two or more orders of magnitude) were
found within the first 1400 days of exposure but then, and
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up to the end of the test, they remained changing between
106–104 Ωcm2; on the other hand, its coupled dielectric
capacitance (Cc) followed the same unstable trend at the
beginning of the test but then, due to the deterioration
degree reached by the AS and ES painting systems as a
consequence of the adverse climatic conditions, led to Cc

values (≈10−6–10−5 Fcm−2), that is, close to the bare S/Z and
S/ZA sheets.

On the other hand, the same Figure shows great differ-
ences in the electrochemical response (RtCdl) of the different
systems. In the case of the polyurethane systems, the corro-
sion process was either absent (S/Z/PS) or at least its devel-
opment was delayed up to the end of exposure (S/ZA/PS).
On the contrary, for the rest of the considered duplex
systems after variable induction periods, the metallic coating
degradation was detected. The worst corrosion protection
was afforded by the Epoxy-based painting system since the
corrosion process was detected by EIS at 30 (S/Z/ES) and
200 (S/ZA/ES) days. This behavior would be ascribed to
the different electrochemical reactivity of the Z and ZA
coatings. In the case of the Alkyd system, the induction
period was of 600 and 1400 days for S/Z/As and S/ZA/AS,
respectively. Again, the better performance of the last system
could be accredited to a relatively good, although too short
for practice purposes, barrier effect offered by the paint film
added to the lower electrochemical reactivity of the S/ZA
sheet.

4. Conclusions

At the end of this work, it is possible to summarize some
conclusions valid for the studied materials.

All the laboratory and field tests involved in this work
were useful to understand the behavior of the studied duplex
systems subjected to natural weathering at La Plata Station.
The good correlation between visual inspection and elec-
trochemical tests allowed explaining some troubles observed
in practice and, on this base, contribute to solve them to
maintain its useful life as long as possible.

An almost constant corrosion rate of bare zinc and zinc-
aluminum layers acting as galvanic coating of steel sheets
was found during the long-term exposure to the natural
atmosphere of the La Plata station. Both materials were able
to cathodically protect the steel substrate for 12 years.

Regarding the comparative study among the three paint-
ing systems applied on S/Z or S/ZA sheets, different RcCc

and RtCdl evolutions were obtained depending mainly on
the paint. The best protective performance offered by
the Polyurethane-based painting system was explained in
principle taking in account its better barrier properties. The
experimental results coming from the alkyd- and epoxy-
based painting systems were not satisfactory due to their low
resistance to the atmospheric conditions existing at La Plata
station.

Despite the interface degradation (loss of adhesion)
shown by all the painting systems, the corrosion process did
not progress from the cross cut towards the underlying
metallic substrate.
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