
INGENIERÍA E INVESTIGACIÓN VOL. 32 No. 1, APRIL - 2012 (58-63)

 58

A systematic review of applying modern software engineering

techniques to developing robotic systems

Revisión sistemática de la aplicación de técnicas modernas de ingeniería de

software al desarrollo de sistemas robóticos

Claudia Pons1, Roxana Giandini2, Gabriela Arévalo3

RESUMEN

Los robots se han convertido en colaboradores habituales de nuestra vida diaria. Los sistemas robóticos son cada vez más com-
plejos y, como consecuencia, crece la necesidad de aplicar nuevas técnicas ingenieriles a su proceso de desarrollo. Los enfoques
tradicionales que se utilizan en el proceso de desarrollo de estos sistemas de software están alcanzando sus límites; las metodo-
logías utilizadas actualmente y las herramientas de soporte no alcanzan para atender las necesidades de estos procesos comple-
jos. Para fomentar la reutilización y el mantenimiento de código es esencial separar el conocimiento estable del dominio de
robótica en las tecnologías de implementación, que varían rápidamente. Este artículo presenta una revisión sistemática de la
utilización actual de técnicas modernas de ingeniería de software en el desarrollo de sistemas robóticos y su nivel de automatiza-
ción. El objetivo del estudio es el de resumir la evidencia existente respecto a la aplicación de dichas tecnologías en el campo de
los sistemas robóticos para identificar carencias en la investigación actual con el fin de sugerir áreas en futuras propuestas y
proporcionar las bases para posicionar adecuadamente nuevas actividades de investigación.

Palabras clave: revisión, sistemas de software robóticos, desarrollo de software dirigido por modelos, ingeniería de software,
SOA, desarrollo de software basado en componentes.

ABSTRACT

Robots have become collaborators in our daily life. While robotic systems become more and more complex, the need to engineer
their software development grows as well. The traditional approaches used in developing these software systems are reaching their
limits; currently used methodologies and tools fall short of addressing the needs of such complex software development. Separat-
ing robotics‟ knowledge from short-cycled implementation technologies is essential to foster reuse and maintenance. This paper
presents a systematic review (SLR) of the current use of modern software engineering techniques for developing robotic software
systems and their actual automation level. The survey was aimed at summarizing existing evidence concerning applying such
technologies to the field of robotic systems to identify any gaps in current research to suggest areas for further investigation and
provide a background for positioning new research activities.

Keywords: survey, robotic software system, model-driven software development, software engineering, SOA, component-based soft-
ware development.

Received: September 28th 2011
Accepted: February 28th 2012

Introduction1 23

Robotic systems (RSs) play an increasing role in everyday life. The

need for robotic systems in industrial settings is increasing and has

become more demanding. While robotic systems become more

and more complex, the need to engineer their software develop-

1

 Informatics Licentiate, Specialist in Universitary Teaching, PhD in Science

(Informatics), Universidad Nacional de La Plata, Argentina. CONICET, Facultad

de Informática, Universidad Nacional de La Plata y Universidad Abierta Inter-

americana, Argentina. E-mail: cpons@info.unlp.edu.ar

2

 Scientific Estimator, MSc in Software Engineering, PhD in Informatic Sciences,

Universidad Nacional de La Plata, Argentina. Facultad de Informática, Universi-

dad Nacional de La Plata, Argentina. E-mail: giandini@info.unlp.edu.ar
3

Informatics Licentiate, Universidad Nacional de La Plata, Argentina. MSc

in Software Engineering, Ecole des Mines de Nantes/Vrije Universiteit.

Brussels. PhD in Computer Science, Universitaet Bern, Switzerland.

Universidad Abierta Interamericana, CONICET, DCyT, Universidad Nacional de

Quilmes, Argentina. E-mail: gabriela.b.arevalo@gmail.com

ment grows as well. Traditional approaches used in developing

such software systems are reaching their limits; currently used

methodologies and tools fall short of addressing the needs of such

complex software development.

It is widely accepted that new approaches should be established to

meet the needs of developing today’s complex RS. Component-

based development (CBD) (Szyperski, 2002), service oriented

architecture (SOA) (Bell 2008 and 2010), model driven software

engineering (MDE) (Stahl, 2006) (Pons et al., 2010) and domain-

specific modeling (DSM) (Steven and Juha-Pekka, 2008) represent

promising technologies in the RS domain.

This paper gives a systematic review (SLR) of the current use of

modern software engineering techniques for developing robotic

software systems and their actual automation level. The survey

aimed at summarising existing evidence concerning the application

of such technologies in the field of robotic systems.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/20527264?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PONS, GIANDINI, ARÉVALO

 INGENIERÍA E INVESTIGACIÓN VOL. 32 No. 1, APRIL - 2012 (58-63) 59

The need for a review in this field

Although robotic software complexity is high, its reuse is still re-

stricted to libraries. Many libraries have been created at the lowest

level for robot systems to perform tasks like mathematical compu-

tation for kinematics, dynamics and machine vision (Bruyninckx,

2001). Instead of composing systems out of building blocks having

assured services, overall software integration for another robotic

system often relies on re-implementing glue logic to bring various

libraries together. Overall integration is completely driven by a

certain middleware system and its capabilities. Middlewares are

often used to hide complexity regarding inter-component commu-

nication, for example OpenRTM-aist (Ando et al., 2005) is a

CORBA-based middleware for robot platforms that uses so-called

robot technology components to model functionality distribution.

Obviously this is not only expensive and wastes tremendous highly

skilled robotics resources but does not take advantage of maturing

to enhance overall robustness.

Educational robots have been programmed for more than 10 years

(GIRA, 2011) (CAETI, 2011) and robotic kits oriented towards non-

expert users have emerged in the last years, giving rise to the

development of a significant number of educational projects using

robots. Such projects apply robots from kindergarten to higher

education, especially regarding physics and technology. However,

robotic kits’ hardware is constantly changing and its use is not

uniform in different regions and even at similar education levels.

These robots’ technical interfaces should hide such differences so

that teachers are not required to change their educational material

over and over again. Physical Etoys (GIRA, 2011) is an example of

these interfaces; it is a project proposing a standard teaching plat-

form for programming robots, regardless of whether they are based

on Arduino, Lego or other technologies.

It is widely accepted that new approaches should be established to

meet the needs of developing today’s complex RS. Component-

based development (CBD) (Szyperski, 2002), service oriented

architecture (SOA) (Bell 2008 and 2010), model driven software

engineering (MDE) (Stahl, 2006), (Pons et al., 2010) and domain-

specific modelling (DSM) (Steven and Juha-Pekka, 2008) represent

promising technologies in the RS domain.

Component-based development (Szyperski, 2002) implies that

application development should be achieved by linking independ-

ent parts (i.e. components). Strict component interfaces based on

predefined interaction patterns decouple the sphere of influence

and thus partition overall complexity. This results in loosely cou-

pled components interacting via services with contracts. Compo-

nents such as architectural units very precisely specify using the

concept of port for both the services provided and the services

required by a given component and defining a composition theory

based on the notion of a connector. Component technology offer

high reusability rates and ease of use, but little flexibility regarding

implementation platform; most existing components are linked to

C/ C++ and Linux (e.g. Microsoft robotics developer studio (Mi-

crosoft, 2009), EasyLab (Barner et al., 2008), Player/Stage project

(Gerkey et al., 2001)), although some achieve more independence

by using middleware (e.g. smart software component model

(Schlegel, 2007), Orocos (Bruyninckx, 2001) Orca (Brooks et al.,

2005), CLARAty (Nesnas et al., 2003)).

Interfaces and behaviour must be defined at a higher level of

abstraction so they can be used in systems having different plat-

forms. This prompted the idea of abstract components which

would be independent of an implementation platform but could

be translated into executable software or hardware components.

Migration from code-driven design to model-driven development

is mandatory in robotic components to overcome current prob-

lems. A model-based description is a suitable means of expressing

contracts at component interfaces and applying tools to verify

composed systems’ overall behaviour and automatically derive

executable software. Instead of building tool support for each

framework from scratch, one should now try to express required

models in standardised modelling languages like UML or any DSL,

separating components from the underlying computer hardware.

Model driven development (MDD) (Stahl, 2006; Pons et al., 2010)

and domain-specific modelling approach (DSM) (Steven and Juha-

Pekka, 2008) have emerged as a paradigm shift from code-centric

software development to model-based development; such ap-

proaches promote systematisation and automation in constructing

software artefacts. Models are considered first-class constructs in

software development and developers' knowledge is encapsulated

by means of model transformations. MDD and DSM’s essential

characteristics are that software development's primary focus and

work products are models; their major advantage is that models

can be expressed at different levels of abstraction and hence they

are less bound to any supporting technology. This is especially

relevant for software systems within the ubiquitous computing

domain, consisting of dynamic, distributed applications and het-

erogeneous hardware platforms, such as robotic systems.

Service-oriented architecture (SOA) is a flexible set of design prin-

ciples used during systems development and integration in com-

puting. A system based on a SOA will package functionality as a

suite of interoperable services to be used within multiple, separate

systems from several business domains. SOA also generally pro-

vides a way for service consumers (such as web-based applications)

to be aware of available SOA-based services. SOA defines how to

integrate widely disparate applications for a web-based environ-

ment and uses multiple implementation platforms. Rather than

defining an API, SOA defines the interface in terms of protocols

and functionality. Service-orientation requires the loose coupling

of services to operating systems and other technologies that under-

lie applications. SOA separates functions into distinct units, or

services (Bell, 2008) which developers make accessible over a

network to allow users to combine and reuse them in producing

applications. These services and their corresponding consumers

communicate with each other by passing data in a well-defined,

shared format (Bell, 2010).

It is known that such software engineering techniques offer good

potential for developing robotic systems so proposals in this area

and detecting which work has already been done and which work

is pending must be ascertained, as must any proposal taking ad-

vantage of the combined application of CBP, SOA and MDE for

robotic software system development.

Systematic literature reviews and systematic
mapping studies

A systematic literature review (SLR) (Kitchenham and Charters,

2007; Dybå et al., 2003) is a means of identifying, evaluating and

interpreting all available research relevant to a particular research

question, topic area or phenomenon of interest. Individual studies

contributing towards a SLR are called primary studies; an SLR is a

form of secondary study.

Other types of review complement SLR, such as systematic map-

ping studies (SMS). If, during the initial examination of a domain

prior to commissioning an SLR it is discovered that very little evi-

A SYSTEMATIC REVIEW OF APPLYING MODERN SOFTWARE ENGINEERING TECHNIQUES TO DEVELOPING ROBOTIC SYSTEMS

 INGENIERÍA E INVESTIGACIÓN VOL. 32 No. 1, APRIL - 2012 (58-63) 60

dence is likely to exist or that the topic is very broad then an SMS

may be more appropriate than an SLR. An SMS allows evidence in

a domain to be plotted at a high level of granularity, thereby iden-

tifying evidence clusters and evidence deserts to direct the focus of

future SLS and identify areas for more primary studies to be con-

ducted. The present work consists of an SLR oriented towards

mapping studies due to the extensiveness of our topic of interest.

An SLR involves several discrete activities; Kitchenham et al.,

(Kitchenham and Charters, 2007) summarised SLR stages as fol-

lows: planning (identifying the need for a review, specifying the

research questions, identifying research, selecting primary studies,

study quality assessment, developing a review protocol, evaluating

the review protocol), conducting (data extraction and monitoring,

data synthesis) and reporting (specifying dissemination mecha-

nisms, formatting the main report, evaluating the report).

Planning a review

Review planning specifies the methods to be used when undertak-

ing a specific SLR; pre-defined planning is needed to reduce re-

searcher bias.

The research questions

Specifying research questions is the most important part of any

SLR. The right question is usually one that will lead either to

changes in current software engineering practice or to increased

confidence in the value of current practice and/or will identify

discrepancies between commonly held beliefs and reality. The 5

research questions investigated in this study were:

RQ1 Have MDD techniques been applied to developing robotic

systems and what is the current tendency?

RQ2 Have CBD techniques been applied to developing robotic

systems and what is the current trend?

RQ3 Have SOA techniques been applied to developing robotic

systems and what is the current trend?

RQ4 Have these techniques been used in combination or in isola-

tion?

RQ5 Which MDE techniques have been applied to developing

robotic systems and what is their automation level?

The search strategy

A search strategy was used for primary studies; it included the

search terms and resources to be searched. Resources included

digital libraries, specific journals and conference proceedings. Two

digital libraries and one broad indexing service were searched: the

IEEE computer society digital library, ACM digital library and SCO-

PUS indexing system. All searches were based on title, keywords

and abstract. The searches took place in May and June 2011 using

Boolean query (adapted to each library’s particular syntax):

(robot*)

and

(“software development” OR “system develop-

ment” OR programming)

and

(MDD OR MDE OR "model driven" OR "domain spe-

cific language" OR "domain specific modeling"

OR DSL OR "code generation" OR "generative

programming" OR "component based” OR CBD OR

"service oriented" OR "service based" OR SOA

OR "Web service")

Concerning search strategy quality, general guidelines recommend

considering a question’s effectiveness from five viewpoints (PICOC

criteria):

Population: application area

Intervention: the software methodol-

ogy/tool/technology/procedure addressing a specific issue

Comparison: the software engineering methodol-

ogy/tool/technology/procedure with which the intervention is

being compared

Outcomes: factors of importance for practitioners, such as im-

proved reliability, reduced production costs, and reduced time to

market

Context: this is the context in which the comparison takes place

(e.g. academia or industry), the participants taking part in the study

(e.g. practitioners, academics, consultants, students), and the tasks

being performed (e.g. small scale, large scale)

The current query was thus organised as follows (i.e. following

PICOC criteria)

Population: the robotic domain, reflected in the query’s first sub-

expression

Intervention: software and system development specified in the

query’s second sub-expression

Comparison: MDD, SOA and CBD software engineering method-

ologies were compared or analysed, indicated in the query’s third

sub-expression

Outcome: the query did not restrict the kind of outcomes (as

many outcomes as possible were needed by collecting all the

available information in the study domain)

Context: no restriction was applied

Study selection criteria

Study selection criteria are intended to identify primary studies by

providing direct evidence about a particular research question.

Once potentially relevant primary studies have been obtained,

they must be assessed regarding their actual relevance. Study

selection criteria are used for determining which studies are in-

cluded in, or excluded from, an SLR. It is usually helpful to pilot

the selection criteria on a subset of primary studies.

Title, abstract and keywords were used in initial screening (giving

195 papers); IEEE computer society digital library contributed 55

articles (28%) and ACM digital library another 140 (72%). The

results from searching the SCOPUS indexing system were included

in previous results, so SCOPUS contributed no new articles. Stud-

ies were excluded that were obviously irrelevant or duplicates (91

articles were eliminated). The remaining 104 papers were then

subjected to a second assessment: full copies of these remaining

papers were obtained and a more detailed second screening used

the following inclusion and exclusion criteria: the paper should be

related to software engineering rather than mathematical model-

ling and/or math simulation, “service oriented” should refer to

SOA but not to robots performing a service (37 articles were ex-

PONS, GIANDINI, ARÉVALO

 INGENIERÍA E INVESTIGACIÓN VOL. 32 No. 1, APRIL - 2012 (58-63) 61

MDD

SOA CBD

7

13 16

1
12 2

1

cluded). The remaining 67 articles were analysed

(http://lifia.info.unlp.edu.ar/eclipse/robotsurvey2011).

Data extraction strategy

This strategy defined how information required from each primary

study would be obtained; data extraction forms were designed to

accurately record the information researchers obtained from pri-

mary studies:

Field name Type

Paper identification Integer

Year of publication Date

Was SOA applied Boolean

Was CBD applied Boolean

Was MDD applied Boolean

If the value of the last field was true (i.e., the paper applied MDD),

then the following form was filled in:

Field name Type

Modelling language {UML, Profile, DSML}

Programming language {Any language, robotic-high-level}

Model transformation Technique {GPL, DSL, Black-box}

Tools {existing tool, new tool }

Automation level {Full, Medium, Low}

The “modelling language” field specified the language used to

express platform independent models. Some projects used stan-

dard UML language while other projects considered that UML was

not expressive enough and defined extension by creating a profile.

Other proposals did not use UML but defined their own domain-

specific modelling language (DSML).

The “programming language” field identified the implementation

language used as model transformation target. Most PIM models

were translated to different languages, being one of the principles

of MDD. However, in other cases, PIM models were mapped to a

specific high level language, such as Urby, or specific middleware,

such as MSRS.

 The “model transformation technique” field indicated which

strategy was used to transform PIM to PSM or code. Some projects

implemented the transformation by just using general purpose

programming language (GPL), such as Java, while other proposals

used existing transformation DSLs, such as ATL, JET or QVT. Most

proposals used black-box transformations.

The “tools” field denoted which kind of software tools were being

used in the project: existing tools (such as EMF or MS DSL tools) or

a new specific tool was created.

The “automation level” field stated how much work was done

automatically. “Full” indicated that code was automatically gener-

ated from models, “medium” that a code was partially generated

and had to be completed manually and “low” indicated that trans-

formation from models to code was mostly carried out by hand.

Data synthesis strategy: answering the questions

Data synthesis involved collecting and summarising the results of

the primary studies so included.

Figure 1 shows the response to the first three questions, i.e. “Have

MDD/CBD/SOA techniques been applied to the development of

robotic systems and what is the current trend? An increasing trend

in using all these techniques was observed, CBD being most ap-

plied in the robotics field.

Figure 1. Software engineering technology

Figure 2 shows answers to question 4, showing the distribution of

articles in each field. Little interaction amongst the technologies

was observed. However, there was promising intersection between

MDD and CBD, showing the potential of combining them.

Figure 2. Field intersection

Concerning question 5, Figure 3 illustrates which modelling lan-

guages were being applied in robotic projects. Defining new do-

main specific languages was the most applied technique (64%),

followed by UML (27%) and its profiles (9%). Figure 4 shows that

65% of MDD projects took advantage of existing MDD tools, such

as ATL, EMF and DSL, while 35% implemented their own model-

ling and transformation tools. A reasonable expectation is that

existing tools will be increasingly reused in the near future.

Figure 5 shows MDD project automation level distribution; only

55% had full MDD automation while 27% had intermediate

automation implying abstract model creation and automatic code

skeleton generation to be manually completed by the developers.

18% of MDD robotic projects only had a low level of automation,

consisting of creating abstract models but manual code derivation.

0

2

4

6

8

10

12

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Software Engineering Technology

Service oriented Component based Model driven

A SYSTEMATIC REVIEW OF APPLYING MODERN SOFTWARE ENGINEERING TECHNIQUES TO DEVELOPING ROBOTIC SYSTEMS

 INGENIERÍA E INVESTIGACIÓN VOL. 32 No. 1, APRIL - 2012 (58-63) 62

Figure 3. Modelling languages

Figure 4. Tools

Figure 5. Automation level

Conclusions

The robotics’ community has sufficient experience regarding how

to build complex robotic systems. However, one cannot expect

significant growth with hand-crafted single-unit systems and it is

mandatory to work towards applying engineering principles to

cope with the complexity of robotic software systems. Knowledge

about what has proved to be a good solution in the software engi-

neering field is usually available. Such knowledge must be explicit

and easily accessible for new systems. Applying existing technology

would save time and effort which is better put into what is specific

in robotics.

This paper has presented an overview of ongoing activities regard-

ing the application of modern software engineering techniques to

robotic software development. A growing tendency was identified

regarding applying component-based development as well as

service-based architecture and model-driven software develop-

ment, although such techniques have mostly been applied in

isolation.

Some work (Basu et al., 2011; Biggs, 2010; Brooks et al., 2005;

Jawawi et al., 2008; Min Yang Jung et al., 2010) has taken advan-

tage of CBD for developing robotic systems whilst other proposals

(Amoretti et al., 2007; Cesetti et al., 2010) have applied SOA to

building autonomic robot systems. Only preliminary proposals

were found for applying model-driven development to robotics

(Arney et al., 2010; Baer et al., 2007; Brugali and Scandurra,

2009; Brugali and Shakhimardanov, 2010; Hyun Seung Son et al.,

2008; Iborra et al., 2009; Jorges et al., 2007; Jung et al., 2005;

Sanchez et al., 2010; Schlegel, 2009; Wei et al., 2009) while only

one work combined all three technologies (Tsai et al., 2008).

Gaps were identified in current research leading to further investi-

gation after reviewing more than 100 papers on the subject,

thereby providing background for appropriately positioning new

research activities.

References

Amoretti, M.; Zanichelli, F.; Conte, G.; A service-oriented ap-
proach for building autonomic peer-to-peer robot systems ena-
bling technologies: infrastructure for collaborative enterprises,
2007. WETICE 2007. 16th IEEE International Workshops on,
pp.137 - 142

Ando, N., Suehiro, T., Kitagaki, K., Kotoku, T., Yoon, W.K., RT-
middleware: Distributed component middleware for RT (robot
technology). In: International Conference on Intelligent Robots
and Systems 2005 (IROS 2005), 2005, pp. 3933–3938.

Arney, D.; Fischmeister, S.; Lee, I.; Takashima, Y.; Yim, M.; Model-
based programming of modular robots. 13th IEEE International
Symposium on Object/Component/Service-Oriented Real-Time
Distributed Computing (ISORC), 2010, pp.: 66 – 74.

Baer, P. A.; Reichle, R.; Zapf, M.; Weise,T.; Geihs, K.; A generative
approach to the development of autonomous robot software.
EASe '07. Fourth IEEE International Workshop on Engineering of
Autonomic and Autonomous Systems. 2007.

Barner, S., Geisinger, M., Buckl, C., Knoll, A.: EasyLab: Model-
based development of software for mechatronic systems. In:
IEEE/ASME International Conference on Mechatronic and Em-
bedded Systems and Applications. Beijing, China, 2008.

Basu, A.; Bensalem, B.; Bozga, M.; Combaz, J.; Jaber, M.;
Nguyen, T.; Sifakis, J.; Rigorous component-based system design
using the BIP framework software, IEEE Volume: 28 , Issue: 3,
2011, pp. 41 – 48.

Bell, M., "Introduction to Service-Oriented Modeling". Service-
Oriented Modeling: Service Analysis, Design, and Architecture.
Wiley & Sons. 2008, pp. 3. ISBN 978-0-470-14111-3.

Bell, M., SOA Modeling patterns for service-oriented discovery and
analysis. Wiley & Sons. 2010. pp. 390. ISBN 978-0470481974.

Biggs, G.; Flexible, adaptable utility components for component-
based robot software. Robotics and Automation (ICRA), 2010
IEEE International Conference on, pp. 4615 – 4620.

PONS, GIANDINI, ARÉVALO

 INGENIERÍA E INVESTIGACIÓN VOL. 32 No. 1, APRIL - 2012 (58-63) 63

Brooks, A., Kaupp, T., Makarenko, A., Oreback, A., Williams, S.:
Towards component-based robotics. In: Proc. of 2005 IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS‟05), Alberta,
Canada, 2005, pp. 163–168.

Brugali, D.; Scandurra, P.; Component-based robotic engineering
(Part I) [Tutorial] Robotics & Automation Magazine, IEEE Vol. 16 ,
Issue 4, 2009, pp. 84 – 96.

Brugali, D.; Shakhimardanov, A.; Component-Based Robotic
Engineering (Part II) Robotics & Automation Magazine, IEEE Vol.
17, Issue 1, 2010, pp. 100 – 112.

Bruyninckx, H., Open robot control software: The OROCOS pro-
ject. In: Proceedings of 2001 IEEE International Conference on
Robotics and Automation (ICRA‟01), Seoul, Korea, Vol. 3, 2001,
pp. 2523–2528.

CAETI (Centro de Altos Estudios en Tecnología Informática). Pro-
yectos del área robótica. http://www.caeti.uai.edu.ar. Visited Ju-
ne 2011.

Cesetti, A.; Scotti, C. P.; Di Buo, G.; Longhi, S.; A service oriented
architecture supporting an autonomous mobile robot for indus-
trial applications Control & Automation (MED), 2010 18th Medi-
terranean Conference on Pages: 604 – 609.

Dybå, T., Kitchenham, B.A., Jørgensen M., Evidence-based soft-
ware engineering for practitioners, IEEE Software 22 (1) (2005)
58–65.

Gerkey, B.P., Vaughan, R.T., Howard, A., Most valuable player: a
robot device server for distributed control. In: IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pp. 1226–
1231. Wailea, Hawaii (2001) Player Stage

GIRA Grupo de Investigación en Robótica Autónoma del CAETI.
http://tecnodacta.com.ar/gira/ (Visited May 2011).

Hyun Seung Son, Woo Yeol Kim; Kim, R., Semi-automatic software
development based on MDD for heterogeneous multi-joint ro-
bots. In Future Generation Communication and Networking Sym-
posia, 2008. FGCNS '08. : 2008, pp. 93 – 98

Iborra, A.; Caceres, D.; Ortiz, F.; Franco, J.; Palma, P.;Alvarez, B.;
Design of Service Robots. Experiences Using Software Engineer-
ing. IEEE Robotics & Automation Magazine 1070-9932/09/ IEEE
2009, pp. 24 – 33.

Jawawi, D.N.A.; Deris, S.; Mamat, R.; Early-life cycle reuse ap-
proach for component- based software of autonomous mobile
robot system. Software Engineering, Artificial Intelligence, Net-
working, and Parallel/Distributed Computing, 2008. SNPD '08.
Ninth ACIS International Conference on, Pages: 263 – 268.

Jorges, Sven; Kubczak, Christian; Pageau, Felix; Margaria, Tiziana;
Model driven design of reliable robot control programs using the
JABC. Engineering of Autonomic and Autonomous Systems,
2007. EASe '07. Fourth IEEE International Workshop on, Pages:
137-148

Jung, E.; Kapoor, C.; Batory, D.; Automatic code generation for

 actuator interfacing from a declarative specification Intelligent
Robots and Systems, 2005. (IROS 2005). IEEE/RSJ International
Conference on. Pages: 2839 - 2844

Kitchenham, B.A., Charters, S., Guidelines for performing system-
atic literature reviews in software Engineering Technical Report
EBSE-2007-01, 2007.

Microsoft, “Microsoft robotics developer studio,”
2009,http://msdn.microsoft.com/en-us/robotics/default.aspx,
visited on March 11th 2009.

Min Yang Jung; Deguet, A.; Kazanzides, P.; A component-based
architecture for flexible integration of robotic systems Intelligent
Robots and Systems (IROS), 2010 IEEE/RSJ International Confer-
ence on, Pages: 6107 – 6112.

Nesnas, I., Wright, A., Bajracharya, M., Simmons, R., Estlin, T.:
CLARAty and challenges of developing interoperable robotic
software. In: Proceedings of 2003 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS 2003), vol. 3, pp.
2428–2435.

Pons, C., Giandini R., Pérez, G., “Desarrollo de software dirigido
por modelos. Teorías, Metodologías y Herramientas”, Ed:
McGraw-Hill Education. ISBN: 978-950-34-0630-4.

Sanchez, P; Alonso, D; Rosique, F; Alvarez, B; Pastor, J; Introduc-
ing safety requirements traceability support in model-driven de-
velopment of robotic applications. Computers, IEEE Transactions
on Issue: 99 (2010)

Schlegel, C., „„Communication patterns as key towards component
interoperability,‟‟ in Software Engineering for Experimental Robot-
ics (Series STAR, vol. 30), D. Brugali, Ed. Berlin, Heidelberg:
Springer-Verlag, , pp. 183–210. Smartsoftware (2007)

Schlegel, C., Haßler, T., Lotz, A., Steck, A., Robotic software sys-
tems: from code-driven to model-driven designs. In procs. Of
ICAR 2009. International Conference on Advanced Robotics.
IEEE Press (2009)

Stahl, M Voelter. Model Driven Software Development. John Wiley.
2006.

Steven, K., Juha-Pekka, T., Domain-Specific Modeling. John Wiley
&Sons, Inc. 2008.

Szyperski, C., Component software: beyond object-oriented pro-
gramming. 2nd ed. Addison-Wesley Professional, Boston ISBN 0-
201-74572-0, 2002.

Tsai, W.T., Qian Huang, Xin Sun. A collaborative service-oriented
simulation framework with Microsoft robotic studio simulation
symposium, 2008. ANSS 2008. 41st Annual Digital Object Identi-
fier: 10.1109/ANSS-41.2008.32, pp. 263 – 270, 2008.

Wei Hongxing; Duan Xinming; Li Shiyi; Tong Guofeng; Wang
Tianmiao; A component based design framework for robot soft-
ware architecture. Intelligent Robots and Systems, 2009. IROS
2009. IEEE/RSJ International Conference on, Pages: 3429 -
3434 (2009)

