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RESUMEN  

Los robots se han convertido en colaboradores habituales de nuestra vida diaria. Los sistemas robóticos son cada vez más com-
plejos y, como consecuencia, crece la necesidad de aplicar nuevas técnicas ingenieriles a su proceso de desarrollo. Los enfoques 
tradicionales que se utilizan en el proceso de desarrollo de estos sistemas de software están alcanzando sus límites; las metodo-
logías utilizadas actualmente y las herramientas de soporte no alcanzan para atender las necesidades de estos procesos comple-
jos. Para fomentar la reutilización y el mantenimiento de código es esencial separar el conocimiento estable del dominio de 
robótica en las tecnologías de implementación, que varían rápidamente. Este artículo presenta una revisión sistemática de la 
utilización actual de técnicas modernas de ingeniería de software en el desarrollo de sistemas robóticos y su nivel de automatiza-
ción. El objetivo del estudio es el de resumir la evidencia existente respecto a la aplicación de dichas tecnologías en el campo de 
los sistemas robóticos para identificar carencias en la investigación actual con el fin de sugerir áreas en futuras propuestas y 
proporcionar las bases para posicionar adecuadamente nuevas actividades de investigación. 

Palabras clave: revisión, sistemas de software robóticos, desarrollo de software dirigido por modelos, ingeniería de software, 
SOA, desarrollo de software basado en componentes. 

 
ABSTRACT 

Robots have become collaborators in our daily life. While robotic systems become more and more complex, the need to engineer 
their software development grows as well. The traditional approaches used in developing these software systems are reaching their 
limits; currently used methodologies and tools fall short of addressing the needs of such complex software development. Separat-
ing robotics‟ knowledge from short-cycled implementation technologies is essential to foster reuse and maintenance. This paper 
presents a systematic review (SLR) of the current use of modern software engineering techniques for developing robotic software 
systems and their actual automation level. The survey was aimed at summarizing existing evidence concerning applying such 
technologies to the field of robotic systems to identify any gaps in current research to suggest areas for further investigation and 
provide a background for positioning new research activities. 

Keywords: survey, robotic software system, model-driven software development, software engineering, SOA, component-based soft-
ware development. 
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Introduction1 23 

Robotic systems (RSs) play an increasing role in everyday life. The 

need for robotic systems in industrial settings is increasing and has 

become more demanding. While robotic systems become more 

and more complex, the need to engineer their software develop-
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ment grows as well. Traditional approaches used in developing 

such software systems are reaching their limits; currently used 

methodologies and tools fall short of addressing the needs of such 

complex software development. 

It is widely accepted that new approaches should be established to 

meet the needs of developing today’s complex RS. Component-

based development (CBD) (Szyperski, 2002), service oriented 

architecture (SOA) (Bell 2008 and 2010),  model driven software 

engineering (MDE) (Stahl, 2006) (Pons et al., 2010) and domain-

specific modeling (DSM) (Steven and Juha-Pekka, 2008) represent 

promising technologies in the RS domain.  

This paper gives a systematic review (SLR) of the current use of 

modern software engineering techniques for developing robotic 

software systems and their actual automation level. The survey 

aimed at summarising existing evidence concerning the application 

of such technologies in the field of robotic systems.  
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The need for a review in this field 

Although robotic software complexity is high, its reuse is still re-

stricted to libraries. Many libraries have been created at the lowest 

level for robot systems to perform tasks like mathematical compu-

tation for kinematics, dynamics and machine vision (Bruyninckx, 

2001). Instead of composing systems out of building blocks having 

assured services, overall software integration for another robotic 

system often relies on re-implementing  glue logic to bring various 

libraries together. Overall integration is completely driven by a 

certain middleware system and its capabilities. Middlewares are 

often used to hide complexity regarding inter-component commu-

nication, for example OpenRTM-aist (Ando et al., 2005) is a 

CORBA-based middleware for robot platforms that uses so-called 

robot technology components to model functionality distribution. 

Obviously this is not only expensive and wastes tremendous highly 

skilled robotics resources but does not take advantage of maturing 

to enhance overall robustness.  

Educational robots have been programmed for more than 10 years 

(GIRA, 2011) (CAETI, 2011) and robotic kits oriented towards non-

expert users have emerged in the last years, giving rise to the 

development of a significant number of educational projects using 

robots. Such projects apply robots from kindergarten to higher 

education, especially regarding physics and technology. However, 

robotic kits’ hardware is constantly changing and its use is not 

uniform in different regions and even at similar education levels. 

These robots’ technical interfaces should hide such differences so 

that teachers are not required to change their educational material 

over and over again. Physical Etoys (GIRA, 2011) is an example of 

these interfaces; it is a project proposing a standard teaching plat-

form for programming robots, regardless of whether they are based 

on Arduino, Lego or other technologies. 

It is widely accepted that new approaches should be established to 

meet the needs of developing today’s complex RS. Component-

based development (CBD) (Szyperski, 2002), service oriented 

architecture (SOA) (Bell 2008 and 2010), model driven software 

engineering (MDE) (Stahl, 2006), (Pons et al., 2010) and domain-

specific modelling (DSM) (Steven and Juha-Pekka, 2008) represent 

promising technologies in the RS domain.  

Component-based development (Szyperski, 2002) implies that 

application development should be achieved by linking independ-

ent parts (i.e. components). Strict component interfaces based on 

predefined interaction patterns decouple the sphere of influence 

and thus partition overall complexity. This results in loosely cou-

pled components interacting via services with contracts. Compo-

nents such as architectural units very precisely specify using the 

concept of port for both the services provided and the services 

required by a given component and defining a composition theory 

based on the notion of a connector. Component technology offer 

high reusability rates and ease of use, but little flexibility regarding 

implementation platform; most existing components are linked to 

C/ C++ and Linux (e.g. Microsoft robotics developer studio (Mi-

crosoft, 2009), EasyLab (Barner et al., 2008), Player/Stage project 

(Gerkey et al., 2001)), although some achieve more independence 

by using middleware (e.g. smart software component model 

(Schlegel, 2007), Orocos (Bruyninckx, 2001) Orca (Brooks et al., 

2005), CLARAty (Nesnas et al., 2003)).  

Interfaces and behaviour must be defined at a higher level of 

abstraction so they can be used in systems having different plat-

forms. This prompted the idea of abstract components which 

would be independent of an implementation platform but could 

be translated into executable software or hardware components. 

Migration from code-driven design to model-driven development 

is mandatory in robotic components to overcome current prob-

lems. A model-based description is a suitable means of expressing 

contracts at component interfaces and applying tools to verify 

composed systems’ overall behaviour and automatically derive 

executable software. Instead of building tool support for each 

framework from scratch, one should now try to express required 

models in standardised modelling languages like UML or any DSL, 

separating components from the underlying computer hardware. 

Model driven development (MDD) (Stahl, 2006; Pons et al., 2010) 

and domain-specific modelling approach (DSM) (Steven and Juha-

Pekka, 2008) have emerged as a paradigm shift from code-centric 

software development to model-based development; such ap-

proaches promote systematisation and automation in constructing 

software artefacts. Models are considered first-class constructs in 

software development and developers' knowledge is encapsulated 

by means of model transformations. MDD and DSM’s essential 

characteristics are that software development's primary focus and 

work products are models; their major advantage is that models 

can be expressed at different levels of abstraction and hence they 

are less bound to any supporting technology. This is especially 

relevant for software systems within the ubiquitous computing 

domain, consisting of dynamic, distributed applications and het-

erogeneous hardware platforms, such as robotic systems. 

Service-oriented architecture (SOA) is a flexible set of design prin-

ciples used during systems development and integration in com-

puting. A system based on a SOA will package functionality as a 

suite of interoperable services to be used within multiple, separate 

systems from several business domains. SOA also generally pro-

vides a way for service consumers (such as web-based applications) 

to be aware of available SOA-based services. SOA defines how to 

integrate widely disparate applications for a web-based environ-

ment and uses multiple implementation platforms. Rather than 

defining an API, SOA defines the interface in terms of protocols 

and functionality. Service-orientation requires the loose coupling 

of services to operating systems and other technologies that under-

lie applications. SOA separates functions into distinct units, or 

services (Bell, 2008) which developers make accessible over a 

network to allow users to combine and reuse them in producing 

applications. These services and their corresponding consumers 

communicate with each other by passing data in a well-defined, 

shared format (Bell, 2010). 

It is known that such software engineering techniques offer good 

potential for developing robotic systems so proposals in this area 

and detecting which work has already been done and which work 

is pending must be ascertained, as must any proposal taking ad-

vantage of the combined application of CBP, SOA and MDE for 

robotic software system development. 

Systematic literature reviews and systematic 
mapping studies 

A systematic literature review (SLR) (Kitchenham and Charters, 

2007; Dybå et al., 2003) is a means of identifying, evaluating and 

interpreting all available research relevant to a particular research 

question, topic area or phenomenon of interest. Individual studies 

contributing towards a SLR are called primary studies; an SLR is a 

form of secondary study.  

Other types of review complement SLR, such as systematic map-

ping studies (SMS). If, during the initial examination of a domain 

prior to commissioning an SLR it is discovered that very little evi-
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dence is likely to exist or that the topic is very broad then an SMS 

may be more appropriate than an SLR. An SMS allows evidence in 

a domain to be plotted at a high level of granularity, thereby iden-

tifying evidence clusters and evidence deserts to direct the focus of 

future SLS and identify areas for more primary studies to be con-

ducted. The present work consists of an SLR oriented towards 

mapping studies due to the extensiveness of our topic of interest.  

An SLR involves several discrete activities; Kitchenham et al., 

(Kitchenham and Charters, 2007) summarised SLR stages as fol-

lows: planning (identifying the need for a review, specifying the 

research questions, identifying research, selecting primary studies, 

study quality assessment, developing a review protocol, evaluating 

the review protocol), conducting (data extraction and monitoring, 

data synthesis) and reporting (specifying dissemination mecha-

nisms, formatting the main report, evaluating the report).  

Planning a review 

Review planning specifies the methods to be used when undertak-

ing a specific SLR; pre-defined planning is needed to reduce re-

searcher bias. 

The research questions  

Specifying research questions is the most important part of any 

SLR. The right question is usually one that will lead either to 

changes in current software engineering practice or to increased 

confidence in the value of current practice and/or will identify 

discrepancies between commonly held beliefs and reality. The 5 

research questions investigated in this study were: 

RQ1 Have MDD techniques been applied to developing robotic 

systems and what is the current tendency? 

RQ2 Have CBD techniques been applied to developing robotic 

systems and what is the current trend? 

RQ3 Have SOA techniques been applied to developing robotic 

systems and what is the current trend? 

RQ4 Have these techniques been used in combination or in isola-

tion?  

RQ5 Which MDE techniques have been applied to developing 

robotic systems and what is their automation level? 

The search strategy 

A search strategy was used for primary studies; it included the 

search terms and resources to be searched. Resources included 

digital libraries, specific journals and conference proceedings. Two 

digital libraries and one broad indexing service were searched: the 

IEEE computer society digital library, ACM digital library and SCO-

PUS indexing system. All searches were based on title, keywords 

and abstract. The searches took place in May and June 2011 using 

Boolean query (adapted to each library’s particular syntax): 

(robot*)  

and  

(“software development” OR “system develop-

ment” OR programming) 

and  

(MDD OR MDE OR "model driven" OR "domain spe-

cific language" OR "domain specific modeling" 

OR DSL OR "code generation" OR "generative 

programming" OR "component based” OR CBD OR 

"service oriented" OR "service based" OR SOA 

OR "Web service") 

Concerning search strategy quality, general guidelines recommend 

considering a question’s effectiveness from five viewpoints (PICOC 

criteria): 

Population:  application area 

Intervention: the software methodol-

ogy/tool/technology/procedure addressing a specific issue 

Comparison: the software engineering methodol-

ogy/tool/technology/procedure with which the intervention is 

being compared 

Outcomes: factors of importance for practitioners, such as im-

proved reliability, reduced production costs, and reduced time to 

market 

Context: this is the context in which the comparison takes place 

(e.g. academia or industry), the participants taking part in the study 

(e.g. practitioners, academics, consultants, students), and the tasks 

being performed (e.g. small scale, large scale) 

The current query was thus organised as follows (i.e. following 

PICOC criteria) 

Population: the robotic domain, reflected in the query’s first sub-

expression  

Intervention: software and system development specified in the 

query’s second sub-expression 

Comparison: MDD, SOA and CBD software engineering method-

ologies were compared or analysed, indicated in the query’s third 

sub-expression 

Outcome: the query did not restrict the kind of outcomes (as 

many outcomes as possible were needed by collecting all the 

available information in the study domain) 

Context: no restriction was applied 

Study selection criteria 

Study selection criteria are intended to identify primary studies by 

providing direct evidence about a particular research question. 

Once potentially relevant primary studies have been obtained, 

they must be assessed regarding their actual relevance. Study 

selection criteria are used for determining which studies are in-

cluded in, or excluded from, an SLR. It is usually helpful to pilot 

the selection criteria on a subset of primary studies.  

Title, abstract and keywords were used in initial screening (giving 

195 papers); IEEE computer society digital library contributed 55 

articles (28%) and ACM digital library another 140 (72%). The 

results from searching the SCOPUS indexing system were included 

in previous results, so SCOPUS contributed no new articles. Stud-

ies were excluded that were obviously irrelevant or duplicates (91 

articles were eliminated). The remaining 104 papers were then 

subjected to a second assessment: full copies of these remaining 

papers were obtained and a more detailed second screening used 

the following inclusion and exclusion criteria: the paper should be 

related to software engineering rather than mathematical model-

ling and/or math simulation, “service oriented” should refer to 

SOA but not to robots performing a service (37 articles were ex-
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cluded). The remaining 67 articles were analysed 

(http://lifia.info.unlp.edu.ar/eclipse/robotsurvey2011).  

Data extraction strategy 

This strategy defined how information required from each primary 

study would be obtained; data extraction forms were designed to 

accurately record the information researchers obtained from pri-

mary studies: 

Field name Type 

Paper identification Integer 

Year of publication Date 

Was SOA applied Boolean 

Was CBD applied Boolean 

Was MDD applied Boolean 

 

If the value of the last field was true (i.e., the paper applied MDD), 

then the following form was filled in: 

Field name Type 

Modelling language {UML, Profile, DSML} 

Programming language {Any language, robotic-high-level} 

Model transformation Technique {GPL, DSL, Black-box} 

Tools {existing tool, new tool } 

Automation level {Full, Medium, Low} 

 

The “modelling language” field specified the language used to 

express platform independent models. Some projects used stan-

dard UML language while other projects considered that UML was 

not expressive enough and defined extension by creating a profile. 

Other proposals did not use UML but defined their own domain-

specific modelling language (DSML).  

The “programming language” field identified the implementation 

language used as model transformation target. Most PIM models 

were translated to different languages, being one of the principles 

of MDD. However, in other cases, PIM models were mapped to a 

specific high level language, such as Urby, or specific middleware, 

such as MSRS. 

 The “model transformation technique” field indicated which 

strategy was used to transform PIM to PSM or code. Some projects 

implemented the transformation by just using general purpose 

programming language (GPL), such as Java, while other proposals 

used existing transformation DSLs, such as ATL, JET or QVT. Most 

proposals used black-box transformations.  

The “tools” field denoted which kind of software tools were being 

used in the project: existing tools (such as EMF or MS DSL tools) or 

a new specific tool was created. 

The “automation level” field stated how much work was done 

automatically. “Full” indicated that code was automatically gener-

ated from models, “medium” that a code was partially generated 

and had to be completed manually and “low” indicated that trans-

formation from models to code was mostly carried out by hand.   

Data synthesis strategy: answering the questions  

Data synthesis involved collecting and summarising the results of 

the primary studies so included.  

Figure 1 shows the response to the first three questions, i.e. “Have 

MDD/CBD/SOA techniques been applied to the development of 

robotic systems and what is the current trend? An increasing trend 

in using all these techniques was observed, CBD being most ap-

plied in the robotics field.  

 

Figure 1. Software engineering technology 

 

Figure 2 shows answers to question 4, showing the distribution of 

articles in each field. Little interaction amongst the technologies 

was observed. However, there was promising intersection between 

MDD and CBD, showing the potential of combining them. 

 

Figure 2. Field intersection             

 

Concerning question 5, Figure 3 illustrates which modelling lan-

guages were being applied in robotic projects. Defining new do-

main specific languages was the most applied technique (64%), 

followed by UML (27%) and its profiles (9%). Figure 4 shows that 

65% of MDD projects took advantage of existing MDD tools, such 

as ATL, EMF and DSL, while 35% implemented their own model-

ling and transformation tools. A reasonable expectation is that 

existing tools will be increasingly reused in the near future.  

Figure 5 shows MDD project automation level distribution; only 

55% had full MDD automation while 27% had intermediate 

automation implying abstract model creation and automatic code 

skeleton generation to be manually completed by the developers. 

18% of MDD robotic projects only had a low level of automation, 

consisting of creating abstract models but manual code derivation. 
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Figure 3. Modelling languages 
 

 

Figure 4. Tools         
 

 

Figure 5. Automation level 

Conclusions 

The robotics’ community has sufficient experience regarding how 

to build complex robotic systems. However, one cannot expect 

significant growth with hand-crafted single-unit systems and it is 

mandatory to work towards applying engineering principles to 

cope with the complexity of robotic software systems. Knowledge 

about what has proved to be a good solution in the software engi-

neering field is usually available. Such knowledge must be explicit 

and easily accessible for new systems. Applying existing technology 

would save time and effort which is better put into what is specific 

in robotics.  

This paper has presented an overview of ongoing activities regard-

ing the application of modern software engineering techniques to 

robotic software development. A growing tendency was identified 

regarding applying component-based development as well as 

service-based architecture and model-driven software develop-

ment, although such techniques have mostly been applied in 

isolation.  

Some work (Basu et al., 2011; Biggs, 2010; Brooks et al., 2005; 

Jawawi et al., 2008; Min Yang Jung et al., 2010) has taken advan-

tage of CBD for developing robotic systems whilst other proposals 

(Amoretti et al., 2007; Cesetti et al., 2010) have applied SOA to 

building autonomic robot systems. Only preliminary proposals 

were found for applying model-driven development to robotics 

(Arney et al., 2010; Baer et al., 2007; Brugali and Scandurra, 

2009; Brugali and Shakhimardanov, 2010; Hyun Seung Son et al., 

2008; Iborra et al., 2009; Jorges et al., 2007; Jung et al., 2005; 

Sanchez et al., 2010; Schlegel, 2009; Wei et al., 2009) while only 

one work combined all three technologies (Tsai et al., 2008). 

Gaps were identified in current research leading to further investi-

gation after reviewing more than 100 papers on the subject, 

thereby providing background for appropriately positioning new 

research activities. 
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