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Chapter 1

Introduction

1.1 Background: the Internet of Things

The Internet is an entity which is in constant evolution. From the initial
“Internet of Computers” with services such as the World Wide Web built on
top of it, to the “Internet of People” which saw the emergence of a Social Web,
the Internet is now once again witnessing major change.

Cheap and ubiquitous broadband connectivity and the availability of low
cost embedded systems with on-board sensors is leading to a reality where
physical objects themselves are included in the Internet, and are able to provide
services. In order to handle the large amount of data produced, physical objects
are also expected to become “smarter” and provide applications with complex
data that may be the result of information either acquired locally or retrieved
from other objects.

The “Internet of Things” [1] is expected to provide an enhanced interaction
with the objects that surround us. Sensing, memory and processing capabilities
will enable the user to receive information that would not be available or easily
accessible otherwise, regarding for instance their history or their non-obvious
characteristics.

Ubiquitous connectivity would on the one hand make such information
available to the user remotely. On the other hand it would enable objects
themselves to exchange and make use of their information independently of
their location or ownership to a given provider or network. It would allow them
to take management decisions and trigger automated reaction to conditions,
including notifications to the human users.

This chapter gives an overview of the service domain of the “Internet of
Things” and introduces the enabling technology stack, which will be further
explained in the following chapters. It also aims at positioning the present
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1.2. THE INTERNET OF THINGS SERVICE DOMAIN

work in relation to the objectives that lie before industry and research in order
to exploit the “Internet of Things” paradigm fully.

1.2 The Internet of Things Service Domain

The IoT vision is driven by the concepts expressed in the previous section:
objects are “smart” and most importantly, Internet-connected. They also are
highly energy autonomous. These three characteristics make it possible to
develop a platform where services can be easily deployed and maintained. The
domains where IoT is expected to play a key role in services enablement are1:

� Smart Environments: management systems for homes, buildings and
other infrastructures can take advantage of schedules and usage patterns
of the inhabitants in order to balance supply and demand in a predic-
tive manner; management functions and procedures related to utility
consumption, heating, lighting, safety and security are made available
remotely. It should be possible to identify and manage risks such as fire
hazards, as well as to trigger physical intervention. Moreover, sensors
placed in proximity of structural and mechanical components will reduce
the need for routine inspections and preventive maintenance.

� Smart Cities: sensor collected information can be used to adjust the
intensity of light to weather conditions or presence of citizens or cars,
resulting in significant energy savings; traffic can be decreased by using
sensor data to provide alerts related to traffic jams and serve as input
for enhanced routing applications; visual or magnetic sensors can detect
free slots and guide cars to the available parking spaces. In the domain
of waste management, filling sensors can be used to elaborate more ef-
ficient routes for container pickup services, resulting in a cost effective
optimization as well as in a reduction of CO2 emissions.

� Asset management, transportation and logistics: supply chains can them-
selves become “smart”. Tracking items involved in a supply chain through
sensor devices instead of RFIDs allows keeping track of additional in-
formation such as temperature and current location, thus bringing the
benefits of automating the supply chain, gaining efficiency, reducing hu-
man error, and enhancing the process by managing information regarding
transport and stock conditions of goods.

1This list has been elaborated on the basis of a network survey and consists of some of
the most common use cases envisioned.

8



1.2. THE INTERNET OF THINGS SERVICE DOMAIN

� Retail industry and smart shopping: in automated distribution, collect-
ing real time data and inventory of a single machine makes it possible
to detect failures as soon as they arise, to adapt refilling logistics before
the stock breaks, and to change prices remotely. Shopping analytics can
be improved by monitoring the number of visitors as well as shopping
patterns in order to detect hot and cold zones and time spent; and it can
enhance shop design and functionality.

� Industry and agriculture: assets used in industrial installations such as
vehicles, drillers, pumps, pipes etc. can be remotely monitored, enabling
automated inventory, remote locations and geo-fence alerts, remote di-
agnostics and maintenance to reduce costs. The irrigation process can
increase its efficiency, and the combined use of humidity sensors and re-
motely manageable water valves enables the development of applications
aimed at reducing water consumption, augmenting crop productivity and
detecting unauthorized water usage.

This work has been executed within the research activities related to the
field of Intelligent Transport Systems (ITSs). As explained in the following
paragraph, ITS domain is analogous to the one to which Smart City systems
belong. Still, ITSs have been developed independently from IoT and are char-
acterized by their own system architecture. For this reason they are addressed
in a separate section.

1.2.1 Intelligent Transport Systems

Intelligent Transport Systems (ITSs) evolved in parallel to IoT. Very similar
use cases have been developed in the domain of IoT with the name of Smart
Cities.

From an architectural point of view ITS systems are characterized by a
closed loop interaction between the user and the transportation infrastructure
as depicted in Figure 1.1.

This pattern of interaction is an evolution of the classical open loop trans-
portation architecture depicted in Figure 1.2. In an ITS system the user
provides input to the transportation infrastructure system, and receives a
feedback. An ITS system is often structured according to the “Model-View-
Controller” pattern. The system formed by the User, the Application, the Co-
operative Intelligence and the ITS Logical Abstraction resembles the “Model-
View-Presenter with Passive View” pattern, since the presentation logic is
decoupled from the “view” component.

The use cases that properly define ITS systems according to the European
Telecommunications Standards Institute (ETSI) are described below [9].

9
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Figure 1.1: Closed Loop ITS

Figure 1.2: The Open Loop model in classical transportation systems

A first group of use cases is related to vehicle safety and security:

� Breakdown Call: the use case is triggered by the user pushing a switch
which activates the service. Vehicle diagnostic information as well as
vehicle position are sent to a roadside assistance unit, allowing the fault
to be diagnosed and permitting a quicker and more effective response.

� Stolen Vehicle Tracking: this use case is initiated by a user providing a
police report number, and is activated through retrieval of location data
from the on-board Transmission Control Unit communication with the
police.

� Remote Diagnostic: this set of use cases encompasses a maintenance
minder use case, a health check and a fault triggered use case. In the

10



1.3. ENABLING TECHNOLOGIES

first use case, when a mileage threshold has been reached, the user is
prompted to schedule a vehicle check-up. The second one enables the
on-board Transmission Control Unit to compile the vehicle’s status di-
agnostic using inbuilt reporting functions, prompting the user if inter-
vention is needed. The fault triggered use case alerts the vehicle owner
or manufacturer to the fact that a fault has been detected within one of
the vehicle’s systems.

In all the use cases mentioned the user can be prompted through interfaces
such as phone and a Mobile UI.

A second group of use cases is related to connected navigation:

� Traffic Reports: according to this use cases, the user is warned of a traffic
congestion on the current or intended route.

� Route Planning: a route to a given destination that has been elaborated
for instance on a PC may be imported into an vehicle navigation system.

� Information Provisioning: this use case provides information to the ve-
hicle driver and passenger, and includes for instance mobile TV, web
browsing and email service.

While on the one hand the IoT stack is clearly shaped, the ETSI standard-
ization of Intelligent Transport Systems generically recommends to follow the
modularity of the ISO/OSI stack but does not in any way mandate a specific
choice for the technologies used at each layer.

According to the ETSI use cases definition, ITS systems can be expected
to share two of the three key requirements of IoT. In addition since ISO recom-
mends the use of IPv6 throughout all types of systems the third requirement
is enforced as well.

For these reasons, ITS systems can be configured as a specific case of IoT
systems: the adoption of the IoT stack is the object of a recent proposal to
ETSI.

1.3 Enabling Technologies

1.3.1 Internetworking of smart devices

The driving requirements for IoT enabling technologies can be summarized
as[13]:

� Energy efficiency: device sensors with limited processing and memory
capabilities need to have a conservative energy management.
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� Reliability On-Demand: it should be possible to establish reliable com-
munication, but also to switch seamlessly to non-reliable communication
whenever this option is preferred – which could be due to loose require-
ments of data delivery and a higher time performance expectation.

� Internet-connectivity: objects should have IP addresses so that they can
be accessible directly at IP level.

Several attempts at shaping the IoT stack have been made over the last
two decades. A big part of the achievements and the design choices that
were perceived as most successful have recently been consolidated in a set of
protocols through an extensive standardization activity. The Institute of Elec-
trical and Electronics Engineering (IEEE) has defined a Link Layer protocol
for efficient radio transmission (IEEE 802.15.4); at the Application Layer the
Internet Engineering Task Force (IETF) has defined the Constrained Appli-
cation Protocol (CoAP) and the adaptation layer for IPv6 over constrained
networks 6LoWPAN.

The technology stack is shaped as depicted in Figure 1.3: the principles of
each component and the compliancy to the aforementioned core requirements
will be discussed in Chapter 2.

Figure 1.3: Protocol Suite for Constrained Networks

1.3.2 Machine-To-Machine

Machine-To-Machine (M2M) protocols emerge from an approach that is or-
thogonal but complementary to the one that drove the development of the IoT
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stack, and it is centered on the concept of service enablement at the application
level.

As shown in Figure 1.4, M2M systems aim at building a framework for data
access that allows vertical services to be simply developed and “plugged-in”
without needing to know where data is generated, pre-processed or stored.

Figure 1.4: IoT Protocol Suite

From a system point of view this vision can be translated into the following
two goals:

1. To enable applications to work with de-localized data, i.e. the data used
for processing may be located anywhere in the network and be composed
of parts displaced in multiple physical locations.

2. To enable applications to be built independently of communication pro-
tocols necessary to access those data.

In line with the idea of web service mashups, applications become indepen-
dent of who or what generates a data item, as long as it is accessible through
a URI.

M2M systems find their joining link with IoT in correspondence with:

� RESTful architecture: REST is the architectural style of choice for the
design of CoAP, as well as the mandated data access pattern for M2M
systems.

� IPv6-based Internet connectivity: according to ISO guidelines that rec-
ommend a horizontal IP addressability.
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Among the M2M protocols available, the ETSI M2M Technical Specifica-
tion has particular relevance, in that it is the product of an effort at standard-
ization. For this reason it has been adopted in this work and will be discussed
in the next chapter.

1.4 Objectives

The following key objectives in order to fully realize the ITS paradigm in a
IoT perspective were identified:

� Align ITS and IoT evolution: the overall degree of interoperability would
increase, since ITS would then be able to benefit from the traction offered
by the IoT ecosystem development due to the creation of integrated
services.

� Address the question as to whether the IoT technology stack outlined so
far is able to support successfully the services envisioned, and which fur-
ther modifications will be necessary to realize an effective M2M architec-
ture. This research effort should be integrated with the standardization
process itself providing active input.

� Design, build and test freely available cases of study which can be used
as a reference and if possible converge into compact library functions.
Within the industry proprietary IoT solutions exist2, whereas an open-
source implementation as well as performance measurements that can
guide design and dimensioning of new deployments are not yet available.

1.5 Contribution of this work

The contributions of the work described in this thesis to the objectives men-
tioned are:

� An ITS solution based on the state-of-the-art of IoT OSI stack technolo-
gies has been considered as a case study for performance assessment,
which adapts the most promising candidate technology for the IoT ap-
plication layer to ITS systems, that is the ETSI Machine-To-Machine
protocol.

2for example: http://www.sensinode.com/EN/technology.html Last Access:
June 12, 2014.
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� We conducted a comparative study on the impact of the data serializa-
tion format choice on the system performance from the points of view of
energy consumption, channel usage and operation execution time. We
focus on the data serialization formats recommended by ETSI Machine-
To-Machine Specification, which are XML, JSON or EXI3, and elaborate
a performance assessment for the last two within a Wireless Sensor Net-
work IoT system deployment.

� The work has been carried out using an open-source platform, since it has
been developed using the Contiki operating system, and the performance
assessment was conducted using a simulation tool. It constitutes the first
open-source realization of the complete IoT stack for ITS systems.

1.6 Methodology

The approach we followed can be summarized as:

� Real Testbed: ETSI M2M CoAP Interoperability Tests [8] have been se-
lected as a test benchmark. These are the standard tests recommended
by ETSI and are executed in order to determine whether the implemen-
tation makes proper use of CoAP primitives, and their execution is a
necessary condition for stating that a system correctly integrates ETSI
M2M onto the IoT stack. They are expected to be executed very often
and adopting them as messaging benchmark facilitates the comparison
with our results.

� Performance Assessment Criteria: the criteria adopted consist of three
key indicators for an M2M system following the IoT paradigm and real-
ized over a Wireless Sensor Network. The measurement of channel usage
for a given operation directly relates to the concern of limiting interfer-
ence in a given wireless network and therefore being able to host a higher
number of communications. Energy efficiency is a priority for IoT be-
cause objects will often be battery-powered and they are required to be
highly energy autonomous. Operation execution time provides an indi-
cator of which time constraints can be met by the M2M data distribution
platform.

� Use of a Simulator: the Cooja simulator has been used because it sup-
ports the emulation of a variety of Contiki chipsets. The tests can there-
fore be executed on different platforms and in different conditions of
packet loss at physical level.

3Annex D, section 1, [12]
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1.7. STRUCTURE OF THE THESIS

1.7 Structure of the thesis

This thesis addresses the mentioned topics as follows:

� Chapter 2 discusses IoT enabling technologies. It describes IoT-specific
features according to a set of core requirements and highlights the charac-
teristics having greatest impact on the measured data, that is constraints
on packet sizes at the various OSI layers. It also considers the Efficient
XML Interchange (EXI) serialization format recommended by ETSI as
an alternative to JSON for constrained networks.

� Chapter 3 describes the work which has been done so far in the scientific
community towards the objectives previously expressed.

� Chapter 4 outlines the framework in which the present work has been
carried out: the Intelligent Cooperative Sensing for Improved Traffic
Efficiency (ICSI) project.

� Chapter 5 describes the concrete contribution of this work and the per-
formance measurement results of EXI versus JSON.

� Chapter 6 presents the conclusions of this work and possible ideas for
future work.
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Chapter 2

Enabling Technologies

2.1 Introduction

This chapter gives an overview of IoT enabling technologies, highlighting the
underlying requirements, explaining their design rationale and what in turn
makes them right for IoT.

The evolution of Mobile Internet, based on smart phones, tablets and net-
books, towards the Internet of Things where connectivity is provided by every-
day objects of any kind, affects the requirements for the technologies used: the
goals of efficiency and interoperability now become pre-conditions for success.

The need for efficiency derives from the fact that while most people are
acquainted with the idea of charging their mobile phone or laptop every day,
charging the batteries of millions of objects is clearly unfeasible.

The requirement of interoperability derives instead from the fact that ob-
jects will not only be interconnected but, more precisely, Internet-connected.
That is, IoT will be IP enabled.

This rationale can be expressed through three core requirements [13]:

� Low Power Communication Stack: when energy saving is not a
key requirement, energy can be easily wasted in transmitting unessen-
tial data, overheads, and using non-optimized communication patterns.
Existing and widely adopted protocols such as TCP and HTTP bring
verbosity and often unnecessary overhead in terms of additional headers
and of a high number of message exchanges. While it remains desirable
to preserve interoperability with existing technologies to as great an ex-
tent as possible, it is also necessary to elaborate suitable alternatives at
each layer of the protocol stack.

� Efficient reliability “on-demand”: currently the best-effort Inter-
net medium is made reliable at different levels through error detection,
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retransmissions and flow control. The fact that these techniques are ap-
plied at multiple layers often results in inefficient overall functioning. It
is required instead to achieve the same reliability at a much higher effi-
ciency. While on the one hand it should be possible to achieve reliability
whenever it is a requirement in a given deployment, on the other hand
it should also be possible to achieve better performance in case such a
requirement is dropped, while still using the same protocol set. For ex-
ample, if a sensor node samples values from a continuous variable and
stores them in a remote repository a certain degree of packet loss may be
tolerable, and system designers may choose not to use reliable protocols
that would imply extra transceiver on-time while waiting for acknowl-
edgements. In the case of event detection, instead, being able to ensure
reliability becomes crucial.

� Internet-Enabled Communication Stack: objects should be able
to be singularly and seamlessly connected to the Internet, and this es-
sentially means that it should be possible to identify them at IP level.

After mid-nineties projects demonstrated the feasibility of the core ideas
of low-power WSNs, several companies started pioneering the market. Since
it soon became clear that engineering the technology principles would rapidly
lead to having a number of proprietary systems which would impede scalability
as well as a wide ecosystem growth, the start of the standardization effort from
the Institute of Electrical and Electronics Engineers (IEEE) and the Internet
Engineering Task Force (IETF) in 2003 was followed with high expectations.

Currently the approved or proposed standards cover all of the technology
layers: IEEE 802.15.4 at the Physical and Link Layer, 6LoWPAN as adapta-
tion Layer between IPv6 and the underlying protocols, CoAP at the Applica-
tion Layer.

2.2 IEEE 802.15.4

IEEE 802.15.4 addresses low-rate personal area networks (LR-WPAN), and
comprises Physical and Link Layer specifications.

A radio consumes energy for transmission, reception and listening: dur-
ing transmission, the signal needs to be modulated and amplified; during re-
ception, the signal needs to be amplified through a Low-Noise-Amplifier and
demodulated.

Transmitting can be slightly more energy demanding than receiving and
listening; but since the current consumption does not depend significantly on
whether a radio is listening or receiving bytes, the characteristic that impacts
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the most is the duty cycle, meaning the percentage of time the radio is actually
on, which is expected to be lower than 1%.

The second most relevant parameter is the operating current: while the
duty cycle is determined by the PHY and MAC layer protocols adopted, the
operating current depends on the design of the device, meaning how well it is
designed in order to achieve power efficiency.

The amount of time spent transmitting and receiving when in absence of
communications the device would be listening also impacts in terms of energy
consumption, but is less relevant than the duty cycle: this depends on the
protocols of the upper layers.

A typical low-power radio operates on a current of the order of 10mA.
Let us consider the case when the device is powered through a couple of

AA batteries, which allow 3000 mAh of functioning. This means that a device
would typically be able to work for 300 hours, that is 12 days. With a duty
cycle of 1%, instead, it would be able to work for 3 years and a half, and 7
years if we have a more power efficient device operating on a 5 mA current.

2.2.1 IEEE 802.15.4 Physical Layer

IEEE 802.15.4 defines several possible frequency bands that can be used at
the Physical layer, as listed in Table 2.1: the most frequently used one is the
2.4–2.485 GHz frequency band, where 16 channels spaced by 5MHz are defined.

A transceiver can send and transmit over any of these channels, and switch-
ing between channels takes at most 192µs.

Data rate Symbol rate Frequency Band
Number

Modulation
of Channels

20 Kbps 20 Ksyms 868 - 868.6 MHz 1 BPSK
20 Kbps 20 Ksyms 905 - 928 MHz 10 BPSK
250 Kbps 62.5 Ksyms 2.405 - 2.480 GHz 16 O-QPSK

Table 2.1: PHY Bit rates

The Physical layer specifies how frame detection occurs: after the trans-
mission of a 128 µs preamble allowing the receiver to lock onto the signal, a
well-known Start Frame Delimiter (SFD) is sent to indicate the start of the
frame. The first byte representing the length of the payload itself is sent: the
payload length has a maximum value of 127 bytes which makes the size of the
frame 128 bytes including the header.

After receiving the indicated number of bytes and buffering them, the radio
switches off and notifies the micro-controller of the reception.
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Apart from using the appropriate modulation schemes, a device that is
802.15.4 compliant at the Physical layer must simply be able to lock onto a
signal, recognize the preamble (SFD), and buffer data for a length indicated
by the first byte received.

2.2.2 IEEE 802.15.4 MAC Layer

IEEE 802.15.4 MAC layer defines four possible frame types:

� Data Frame: is used for data transfer.

� ACK Frame: is used to confirm successful reception.

� MAC Command Frame: is used to control and remotely configure
client nodes.

� Beacon Frame: if beacon-mode is enabled it allows synchronization
of attached devices, Personal Area Network (PAN) identification, and
superframe structure description.

Addresses can be of two types: either globally unique extended IEEE EUI-
64 bit addresses, or short 16 bit addresses which refer to a given PAN network.

The IEEE 802.15.4 MAC layer is designed for a network with a star topol-
ogy. If instead the target topology is multi-hop, the protocol does not perform
as well: non end-devices will necessarily work at a very high duty cycle, and
instabilities in a single channel may impede the network functioning in case
there are no alternative channels available.

To address a wider set of topologies, the IEEE task group amended the
MAC layer through IEEE 802.15.4e introducing Time Synchronized Channel
Hopping (TSCH) based on a successfully engineered and proprietary adapta-
tion of the 802.15.4 MAC layer.

Without going deeply into the amendment details, synchronization is used
to achieve power efficiency and channel hopping to improve reliability over the
physical medium.

2.3 IPv6 over Low Power Wireless Personal

Area Networks

In order to interconnect IEEE 802.15.4 networks among themselves and with
networks of different types, IPv6 support is needed. As often happens, map-
ping IPv6 on the Link Layer can be not trivial, and requires a layer in itself:
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the IETF IPv6 over Low power WPAN (6LoWPAN) working group has been
addressing this issue since 2007.

The key difficulties that motivate the existence of this adaptation layer are
the following:

� Size compatibility: the IPv6 MTU of 1280 bytes is way too large to
fit in a IEEE 802.15.4 frame without being fragmented. Moreover the 40
bytes IPv6 header is clearly a large overhead for short messages.

� Subnet broadcast: possibility of broadcasting Link Layer frames is
required.

� Management: support for address auto-configuration is needed.

Let us consider how the first issue is addressed, since it is the one having
the most evident impact in terms of communication efficiency.

A 6LoWPAN message consists in a stack of headers preceding the IPv6
Payload; the simplest situation is when the IPv6 packet is encapsulated and
optionally compressed in a 6LoWPAN Dispatch message.

In case the IPv6 packet needs to be fragmented, a Fragmentation Header
precedes the Dispatch header, and is constituted by fields indicating the orig-
inal IPv6 packet size, an ID identifying the IPv6 packet, and the current
fragmentation offset.

A Mesh Addressing Header may precede the Fragmentation Header in case
the origin and destination of the 6LoWPAN message are not within a single-
hop link. IEEE 802.15.4 does not define any routing protocol, but if an external
routing capability is used the Mesh Addressing Header includes, in addition to
the origin and destination link-layer addresses, the address of the forwarding
node and the next-hop node.

A particular type of Dispatch message is the Broadcast Header : it occupies
a different position in the header stack with respect to the other types of
Dispatch headers, and includes a sequence number so that duplicate packets
can be suppressed.

IPv6 header compression is based on address compression using shared
states and variable-length encoding. In the best case, a single-hop IPv6 header
can be brought to 2 bytes; a multi-hop one to 7 bytes.

A compression can also be applied to UDP headers: the length field is never
present since it can obtained from the IEEE 802.15.4 frame header; port values
can be compressed if they match a common set of ports, and the checksum
can be omitted.
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2.4 The Transport Protocol

Reliability in IP networks is generally provided at the transport layer, either
through TCP or through an extension on top of UDP.

The reasons why TCP is not a sensible solution are:

� Header Size: it would be desirable to reduce the header size: TCP has
a header that can range from 16 to 40 bytes;

� Reliability “on-demand”: IoT applications do not always require re-
liability: reliability is not needed for example when periodic updates re-
lated to the value of a given non-critical continuous variable are received
where only the last value matters, for example a temperature value in a
temperature control system. On the other hand, if the heating control
logic is delegated to the sensor node, a reliable event notification when
the temperature crosses a given threshold value may be sent.

� Performance degradation due to congestion control: TCP does
not differentiate between congestion and link errors, and interprets a
packet loss as due to congestion and reacts by decreasing the sending rate:
in wireless networks often packet loss is caused by either transmission
errors or mobility, and may be temporary.

For these reasons, it is preferable to build reliability on top of UDP instead.

2.5 Constrained Application Protocol

As far as the application layer is concerned, the first option to be considered
is HTTP, given its widespread use.

The main drawbacks of HTTP are:

� User-oriented: it has a strict request response messaging paradigm
which works well with interactions with the user, since a user usually
expects an application-level response even if just an acknowledgement,
but may not necessarily fit interactions between machines, as explained
above.

� Heavy data: it is designed for transmitting large quantities of data:
the header alone goes from about 200 bytes to over 2KB. Often machines
just need to exchange a few bytes.
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� “Pull” model: it is based on a “pull” model of interaction. A push
model may be suitable in a huge variety of situations.

� No resource discovery: it does not provide resource discovery.

Some of the drawbacks listed show that the problems are structural, and
cannot be solved through HTTP compression.

The feature that cannot instead be discarded is the service-oriented nature
of Internet applications expressed through the representational state transfer
architecture of the web.

For these reasons CoAP has been developed within the Constrained REST-
ful Environment (CoRE) framework: CoRE aims at specifying a REST ar-
chitecture suitable for constrained nodes with limited computing and storage
capabilities and constrained networks, while allowing stateless HTTP mapping
through proxies or directly at endpoints.

CoAP is a web protocol designed according to the principles of energy
efficiency, performance over lossy networks, simplicity in message structure
and parsing procedures, lightweight proxying and caching capabilities, security
binding to Datagram Transport Layer Security (DTLS) [2] and straightforward
HTTP mapping. CoAP can indeed be seen as a subset of REST procedures
usually available over HTTP but optimized for classes of applications in con-
strained environments, with in addition built-in discovery, multicast support
and asynchronous message exchange, and it uses UDP with optional reliability
features.

CoAP can be thought of as being two-layered in that it comprises on the
one hand a messaging layer whose goal is to deal with the unreliable nature of
UDP, and on the other hand a Request-Response layer which deals with build-
ing a request-response pattern using asynchronous UDP interactions. CoAP
abstract layers are shown in Figure 2.1.

Figure 2.1: CoAP abstract layers
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2.5.1 CoAP Message Layer

CoAP interactions are analogous to the HTTP client/server paradigm, but
messages are sent asynchronously over the datagram-oriented transport layer
protocol UDP.

CoAP [4] defines four types of messages: Confirmable, Non-Confirmable,
Acknowledgement, Reset. Logical requests can be carried in Confirmable and
Non-Confirmable messages, while logical responses can be carried in these as
well as piggy-backed in Acknowledgement messages, as detailed in the next
section.

Confirmable messages are acknowledged through an Acknowledgement mes-
sage, while Confirmable messages are not. Either Non-Confirmable or Con-
firmable messages can be followed by a Reset message: a Reset message in-
dicates that a specific message was received, but that it cannot be processed
because some context is missing. For example this could happen when a node
has rebooted and has forgotten some state that would be required in order to
interpret the message received.

A identifier present in the CoAP header and called Message ID is used
to match messages of Acknowledgement/Reset types, and messages of Non-
Confirmable/Confirmable types as well as to detect duplication.

Reliability is essentially achieved by using Confirmable messages as shown
in Figure 2.2. Confirmable messages are retransmitted using timeouts with an
exponential back-off until an Acknowledgement or Reset is received carrying
the same Message-ID.

Figure 2.2: Reliable and unreliable message transmission

2.5.2 CoAP Request/Response model

CoAP requests and responses can follow three different paradigms, each of
which fits deployment scenarios with diverse characteristics, and which are
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Figure 2.3: The three paradigms for CoAP request/response

depicted in Figure 2.3: a logical response is linked to the corresponding request
through a matching Token value present in both.

In the first case, the one closest to HTTP, the response to a Confirmable
message is piggy-backed in the Acknowledgement message. A server designer
may choose this paradigm when for example the requested operation can be
executed immediately in an amount of time considered appropriate from an
application point of view.

The second case addresses the situation where the server is not able to
respond immediately, but sends an Acknowledgement message so that the
client knows the request has been received and stops retransmitting while the
server elaborates the response: the server sends a Confirmable message with
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the actual response to the client at a subsequent moment. This solution may
be appropriate when for example a network application requests the execution
of a command in a remote node, whose execution time is expected to exceed
a given threshold.

In the third case, the client sends a Non-Confirmable request message, and
the server returns a Non-Confirmable response: this paradigm can be used
when a sensor keeps sending readings with a given frequency to a server, since
the correctness of a single request operation does not depend on whether the
previous request has been successfully received or not. Since at CoAP level
there is no way for a sender to detect whether a Non-Confirmable message was
received or not, it may transmit multiple copies, which will be identified as
such through the Message ID.

2.5.3 Message Structure

Figure 2.4: CoAP message format

The structure of a CoAP message is depicted in Figure 2.4. The 4 bytes-
long header is constituted by the following structures:

� Ver: version number, over 2 bits.

� T: message type, among Confirmable, Non-Confirmable, Acknowledge-
ment, Reset, over 2-bits

� TKL: Length of the Token field (0-8 bytes), over 4 bits

� Code: this is divided into class (3 bits) and detail (5 bits). The class
sub-field allows distinguishing between a request, a success response, a
client error response or a server error response; the detail sub-field instead
contains sub-codes specific for each class sub-field value.
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� Message ID: this identifier is used to detect message duplication and to
match messages of Acknowledgement/Reset type to messages of Confirmable/Non-
Confirmable type.

The Token value, which can be as long as 8 bytes, is used to correlate
requests and responses, and is followed by zero or more Options.

Finally, there can be an empty payload or the Payload Marker followed by
the actual payload.

This means that CoAP messages have a header that can be as small as 5
bytes (including the Payload Marker).

When the Uri-Path Option is specified, we can estimate adding 20 bytes.
The UDP header adds 8 bytes, which can be compressed at 6LowPAN level,

as seen, making a total of around 32 bytes overhead at UDP level.

2.5.4 CoAP Methods

Request methods GET,POST, PUT, DELETE are distinguished through the
reserved Code values 0.{01,02,03,04}, where the class sub-field 0 indicates a
request.

The URI is instead specified through CoAP Options: a URI is split into
host, path and port parts, which are respectively mapped to the Options Uri-
Host, Uri-Path, Uri-Port.

A request is then expressed through a method, a URI and possibly a pay-
load content.

A response is expressed through a response code and possibly payload
content.

2.5.5 Transmission Reliability

The sender of a Confirmable message retransmits messages at exponentially
increasing intervals until it receives an Acknowledgement or a Reset message,
or runs out of attempts.

For each Confirmable message a new timeout is set, chosen randomly within
a given interval. Each time the timeout is triggered, and the maximum number
of retransmissions has not been reached, a new copy is sent and the timeout
interval is doubled.

If a Reset is received or if the maximum number of retransmissions is
reached, the transmission fails. Otherwise, if an Acknowledgement message is
received the transmission is successful.

An indicative time for a retransmission interval using the default parame-
ters, meaning the time from the first to last retransmission of a message, is 45
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seconds: the default maximum number of attempts is 4.

timeout ∗ rand factor ∗Σmax retransmit
i=1 2i = 1 ∗ 1.5 ∗ (2 + 4 + 8 + 16)s = 45s

2.5.6 Resource Discovery

Resource discovery is very important in machine-to-machine applications where
no human intervention can be assumed and using static interfaces would be
detrimental for the flexibility of the system.

CoRE Link Format [3] is used to carry information about resources hosted
by a server: it essentially expresses the URI of the given resource plus a number
of attributes which may for instance contain a human-readable name for the
resource, an application-specific semantic type, or an interface definition to be
used in order to interact with the target resource.

Discovery can be performed either in Unicast or Multicast mode. When the
IP address of a server is known either a priori or though a DNS, Unicast Dis-
covery takes place. Multicast Discovery is instead used when a client intends
to locate resources within a scope over which IP multicast is supported.

In both cases a GET over the URI “/.well.known/core” is performed, and
resources in a CoRE Link Format payload are returned.

For typical machine-to-machine scenarios where a server may be sleeping
a remote resource directory may be used: resources are registered by a server
through a POST over “/.well.known/core” and can be discovered by clients
making a request to the resource directory lookup interface.

For example, when a sensor is plugged into a CoAP network it may send
a GET request to a neighbor sensor which may have a sensing functionality
for temperature and one for light, each listed as a <sensor> resource with
therefore a “sensor” Interface Description (attribute “if”) within a <sensors>
collection: the message exchange is detailed in Figure 2.5.

Figure 2.5: Discovery message exchange example

2.5.7 CoAP Observer pattern

The protocol described as CoAP Observer Pattern [5] extends the request/re-
sponse pattern specified by the CoAP core protocol with a mechanism where
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a CoAP client retrieves a representation of a resource and the server keeps
this representation updated over a period of time. The protocol follows a best
effort approach for providing the client with eventual consistency between the
state client representation and the actual state of the resource.

According to the well-known observer design pattern, endpoints called “ob-
servers” register at a component hosting a resource called “subject”, meaning
that they are interested in being notified whenever the subject undergoes a
change in state: a “subject” is essentially a resource in the namespace of the
CoAP server.

Registration
As described in Figure 2.6 the client initially issues a GET message ex-

tended with the Observe header option indicating a registration request. The
server responds with a regular GET response enclosing the resource represen-
tation and specifying the Observe option to confirm the registration request,
and successively sends notification enclosing the actual resource state repre-
sentation using the same token but different Observe option value.

In fact, the Observer pattern is equivalent to a GET request followed by
multiple GET responses, or a number of GET request/response pairs where
the ones following the first one assume an implicit request issued as soon as
the resource undergoes a state change.

Figure 2.6: Observing a resource in CoAP
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After being initialized a registration is assumed valid as long as the server
can determine the client’s continued interest in the resource, which is deduced
by the client’s acknowledgement of notifications carried in confirmable mes-
sages: the choice whether to use a Confirmable or a Non-Confirmable format
for the notification is left to the server, but it is recommended that the server
use at least one Confirmable message every 24 hours for the purpose of al-
lowing de-registration in cases when for example the client experiences some
malfunctioning that may prevent it de-registering in a different way.

An endpoint can list its resources in discovery registries as links that are
useful for observation by using the “obs” attribute.

A server may of course decide to reject a registration request by processing
the GET request as usual without including the Observe Option.

Deregistration
Deregistration can either happen explicitly through the Observe option or

implicitly when a client rejects a confirmable or non-confirmable notification
through a Reset message or when a confirmable notification is not answered
with an Acknowledgement.

Consistency model
The goal of the CoAP Observer protocol is to keep the client local repre-

sentation of the resource as close as possible to the resource’s actual state. To
do this, the protocol has to deal with the following aspects:

� Latency between the change of the resource state and the receipt of the
notification at the client’s side.

� Loss of a notification over the network leading the client to assume the
old state is valid.

� The Server may erroneously deregister a client due to a repeated Ac-
knowledgement message loss, leading the client to assume the old state
representation is still valid.

The aforementioned issues are dealt with as follows:

� The client is issued a notification as soon as the resource changes, fol-
lowing a best-effort approach: according to the principle of eventual-
consistency if a resource does not undergo a new change in state all
registered observers will eventually have a consistent representation of
the resource.
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� Notifications are labeled with the maximum amount of time they should
be considered valid unless a fresher notification is received, after which
the client should issue a new GET request before using the resource
representation value: this mechanism avoids the client being indefinitely
out of sync with the server. This feature is supported by CoAP header’s
Max-Age option.

In order to allow the client to deduce the relative ordering of notifications
the server should set the value of the Observe Option to the 24 least-significant
bits of a strictly increasing sequence number which can either be the timestamp
of a local clock or a variable per resource that is incremented every time the
resource undergoes a state change.

CoAP recommends not to reset the value of the Observe Option more often
than once every 256 seconds, which is well beyond the highest known design
objective of around 1kHz in terms of notifications per second.

Reducing the number of notifications
There may be situations where clients may not be interested in receiving

a notification upon every state change of a notification. Instead of defining
procedures to provide ad-hoc notification patterns CoAP relies on the RESTful
paradigm and suggests that the server exposes additional resources according
to the desired semantic.

As an example a temperature sensor may expose two resources such as:

� <coap://server/temperature> which change its state every time
a sensor reading is performed.

� <coap://server/temperature/felt> which has two possible states,
WARM and COLD, and undergoes a state change when the temperature
crosses two pre-configured threshold values.

Messaging optimizations
Since the CoAP Observe Protocol is an extension of the GET request/re-

sponse pattern it supports the use of the ETag Option. A client may specify in
the GET request a set of entity tags (hashed values of representations) any of
which may be confirmed by the server through a 2.03 (Valid) response rather
than a 2.05 (Content) notification carrying the entire resource representation.

This mechanism may be useful when the resource has a quite extended
representation which can nevertheless assume a pre-defined set of states.

In order to perform request aggregation the use of intermediaries is also
allowed as for a regular CoAP request-response: a client may address a GET
request to an intermediary node which will act as a client towards the actual
server.
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2.5.8 Blockwise Transfer

In a wide number of IoT communications over constrained networks we can
reasonably expect payloads to be relatively small: for example, when sensors
handle temperature value, light switches or toll systems, data handled can be
limited to a few bytes.

In other situations still within the IoT domain payloads may be significantly
larger: for example in image processing systems even when data pre-processing
and aggregation is performed, data transfered may be in the order of hundreds
or thousands of kilo-bytes.

When data this size is transferred a number of difficulties may develop.
With IPv4 even if datagram transport protocols of choice such as UDP or
DTLS support message sizes larger than the nominal one of 64 KB through
fragmentation the performance of the procedure over a constrained network
may not be satisfactory. Since IPv6 instead never fragments packets, the
tendency is that of using application level mechanisms that are aware of packet
size constraints.

In constrained networks, datagram size is limited by the maximum data-
gram size i.e. 64 KB for UDP, by IPv6 MTU of 1280 KB and by the adapta-
tion layer fragmentation mechanism which in the case of 6LoWPAN intervenes
when the packet size is over 60 - 80 Bytes.

At the same time, while keeping the burden of implementing fragmentation
mechanisms at the endpoints it should be remembered that nodes are con-
strained and that creation of communication state at the server’s side should
be avoided whenever possible: in case of GET requests this objective can be
achieved, while for POST/PUT requests it is impossible to fully avoid creating
a conversation state if the creation or replacement of resources is to be atomic.

CoAP Blockwise transfer [6] in turn specifies two Options and their use for
block-wise transfers.

The main features of the Blockwise transfer mechanism are:

� Transfers of payloads that are larger than what can be accommodated
at the link layer.

� No conversation state is created at the IP adaptation layer.

� Each block is explicitly requested and acknowledged: minimal conversa-
tion state is necessary at CoAP endpoints.

� Endpoints negotiate the dimension of the blocks to be transferred and
the minimum among proposals is chosen.
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� Random access to power-of-two-sized blocks can be performed by refer-
ring a GET request to a given block.

CoAP Blockwise Options
CoAP Blockwise transfer mechanism makse use of two Options: Block1

Option is used to handle payload fragmentation in requests, while Block2 Op-
tion is used to handle payload fragmentation in responses.

When Block1 and Block2 Options are present in request and response mes-
sages respectively they are said to be employed with a “descriptive use” since
they describe the actual payload structure as part of the resource transferred.
When Block2 is used in a request or Block1 is used in a response we can talk
instead of a “control use” since they are part of a negotiation process regarding
the block size that will be actually used.

Block Option structure
CoAP Block option is expressed as a zero to three byte long integer with

the following parts:

� SZX: the three least significant bits express the block size through the
relation 24+SZX .

� M: one bit that indicates whether more blocks are following (M set) or
not (M unset).

� NUM: the remaining indicates the sequence number of the current block
with respect to the overall sequence of blocks expressing the resource.

The use of Block1 and Block2 in “descriptive usage” is straightforward.
When the Block2 Option is used in a request (e.g. GET) NUM refers to the
block number that is being requested to be transmitted, M has no function
and SZX suggests a block size to be used in the response. When Block1 is used
in a response (e.g. PUT or POST) the NUM refers to the block that is being
acknowledged; if the M bit was set in the request the server can choose whether
to act upon each requested block or not: if the M bit is set in the response it
means that the response does not carry the final response code to the request
which will be elaborated atomically once all the request packets have been
received by the server, while if the M bit is unset it means that the response
carries the final response code to the request it refers to and the response code
is set to 2.31 (Continue). The SZX field in this instance indicates the largest
block size accepted by the server.

In general when a Block Option is used in “control usage” it is expected to
express the maximum block size the endpoint is willing to accept, meaning that
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block sizes inferior to that one are equally acceptable. The other endpoint will
answer confirming the block size if its preferred block size is larger or proposing
its own if not.

At any time a server can answer with the error code 4.13 if for example it
does not have sufficient resources to support a Blockwise transfer of a large
request it intends to execute atomically.

Blockwise transfer consistency
A Blockwise transfer is characterized by a single token, while a different

messageID which is used for each GET request/response pair.
When resources have a constant representation, no consistency issues arise

due to Blockwise transfer. In case of dynamically changing resources instead
the decision on whether operations requested by clients should be executed
atomically or not is left to the server. Nevertheless when resources are dy-
namic and may change during the execution of a Blockwise GET request the
server can use the ETag option which can be used by the client to understand
if all blocks refer to the same resource state or if some blocks are to be retrans-
mitted.

2.6 The ETSI M2M Communication Paradigm

Within the IoT vision and thanks to the IoT stack described so far, applications
are expected to rely on a RESTful architecture which has been designed, in
terms of underlying protocols, in such a way that it can be successfully hosted
by devices with limited resources.

In order to increase the level of interoperability of IoT systems, RESTful
resources and access methods can be defined in a cross-service manner.

RESTful resources are used to identify and locate date items taking into
account the following requirements:

� Existence of a data model where a single data item is expected to be
associated with a specific entity, which may be either a sensor, a group
of sensors, a gateway, a generic network node or even an abstract entity,
which still should be identifiable in the network.

� It should be possible either to access data explicitly as is done through a
web browser, or to enable automatic propagation through the application
framework domain.

Operations to be executed on resources are designed taking into account
the following requirements:
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� Sensor devices may be powered off for long periods of time due to energy
saving policies.

� Whenever possible, control procedures such as access methods, remote
management procedures and access policies should be abstracted accord-
ing to the RESTful paradigm.

A number of solutions have been proposed in order to address the require-
ments above. A particularly strong candidate is the ETSI M2M protocol since
it is elaborated by a wide set of industry and research players within the IoT
ecosystem. For this reason it can be expected not only to benefit from strong
cross-domain support but also to offer a high degree of interoperability as well
as flexibility since it constitutes the output of a working group formed by
experts from a number of diverse ICT areas.

The ETSI M2M System addresses the requirements above and consists in
an horizontal framework enabling applications to use data independently of
their location and of the protocols needed to access them. It consists of a
distributed system composed of M2M Applications, a M2M framework called
Service Capability Layer (SCL), and a Communication Layer.

M2M Applications can reside in a Device Application (DA), a Gateway
Application (GA) or in a Network Application (NA). According to the ETSI
definition a Device (D or D’) is a piece of equipment that may collect a set of ac-
tuators and sensors with embedded electronic computing and communication
capability, while a Gateway aims at translating and transferring information
between two or more communicating entities, or at performing some routing
and multiplexing function between the communicating entities [11]. It may
also abstract functionalities of the related sensor devices which cannot be ex-
posed directly by sensor devices themselves. A Network Node is instead a
generic communication entity which does not fall into the two aforementioned
categories.

The high level architecture of an M2M system distinguishes within the
distributed system between a Network Domain and a Device and Gateway
Domain, as depicted in Figure 2.7.

The M2M Service Capabilities Layer enables communication between M2M
Applications: it is an application-level framework that abstracts the distributed
system as a set of resources and operations to be executed on them. The Ser-
vice Capabilities Layer is present in the Network Domain as Network SCL
(NSCL), in M2M devices as Device SCL (DSCL) and in M2M gateways such
as Gateway SCL (GSCL). While a Gateway and a Network Node always in-
clude a Service Capability Layer (SCL), a Device may (D) or may not (D’)
host a local SCL and instead access the M2M framework through a GSCL.
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The SCL is a distributed system itself: it is composed of SCL instances,
which can expose four types of interfaces: dIa, mId, mIa and mIm.

Figure 2.8 shows that while dIa constitutes the interface between a GA
and a local GSCL or between a DA and a local DSCL, mId is the interface
between a GSCL or DSCL and a NSCL, mIa is the interface between a NA
and a local NSCL, and mIm is the interface between NSCLs. Figure 2.8 also
presents the optional IP (Interworking Proxy) capabilities DIP, GIP and NIP,
providing interworking with non ETSI compliant devices.

The reason for these four interfaces is to distinguish in the M2M system
a number of actors with associated roles: such roles are defined by the in-
teractions they have with the other system components which in turn can be
summarized in a well defined functional interface. It can also be seen as a
consequence of the strong centralization that characterized the first editions of
the protocol specification (mId interface fully enabling a layered P2P structure
within NSCL for example has been introduced only in Q4 2013).

Figure 2.7: High level architecture for M2M
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Figure 2.8: Deployment scenarios and reference points

For example in a Intelligent Transport System (ITS) a set of Devices may
be constituted by a number of parking lot availability sensors; the Gateway
may be a device with stable connectivity and continuous functioning due to a
permanent power supply.

A NA could be an application hosted on a user’s mobile phone which dis-
plays the available parking slots in the surrounding area; or a PC workstation
where a software generating analytics related to city traffic is running.

These two NAs may have two different SCLs as Local SCL. A typical reason
for this could be an end service constituted by two components each provided
by a different service provider: e.g. a management company handling control
room procedures and a company responsible for the interface with end-users.

The two NSCLs may communicate through mId for example in case of
emergency situations which are detected by the first and rendered to the users
by the second; moreover they both access the same Gateway from which they
retrieve the data but with different policies corresponding to different access
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rights.

2.6.1 M2M Resources

Each SCL instance exposes a set of REST resources hierarchically organized.
In particular, it includes:

� <scl> resources representing remote SCLs.

� <application> resources representing remote M2M Applications

� <container> resources representing data exchange buffers

� <accessRight> resources representing access rights

� <group> resources representing a group of resources of the same or mixed
type

� <subscription> resources representing a subscription to a resource

� <mgmtObj> resources representing management data corresponding to
individual M2M remote management functions

� <mgmtCmd> resources representing non-RESTful management com-
mands allowing M2M Applications to execute or cancel a non-RESTful
Remote Procedure Call on a remote entity

� <attachedDevices> resources representing management information of
D’ or D devices attached to a M2M Gateway

� <notificationChannel> resources enabling a method for a non-server ca-
pable client to retrieve asynchronous notifications

2.6.2 M2M Operations

Following the RESTful architecture, the four basic methods or “verbs” that
can be applied to resources are CREATE, DELETE, UPDATE, RETRIEVE.
Through a combination of these basic operation, the following higher-level
operations are possible:

� SCL registration: a SCL registers with another SCL in order to be
able to interact with it, by creating an <scl> resource in the collection
<sclBase>/<scls> resource of the registered-to SCLs representing
the Issuer SCL. At the same time, an <scl> resource representing the
registered-to SCL is created in the Issuer SCL.
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� Application registration: every M2M Application will register it-
self to the Local SCL, meaning the SCL it uses to access the M2M
System: as above, registration is carried out through the creation of
an <application> resource in the collection <sclBase>/local_scl/
<applications>.

� Subscription to resources: an M2M Application or an SCL may
act as a subscriber requesting to be notified by the Hosting-SCL (the
SCL hosting the subscribed-to resources) when resources are modified.
The subscription is a resource itself, and it is created and customized by
modifying the resource itself or its parts.

� Execute Remote Procedures: an Issuer may request to execute a
specific management command represented by a <mgmtObj> on a re-
mote entity through the UPDATE verb. Alternatively, a RPC call can be
emulated by addressing a <mgmtCmd> and specifying the appropriate
command parameters.

� Resources Announcement: an M2M Application or an SCL may
decide to announce a resource to other SCLs through the appropriate
child element <announceTo> of the resource. This element is interpreted
as the list of SCLs that the SCL will try to announce to on behalf of the
requestor. If this element is not provided, the Local SCL will decide
where the resource will be announced.

As an example we can think of a smart city management system where
a Device (D’) is a taxi On Board Unit (OBU), a Gateways is a Road Side
Unit (RSU) and Network Nodes are either users’ mobile phones or a PC work-
station where a Managing Application may run. Whenever a taxi OBU is
switched on it will discover neighboring nodes including the nearest Gateway.
It will then register its application in the GSCL by creating an <application>
element and create a <container> resource within the <sclBase>/scl/
<scl>/containers collection where it will store measured data (for exam-
ple geolocation data). It will also register the management function it exposes
by creating a <mgmtObj> resource in the path <sclBase>/scls/<scl>
/attachedDevices/<attachedDevice>/mgmtObjs: each device has
associated its own management commands.

A Network Application such as the Managing Application whose Local
NSCL is subscribed to the Gateway SCL may be notified about the creation of
the application resource and may subscribe to the newly created <container>
resource in order to receive notification whenever the data representation un-
dergoes a state change.
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It is agreed to express an URL as composed by generic names (defined by
the protocol specification) enclosed by brackets, which can be substituted by
concrete instances to form the actual URI. In the example the correspond-
ing actual URI may be “coap://321.128.10.1:5683/gw01/scls/my_
scl25/attachedDevices/parking_sensor1/mgmtObjs/obj1”.

2.6.3 M2M remote execution and data distribution

In terms of problem frames [7], a M2M System addresses the following:

� Required Behavior: the causal domain is constituted by a portion of
the external world, which can be for example a gate, a dam water level,
a car brake system, a vending machine.

� Commanded Behavior: the causal domain is constituted by a portion
of the external world, and the operator biddable domain is the human
user: for example, a user may want to issue a remote command to the
heating system of his house: still, the procedure should be monitored
and potentially corrected or inhibited to avoid, for example, the boiler
heating system becoming a hazard.

� Information Display: the causal domain is constituted by a portion of
the external world, while the causal display domain is a physical network
terminal. Typical examples are measurements system for physical quan-
tities such as temperature and pressure, number of vehicles per hour,
parking lot availability.

An M2M System is capable of addressing these three problem frames and
offers a number of built-in mitigation procedures to adapt to a set of specific
domain configurations.

The architecture of an M2M System is constituted by a distributed system
within the Network Domain, and a number of either distributed or remote
systems within the Device and Gateway Domains.

Required Behavior and Commanded Behavior: both these patterns
are enabled by the use of remotely executed commands, namely:

� mgmtObj: in order to execute a management command on a remote
entity an Issuer executes the UPDATE method of a <mgmtObj> re-
source on the Hosting SCL. Subsequently the Issuer can retrieve the
execution status of a command by executing the RETRIEVE method of
the <mgmtObj> resource, as in Figure 2.10.
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� mgmtCmd: non-RESTful management commands or a set of Remote
Procedure Calls (e.g. Factory Reset, Reboot, Upload, Download, Sched-
uleDownload, ChangeDUState...) can be executed on a remote entity us-
ing<mgmtCmd> resources. Their use is analogous to that of<mgmtObj>:
the Issuer requests the execution of a <mgmtCmd> in the Hosting SCL
through the UPDATE method, and after the corresponding procedures
have been carried out on the remote entity, a local <execInstance> rep-
resenting a execution instance is created on the Hosting SCL, and its URI
is returned to the Issuer. The Issuer can then use the <execInstance>
to retrieve the execution results, as described in Figure 2.9.

Figure 2.9: Execution of a mgmtCmd resource

Information Display:
For simplicity, we can put ourselves in the situation where a sensor device D’

hosting an M2M Application DA is connected to a GSCL (Case 2 in Figure 2.8).
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Figure 2.10: Execution of a mgmtObj resource

In this case, when the sensor is first connected to the network it will create
in the GSCL an <application> resource, with an <application>/containers/
<container> resource representing the monitored value (e.g. the status of a
monitored parking slot which can be free/occupied).

Each time there is a status change in the resource, the DA will create a new
<contentInstance> under<application>/containers/<container>/contentInstances
in the GSCL.

In the segment GSCL–NSCL, where NSCL is the SCL that is Local to the
NA available to the user, three options are possible to address this problem
frame:

� Subscription: in order to subscribe to a resource an Issuer can request
the creation of a <subscription> element referred to the subscribed-to
resource. Upon every resource modification, the Issuer will receive a
notification to the contact-URI specified in the subscription request.

� Subscription with long polling: this offers a method for clients that
are not server-capable to receive semi-asynchronous notifications regard-
ing a subscribed-to resource. This mechanism is based on a<notification-
Channel> resource: as depicted in Figure 2.12 an Issuer willing to sub-
scribe to a resources of a remote SCL (Subscriber-to SCL) may use a
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SCL (Hosting SCL) as a notification server.

The Issuer creates a <notificationChannel> in what becomes the Hosting
SCL, and the newly created resource URI which is used as contact-URI in
the subscription, and the long-polling URI which serves as the endpoint
of a request-response operation are returned.

The Issuer can, in either order, send a long polling request and create a
subscription in the Hosting SCL relative to a resource of the Subscribed-
to SCL, using as callback URI the URI of the <notificationChannel>
resource.

� Announcement: an announced resource is a resource whose creation
and modification information is propagated to announced-to SCLs, mean-
ing that for the announced-to SCL to be notified no explicit subscription
action is required. The Issuer which creates an announcement enabled
resource on a Hosting SCL delegated to the Hosting SCL the creation of a
resource on the various announced-to SCLs, as described in Figure 2.11.
The 003:Response message can also be sent after the announced-to SCL
007:Response, in which case a delayed response paradigm is adopted. As
an example, the application hosted on a sensor device registering tem-
perature values, as it is plugged in the M2M network, may create an
<application> resource on the local SCL and a <container> resource
which will contain the temperature measured values. If announcements
are used, the <container> element may have as a child element an
<announceTo> element specifying a list of SCLs. Upon <container>
resource creation, the local SCL creates a <container> resource on each
of the SCLs present in the list, and each time the sensor device will create
a new temperature instance value after a measurement, the local SCL
will update the corresponding value on each of those SCLs.

Continuing the smart city example, a NA hosted on the user’s mobile phone
discovers the local GSCL and subscribes to the <containers> collection.

The taxi OBU will periodically create a new <contentInstance> within
the <containers> collection specifying its current location. Upon creation of a
new <contentInstance> the user device’s application will be notified and will
display the taxi location on the screen map: the mobile application will then
give the user the possibility to e.g. tap the icon and book the taxi.

When an application intends to access a resource which is not available
in the local SCL, the request needs to be routed to the hosting SCL. It may
happen that a single SCL receives a large amount of remote access requests: in
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order to fulfill such demand in an efficient way, the SCL may perform requests
aggregation in a store-and-forward manner.

Aggregation of access requests to remote resources can be controlled through
two parameters: Tolerable Request Processing Delay Time (TRPDT) and Re-
quest Category (RCAT). Such parameters are applicable to requests issued by
a D/GA or DSCL to access resources on a NSCL and to requests issued by
NA on a NSCL to access resources hosted on a D/GSCL.

The local SCL that receives the request can delay the forwarding of the
request to the Hosting SCL according to SCL-specific policies but within the
upper bound defined by the TRPDT value specified in the request itself.

Request Categories instead control the forwarding policies of requests to
access remotely hosted resources: if a connection cannot be established using
the appropriate access network for a specific combination of RCAT value, issuer
and destination, the local SCL can block the forwarding of the request.

Figure 2.11: Resource Announcement
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Figure 2.12: Long polling and notifications

2.7 Data Serialization Formats

Three data serialization formats are recommended1 by ETSI M2M: Extensible
Markup Language (XML), JavaScript Object Notation (JSON) 2 and Efficient
XML Interchange (EXI). In our work on embedded systems only the JSON
and EXI options have been considered. JSON and EXI are mentioned in this
section, and a high level description of the EXI serialization mechanisms is
given.

1Annex D, section 1, [12]
2http://tools.ietf.org/html/rfc7159 Last Access: June 12, 2014.
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2.7.1 JavaScript Object Notation (JSON)

JavaScript Object Notation (JSON) is a data format widely used the interac-
tions between servers and web-applications. Due to its simplicity and the fact
that it is also human-readable, it is supported by a large variety of platforms.

2.7.2 Efficient XML Interchange (EXI)

EXI was developed by the Efficient XML Interchange working group within the
World Wide Web Consortium (W3C), and was adopted as a Recommendation
by the W3C in 2011.

The goal of EXI is to define a data format that satisfies the requirements
of constrained networks, and that at the same time allows them to be interop-
erable with the legacy data formats XML and JSON. Its definition was guided
by five design principles, namely generality, minimality, efficiency, flexibility
and interoperability.

This section explains the main principles of the EXI format.
Even if EXI can use schema information to improve compactness and effi-

ciency, schema documents do not have to be accurate or complete.
An EXI encoded data structure is called EXI Stream. It is composed of

two parts: EXI header and EXI body.

EXI Header
The EXI header conveys version information, and can be used to commu-

nicate encoding properties that are needed to decode the EXI body: if options
are omitted, the decoder should have access to the options used for encoding
through out-of-band mechanisms, in order to decode the EXI Stream properly.

The minimal dimension of the EXI header is one byte, allowing to obtain
a high efficiency for small data instances.

Options are formally described using an XML schema and are encoded
using EXI as well; the most relevant options for the present work are:

� alignment: refers to the alignment of event codes and content. It can
assume the values bit-packed, byte-aligned or pre-compression. The pre-
compression option simply prepares the stream for a later compression,
applying all the steps except the “deflate” algorithm [24].

� strict: increases compactness by ensuring a strict interpretation of the
schema, meaning that elements and types are restricted to the ones de-
clared in the schema.

� preserve: allows to retain or discard components such as comments,
prefixes, XML processing instructions and lexical values.
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� schamId: identifies schema information used to process the EXI body.
XML Schema types are built-in and are always available.

EXI Body
The body of an EXI Stream is constituted by a sequence of events. For

example an attribute named foo can be encoded through the event AT(“foo”),
and an element named “bar” as the couple of events SE(“bar”) EE.

The main event codes are reported in Table 2.2:

EXI Event Type Grammar Notation
Start Document SD
End Document ED

Start Element
SE(qname)
SE(uri :*)

SE(*)
End Element EE

Attribute
AT(qname)
AT(uri :*)

AT(*)
Characters CH

Namespace Declaration NS
Comment CM

Table 2.2: EXI Event types

A single event type can convey a variable amount of information: SE(“qname”)
for example represents the start element of an element with a precise name,
while SE(*) indicates the start element of a generic element, whose name will
be encoded separately and will constitute the content of the event.

Within an EXI Stream, an event is represented by an event code and an
event content, if present. The event code is a sequence of one to three non-
negative integers distinguishing the possible events that can occur at a given
point of the EXI Stream.

Shorter events codes are used to represent events that are more likely to
occur. When Schema-Enabled encoding is used, schema-derived events of the
type SE (“qname”) are encoded with fewer bits than generic events such as
SE(*), which can even not be present if the strict option is set.

In order to represent content values, EXI uses built-in datatypes, as well as
datatypes defined through external schema structures. If the preserve option
is set for lexical values, all datatypes are represented as strings. Among the
wide set of possible types, the following two are reported as example:
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� String: string datatype representation consists of a length prefixed se-
quence of characters; length is represented as an unsigned integer.

� Unsigned integer: an unsigned integer is represented through a sequence
terminated by a byte with its most significant bit set to 0, after zero
or more octets with the most significant bit set to 1. The value of the
unsigned integer is stored in the least significant 7 bits of each octet.

EXI Grammars
EXI encoding uses a set of grammar-derived structures, each representing

the productions of a grammar. They are referred to as grammars in the EXI
Specification; we will refer to them using the same terminology in this exposi-
tion. EXI uses the information provided through the XML schema structures
available to build a grammar associated to each element and type defined.
Such structures are used to determine which events are most likely to occur at
any given point in an EXI Stream, mapping the most likely events to a lower
entropy set of values, which are encoded using fewer bits.

The types of grammar structures that can be used are the ones provided
explicitly through schema information, and the ones derived from built in
schemas such as the XML Schema. Moreover EXI describes a mechanism by
which built-in grammars can be dynamically extended, using information from
the actual instance being encoded. For example, an < accessRightID > el-
ement which occurs more than once during the encoding of a EXI Stream in
Schema-Less mode (i.e. when no external schema documents are provided),
will have its element name encoded only once. The first occurrence will be han-
dled through the SE(*) event, its element name will be stored in a local table,
and subsequently its element name will be referred to through an identifier.

Schema-informed grammars should be preferred to built-in grammars when-
ever sharing a grammar set (i.e. an XML schema) among the communicating
endpoints is feasible: since value items such as element names and attribute
names do not need to be encoded but simply referred to, processing speed
increases and compactness is improved.

Encoding Example
As an example, we consider a binary data structure that corresponds to an

XML < application > resource such as:

<?xml version="1.0" encoding="UTF-8"?>
<p0:application xmlns:p0="http://uri.etsi.org/m2m">

<p0:accessRightID>accessRight</p0:accessRightID>
<p0:groupsReference>
/gsclBase/applications/app/groups

</p0:groupsReference>
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</p0:application>

We assume performing strict, Schema-Enabled encoding, setting all pre-
serve options to false and adopting bit-packed alignment. We also assume not
compressing the EXI Stream, but simply serializing the data structure associ-
ated to the < application > resource in terms of EXI events. The body of the
EXI Stream is composed of the following events:

SD
SE("application")
SE("accessRightID")
CH("accessRight")
EE
SE("groupsReference")
CH("/gsclBase/applications/app/groups")
EE
EE
ED

The EXI Stream is built as described below. The encoding procedure makes
use of a stack of grammar-derived structures, where each grammar structure
can be expressed as a state machine. During the encoding process, the current
state can be represented through a set of states, one for each of the grammar
structures currently present in what the EXI Specification refers to as the
”grammar stack”.

The notation A.B indicates the position within the stream after the seri-
alization of the current element, where A is the byte number and B is the bit
number.

1. EXI Header: 4.0 (4 bytes)

2. Header Distinguishing bits: 4.2 (2 bits)

3. Presence Bit for EXI Options: 4.3 (1 bit)

4. EXI Version: 4.4 (5 bits)

5. EXI Options: 5.3 (7 bits)

6. SD: 5.3 (0 bits). The DocumentContent grammar is pushed on top of
the current stack of grammars, which is constituted by the Document
grammar only, comprising a single state. The state relatively to the state
machine associated with the topmost grammar is DocumentContentStart.
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7. SE(“application”) code (9): 6.1 (6 bits). The number of productions
available in the current state equals the number of elements defined by
the schema, and the production for the application element is the 9th.
The state becomes DocumentContentEnd, and the grammar Application-
Grammar is pushed onto the grammar stack: the current state within
this grammar is StartTagApplication.

8. SE(“accessRightID”) code (2): 6.5 (4 bits). The current grammar Ap-
plicationGrammar has 15 productions. The second corresponds to the
accessRightID element; the current state within the ApplicationGrammar
becomes AccessRightIDElement, and the corresponding grammar Access-
RightIDGrammar is pushed onto the grammar stack, where the current
state becomes StartTagAccessRightID. The complete list of events avail-
able for ApplicationGrammar and corresponding to the various grammar
productions is reported in Table 2.3, and has been obtained from the
< application > element schema.

9. CH(“accessRight”): 18.5 (0 bits CH event, 11 bytes string, 1 byte length).
StartTagAccessRightID has only one transition, corresponding to the
event CH. The event is encoded with 0 bits, and the state undergoes
the transition toward the state ElementAccessRightID.

10. EE code (0): 18.5 (0 bytes) The state ElementAccessRightID has only
one transition EE, encoded with 0 bits. The event is encoded and the
current grammar AccessRightIDGrammar is popped from the grammar
stack: the current state within the ApplicationGrammar is AccessRight-
IDElement.

11. SE(“groupsReference”) code (8): 19.1 (4 bits) is the eighth transition
possible from the current state (it can be derived from Table 2.3 consid-
ering the fact that < application > is structured as a sequence). Again,
the current state becomes GroupsReferenceElement ; the corresponding
grammar GroupsReferenceGrammar is pushed onto the stack where the
state within the state machine of the current grammar becomes Start-
TagGroupsReference.

12. CH(“/gsclBase/applications/app/groups”): 53.1 (0 bits CH event, 33
bytes string, 1 byte length). From StartTagGroupsReference the state
undergoes the (only) transition towards ElementGroupsReference.

13. EE code (0): 53.1 (0 bytes). The grammar GroupsReferenceGrammar
is popped from the stack and the current state becomes GroupsRefer-
enceElement.
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14. EE code (0) 53.3 (2 bits). The grammar ApplicationGrammar is popped
from the stack of grammars and the current state becomes Document-
ContentEnd.

15. ED code (0) 53.3 (0 bits). The grammar DocumentContent is popped
from the stack of grammars; the Document grammar is also popped and
the EXI Stream is closed.

Event Event Code
AT(“appId”) 0
SE(“expirationTime”) 1
SE(“accessRightID”) 2
SE(“searchStrings”) 3
SE(“creationTime”) 4
SE(“lastModifiedTime”) 5
SE(“announceTo”) 6
SE(“aPoC”) 7
SE(“aPoCPaths”) 8
SE(“locRequestor”) 9
SE(“containersReference”) 10
SE(“groupsReference”) 11
SE(“accessRightsReference”) 12
SE(“subscriptionsReference”) 13
SE(“notificationChannelsReference”) 14
EE 15

Table 2.3: Event codes example: ApplicationGrammar grammar. Events are en-
coded using 4 bits.
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Chapter 3

Related Work

The present chapter aims at showing how this work relates to research ini-
tiatives that approach themes analogous to the one we have been focusing
on.

The results of this work are presented in Chapter 5, and they are compared
to the research activities illustrated in Chapter 6.

3.1 EXIP based implementations

The Embeddable EXI Processor (EXIP) has been developed by Rumen Kyusakov
[23] and is the work with the largest impact on our work, since we have adapted
EXIP libraries to the embedded environment: this specific implementation was
chosen because it is open-source, and even if performance measurements were
not available in literature it is explicitly designed to be energy and memory
efficient.

The most apparent characteristic of EXIP is what it is not1: it is not a
tool for converting XML to W3C EXI and vice-versa. The reason for this is
the need to avoid XML parsing, when the real goal is the translation between
a binary structure and an EXI Stream.

The issue of XML-like communications within constrained devices has been
tackled from a different point of view than the one from which our work orig-
inates: the motivation of the work as presented in Kyusakov’s paper is that
of enabling SOAP services on embedded devices providing support to man-
ufacturing enterprises. The effort of facing the constant demands to change
processes and products inevitably brings a huge complexity overhead.

1http://exip.sourceforge.net/exip-user-guide.pdf Last Access: June 12,
2014.
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3.2. NON-EXIP BASED IMPLEMENTATIONS

The first contribution we can relate to for a direct comparison is the work
done by Domenico Caputo et al. [14], which depicts an implementation similar
to the one we have realized. EXIP libraries2 developed within the EISLAB
research activities in the Lulea University of Technology have been adapted to
an environment with limited RAM (no more than 8 KB available) by reducing
memory occupation through code optimizations.

The platform used is constituted by an STM32W108 System-on-Chip (SoC),
integrating a 32-bit CortexTM -M3 microprocessor @ 2.4 GHz and a IEEE
802.15.4-compliant transceiver. The RAM constraint is similar to the one we
have been facing, since we have 16 KB of RAM available but also use the full
communication stack.

The main contribution of Domenico Caputo’s work is proving the fact that
porting EXIP on a sensor node and meeting the 8 KB RAM constraint is
actually possible.

Our work differs in that we provide performance measurements and in that
we have been following an IoT-driven approach where ETSI M2M messages
have been used as a payload benchmark.

3.2 Non-EXIP based implementations

In the work by Angelo P. Castellani et al. [17] an implementation on a TelosB
sensor node inclusive of CoAP and EXI modules has been realized: the EXI
module has in this case been developed from scratch resulting in a library
called libEXI.

The main contributions of the article are:

� The scalability of a system composed of a variable number of CoAP
servers on a single TelosB has been estimated. The article does not
specify whether the server simply sends pre-computed EXI payloads or
actually generates them from binary structures upon each request. While
in the first case the source of failure would be channel congestion, in the
second it would be impacted also by the capability of the server face
requests from the point of view of the computational resources.

� The performance of libEXI is compared with that of EXIficient, a freely
available Java implementation of the EXI specification. The time per-
formance assessment consists of a measurement of compression time on
a desktop PC in order to estimate the latency introduced by a proxy
translating XML into EXI, which for libEXI is in the order of 10−2 ms.

2Embeddable EXI implementation in C. Available: http://exip.sourceforge.
net/ Last Access: June 12, 2014.
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3.2. NON-EXIP BASED IMPLEMENTATIONS

The superposition of results between this work and our work is therefore
limited to the compression gain in terms of data size, which in any case depends
on the W3C EXI specification [16] and not on the specific implementation.

In the Master Degree Thesis by one of the authors [22] the RAM and
ROM occupation of libEXI implementation on a Tmote Sky with TinyOS is
reported: libEXI has a memory occupancy of 10 KB over a total 48 KB of
ROM, and of 1.7 KB over a total 8 KB of RAM, leaving 1 KB free for stack
and heap at runtime. The communication stack is not present.

In any case, the approach we have been using is different in that EXI
serialization of data structures does not use XML as an intermediate data
format (XML-less EXI), and performance measurements have been taken on
an embedded system rather than on a PC workstation.

A very interesting article by Yusuke Doi et al. [18] describes a TOSHIBA
proprietary implementation of EXI, called EIGEN.

First of all the article highlights the need to focus on XML-less EXI in
order to limit implementation complexity, which is a feature that is not often
considered crucial in EXI implementations.

Second of all, the article gives recognition to the concept that a node has
often a limited set of purposes which do not necessarily need a full-spec EXI
processor. The solution proposed is indeed that of developing a code generation
module which takes as input an XML schema and a mapping of XML elements
to binary data structures, and returns C code as output.

The generated code corresponds, in the EXIP case, to a module developed
ad-hoc for the specific messaging set considered, plus a multipurpose EXI pro-
cessor, plus external grammars if Schema-Enabled compression is performed.

The decoding instead is more similar to the EXIP approach, and is realized
through a decoding module which uses external grammars.

A measurement of memory occupancy for a resource-constrained device
with embedded OS3 is also given: EIGEN uses 13 KB ROM for EXI and
I/O related code, while the grammar brings a 50KB ROM occupancy at the
decoder side. Moreover, the EXI decoder and encoder use approximately 9500
bytes of RAM, including 6KB of communication buffer.

Lastly, this work gives recommendations on sensible choices that are to be
made when there is the chance of building an XML schema document for mes-
sages serialized using EXI Schema-Enabled, in order to achieve a particularly
efficient EXI representation:

� Use as few optional elements and attributes as possible, in order to reduce
the number of transitions.

3TOPPERS/ASP 1.3.2 on STM32F103ZE board with a Cortex-M3 processor
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� Make the modular structure of the schema easily mappable to the set of
application purposes envisioned. For example even if air conditioners do
not need to understand the message parts for ovens, a broader schema
may be used for both. The types used for each domain should then be
clearly factorized: this can be done for example by using the xsi:type
attribute defined in the XML schema specification [19].

This study mainly impacts our present work in the future works envisioned:
since performance measurements are not executed, and the XML Schema used
is not specified, it is not even possible to make a precise comparison for the
RAM/ROM occupation with respect to our EXIP optimized implementation.

3.3 Original contribution

From this overview it emerges that several EXI implementations exist. Few
of them are open source and target constrained nodes, and fewer are freely
available as open source code.

In several among the mentioned works, the successful porting of an EXI
implementation on a resource-constrained node is claimed.

Nevertheless, performance measurements in terms of time or energy have
never been executed on sensor nodes, but only on PC workstations. Values that
can be used to elaborate preliminary design and dimensioning estimates for
resource-constrained networks are therefore not yet available in the literature.

The original contribution of the present work consists in considering a spe-
cific goal in terms of portability over IoT, which is ETSI M2M, and producing
performance measurements for an explicitly declared set of messages, which
have been deduced from a ETSI CoAP M2M Interoperability Test Suite.
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Chapter 4

IoT in the ICSI project

4.1 Introduction

The present work has been carried out within the framework of the Intelligent
Cooperative Sensing for Improved Traffic Efficiency (ICSI) project1.

The goal of the ICSI project is to enable four use case scenarios related to
the ITS domain using a closed loop REST-based architectural model jointly
with state-of-the-art IoT and ITS technologies.

The use cases are related to both an urban environment and a highway
environment. They are:

� Area Access Control: access rules to restricted urban areas can be
either static, linked to transit permits owned for example by city cen-
ter residents, or dynamic through real time monitoring of road traffic
and pollution (level of CO2 and other parameters) conditions detected
by sensors. Intelligent cooperative sensing services provide collection,
processing and distribution of real-time data regarding road traffic con-
ditions and environmental parameters. These mechanisms enable the
management of access permissions to restricted areas, according to the
municipality’s rules and road traffic congestion, and additional services
such as alternative routing to vehicles with denied access.

� Intermodal transportation: in order to support new forms of trans-
portation such as car-sharing and bike-sharing, the presence of a number
of connected inter-modal transit nodes is needed. Such nodes consist in
parking slots and e-vehicle recharging areas in case of electric cars and
add up to a “system of sub-systems” that is “smart” in the sense that

1ICSI Project. Available: http://www.ict-icsi.eu/index.html Last Access:
June 12, 2014.
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4.2. ICSI SYSTEM ARCHITECTURE

it is constituted by cooperating components able to provide overarching
coordination through distribution of real time data regarding parking
availability, user service demand and management of charging points.

� Route guidance: aims at providing journey planning services with the
added value of gathering real-time information regarding traffic condi-
tions and detection of road accidents. The journey planning service is
also comprehensive of information regarding points of interest, service
areas and public transportation timetables.

� Road tolling systems: several road charging schemes such as area li-
censing, per access, distance based and time based are in use. In this
scenario, intelligent cooperative sensing services collect, process and dis-
tribute real-time data on road use to provide a flexible and dynamic
management of road pricing and charging systems.

4.2 ICSI System Architecture

ICSI is a pervasive system based on WSN and vehicular networks. This implies
that it should be able to collect and process a large amount of sensed data in
a scalable and reliable way and interconnect heterogeneous components as
depicted in Figure 4.1:

� Control Centres: are able to collect, store and process large amounts of
data from other components of the system and provide transportation
management functions.

� Road-Side Units (RSUs): are positioned along the road and collect mea-
sured data by sensor devices (flow sensors, parking slots sensors), provide
feedback (variable message signs, Electronic Vehicle charging spots) and
act as a gateway towards the Internet.

� On-Board Units (OBUs): are placed within the vehicle and can be
equipped with sensors and wireless networking equipment within the
vehicular network as well as optional Internet connectivity.

� User devices: tablets, smart phones etc. are held by pedestrians or
vehicle passengers and can provide transportation-related information
to the users.

In order to be compliant with ITS state of the art the ETSI ITS and ETSI
M2M technologies are considered. As discussed, ETSI ITS simply introduces a
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Figure 4.1: ICSI system components

functional scheme of an ITS system, a mapping of system components onto the
OSI stack and a terminology based on four sub-systems which we will adopt
in this instance:

� Central ITS sub-system (CS)

� Roadside ITS sub-system (RS)

� Vehicle ITS sub-system (CS)

� Personal ITS sub-system (PS)

4.2.1 Central Sub-System

A centralized architecture is the most common solution for a traffic manage-
ment system: all information is gathered and analyzed in the CS, decisions
are taken and infrastructure signals are sent back to the on-road infrastruc-
ture. Due to scalability issues a system like this is hard to maintain when the
number of components and the amount of data increase.

The ICSI system follows a distributed approach where each Gateway com-
ponent has CS functionalities and performs decentralized aggregation of traffic
information analyzing the information gathered from the road infrastructure:
Gateways may host for instance distributed algorithms for determining the best
traffic strategies for dealing with roadway accidents. Despite this decentral-
ization ICSI follows a layered approach in that a Gateway with a coordination
role is envisioned.
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4.2.2 Roadside Sub-System

A Roadside sub-system is composed of Roadside units i.e. sensor/actuator
devices. Sensors/actuators consist of autonomous embedded devices in charge
of extracting or influencing ITS parameters (e.g. number of cars in a road
segment or number of free parking lots); they are mapped onto ETSI M2M
D’ devices hosting a Device Application whose local SCL is the SCL of the
Gateway local to the VS itself.

4.2.3 Vehicular Sub-System

Vehicular equipment can use bidirectional communication channels (Vehicle-
to-Infrastructure and Infrastructure-to-Vehicle) to exchange information with
RSUs within the same or a different RS as well as On-Board Units. Compo-
nents of a Vehicular Sub-system in scope are a processing unit, an interface
to vehicular units such as Engine Control Unit, a Human-Machine interface,
a mobile broadband with 3G/4G communication capabilities and an optional
GPS system or similar; they can be seen as D’ devices hosting an ETSI M2M
Device Application.

4.2.4 Personal Sub-System

A Personal Sub-System consists of mobile devices (smartphones, etc...) used
by pedestrians or vehicle passengers with 3G/4G Internet access following the
D’ paradigm and connected to an ICSI gateway.

4.2.5 The ICSI System

As can be seen from Figure 4.2 the ICSI system follows a distributed ar-
chitecture which is mapped onto ETSI M2M in terms of Gateways and D’
devices.

The ICSI system relies on distributed storage and intelligence which cor-
responds to the functionalities traditionally assigned to a Central Sub-System
and now assigned to ETSI M2M Gateways. Each Gateway has a local scope,
meaning that it receives data from and elaborates data for a limited number
of components in a given area.

A single Gateway may communicate with Gateways of the same area han-
dling data relevant to the processing of complex data for sensors and actuators
of its own sub-system, or with gateways outside its area which may be issu-
ing commands or be interested in the data collected locally. For example an
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Figure 4.2: ICSI system mapped on ETSI M2M

accident detected locally may change the routing parameters of journey plan-
ning algorithms running on nodes far away which could be propagated through
subscriptions.

A “local area” is a logical rather than a physical concept and its perimeter
definition may depend on a number of elements such as population density,
traffic and expected usage. A “global area” will support inter-area communi-
cation by interconnecting several “local areas” as shown in Figure 4.3.

Figure 4.3: ICSI logical areas
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In order to ensure the real-timeness within the application domains defined,
which are not safety-critical but which do require effective data gathering and
processing, the following time thresholds must be enforced:

Scope Actors Gateway Time Scale Aggregation
Local RS,VS,PS No ≈ 10−2 sec None

Intra-Area RS,VS,PS Yes ≈ 10−1 sec Low
Inter-Area RS,VS,PS Yes 10 sec Medium

System CS,RS,VS,PS Yes ≈ 102 sec High

Table 4.1: Cooperative sensing levels
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Chapter 5

Implementation and
performance assessment

5.1 Introduction

The present chapter explains the concrete contribution of this work to the
ICSI project as well as the design and development work on which the system
evaluation has been performed.

In order to complete the stack of IoT enabling technologies the feasibility
of porting ETSI M2M onto sensor nodes needs to be proven: this is the main
goal of our work.

According to the IoT vision where objects themselves should be “smart”,
the goal is to have ETSI M2M compliant sensor nodes hosting a Device Ap-
plication and (possibly) a DSCL implementing a dIa interface as explained in
Chapter 2. The first step is nevertheless that of having a Device following a
D’ model where the sensor device hosts a Device Application while referring to
the Gateway SCL of the local area as Local SCL: the reference configuration
for our work is Case 2 of Figure 2.8. The hardware platform used in the ICSI
project is a SEED-EYE board1, which has been developed within the research
group. However, the performance measurements presented here have been ex-
ecuted on a Wismote sensor node2 using Cooja, a simulator for WSN. This
choice has been made so that other researchers can effortlessly replicate our
measurements on the platforms made available by the simulator before being
ported on actual hardware.

We based our software implementation on the Contiki Operating System

1http://rtn.sssup.it/index.php/hardware/seed-eye Last Access: June 12,
2014.

2http://wismote.org/doku.php Last Access: June 12, 2014.
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which provides networking libraries for the IoT.
In order to achieve generality a set of ETSI M2M CoAP Interoperability

Tests have been executed: instead of a test outcome consisting of a yes/no
verdict, additional time and energy measurements have been executed. Or
equivalently, ETSI M2M CoAP Interoperability Tests have been used as a
benchmark for performance evaluation.

The results can for this reason be considered suitably representative of the
performance of the ETSI M2M system.

5.2 The Development Platform

The open source operating systems for embedded devices targeted for IoT are
essentially three: TinyOS, Contiki and Riot. All these operating systems are
designed in order to work on severely resource-constrained classes of hard-
ware, with memory on the order of kilobytes, power budgets on the order
of milliwatts, processing speed measured in megahertz, and communication
bandwidth on the order of hundreds of kilobits per second. Often 8 or 16-bit
systems are targeted.

Riot has a real scheduler allowing concurrent flows of execution, while
Contiki and TinyOS are based on the event-driven programming paradigm, and
Contiki uses a mechanism called Protothreads [21]. Nevertheless Riot does not
fully implement the IoT stack yet: for instance it has a partial implementation
of CoAP.

The main difference between TinyOS and Contiki is historical: Contiki
supported the IoT stack earlier and for this reason its implementation is more
mature: the Contiki IPv6 stack for instance is fully certified under the IPv6
Ready Logo program, while the TinyOS IPv6 stack is not. For these reasons
in the present work Contiki has been chosen as the development platform.

5.2.1 Contiki

Contiki[20] is an open source operating system for the Internet of Things: it
provides low-power Internet communication by fully supporting IPv6 and IPv4
and the low-power wireless standards 6LoWPAN, RPL and CoAP so that even
wireless routers can be battery operated.

Contiki is designed to operate in extremely low-power systems: systems
that may need to run for years on a pair of AA batteries. It provides a set of
mechanisms for memory allocation such as memory block allocation memb, a
managed memory allocator mmem, as well as the standard C memory allocator
malloc.
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To save memory and at the same time provide a nice control flow in the
code, Contiki uses Protothreads, which are a mixture of event-driven and
multi-threaded programming mechanisms.

A customized Contiki environment is constituted by a number of compo-
nents including the “application” being developed and the operating system
itself which are compiled into a single executable file.

5.3 Preliminary performance assessment

Since DATEX2 3 is the data model indicated by the European Committee
for Standardization (CEN) as the format of choice for interoperable ITS sys-
tems4, we adapted the DATEX2 model to the notifications which will be
sent by the sensors. Such notification messages will constitute the body of
a <contentInstance> POST operation performed by the sensor device itself
every time a data item is sensed and sent to the Gateway for aggregation.

As a back-of-the envelope calculation we considered the M2M notifications
since they will likely be the type of message most frequently exchanged and
we tried to estimate which data format it would be reasonable to explore.

A DATEX2-compliant notification included within an ETSI M2M<notify>
resource and referred to parking slot occupation is reported in Appendix A.

The values reported in Table 5.1 are the size of the sample notification
evaluated using the data formats considered. The corresponding number of
CoAP blocks for a block size of 64 bytes is also shown5. The reason why we
report the number of blocks is that each block corresponds to an additional
network overhead, since it requires a header set corresponding to CoAP, UDP,
6LoWPAN and IEEE 802.15.4.

DATEX2 notification serialization

Profile
XML JSON Schema-Less Schema-Enabled

EXI EXI
Payload (bytes) 2308 1739 1453 307
factor vs. XML - 0.75 0.62 0.13
factor vs JSON - - 0.83 0.17

Number of
37 28 23 5

64 byte blocks

Table 5.1: DATEX2 notification serialization - size of serialized data

3http://www.datex2.eu/ Last Access: June 12, 2014.
4http://www.datex2.eu/sites/www.datex2.eu/files/Datex_Brochure_

2011.pdf Last Access: June 12, 2014.
5The Blockwise transfer is described in Chapter 2
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5.4. SYSTEM PARAMETERS

The preliminary performance assessment of Schema-Enabled and Schema-
Less EXI has been performed using OpenEXI6, a Java tool which converts an
XML structure into an EXI stream.

The outcome of the evaluation is that the use of XML is unfeasible given
the high number of CoAP blocks it is necessary to transmit: in a scenario with
non-negligible packet loss it would impede communication; using JSON and
Schema-Less EXI is also unreasonable.

Schema-Enabled EXI is an interesting candidate since the high compression
achieved could allow reducing the REST method execution time provided that
the overhead in terms of message encoding does not keep from having an overall
benefit due to the smaller number of blocks.

In any case even in the case of Schema-Enabled EXI, DATEX2 introduces
a very high structural overhead and therefore should be adopted only if strictly
necessary in order not to impede communication performance.

As a conclusion, the adoption of DATEX2 as the data model on top of ETSI
M2M introduces an excessive overhead. Nevertheless EXI has been proven the
only viable choice in comparison with the other options considered and for this
reason should be evaluated as a candidate for ETSI M2M communications not
necessarily relying on DATEX2.

The implementation of EXI on embedded systems requires meeting the
constraints on RAM availability. Moreover the time performance of the en-
coding procedure needs to be evaluated directly on the sensor itself since it
could differ significantly from the values measured on a PC workstation.

5.4 System Parameters

The simulation set up comprises of three Wismote nodes: a client, a server,
and a border router, as depicted in Figure 5.1.

The border router creates the Routing Protocol for Low Power and Lossy
Networks (RPL) Directed Acyclic Graph. We consider the situation when
client and server communicate directly in a single-hop manner. EXI com-
pression has been carried out with the bit-packed alignment option: in order
to achieve maximum compression in size, event codes and content items are
aligned at bit-level.

For Schema-Enabled EXI encoding the Strict encoding option has been
enabled: a deviation from the schema results in an error. This brings the
benefit of reducing the length of event codes.

In the simulations the parameter Packet Delivery Rate (PDR) has been
used. This parameter is expressed as a percentage and it represents the fraction

6http://openexi.sourceforge.net/ Last Access: June 12, 2014.
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Figure 5.1: Cooja simulation

of the frames at physical level sent by the source mote which are successfully
received by the destination mote.

ETSI M2M CoAP Interoperability tests have been executed in conditions of
100% success rate in delivery at physical level (PDR, Packet Delivery Ratio).
Additional tests have then been executed at 95% PDR. Cooja implements
loss using a uniform distribution over the messages exchanged: it does not
distinguish between scenarios where there are an equal number of packets
which differ in length.

5.5 Compression performance evaluation

The performance of the two M2M data serialization modes alternative to XML
(JSON and EXI) has been compared according to the following criteria:

1. Compression gain.

2. Serialization complexity, in terms of both memory usage and time.
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3. Performance over ETSI M2M CoAP Interoperability Tests : execution
time, channel usage and energy consumption of a CoAP operation (GET,
POST, PUT methods over RESTful resources) between two nodes.

4. Performance in a lossy configuration.

While evaluating the EXI format two configurations have been considered,
corresponding to Schema-Enabled serialization and Schema-Less serialization.

5.5.1 The Measurement process

The time values reported are the result of an average of a set of indepen-
dent measurements where the uncertainty has been taken as 3 ∗ σ̂ where

σ̂ =
√

1
N(N−1)

∗
∑N

i=1(xi − 〈x〉)2, xi are the measured value and 〈x〉 is the

mean value7.
The number of samples has been estimated for each average value8 and

is on the order of 103 for measurements with a 100% PDR and on the order
of 104–105 for measurements with a 95% PDR. It has been then verified a
posteriori that the relative uncertainty is always less than 5%: this condition
does not apply to JSON serialization/deserialization times which are too small
in comparison with the resolution of the measurement itself.

5.5.2 Energy measurements

Energy measurements are referred to the client node. Server-side energy con-
sumption is out of scope in the present work.

Energy consumption has been estimated using the energest library. With
energest we can perform time measurements relatively to the CPU and the
radio module separately. Moreover, we can distinguish between CPU active
time, and low power mode time. For the radio, we have measured transmission
time and listening time.

The values reported as energy measurements are the sum of the CPU con-
sumption and the energy used for transmitting and receiving messages. We
have chosen not to consider idle time and listen time because they can depend
highly on the duty cycle pattern used, and their inclusion would have made
our results less general. Moreover, the sensor node radio is not necessarily
inactive while waiting for an answer: in an analogous way the low power mode

7σ̂ is sometimes called standard error in the scientific literature.
8Using the empirical formula ∆x ≈ xmax−xmin√

N
, aiming at a relative uncertainty in the

order of 1%
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energy consumption (when the Protothread is suspended, waiting for an event
such as the reception of a message or a timeout) is not considered.

The values measured correspond to the energy spent for executing an oper-
ation, but it should be noted that they do not represent the additional energy
spent for operation execution with respect to a situation where the CPU is in
low power mode and the radio is listening according to its duty cycle.

The operating currents have been obtained from Wismote and CC2520
transceiver data sheets, and are reported in Table 5.2:

Operating Currents
Mode Value
Transmission 25.8 mA
Reception 18.5 mA
CPU active 2.2 mA

Table 5.2: Operating currents for Wismote and CC2520

The formula describing energy dissipated by the system:

E =
∫ t2

t1
W (t)dt =

∫ t2

t1
V (t)I(t)dt

in our case can be simplified as:

E =
∫ t2

t1
V I(t)dt

In a Wismote sensor device, the operating voltage for both CPU and the
radio modules is 3.3V.

In order to obtain the corresponding results for a sensor device operating
at a different voltage, it is sufficient to rescale the results reported in this
Chapter.

5.6 Compression Gain

In this section we discuss the size of the payloads used throughout the perfor-
mance assessment, for the three data serialization methods considered.

With respect to JSON, EXI performance in compression is expected to
depend in a non-trivial way on the structure of the grammar used, on the
structure of the message itself, on the content of the message9 and on the data
types used.

9“structure” and “content” terms are used referring to the element name and the element
content in the XML version of a message, i.e. < structure > content < /structure >
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The size of the serialized data is reported for<application>, <subscription>
and <contentInstance> M2M resources10; the corresponding data used is re-
ported in Appendices B, C and D respectively.

The message profiles chosen increase both their content and structure com-
ponents as the profile number goes from 1 to 4, except the <contentInstance>
resource, where only the content part of the XML increases in size.

A trend should not be deduced from the data reported: the high gain
for short messages is due to the absence of an EXI counterpart for the XML
declaration, as seen in Subsection 2.7.2, which has a smaller impact as messages
get larger.

We would expect instead the situation to become stable after a given
threshold, and to have peaks of size gain for EXI with respect to JSON
whenever structures are repeated (EXI Schema-Less) or content is repeated
(EXI Schema-Less and EXI Schema-Enabled). Moreover, for large data items
with highly repetitive structures we would expect EXI Schema-Less and EXI
Schema-Enabled to become closer in performance, due to EXI Schema-Less
dynamic learning mechanisms. EXI Schema-Less builds up grammar struc-
tures when a given structure is processed the first time, in such a way that
they can then be referred to indirectly when such structure is subsequently
encountered, without re-encoding the structure item.

These situations have not been explored experimentally due to the RAM
limitations of the Wismote mote used for testing.

<application> resource serialization

Profile
XML JSON Schema-Less EXI Schema-Enabled EXI

payload payload payload size factor payload size factor
(bytes) (bytes) (bytes) vs.JSON (bytes) vs.JSON

1. 103 56 42 0.75 7 0.12
2. 235 142 111 0.78 33 0.23
3. 424 279 236 0.84 113 0.41
4. 628 424 377 0.89 195 0.46

Table 5.3: <application> resource serialization - size of serialized data

10The grammars have been generated from the ETSI XSD documents available
at the URL: http://www.etsi.org/deliver/etsi_ts/102900_102999/102921/
01.01.01_60/ts_102921v010101p0.zip Last Access: June 12, 2014.
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Figure 5.2: <application> resource serialization - size of serialized data

<subscription> resource serialization

Profile
XML JSON Schema-Less EXI Schema-Enabled EXI

payload payload payload size factor payload size factor
(bytes) (bytes) (bytes) vs.JSON (bytes) vs.JSON

1. 105 57 43 0.75 7 0.12
2. 170 104 86 0.83 16 0.15
3. 235 151 129 0.68 25 0.16
4. 291 196 170 0.73 57 0.29

Table 5.4: <subscription> resource serialization - size of serialized data
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Figure 5.3: <subscription> resource serialization - size of serialized data

<contentInstance> resource serialization

Profile
XML JSON Schema-Less EXI Schema-Enabled EXI

payload payload payload size factor payload size factor
(bytes) (bytes) (bytes) vs.JSON (bytes) vs.JSON

1. 233 147 127 0.96 44 0.30
2. 300 199 179 0.90 96 0.48
3. 363 277 258 0.93 175 0.63
4. 467 381 362 0.95 279 0.73

Table 5.5: <contentInstance> resource serialization - size of serialized data

Comparing the compression gains, we can see that the size gain obtained
for an EXI Schema-Enabled <subscription> resource is higher than the one
achieved for an EXI Schema-Enabled <application> resource. This is due to
the high size gain achieved by EXI for DateTime data types, in comparison to
the one achieved in the case of plain strings, which constitute the content of
the <application> resource. EXI Schema-Less does not benefit from this fact
because it encodes DateTime data types as plain strings.
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Figure 5.4: <contentInstance> resource serialization - size of serialized data

The lower size gain obtained for a <contentInstance> resource is due to
the fact that this resource has a high content size over structure size ratio,
compared to the other two cases, and the content is not repetitive. This is the
situation where EXI performs worse.

5.6.1 Size in terms of CoAP blocks

In a constrained network, payloads resulting in frames larger than 127 bytes
are subject to fragmentation at IP layer, as seen in Chapter 2. Contiki for
example fragments UDP packets larger than 90 bytes, in order to keep some
margin and avoid fragmentation in the pessimistic case of a 6LoWPAN header
expansion while crossing a multi-hop 6LoWPAN network.

The first level of fragmentation takes place at CoAP level. The default
block size is 64 bytes, but it can be increased or decreased as long as it is
expressed as a power of two, is greater or equal to 16 bytes and smaller or
equal to 1024 bytes (SZX∈[0,6], SZX=7 is reserved).

We focus CoAP fragmentation in terms of blocks, because not all 6LoW-
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PAN networks support fragmentation at IP level, due to the limited resources
available.

Below we show the dimensions of the packets in terms of number of blocks:
they will be recalled in ETSI M2M CoAP Interoperability Test tables to allow
a quicker interpretation of the performance graphs.

Profile

Number of Blocks
XML JSON Schema-Less Schema-Enabled

EXI EXI
# # # #

1. 2 1 1 1
2. 4 3 2 1
3. 6 5 4 2
4. 10 7 6 3

Table 5.6: <application> resource - Number of Blocks for blocks of 64 bytes

Profile

Number of Blocks
XML JSON Schema-Less Schema-Enabled

EXI EXI
# # # #

1. 2 1 1 1
2. 3 2 2 1
3. 4 3 3 1
4. 5 4 3 1

Table 5.7: <subscription> resource - Number of Blocks for blocks of 64 bytes

Profile

Number of Blocks
XML JSON Schema-Less Schema-Enabled

EXI EXI
# # # #

1. 4 3 2 1
2. 5 4 3 2
3. 6 5 5 3
4. 8 6 6 5

Table 5.8: <contentInstance> resource - Number of Blocks for blocks of 64 bytes

We can observe from Table 5.6.1 that the EXI Schema-Enabled serialization
of a<subscription> resource is particularly efficient, indeed all message profiles
map onto a single CoAP block. The EXI Schema-Enabled serialization of a
<contentInstance> resource, on the contrary, shows a lower gain with respect
to JSON.
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5.7 Serialization Complexity

The Serialization complexity has been measured for an < application > re-
source.

5.7.1 Serialization time

The serialization time has a relevant weight in the overall operation perfor-
mance because EXIP is not currently engineered to exploit the parallelism
between block serialization and block delivery.

We can see that JSON serialization performs an order of magnitude better
compared to EXI, with respect to time, whereas EXI Schema-Less and EXI
Schema-Enabled differ by a factor of two, and EXI Schema-Enabled is faster.

<application> resource serialization time

Profile
JSON Schema-Less Schema-Enabled
(ms) (ms) (ms)

1. 0.17 ± 0.02 5.64 ± 0.03 2.50 ± 0.01
2. 0.42 ± 0.01 14.80 ± 0.07 6.07 ± 0.03
3. 0.62 ± 0.02 31.5 ± 0.2 15.01 ± 0.07
4. 1.10 ± 0.01 48.0 ± 0.2 23.1 ± 0.1

Table 5.9: <application> resource serialization - Serialization time complexity

5.7.2 Deserialization time

Deserialization times for EXI Schema-Less, EXI Schema-Enabled and JSON
are reported below for completeness. EXI deserialization is faster compared
to EXI serialization, whereas for JSON the opposite is true.

<application> resource deserialization time

Profile
JSON Schema-Less Schema-Enabled
(ms) (ms) (ms)

1. 0.27 ± 0.01 3.60 ± 0.01 2.05 ± 0.01
2. 0.73 ± 0.01 9.70 ± 0.04 4.45 ± 0.02
3. 1.09 ± 0.01 19.17 ± 0.09 8.46 ± 0.04
4. 1.86 ± 0.01 27.5 ± 0.1 12.05 ± 0.06

Table 5.10: <application> resource deserialization - Deserialization time complex-
ity
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5.7.3 Serialization memory usage

The measurements of memory usage are specific for an applicationCreate op-
eration. The estimate of the stack size at run time is inclusive of:

� Contiki OS and its communication stack: IEEE 802.15.4, 6LoWPAN,
Erbium (CoAP)

� EXIP

The ETSI M2M implementation is not considered since its dimension is
highly dependent on the specific deployment.

Memory usage - applicationCreate
JSON Schema-Less Schema-Enabled

Text + Data
5 KB 43 KB 50 KB

(ROM)
Data + BSS

210 B 8 KB 9 KB
(RAM)

Stack at run-time
(500 ± 70) B (680 ± 40) B (650 ± 40) B

(RAM)

Table 5.11: Memory usage - applicationCreate

With EXI, the stack is used at 30% for Schema-Less encoding and at 40%
for Schema-Enabled encoding: the total RAM available for stack and heap at
run-time is respectively 2250 and 1710 bytes. Out of the initial Wismote RAM
size of 16 Kb, 8 Kb are used by EXI and 5.7 Kb are used by Contiki OS and
the communication stack.

5.8 ETSI M2M CoAP Interoperability Tests

ETSI M2M CoAP Interoperability Tests consist in the execution of a set of op-
erations (create, retrieve, update) over ETSI M2M resources (<application>,
<subscription>, <contentInstance>) and in verifying the output of the server:
the client is seen as the sensor node M2M Device Application and the server
as the Gateway SCL.

In this instance the goal is not to test the Gateway implementation which
has been built using the Cooja simulation tool for the sole purpose of execut-
ing the tests themselves. The goal is to understand the performance of the
data serialization methods using ETSI M2M CoAP Interoperability Tests as a
benchmark.

To summarize, the tests executed are:
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5.8. ETSI M2M COAP INTEROPERABILITY TESTS

� applicationCreate: ETSI M2M CoAP Test TD M2M COAP 01.

� applicationRetrieve: ETSI M2M CoAP TD M2M COAP 02.

� applicationUpdate: ETSI M2M CoAP Test TD M2M COAP 03.

� subscriptionCreate: ETSI M2M CoAP Test TD M2M COAP 04.

� contentInstanceRetrieve: ETSI M2M CoAP Test TD M2M COAP 08.

Hereby we list the tests we did not execute, and comment on the reasons
for exclusion:

� subscriptionNotify: ETSI M2M CoAP Test TD M2M COAP 05, refers
to a use case that will not be considered in ICSI.

� subscriptionDelete: ETSI M2M CoAP Test TD M2M COAP 06, does
not involve any payload.

� applicationDelete: ETSI M2M CoAP Test TD M2M COAP 07, does not
involve any payload.

� MultipleQueryOptions: ETSI M2M CoAP Test TD M2M COAP 09, con-
sidered as message benchmark item, it is equivalent to TD M2M COAP 08.

� PartialAddressing: ETSI M2M CoAP Test TD M2M COAP 10, consid-
ered as message benchmark item, it is equivalent to TD M2M COAP 08.

� Announcement: ETSI M2M CoAP Test TD M2M COAP 11, considered
as message benchmark item, it is equivalent to TD M2M COAP 01.

The performance of the various serialization methods has been evaluated
through the Cooja simulation tool using a 100% PDR. Motes have been dis-
placed in a triangular network where the server and client communicate directly
in single-hop.

The message profiles used for the tests are reported in Appendix B, C and
D: XML data are shown just for reference. Indeed in the analytical assessment
XML has not been considered because of its redundancy, making it not suitable
for constrained networks.

In the following we have considered the contributions in terms of energy and
time of CPU usage, Transmission and Reception. CPU usage is referred to the
serialization time, and to the OS and communication stack. It should be noted
that Network and MAC layers in Wireless Sensor devices are implemented in
software.
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Deserialization at the client side has not been taken into account because
the pattern used by an endpoint to extract information from a message depends
on the specific implementation and use case.

5.9 application Create

For a POST request, the time interval measured includes the serialization and
delivery time of the request, and the delivery time of the response which does
not carry a payload.

The response carries an optional payload depending on whether the server
accepts the application resource as proposed by the client, or modifies some or
all of its parts: we put ourselves in the scenario where the application proposal
by the client is accepted by the server without modifications: for this reason
the server response does not contain a payload.

Profile
JSON

EXI Number of
Schema-Less Schema-Enabled blocks

(ms) (ms) (ms)
1 19.06 ± 0.09 22.7 ± 0.1 12.00 ± 0.06 /1/1/1/
2 42.3 ± 0.2 45.7 ± 0.2 19.05 ± 0.09 /3/2/1/
3 75.1 ± 0.4 94.2 ± 0.5 46.0 ± 0.2 /5/4/2/
4 111.3 ± 0.5 143.5 ± 0.7 80.1 ± 0.4 /7/6/3/

Table 5.12: applicationCreate execution time

Profile
JSON

EXI
Schema-Less Schema-Enabled

bytes bytes bytes
1. 245 232 (-5%) 155 (-36%)
2. 640 469 (-27%) 181 (-72%)
3. 1135 953 (-16%) 471 (-58%)
4. 1679 1448 (-14%) 870 (-48%)

Table 5.13: applicationCreate channel usage
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5.9. APPLICATION CREATE

Energy Type
JSON

EXI
Schema-Less Schema-Enabled

µJ µJ µJ
Profile 1

TOTAL 719 ± 4 638 ± 3 340 ± 1
TX 426 ± 2 341 ± 2 170.3 ± 0.8
RX 199 ± 1 171.3 ± 0.8 103.9 ± 0.5

CPU 94.4 ± 0.5 125.7 ± 0.6 65.3 ± 0.3
Profile 2

TOTAL 1642 ± 8 1337 ± 7 512 ± 3
TX 1107 ± 5 851 ± 4 255 ± 1
RX 282 ± 1 189.9 ± 0.9 154.1 ± 0.8

CPU 252 ± 1 297 ± 1 101.6 ± 0.5
Profile 3

TOTAL 2970 ± 10 2775 ± 14 1337 ± 7
TX 2043 ± 10 1788 ± 9 851 ± 4
RX 470 ± 2 375 ± 2 187.8 ± 0.9

CPU 456 ± 2 611 ± 3 298 ± 1
Profile 4

TOTAL 4490 ± 20 4230 ± 20 2410 ± 10
TX 3150 ± 15 2724 ± 14 1532 ± 8
RX 657 ± 3 566 ± 3 373 ± 2

CPU 686 ± 3 936 ± 5 508 ± 2

Table 5.14: applicationCreate energy consumption

Table 5.12 shows applicationCreate execution times. The measured data is
also reported in Figure 5.5.

From Figure 5.5 we can see that when Profile 1 is adopted, we use just one
CoAP block of 64 bytes with all data formats considered. Schema-Enabled
EXI decreases the disadvantage in encoding time with respect to JSON with
a lower transmission time, while Schema-Less EXI is not able to decrease it
enough to result in a overall faster POST.

Throughout Profiles 2 to 4 Schema-Less EXI keeps suffering from the high
encoding time without having a decisive advantage in transmission with respect
to JSON; we expect this situation to change if:

1. The block serialization and block delivery activities are executed in par-
allel.

2. The communication takes place over a lossy network.
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Schema-Enabled EXI has instead a clear advantage with respect to the other
formats which increases with payload complexity: it benefits from efficiency
in terms of transmission time of a smaller payload which largely compensates
its encoding time.

As a consistency check it has been verified that the results referring to
an equal number CoAP packets once the serialization time is subtracted are
compatible within the interval defined by the transmission time of a CoAP
single CoAP block (since CoAP does not use padding) which is 2 ms.

This relation holds except for the comparison EXI Schema-Less vs. EXI
Schema-Enabled in Profile 1: this is due to 6LoWPAN fragmentation which is
performed when the UDP packet as a whole exceeds 90 bytes, and happens in
the EXI Schema-Less case, but not in the EXI Schema-Enabled one.

The 90 bytes threshold is Contiki-specific: Contiki estimates the overhead
introduced by IP, 6LoWPAN, IEEE 802.15.4 as 57 bytes, in order to avoid
fragmentation even in a pessimistic scenario where for example the 6LoWPAN
header may be extended in length. This could happen if the packet crosses
a network that requires the insertion of a Fragmentation Header or a Mesh
Addressing Header as described in Chapter 2 due to the presence of a multi-
hop path.

Figure 5.6 shows the energy consumption of a applicationCreate operation,
and the contributions in terms of transmission, reception and CPU consump-
tions.

From Figure 5.6 we can see that even if EXI Schema-Less performs worse
in time, it brings a benefit in comparison to JSON from an energy standpoint.
This is due to the fact that a smaller payload implies a lower radio usage,
which has an higher power consumption than the one deriving from the CPU
usage. EXI Schema-Enabled brings a large advantage compared to both JSON
and EXI Schema-Less.

From Table 5.13 we can see that while the use of EXI Schema-Less reduces
channel usage by a factor of approximately 15% with respect to JSON, EXI
Schema-Enabled reaches an average of 50%.

5.10 application Retrieve

For an applicationRetrieve operation, in addition to the situation where the
server has high computational capabilities (Scenario 1), we also explore the
case where the GSCL is hosted by a sensor node (Scenario 2). In this last
case the serialization time cannot be considered negligible with respect to the
operation execution time.

While the applicationRetrieve operation execution time depends on whether
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5.10. APPLICATION RETRIEVE

Figure 5.5: applicationCreate execution time

the data serialization is negligible with respect to data delivery, the channel
usage and the energy consumption do not.

For a GET request, the time interval measured includes the delivery time
of the request and the serialization and delivery time time of the response: the
request does not carry a payload.

Profile
JSON

EXI Number of
Schema-Less Schema-Enabled blocks

(ms) (ms) (ms)
1 12.70 ± 0.06 11.73 ± 0.05 9.35 ± 0.04 /1/1/1/
2 35.0 ± 0.2 24.7 ± 0.1 11.12 ± 0.05 /3/2/1/
3 60.8 ± 0.3 49.7 ± 0.2 24.8 ± 0.1 /5/4/2/
4 87.2 ± 0.4 75.5 ± 0.4 48.3 ± 0.2 /7/6/3/

Table 5.15: applicationRetrieve execution time - Scenario 1
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Figure 5.6: applicationCreate energy consumption

Profile
JSON

EXI Number of
Schema-Less Schema-Enabled blocks

(ms) (ms) (ms)
1 12.86 ± 0.06 17.44 ± 0.08 11.95 ± 0.05 /1/1/1/
2 35.41 ± 0.17 39.6 ± 0.2 17.29 ± 0.08 /3/2/1/
3 61.5 ± 0.3 81.1 ± 0.4 39.9 ± 0.2 /5/4/2/
4 88.2 ± 0.4 123.5 ± 0.6 71.5 ± 0.3 /7/6/3/

Table 5.16: applicationRetrieve execution - Scenario 2

81



5.10. APPLICATION RETRIEVE

Profile
JSON

EXI
Schema-Less Schema-Enabled

bytes bytes bytes
1. 185 171 (-7%) 136 (-26%)
2. 533 371 (-30%) 162 (-70%)
3. 932 758 (-18%) 373 (-60%)
4. 1339 1158 (-14%) 757 (-43%)

Table 5.17: applicationRetrieve channel usage

Energy Type
JSON

EXI
Schema-Less Schema-Enabled

µJ µJ µJ
Profile 1

TOTAL 403 ± 2 375 ± 2 300 ± 1
TX 170.3 ± 0.8 170.3 ± 0.8 170 ± 0.8
RX 189.4 ± 0.9 161.4 ± 0.8 93.6 ± 0.4

CPU 43.6 ± 0.2 43.6 ± 0.2 36.3 ± 0.2
Profile 2

TOTAL 1242 ± 6 803 ± 4 359 ± 2
TX 595 ± 3 340 ± 2 170.3 ± 0.8
RX 517 ± 3 375 ± 2 143.2 ± 0.7

CPU 130.7 ± 0.6 87.1 ± 0.4 43.6 ± 0.2
Profile 3

TOTAL 2105 ± 10 1726 ± 9 807 ± 4
TX 937 ± 5 766 ± 4 341 ± 2
RX 943 ± 5 780 ± 4 379 ± 2

CPU 225 ± 1 179 ± 0.9 87.1 ± 0.4
Profile 4

TOTAL 3059 ± 15 2668 ± 13 1718 ± 9
TX 1362 ± 7 1192 ± 6 766 ± 4
RX 1385 ± 7 1207 ± 6 776 ± 4

CPU 312 ± 2 269 ± 1 176 ± 1

Table 5.18: applicationRetrieve energy consumption

From the point of view of channel usage, reported in Table 5.17 and of the
energy consumption in Figure 5.8, it is clear that EXI Schema-Less is bet-
ter than JSON, and that EXI Schema-Enable is better than EXI Schema-Less.

Scenario 1
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Figure 5.7 shows the execution times for a applicationRetrieve operation in
relation with the serialization method adopted.

Again, the situation is clear: EXI Schema-Enabled performs better than
EXI Schema-Less and JSON, and EXI Schema-Less performs better than
JSON.

Scenario 2
From Figure 5.9 we can see that in Scenario 2 JSON tends to perform

better than Schema-Less EXI: Schema-Less EXI never overcomes the initial
disadvantage in encoding time.

On the one hand, the trend for increasing payload within the observed
range lengths does not suggest that the compression ratio will become relevant
enough to bring a significant benefit in transmission time and counterbalance
the long encoding time.

On the other hand, in situations such as Profile 2 when Schema-Less EXI
maps to a number of blocks inferior to the one used instead by JSON, the two
serialization formats do become closer. It should be verified whether for larger
payloads the size savings add up and Schema-Less EXI becomes competitive
with JSON or not, and under which conditions of packet loss.

Schema-Enabled EXI performs significantly better than the other encod-
ing formats due to the smaller payload: a Schema-Enabled EXI performs as
well as a JSON Profile 2 (they both map the payload onto 3 CoAP blocks)
and a Schema-Enabled EXI performs as well as a Schema-Less EXI Profile 2
(they both map the payload onto 2 CoAP blocks) while having comparable
serialization time.

It is interesting to observe that Profile 1 EXI Schema-Enabled and EXI
Schema-Less measures are compatible once the serialization time is subtracted,
unlike the applicationCreate case: now 6LoWPAN fragmentation never occurs
due to the fact that the CoAP header never contains the Uri-Path option when
it contains a payload and therefore a 64 byte payload never generates a UDP
packet larger than 90 bytes.

5.11 application Update

In this case we intend to consider a situation where both client and server
adopt a Blockwise communication: this happens when a client requests an
applicationUpdate operation through a PUT method and the server (hosting
SCL) does not accept the values proposed. The server returns the resource
representation actually modified in the response.

We considered a situation where the server does not accept any of the
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Figure 5.7: applicationRetrieve execution time - Scenario 1

parameters provided, and responds with a message having a payload of the
same length of the one present in the request.

For this test suite item, we have considered the case where the server com-
putation time is negligible compared to the overall operation execution time.

Profile
JSON

EXI Number of
Schema-Less Schema-Enabled blocks

(ms) (ms) (ms)
1 19.48 ± 0.09 23.2 ± 0.1 12.39 ± 0.06 /1/1/1/
2 72.5 ± 0.4 65.5 ± 0.3 22.4 ± 0.1 /3/2/1/
3 134.8 ± 0.7 139.7 ± 0.7 65.9 ± 0.3 /5/4/2/
4 195 ± 1 216 ± 1 124.2 ± 0.6 /7/6/3/

Table 5.19: applicationUpdate execution time
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Figure 5.8: applicationRetrieve execution time

Profile
JSON

EXI
Schema-Less Schema-Enabled

bytes bytes bytes
1. 253 238 (-6%) 163 (-36%)
2. 1108 929 (-16%) 230 (-79%)
3. 2055 1823 (-11%) 1326 (-35%)
4. 2977 2738 (-8%) 2144 (-28%)

Table 5.20: applicationUpdate channel usage
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Figure 5.9: applicationRetrieve execution time - Scenario 2
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Energy Type
JSON

EXI
Schema-Less Schema-Enabled

µJ µJ µJ
Profile 1

TOTAL 720 ± 4 643 ± 3 340 ± 2
TX 426 ± 2 341 ± 2 170.3 ± 0.9
RX 199 ± 1 171.3 ± 0.8 103.9 ± 0.5

CPU 94.4 ± 0.5 130.7 ± 0.6 65.3 ± 0.3
Profile 2

TOTAL 2760 ± 14 2008 ± 10 624 ± 3
TX 1618 ± 9 1107 ± 6 340 ± 2
RX 787 ± 4 553 ± 3 152 ± 0.8

CPU 352 ± 2 348 ± 2 131 ± 0.6
Profile 3

TOTAL 5150 ± 30 4380 ± 20 2019 ± 11
TX 3065 ± 15 2470 ± 10 1107 ± 6
RX 1404 ± 7 1146 ± 6 557 ± 3

CPU 677 ± 3 762 ± 4 356 ± 2
Profile 4

TOTAL 7520 ± 40 6780 ± 30 4020 ± 20
TX 4510 ± 20 3830 ± 20 2210 ± 10
RX 2029 ± 10 1765 ± 9 1142 ± 6

CPU 984 ± 5 1183 ± 6 660 ± 3

Table 5.21: applicationUpdate energy consumption

Figure 5.10 shows the execution times for the applicationUpdate operation.
Comparing Figure 5.10 with Figure 5.5 we can see that, as could be easily

anticipated, the presence of a response payload decreases the difference be-
tween JSON and Schema-Less EXI, while the difference between JSON and
Schema-Enable EXI increases. Of course this happens only because the Gate-
way is assumed to be a high-end system.

The channel usage gain obtained is inferior to the one reported in Ta-
ble 5.17 because the two-way Blockwise transfer piggybacks the first block of
the response in the Acknowledgement of the last block of the request.

The client energy consumption, which does not depend on whether the
server has or has not limited computing resources, clearly shows that EXI
Schema-Less performs better than JSON, and that EXI Schema-Enabled per-
forms better than EXI Schema-Less.

87



5.12. SUBSCRIPTION CREATE

Figure 5.10: applicationUpdate execution time

5.12 subscription Create

The subscriptionCreate measurement is analogous to applicationCreate: the
only difference lies in the different payload transmitted.

Profile
JSON

EXI Number of
Schema-Less Schema-Enabled blocks

(ms) (ms) (ms)
1 20.1 ± 0.1 23.8 ± 0.1 14.02 ± 0.07 /1/1/1/
2 32.5 ± 0.2 42.4 ± 0.2 18.95 ± 0.09 /2/2/1/
3 48.4 ± 0.2 60.8 ± 0.3 21.0 ± 0.1 /3/3/1/
4 61.2 ± 0.3 71.6 ± 0.3 28.7 ± 0.1 /4/3/1/

Table 5.22: subscriptionCreate execution time
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Figure 5.11: applicationUpdate energy consumption

Profile
JSON

EXI
Schema-Less Schema-Enabled

bytes bytes bytes
1. 265 251 (-5%) 174 (-34%)
2. 500 482 (-2%) 224 (-55%)
3. 745 682 (-8%) 233 (-69%)
4. 947 764 (-19%) 265 (-72%)

Table 5.23: subscriptionCreate channel usage
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Energy Type
JSON

EXI
Schema-Less Schema-Enabled

µJ µJ µJ
Profile 1

TOTAL 728 ± 4 730 ± 4 438 ± 2
TX 426 ± 2 426 ± 2 255 ± 1
RX 201 ± 1 173.2 ± 0.9 102.3 ± 0.5

CPU 101.6 ± 0.5 130.7 ± 0.6 79.5 ± 0.4
Profile 2

TOTAL 1319 ± 7 1309 ± 6 569 ± 3
TX 936 ± 5 851 ± 4 341 ± 2
RX 186.1 ± 0.9 189.9 ± 0.9 119 ± 0.6

CPU 196 ± 1 269 ± 1 109.9 ± 0.5
Profile 3

TOTAL 1940 ± 10 1940 ± 10 603 ± 3
TX 1362 ± 7 1277 ± 6 340.6 ± 2
RX 279 ± 1 281 ± 1 138.6 ± 0.7

CPU 297 ± 1 384 ± 2 123.4 ± 0.6
Profile 4

TOTAL 2529 ± 12 2192 ± 11 786 ± 4
TX 1788 ± 9 1447 ± 7 426 ± 2
RX 372 ± 2 280 ± 1 201 ± 1

CPU 369 ± 2 464 ± 2 160 ± 0.8

Table 5.24: subscriptionCreate energy consumption

Figure 5.12 shows subscriptionCreate operation execution time.
From Figure 5.12 we can observe that the use of EXI Schema-Enabled

consistently decreases the execution time with respect to JSON, due to the
reduction in terms of the number of CoAP blocks. As for EXI Schema-Less,
the overall behavior already registered for applicationCreate and shown in Fig-
ure 5.5 is confirmed.

The energy consumption is shown in Figure 5.13. Whereas the benefit of
using EXI Schema-Enabled instead of JSON is clear, EXI Schema-Less suffers
from the fact that JSON and EXI Schema-Enabled map the payload into an
equal number of CoAP blocks for Profile 1, Profile 2 and Profile 3.

In this case EXI Schema-Less Profile 3 has a higher compression gain with
respect to JSON, compared to the one measured for EXI Schema-Less Profile 3
for an < application > resource. Due to the mapping in terms of CoAP blocks,
the same relationship does not hold when we consider the energy consumption
gain with respect to JSON.
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Figure 5.12: subscriptionCreate execution time

5.13 contentInstance Retrieve

As we did for the applicationRetrieve operation, also for the contentInstanceRe-
trieve operation we explore the case where the GSCL is hosted by a sensor
node (Scenario 2), in addition to the first scenario where the server has high
computational capabilities (Scenario 1).

Again, the channel usage and the energy consumption do not depend on
whether the serialization time is negligible or not compared to the overall
operation execution time.

From Table 5.27 we can see that as the profile number increases, the channel
usage for EXI Schema-Less and JSON becomes comparable. This is due to
the fact that for Profile 3 and Profile 4, JSON and EXI Schema-Less result in
the same number of blocks.

This also affects the energy consumption: JSON and EXI Schema-Less
have a similar energy consumption in both Profile 3 and Profile 4.
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Figure 5.13: subscriptionCreate execution time

Profile
JSON

EXI Number of
Schema-Less Schema-Enabled blocks

(ms) (ms) (ms)
1 38.2 ± 0.2 27.6 ± 0.1 12.79 ± 0.06 /3/2/1/
2 50.9 ± 0.3 40.3 ± 0.2 25.5 ± 0.1 /4/3/2/
3 65.4 ± 0.3 65.5 ± 0.3 40.1 ± 0.2 /5/5/3/
4 81.6 ± 0.4 80.4 ± 0.4 65.6 ± 0.3 /6/6/5/

Table 5.25: contentInstanceRetrieve execution time - Scenario 1
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Profile
JSON

EXI Number of
Schema-Less Schema-Enabled blocks

(ms) (ms) (ms)
1 38.6 ± 0.2 43.7 ± 0.2 18.7 ± 0.1 /3/2/1/
2 51.4 ± 0.2 60.9 ± 0.3 36.1 ± 0.2 /4/3/2/
3 66.1 ± 0.3 92.9 ± 0.5 57.5 ± 0.3 /5/5/3/
4 82.6 ± 0.4 116.7 ± 0.6 91.9 ± 0.4 /6/6/5/

Table 5.26: contentInstanceRetrieve execution time - Scenario 2

Profile
JSON

EXI
Schema-Less Schema-Enabled

bytes bytes bytes
1. 604 431 (-29%) 195 (-68%)
2. 809 636 (-21%) 400 (-51%)
3. 1040 1060 (+2%) 632 (-39%)
4. 1297 1278 (-1%) 1042 (-20%)

Table 5.27: contentInstanceRetrieve channel usage
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Energy Type
JSON

EXI
Schema-Less Schema-Enabled

µJ µJ µJ
Profile 1

TOTAL 1445 ± 7 1019 ± 6 468 ± 2
TX 766 ± 4 511 ± 3 255 ± 1
RX 527 ± 3 407 ± 2 166.3 ± 0.8

CPU 152.5 ± 0.8 101.6 ± 0.5 45.8 ± 0.3
Profile 2

TOTAL 1932 ± 10 1507 ± 8 957 ± 5
TX 1022 ± 5 766 ± 4 511 ± 3
RX 708 ± 4 588 ± 3 347 ± 2

CPU 203 ± 1 152 ± 0.8 99.0 ± 0.5
Profile 3

TOTAL 2470 ± 12 2512 ± 13 1499 ± 7
TX 1277 ± 6 1277 ± 6 766 ± 4
RX 938 ± 5 981 ± 5 580 ± 3

CPU 254 ± 1 254 ± 1 152.5 ± 0.8
Profile 4

TOTAL 3059 ± 15 3022 ± 15 2474 ± 12
TX 1533 ± 8 1532 ± 8 1277 ± 6
RX 1221 ± 6 1184 ± 6 943 ± 5

CPU 305 ± 2 305 ± 2 254 ± 1

Table 5.28: contentInstanceRetrieve energy consumption

Scenario 1
We can observe from Figure 5.14 that for Profile 3 and Profile 4 the oper-

ation execution time for EXI and JSON is comparable, whereas in analogous
situations such as Figure 5.7 the advantage of using EXI Schema-Less in a
Scenario 1 type of situation is clear.

Scenario 2
In scenario 2, as we can see from Figure 5.16, using EXI Schema-Enabled

does not bring a benefit from the point of view of the operation execution
time any more. This is the only situation where this happens in the message
benchmark we have considered, and is due to the fact that EXI performs worse
in a situation where the message content is larger.
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Figure 5.14: contentInstanceRetrieve execution time - Scenario 1

5.14 Comparison between GET and POST per-

formances

By comparing Figure 5.5 and Figure 5.7 we can observe that POST execution
suffers from an overall delay with respect to GET execution. Looking at the
packets transmitted with a packet analyzer tool we can see that using a block
size of 64 bytes results in a frame that is larger than 127 bytes and therefore
is subject to 6LowPAN fragmentation into two frames. The reason why this
happens in the POST and not in the GET is that the POST request carries a
“Uri-Path” Option for the resource for a total overhead of 33 bytes (25 bytes
Uri-Path string plus additional overhead). Using blocks of 32 bytes does not
avoid fragmentation, as can be verified in Table 5.29: the first CoAP payload
size that avoids fragmentation is 16 bytes. There may be situations when
fragmentation at IP level is not available, since not all 6LoWPAN devices
have enough resources to perform it: if this were true in our POST example,
CoAP blocks of 16 bytes would be the only option.
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5.14. COMPARISON BETWEEN GET AND POST PERFORMANCES

Figure 5.15: contentInstanceRetrieve energy consumption - Scenario 1

Profile
JSON

EXI Number of
Schema-Less Schema-Enabled blocks

(ms) (ms) (ms)
1. 24.5 ± 0.1 28.9 ± 0.1 12.0 ± 0.05 /2/2/1/
2. 65.8 ± 0.3 65.8 ± 0.3 28.7 ± 0.1 /5/4/2/
3. 106.6 ± 0.5 137.4 ± 0.7 66.2 ± 0.3 /9/8/4/
4. 190.8 ± 0.9 210 ± 1 114.7 ± 0.6 /14/12/7/

Table 5.29: applicationCreate execution time, 100% PDR - 32 bytes blocks
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5.14. COMPARISON BETWEEN GET AND POST PERFORMANCES

Figure 5.16: contentInstanceRetrieve execution time - Scenario 2

Profile
JSON

EXI Number of
Schema-Less Schema-Enabled blocks

(ms) (ms) (ms)
1. 40.5 ± 0.2 35.9 ± 0.2 12 ± 0.05 /4/3/1/
2. 90.7 ± 0.4 84.5 ± 0.4 35.8 ± 0.2 /15/7/3/
3. 149.2 ± 0.7 179.1 ± 0.9 93.7 ± 0.5 /18/15/8/
4. 269.75 ± 1.4 283.8 ± 1.4 150.7 ± 0.7 /27/23/13/

Table 5.30: applicationCreate execution time, 100% PDR - 16 bytes blocks

From this example we can argue that the presence of long Uri-Path Options
in every instance of a POST request which also carries a payload has a negative
effect on the performance of the system.

POST operations are executed very often, for example when sensors register
their reading at the Local SCL creating a new <contentInstance> resource.

In our opinion this is an issue for integrating M2M over constrained net-
works: ETSI M2M builds its resources using particularly long URIs, and CoAP
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5.15. PERFORMANCE IN LOSSY CONFIGURATIONS

does not offer a mechanism for not repeating the URI-path multiple times dur-
ing Block1 Blockwise transfers.

From an ETSI M2M standpoint, the need for URIs with a complex struc-
ture is understandable and is related to the requirements of flexibility and
scalability. At the same time, reducing the length of collection names, which
are included unchanged in URIs would be beneficial to the operation perfor-
mance.

Even if the ETSI M2M Technical Committee were willing to change the
architecture of REST resources identifiers introducing such optimizations, a
higher degree of flexibility from CoAP is desirable.

A solution from the CoAP side could be that of making the option of not
repeating the URI-path for Block1 Blockwise transfers an object of negotiation
between client and server nodes. Whenever the server implements the POST
operation in an atomic way, communication at CoAP level is not stateless
and implementing this option would only result in an additional state. If
the operation is not atomic, the server may be willing to create a state in
order to save energy globally at a network level depending on the internal
resource availability. The power and time saving would be not only limited to
transmission and reception, but also to fragmentation both at CoAP level and
6LoWPAN levels, and retransmissions.

From the point of view of CoAP, this issue was raised in 2012. A solution
that was proposed consisted in returning a temporary resource in the first
POST response, and in returning the final URI only at the end of the Blockwise
transfer, with the general recommendation of keeping URIs short, which in
turn pushed the issue back to the higher application layers. Still, it could be
a temporary workaround that could be considered, if not by ETSI M2M, from
industry-specific bodies such as the Open Mobile Alliance (OMA), which has
been working on a lightweight version of M2M since the end of Q4 2013 (OMA
LWM2M).

5.15 Performance in lossy configurations

5.15.1 applicationCreate POST with 95% PDR

Figure 5.17 shows the execution time of the applicationCreate operation in a
lossy configuration. We can observe that EXI Schema-Less always performs
better than JSON and EXI Schema-Less. EXI Schema-Less performs better
than JSON whenever it maps the message in an inferior number of CoAP
messages. The impact packet losses on the execution time is relevant: this is
due to the use of default CoAP transmission parameters.
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5.15. PERFORMANCE IN LOSSY CONFIGURATIONS

Figure 5.17: applicationCreate execution time, 95% PDR

Figure 5.17 shows the client energy consumption for a applicationCreate
operation. EXI Schema-Enabled always performs better than JSON and EXI
Schema-Less, and EXI Schema-Less always performs better than JSON.

Profile
JSON

EXI Number of
Schema-Less Schema-Enabled blocks

(ms) (ms) (ms)
1 516 ± 20 515 ± 20 312 ± 14 /1/1/1/
2 1357 ± 40 1039 ± 30 317 ± 20 /3/2/1/
3 2392 ± 60 2086 ± 60 1047 ± 30 /5/4/2/
4 3633 ± 100 3108 ± 80 1878 ± 50 /7/6/3/

Table 5.31: applicationCreate GET time with 95% PDR
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5.15. PERFORMANCE IN LOSSY CONFIGURATIONS

Figure 5.18: applicationCreate energy consumption, 95% PDR
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5.16. SUMMARY OF RESULTS

Energy Type
JSON

EXI
Schema-Less Schema-Enabled

µJ µJ µJ
Profile 1

TOTAL 824 ± 4 742 ± 4 381 ± 2
TX 500 ± 3 412 ± 3 198 ± 1
RX 210 ± 1 180.2 ± 0.9 109 ± 0.5

CPU 114 ± 0.7 148.5 ± 0.7 73.6 ± 0.4
Profile 2

TOTAL 1912 ± 9 1535 ± 8 558 ± 3
TX 1311 ± 7 1001 ± 5 285 ± 2
RX 297 ± 1 197 ± 1 162.3 ± 0.8

CPU 304 ± 2 336 ± 2 110.9 ± 0.6
Profile 3

TOTAL 3474 ± 20 3180 ± 16 1541 ± 8
TX 2426 ± 10 2090 ± 10 1004 ± 5
RX 497 ± 2 392 ± 2 198 ± 1

CPU 550 ± 3 696 ± 3 338 ± 2
Profile 4

TOTAL 5231 ± 30 4850 ± 20 2796 ± 14
TX 3700 ± 20 3193 ± 16 1816 ± 10
RX 695 ± 3 592 ± 3 396 ± 2

CPU 835 ± 4 1065 ± 5 584 ± 3

Table 5.32: applicationCreate energy consumption, 95% PDR

5.16 Summary of Results

This section summarizes the results obtained so far. The three data seri-
alization methods considered are placed in relative order whenever possible.
Situations which, based on the benchmark we chose, need to be evaluated
singularly are marked with a line (“-”).
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5.16. SUMMARY OF RESULTS

Criteria JSON
EXI Schema EXI Schema

Less Enabled
memory occupation

ROM 1 2 3
RAM 1 2 3

applicationCreate
Execution Time 2 3 1

Energy Consumption 3 2 1
Channel Usage 3 2 1

applicationCreate - lossy network
Execution Time - - 1

Energy Consumption 3 2 1
applicationRetrieve

Execution Time Sc. 1 3 2 1
Execution Time Sc. 2 2 3 1
Energy Consumption 3 2 1

Channel Usage 3 2 1

applicationUpdate
Execution Time - - 1

Energy Consumption 3 2 1
Channel Usage 3 2 1

subscriptionCreate
Execution Time 2 3 1

Energy Consumption - - 1
Channel Usage 3 2 1

contentInstanceRetrieve
Execution Time Sc. 1 3 2 1
Execution Time Sc. 2 - 3 -
Energy Consumption - - 1

Channel Usage - - 1

Table 5.33: Summary of Results

From the measurements made, it emerges that:

1. EXI Schema-Enabled allows to achieve better performance in terms of
energy consumption, compared to JSON and EXI Schema-Less. In terms
of execution time, EXI Schema-Enabled performs better in the vast ma-
jority of cases. This is possible at the cost of a higher memory occupancy,
moreover endpoints need to share grammar structures.
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5.17. FURTHER OPTIMIZATIONS

2. The use of EXI Schema-Less achieves better or equal performance to
JSON from the point of view of the energy consumption. In our imple-
mentation, EXI Schema-Less execution time is better than JSON when
serialization time is negligible, while otherwise the opposite is true. EXI
Schema-Less performs better than JSON in terms of execution time also
in the configurations considered at 95% PDR.

5.17 Further Optimizations

As a next step, we intend to optimize the current implementation, in order
to exploit the parallelism between message serialization and transmission for
the EXI format. The constraints imposed by such optimization on the system
(e.g. on the class of ETSI M2M security algorithms and procedures that can
be supported), should be assessed.

Considering the Low Power Mode component in our measurements, in the
example of applicationCreate operation, we expect a 10% improvement for the
time performances of both EXI Schema-Less and EXI Schema-Enabled.

For 95% PDR, we expect to have improvements in time performances in
the order of at most 1%.

Our results fully justify the development of an optimized communication
module, the most suitable platform to perform a fair comparison between the
three serialization methods considered.

5.18 Comparison with the state-of-the-art

Regarding the works presented in Chapter 3, we can conclude that:

� libEXI [17] and EXIP have a similar ROM occupancy in the Schema-Less
case (respectively 48 KB and 43 KB for Schema-Enabled EXI). Since
ROM occupancy is highly dependent on the dimension of the grammar
structures, a comparison with the Schema-Enabled ROM occupancy can-
not be performed. libEXI RAM consumption is lower than the one we
registered with EXIP (1.7 Kb vs. 8 KB for Schema-Less EXI). This
would make our implementation not portable on a TelosB mote, which
only has 8 KB of RAM, unless further optimizations are made. It should
be noted that libEXI is not XML-less, so the memory occupancy of a
parser needs to be taken into account for an effective comparison.

� EIGEN [18] has a considerably lower ROM occupancy than libEXI (13
KB vs. 43 KB or 45 KB), which is due to that fact that grammars are
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5.19. FULFILLMENT OF ICSI TIME CONSTRAINTS

implicitly present in the generated code. In our case ROM is not the
limiting factor, and for this reason this approach has not been explored.
EIGEN has not been considered a viable option as EXI library because
it is not freely available.

5.19 Fulfillment of ICSI time constraints

From the measured data, we can see that the ICSI time constraint of a 10−2 s
time scale for a local scope as expressed in Table 4.1 can not always be granted
for the message payloads considered, but only for small messages. While the
use of EXI Schema-Less does not dramatically alter the time performance
registered with JSON in terms of execution time, the use of EXI Schema-
Enabled consistently increases the complexity of the payload that can be sent
while still enforcing the 10−2 s time constraint.
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Chapter 6

Conclusions

This is the first extensive experimental work done on the ETSI M2M messaging
benchmark having adopted a reference set of serialization methodologies.

The effectiveness of porting the ETSI Machine-To-Machine protocol on
constrained access networks following the Internet of Things paradigm is still
debated in the scientific community. In the present work we have assessed
the impact of the serialization method in a Wireless Sensor Network. The
experimental work has been conducted through simulation in order to ease the
execution of similar performance assessments on different platforms. We have
made use of the Wismote emulated chipset integrated in the Cooja simulation
tool.

From the present work we can conclude the following:

� ETSI M2M operations execution time: our results show that EXI Schema-
Enabled performs better than JSON in most configurations considered,
and always better than EXI Schema-Less. JSON performs better than
EXI Schema-Less whenever the encoding time is not negligible, whereas
JSON performs worse than EXI Schema-Less in the opposite case. In the
configuration of lossy network, EXI Schema-Less performs better than
JSON even when the serialization time is not negligible.

� Channel usage: in all scenarios considered the channel usage adopting
EXI is less than in the case of JSON, especially when EXI Schema-
Enabled is used.

� Energy consumption: EXI Schema-Enabled outperforms JSON and EXI
Schema-Less in all configurations considered. EXI Schema-Less outper-
forms JSON in most situations considered and achieves comparable re-
sults in the rest.
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6.1. FUTURE DIRECTION

From the results of our experiments, the performance of EXI Schema-
Enabled reveals that it is the most effective choice of data serialization over con-
strained wireless systems following the IoT paradigm. Similarly, EXI Schema-
Less registers interesting results especially from the points of view of energy
consumption and of channel usage.

We envision that these results could be beneficial to researchers within the
scientific community.

6.1 Future direction

As a follow up to this work we propose:

� The development of an automated engine capable of producing EXI
Streams from a given custom XML Schema or equivalent. A pre-processor
should replace the custom library we implemented for each message con-
sidered in our experimental work; indeed this would drastically reduce
the adaptation effort in order to customize the libraries in a novel imple-
mentation.

� Further optimizations, according to the considerations discussed in Sec-
tion 5.17.

� From a software engineering perspective it is recommended to test the
validation environment prior to executing actual tests. It would therefore
be worthwhile to test the CoAP environment before executing the test
suite to avoid any bias in the testing results.

The result of this work will be adopted for the implementation of the ITS
architecture designed within the ICSI Project approved by the European Com-
mission under the grant #317671.
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Appendix A

DATEX2 notification

Car Park Slot occupation

<?xml version="1.0" encoding="UTF-8"?>
<d2LogicalModel xmlns="http://datex2.eu/schema/2/2_0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
modelBaseVersion="2">

<exchange>
<supplierIdentification>

<country>it</country>
<nationalIdentifier>CNIT_WSN</nationalIdentifier>

</supplierIdentification>
</exchange>
<payloadPublication xsi:type="SituationPublication" lang="it">

<publicationTime>2006-09-28T16:00:00+01:00</publicationTime>
<publicationCreator>

<country>it</country>
<nationalIdentifier></nationalIdentifier>

</publicationCreator>
<situation id="GUID2A22530C-D452-4ae8-B942-993BC2923D13"

version="1">
<headerInformation>

<confidentiality>noRestriction</confidentiality>
<informationStatus>real</informationStatus>
<urgency>normalUrgency</urgency>

</headerInformation>
<situationRecord xsi:type="CarParks"
id="GUID2A22530C-D452-4ae8-B942-993BC2923D14"

version="1">
<situationRecordCreationTime>
2006-09-28T16:00:00+01:00

</situationRecordCreationTime>
<situationRecordVersionTime>2006-09-28T16:05:00+00:00
</situationRecordVersionTime>
<situationRecordFirstSupplierVersionTime>
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2006-09-28T16:05:00+00:00
</situationRecordFirstSupplierVersionTime>
<probabilityOfOccurrence>certain</probabilityOfOccurrence>
<validity>

<validityStatus>
definedByValidityTimeSpec

</validityStatus>
<validityTimeSpecification>

<overallStartTime>2006-10-17T14:00:00+02:00
</overallStartTime>
<overallEndTime>2006-10-17T16:00:00+02:0
0</overallEndTime>

</validityTimeSpecification>
</validity>
<groupOfLocations xsi:type="Point"></groupOfLocations>
<carParkConfiguration>singleLevel</carParkConfiguration>
<carParkIdentity></carParkIdentity>
<carParksExtension>

<SlotData occupied="true" id="324"/>
</carParksExtension>

</situationRecord>
</situation>

</payloadPublication>
</d2LogicalModel>
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Appendix B

<application> profiles

Profile 1.

<?xml version="1.0" encoding="UTF-8"?>
<p0:application xmlns:p0="http://uri.etsi.org/m2m">
</p0:application>

Profile 2.

<?xml version="1.0" encoding="UTF-8"?>
<p0:application xmlns:p0="http://uri.etsi.org/m2m">

<p0:accessRightID>accessRight</p0:accessRightID>
<p0:searchStrings>

<p0:searchString>searchString</p0:searchString>
</p0:searchStrings>

</p0:application>

Profile 3.

<?xml version="1.0" encoding="UTF-8"?>
<p0:application xmlns:p0="http://uri.etsi.org/m2m">

<p0:accessRightID>accessRight</p0:accessRightID>
<p0:searchStrings>

<p0:searchString>searchString</p0:searchString>
</p0:searchStrings>
<p0:aPoC>apoc_</p0:aPoC>
<p0:groupsReference>
/gsclBase/applications/app/groups

</p0:groupsReference>
<p0:accessRightsReference>
/gsclBase/applications/appaccessRights

</p0:accessRightsReference>
</p0:application>
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Profile 4.

<?xml version="1.0" encoding="UTF-8"?>
<p0:application xmlns:p0="http://uri.etsi.org/m2m">

<p0:accessRightID>accessRight</p0:accessRightID>
<p0:searchStrings>

<p0:searchString>searchString</p0:searchString>
</p0:searchStrings>
<p0:aPoC>apoc_</p0:aPoC>
<p0:groupsReference>
/gsclBase/applications/app/groups

</p0:groupsReference>
<p0:accessRightsReference>
/gsclBase/applications/appaccessRights

</p0:accessRightsReference>
<p0:subscriptionsReference>
/gsclBase/applications/app/subscriptions

</p0:subscriptionsReference>
<p0:notificationChannelsReference>
/gsclBase/applications/app/notifications

</p0:notificationChannelsReference>
</p0:application>
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Appendix C

<subscription> profiles

Profile 1.

<?xml version="1.0" encoding="UTF-8"?>
<p0:subscription xmlns:p0="http://uri.etsi.org/m2m">
</p0:subscription>

Profile 2.

<?xml version="1.0" encoding="UTF-8"?>
<p0:subscription xmlns:p0="http://uri.etsi.org/m2m">

<p0:expirationTime>
2012-07-31T13:33:55.000839</p0:expirationTime>

</p0:subscription>

Profile 3.

<?xml version="1.0" encoding="UTF-8"?>
<p0:subscription xmlns:p0="http://uri.etsi.org/m2m">

<p0:expirationTime>
2012-07-31T13:33:55.000839</p0:expirationTime>

<p0:delayTolerance>
2012-08-31T13:33:55.000839</p0:delayTolerance>

</p0:subscription>

Profile 4.

<?xml version="1.0" encoding="UTF-8"?>
<p0:subscription xmlns:p0="http://uri.etsi.org/m2m">

<p0:expirationTime>
2012-07-31T13:33:55.000839</p0:expirationTime>

<p0:delayTolerance>
2012-07-31T13:33:55.000839</p0:delayTolerance>

<p0:contact>coap://DA\IP_Addr:Port/da_notif</p0:contact>
</p0:subscription>
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Appendix D

<contentInstance> profiles

Profile 1.

<?xml version="1.0" encoding="UTF-8"?>
<p0:contentInstance xmlns:p0="http://uri.etsi.org/m2m">

<p0:lastModifiedTime>
2012-07-31T00:01:56.000839</p0:lastModifiedTime>

<p0:content>{
1200234523454
1240365423427}
</p0:content>

</p0:contentInstance>

Profile 2.

<?xml version="1.0" encoding="UTF-8"?>
<p0:contentInstance xmlns:p0="http://uri.etsi.org/m2m">

<p0:lastModifiedTime>
2012-07-31T00:01:56.000839</p0:lastModifiedTime>

<p0:content>{
"application":{

1200234523454
1240365423427
1330187635432
1345109843751
1355287165632
1405173646721}
</p0:content>

</p0:contentInstance>

Profile 3.

<?xml version="1.0" encoding="UTF-8"?>
<p0:contentInstance xmlns:p0="http://uri.etsi.org/m2m">

<p0:lastModifiedTime>
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2012-07-31T00:01:56.000839</p0:lastModifiedTime>
<p0:content>{
1200234523454
1240365423427
1330187635432
1345109843751
1355287165632
1405173646721
1510438484381
1830383838381
1950325216232
2010384374371
2135843784375
2140484389434}
</p0:content>

</p0:contentInstance>

Profile 4.

<?xml version="1.0" encoding="UTF-8"?>
<p0:contentInstance xmlns:p0="http://uri.etsi.org/m2m">

<p0:lastModifiedTime>
2012-07-31T00:01:56.000839</p0:lastModifiedTime>

<p0:content>{
1200234523454
1240365423427
1330187635432
1345109843751
1355287165632
1405173646721
1510438484381
1830383838381
1950325216232
2010384374371
2135843784375
2140484389434
0010474743743
0020437843784
0130438843846
0140484848434
0230948444748
0315294848432
0512747474747
0530474374364}
</p0:content>

</p0:contentInstance>
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Acronyms

CoAP Constrained Application Protocol.

CoRE Constrained RESTful Environment.

DA Device Application.

DSCL Device SCL.

DTLS Datagram Transport Layer Security.

ETSI European Telecommunications Standards Institute.

EXI Efficient XML Interchange.

EXIP Embeddable EXI Processor.

GA Gateway Application.

GSCL Gateway SCL.

ICSI Intelligent Cooperative Sensing for Improved Traffic Efficiency.

IEEE Institute of Electrical and Electronics Engineers.

IETF Internet Engineering Task Force.

ITS Intelligent Transport System.

M2M Machine-To-Machine.

NA Network Application.

NSCL Network SCL.

OBU On Board Unit.
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Acronyms

PDR Packet Delivery Rate.

RPL Routing Protocol for Low Power and Lossy Networks.

RSU Road Side Unit.

SCL Service Capability Layer.

W3C World Wide Web Consortium.
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