
Università degli Studi di Pisa

Dipartimento di Informatica
Dottorato di Ricerca in Informatica

Settore Scientifico Disciplinare: INF/01

Ph.D. Thesis

Nominal Context-Free Behaviour

Gianluca Mezzetti

Supervisor

Pierpaolo Degano

Supervisor

Gian-Luigi Ferrari

Referee

Alexander Kurz

Referee

Nikos Tzevelekos

Chair

Pierpaolo Degano

Contents

Contents i

Introduction v

1 Preliminaries 1
1.1 Context Oriented Programming 1
1.2 Resource usage analysis . 3
1.3 Nominal Trace Models . 6

2 A Semantics for Context-awareness 17
2.1 A motivating example: an e-library application 18
2.2 ContextML: a context-oriented ML core 21
2.3 ContextML types . 26
2.4 Model-Checking Policies and Protocols 39
2.5 Parametrized behavioural variation 41

3 Language Theory for Usage Automata & Usages 47
3.1 Usage Automata . 48
3.2 Model-Checking Usages against VFA 67
3.3 Usages . 71

4 Automata-Based Models 75
4.1 m-registers . 78
4.2 Finite State Nominal Automata 78
4.3 Pushdown Nominal Automata 96

Conclusions 111

Bibliography 113

ii CONTENTS

Abstract

This thesis investigates and proposes models for programming and
verifying adaptive software at different abstraction levels. First, we design
the kernel of a programming language, endowed with primitives for pro-
gramming the adaptation to different working environments. We provide
the language with a type and effect system that allows us to statically
prove properties of the behaviour of the program when plugged in different
execution environments. Then we extend our language to program the use
of the resources currently available in the environment. In this case, the
identity and the number of resources is unknown a-priori. The previous
analysis technique needs to be extended to capture the behaviour of these
programs. We exploit nominal techniques in the literature to propose
novel automata models that represent the behaviour and the properties
of programs that use an unbounded number of unknown resources as
(regular and context-free) set of traces. The theoretical properties of these
automata are investigated and related with static program verification.
We prove that we are able to check regular properties of the usage patterns
of the resources when resource reuse is inhibited.

CONTENTS iii

Acknowledgements

While, as required by law, the results in this thesis are product of my own work,
none of them would be possible without the help of several people.

I would like to thank my PhD advisors, Pierpaolo Degano and Gian-Luigi
Ferrari for their enthusiastic support during these past four years. Their research
contribution to this thesis is witnessed by each Definition, Theorem and �, but
there is another history to tell.

Pierpaolo is the kind of person that is meticulous in following its code of
conduct in all the aspects of the work, still being open to diplomacy and taking
great delight to be an insolent anarchic, sometimes, cum grano salis. He tried to
teach me how to balance these things in my character, fighting with me for four
long years, and, among the other things, I sincerely thank him (and his garbage
can) for this.

Giangi is the kind of person that follows everything, there no council, board
or condominium meeting where he is not requested, there is no research field
which does not interest him, he always have some paper for you to read. I thank
him for having transmitted me this energy, and for having helped me linking
different research fields. Even though I was not able to look forward as him,
following him blinded has always been rewarding.

Ringrazio inoltre la mia famiglia per avermi sempre supportato in questo
lavoro, ciecamente e senza poter comprendere le mie soddifazioni. Ringrazio
Matteo, Lillo, Davide, Luca, Manu, Damiano, Giulio, Francesco, Michele, Andrea
e Marta con i quali ho condiviso bellissimi momenti di relax.

Eventually, I would like to thank Alexander Kurz and Nikos Tzevelekos, that
read with such care my thesis, returning insightful observations, that I would
enjoy to investigate for another PhD.

However there is only one Computer Science PhD in one men’s life, and now
this is unfortunately over.

Gianluca

Introduction

Devices and the software therein are connected at any time and anywhere.
Internet is de facto the infrastructure providing us with access points for our
digitally instrumented life. A great variety of activities and tasks performed
by individuals are mediated, supported and affected by different heterogeneous
digital systems that in turn cooperate each other without human intervention.
These digital entities can be any combination of hardware devices and software
pieces, and their activities can change the physical and the virtual environment
where they are plugged in. Consequently, the digital environment is an open-
ended communication infrastructure, through which its entities can interact each
other in a loosely coupled manner, and they can access resources of different
kinds, e.g., local or remote, private or shared, data or programs, devices or
services.

Some illustrative, yet largely incomplete, cases of computational models and
technologies that realise the scenario above are: Service Oriented Computing,
Internet of Things and Cloud Computing.

In the Service Oriented Computing paradigm, applications are built by
composing software units called services, which are published, linked, and
invoked on-demand by other services using standard internet-based protocols.
Applications can dynamically reconfigure themselves, by re-placing unreachable
services with new ones.

The Internet of Things extends the inter-connected digital environment to
every-day objects, e.g. webTV, cars, smartphones, tablets, ebook readers, etc.
These objects often have a limited computational power, but they are capable
of connecting to the Internet and of interacting each other. Because of the
portability of these object, the abstract digital environment they inhabit is
open-ended and highly dynamic.

Cloud computing makes available huge computational facilities and dynamic
resources, such as networks, servers, storage, applications and services are
made available in the cloud. The remote customers, depending on the kind
of service offered, can plug in their applications, data, platforms or network

vi

infrastructures into the cloud data centres. A key point here is that these
resources are “virtualised” so that they appear to the software as fully dedicated
to them, and potentially unlimited.

These new settings require that the software is programmed to dynamically
exploit the resources available in the environment, by reconfiguring itself from
time to time as new ones show up and old ones disappear. Then we assisted
to a shift of programming paradigm. In the past, programs were targeted to
close, specific and controlled environments, where all the resources were known
a-priori. Now, the programs are developed to work with little assumptions on
the resources available, still being able to reconfigure themselves and use them
whenever they appear.

Because of the continuous interactions with external software and resources,
security issues are growingly important. The constraints often concern usage pat-
terns of the a-priori unknown resources, so that security requirement themselves
need to be adaptive.

The main challenge for engineering systems in the scenarios sketched above
is to provide the developers with the suitable techniques to program adaptive
software systems, including all the tools and methodologies for proving or
guaranteeing functional and non-functional properties of the code.

This thesis advocates formal methods as an useful machinery to tackle these
challenges.

We will propose models for programming adaptive components and for
abstracting their behaviour, with a particular focus on resource usage. Since
our goal is to investigate the key aspects of adaptivity at different levels of
abstractions, we will adopt a multi-tier approach ranging from the programming
language tier to the one of abstract mathematical models. At the programming
language level, we will propose a core programming language, with explicit
primitives for programming adaptation. Several illustrative examples of actual
program codes will guide us to isolate the behavioural aspects that need to be
modelled at our high abstraction level. Our abstract model will be specifically
targeted to investigate those aspects in isolation. In the abstraction step, we
will try to maintain a minimal number of assumptions on the structure of the
resources, so preserving in the model their peculiarity of being dynamic and
a-priori unknown.

Our path starts in Chapter 2, where we define a core programming language,
called ContextML, with adaptivity and security primitives. The design of
ContextML is based on the Context-Oriented Programming (COP) paradigm
introduced in [23]. In COP, the developer is provided with primitive constructs

vii

to modify the environment (called context) and to specify behaviour that are
activated depending on the actual state of the environment. We give a formal
semantics of ContextML as a trace language. A trace is a sequence of actions
representing the various adaptations to the environment and the resource usage.

To specify which adaptation and resource usage patterns are correct, ContextML
is also provided with primitives to specify security policies, i.e. properties that
deems the illegal sequences of actions. The program is stopped before an
offending trace is generated.

To guarantee at compile-time that a program never gets stuck, we use a type
and effect system [47], that constructs an effect in a suitable process calculus
over-approximating all the traces a program may generate. This abstraction is
checked to guarantee that the program will behave correctly in all the contexts
it will be plugged in and that all the security policies are satisfied.

One of the limitations of the COP approach is that the programmer must
envisage all the different situations the program may run into and write the
associated behaviour. However, being the environment mutable and open-ended,
an unbounded number of behaviour needs to be specified. Section 2.5 shows
an extension of ContextML where adaptation is specified in a parametric way,
i.e. by symbolically abstracting the unknown resources that may occur in the
environment.

This extension highlights some of the characteristics that make behavioural
analysis hard in this case and constitutes the basis for better shaping our
challenges, through examples. The analysis framework shown in Chapter 2 will
constitute our reference setting, suggesting an automata-based model-checking
approach [60] to check security properties of programs.

It turns out that the ContextML programs operate on unknown a-priori
resources the number of which is unbounded. In the literature, nominal tech-
niques [50] have been exploited to tackle the unboundedness, by abstracting the
infinite symbols as opaque entities that can be tested for equality only. Nomi-
nal automata [9] and process calculi [6, 32] have been developed to recognise
languages on infinite alphabet.

In Chapter 3 we focus on three nominal models: Usages process calculus [6],
Usage Automata (UA) [6] and Variable Finite Automata (VFA) [33].

In [6], Usages are shown effective to abstract the behaviour of programs with
an unbounded number of resources. The UA are proposed to express properties
of such programs. A machinery is developed to model-check Usages behaviour
against UA properties.

Motivated by the fact that Usages and UA can respectively represent the

viii

behaviour and the properties of portion of ContextML, in Chapter 3, we inves-
tigate some language theoretic properties. These results allow us to compare
them with other models in the literature. In particular, it turns out that UA
are less expressive than Variable Finite Automata [33].

In Section 3.2 we carry over Variable Finite Automata [33] the technique
used for UA [6], so allowing to model-check Usages against the wider class of
languages represented by VFA.

In Section 3.3 we show, through an example, the limitation of Usages in
capturing the behaviour of ContextML programs when resources need to be
released and reused. Also, it turns out that Usages are incomparable with the
well-known quasi context-free languages [19], so leaving open the quest for a
model that is able to go beyond the expressiveness of both models.

In Chapter 4 we propose a new class of context-free automata, pushdown
nominal automata, that are more expressive than Usages and quasi context-
free languages and capture the behaviour of ContextML programs. We study
some language theoretic properties of our model and we compare it against
other automata the literature. We also investigate the decidability of the
emptiness problem, that is directly connected with automata-based model-
checking techniques.

The results in this thesis have been presented at international workshop and
conferences, in particular: ContextML has been presented at different design
stages at the

• Programming Language Approaches to Concurrency and Communication-
cEntric Software workshop [25] in Tallinn, Estonia

• 6th International Conference on Coordination Models and Languages [24]
in Stockholm, Sweden

• 11th Int. Conf. on Information Systems and Industrial Management in
Venice, Italy [10].

The results in Chapter 3 have been presented at the 17th International Conference
on Implementation and Application of Automata in Porto, Portugal [26].

Our new model, the pushdown nominal automata in Chapter 4 have been pre-
sented at the 18th International Conference on Implementation and Application
of Automata in Halifax, Canada [27].

The next chapter fixes the notation and reviews some notions that are
necessary in the rest of the thesis.

Chapter 1

Preliminaries

This chapter recalls some notions in the literature about Context Oriented
Programming, resource usage security policies and nominal automata.

Table 1.1 recalls less common mathematical notation.

1.1 Context Oriented Programming

A major concern of current software engineering is the development of adap-
tive software components, capable of dynamically modifying their behaviour
depending on changes in their execution environment and in response to the
interactions with other components. The problem of developing adaptive compo-
nents has been investigated from different perspectives (control theory, artificial
intelligence, programming languages) and various solutions have been proposed.
We refer to [18, 17, 52] for a more comprehensive discussion.

We recall now a prominent approach, called Context-Oriented Programming
(COP) and discussed in [35], that allows to describe fine-grain adaptability
mechanisms at programming language level. Following this paradigm, standard
programming languages are extended with suitable constructs to express context-
dependent behaviour in a modular fashion. The seminal paper [23] introduces
ContextL, an extension of Common Lisp with COP features.

The claimed benefits of COP are justified by Software Engineering purposes.
Using COP, the developer gains additional expressiveness, being able to deal
with adaptation using language constructs. Moreover, [35] argues that COP
enhance the separation of the crosscutting concern arising from adaptation. In
the programming languages jargon, a crosscutting concern is some functional or
non-functional behaviour that does not fit the dominant modularisation/logic of

2 CHAPTER 1. PRELIMINARIES

N, ∅ the set of natural numbers and the empty set
r = {i | 1 ≤ i ≤ r} set of numbers in N
X 6Q X ′ incomparable sets: X * X ′ and X + X ′

℘(X), ℘f (X) set of subsets of X, set of finite subsets of X
|X| cardinality of the set X
f : X → X ′ function f with domain X and codomain X ′

f : X ⇀ X ′ partial function f with domain X and codomain
X ′

Img(f) image of the function f
f{b/a} function such that f{b/a}(x) = f(x) when x 6= a,

f{b/a}(a) = b otherwise
f �X restriction of f to X

Table 1.1: Mathematical notation

the program. The separation of crosscutting concerns enhances the readability
and the maintainability of the programs, and hence their development.

The concept of behavioural variations is central to COP paradigm: variations
express a chunk of behaviour that can substitute or modify a portion of the basic
behaviour of the application. As highlighted in [35] the whole COP paradigm is
built on the following key concepts:

• The layers are groups of context-dependent behavioural variations made
visible by programmers. They can be activated and deactivated at runtime
into the program flow and can be passed and manipulated, because they
are first class entities. Behavioural variation of the program are defined
using layers as labels.

• The actual behaviour of the program depends on the combination of all ac-
tive variations, which constitutes the context. The dispatching mechanism
decides which variation has to be executed.

In the line of research started by ContextL, the context is simply a stack
of layers. The activation of a layer L is triggered by the with(L) construct,
that pushes L on the context. Layered definitions are available at a method-
abstraction level and object-abstraction level.

After ContextL various COP languages have been put forward. Among them
we recall ContextJ [2], ContextFJ* [21] and ContextFJ [34]. Only a few of the
ones we mentioned investigate semantics issues and provide a sound strong type
system.

To illustrate the application of the key COP concepts, consider the example
in Figure 1.1, written in ContextJ. The code defines the class Person with

1.2. RESOURCE USAGE ANALYSIS 3

two redefinitions of the method toString. The two definitions are behavioural
variations, the first one is for the Address layer, the other for the Employment layer.
When the method toString is called on an instance of Person, the implementation
of which method to execute is chosen depending on the layers currently active in
the context. The with statement activates a layer within the scope of its block.
As for the dispatching procedure, the method to be invoked is chosen searching
a matching active layer in reverse activation order. The proceed statement is
much like the super of Java and it executes the method implementation in the
next active layer. The output of the program in Figure 1.1 is:
Output : Name : Pasca l Costanza ; Address : 1000 Brus se l ;
[Employer] Name : VUB; Address : 1050 Brus se l

1.2 Resource usage analysis

The discipline named Program analysis [47] concerns static techniques for com-
puting reliable approximations about the dynamic behaviour of programs. These
approximations are used for improving various aspects of the generated code,
for verifying functional or non-functional properties of the program.

In the adaptive setting sketched in the introduction, security emerges as a
relevant non-functional program requisite. To specify these requisites, one needs
to describe the executions that are unacceptable, through the definition of a set
of security policies [54].

According to [54], a more formal definition follows.

Definition 1.2.1. A program history η is a finite or infinite ordered sequence
of atomic program events. A security policy φ is specified by giving a predicate
P on sets of program histories. Let H be the set of the program histories η
that a program e may generate, e satisfies the security policy φ if and only if H
satisfies P . Whenever this is the case we write H � φ.

Intuitively a safety policy expresses that nothing bad will occur during a compu-
tation. The formal definition follows.

Definition 1.2.2. A safety policy is a security policy such that

• the satisfaction of the policy can be decided by checking each execution
in isolation, i.e. a set of executions H satisfies a policy φ if and only it is
expressed by a predicate P such that for all histories η ∈ H the singleton
{η} satisfies P .

4 CHAPTER 1. PRELIMINARIES

class Person {
private St r ing name , address ;
private Employer employer ;
Person (St r ing newName , S t r ing newAddress , Employer newEmployer){

this . name = newName ;
this . employer = newEmployer ;
this . address = newAddress ;

}
S t r ing toS t r i ng () {return "Name : " + name ; }
l ay e r Address {

St r ing toS t r i ng () {
return proceed () + " ; Address : " + address ; }
}

l ay e r Employment {
St r ing toS t r i ng () {
return proceed () + " ; [Employer] " + employer ; }

}
}

class Employer {
private St r ing name , address ;
Employer (S t r ing newName , S t r ing newAddress) {

this . name = newName ;
this . employer = newAddress ;

}
S t r ing toS t r i ng () {return "Name : " + name ; }
l ay e r Address {

St r ing toS t r i ng () {
return proceed () + " ; Address : " + address ; }

}
}
. . .
Employer vub = new Employer ("VUB" , "1050 Brus se l ") ;
Person somePerson = new Person ("Pasca l Costanza" , "1000 Brus se l " , vub) ;
with (Address) {

with (Employment) {
System . out . p r i n t l n (somePerson) ;

}
}

Figure 1.1: ContextJ code example

1.2. RESOURCE USAGE ANALYSIS 5

• it is prefix-closed : if a history η ∈ H is safe (i.e. {η} satisfies P) than each
prefix of η is safe.

• such that checking an infinite execution can be done by checking all its
finite prefixes, i.e. H � φ if and only if for all η ∈ H and for all the finite
prefix η′ of η it holds that {η′} satisfies P .

In this thesis, we will focus on safety usage policies of resources, i.e. safety
policies enforcing the correct usage pattern of the resources in the execution
environment. From now on, we will focus on sets H of finite program histories
only.

We briefly review here the analysis approach of Skalka et al.[56], extended in
[5] with security primitives. The events of interest in the execution history are
all the accesses to resource, we denote by α(a) the action α performed on the
resource a.

During the evaluation of a program e, a history η is built starting from the
empty sequence ε by attaching the occurred events.

ε, e→ α(a), e′ → α(a)β(b), e′′ → · · · → η, ∗

All the executions constitute a language on an alphabet made of actions α
and resources a.

To enforce execution safety, [5] introduce a policy framing primitive. A policy
framing is a primitive of the form φ[e] that make possible to guard a program
fragment e against a policy. The policy φ is enforced at each execution step by
verifying that the actual history respects φ (written η � φ):

ε, φ[e]
if ε�φ−−−→ α(a), φ[e′]

if α(a)�φ−−−−−→ α(a)β(b), φ[e′′]
if α(a)β(b)�φ−−−−−−−→ · · · → η, ∗

As soon as a policy is not satisfied, the program gets stuck. Framings can be
nested.

In [6] regular policies of the histories are investigated, in the form of the Usage
Automata of Section 1.3.1. An analysis framework is developed to guarantee at
compile-time that a program never gets stuck because it attempts to violate a
security policy. The framework uses a type and effect system ([47]) to assign a
type and an effect to each valid program. The effect is an expression in a suitable
process algebra (the Usages in Section 1.3.4) representing all the histories that
the program can generate.

To check that a program is safe, one can use the effect U to verify that
all active policies are satisfied. The authors of [6] resorted to automata-based
model-checking [29]. This is done by carefully reducing the verification to a

6 CHAPTER 1. PRELIMINARIES

well-known problem: the emptiness of the intersection between a pushdown and
a finite state automaton, that is decidable.

1.3 Nominal Trace Models

The previous section highlighted the relevance of describing the languages of the
histories arising from adaptive program executions. Programs are often plugged
in dynamic environments, offering a multiplicity of dynamic resources, that is
unbounded a-priori. Automata on finite alphabets seem insufficient to accurately
describe histories where an unbounded number of resources may appear.

Nominal techniques [9, 50] have been fruitful exploited to develop automata
on infinite alphabets, the elements of which are called urelements. Urelements
are atomic objects that are indistinguishable: we can always substitute one
for another. The only thing that characterises an object made of urelements
is its shape, rather than the actual urelements it is made of. There are many
instances of nominal models in the real word, e.g. XML (schemata), Web-based
objects (URLs), security protocols (e.g. nonces and time-stamps), Cloud systems
(virtualised resources), etc [55, 15, 11]. When the language expresses the sequence
of actions made on the resources, it is called a data-words language [16, 14, 9].

The problem of handling unboundedly many fresh (or restricted) names has
been tackled also under the perspective of foundational calculi for concurrent
and distributed systems, under the term nominal calculi [51, 13, 32, 40, 45].

This section surveys some nominal models in the literature. We have chosen
to recall here only the ones that appear in detail in the thesis.

Although there is no universally recognised notion of nominal regular and
context-free languages we will often informally speak of regular and context-free
automata. This is because often the authors introducing the model themselves
classify their automata as the nominal equivalent of the finite state automata.
As for context-free automata, in the classical automata theory settings, they are
characterised by the Dyck-like language LR = {wwR} of words w followed by
their reverse. However, this notion becomes fuzzy in the nominal setting because
we can read LR as a set of words with a fixed number of different symbols
(LR = {wwR | the number of symbols in w is r}) or not.

We now fix some notation. Assume an infinite alphabet Σ, partitioned in a
finite set of static symbols Σs and an infinite set of dynamic symbols Σd. The
first is intended to represent the resources known before program execution
starts, while Σd contains the resources that may be acquired or generated at
run-time. The Kleene star applied to Σ is denoted Σ∗.

1.3. NOMINAL TRACE MODELS 7

A string w is a sequence of symbols on an alphabet. The reverse word of w
is denoted wR, the empty one by ε. The length of w is written |w|.

When dealing with data-words, we assume Act to be the set of atomic actions
α, β that can be performed on the symbols in Σ. The pair (α, a) (written α(a))
denotes that the action α is performed on the symbol a. A data word w is a
string α(a)β(b) · · · ∈ (Act× Σ)∗.

We write ‖X‖, overloaded to any object X, to denote the set of symbols
used in X. For example, ‖w‖ denotes the set of symbols in the string w.

Given an automaton A, we denote by L(A) the language recognised by A and
by L(M) the set of all languages recognised by the automaton model M passed
as argument, e.g. L(Finite State Automata) is the set of regular languages.

1.3.1 Usage Automata

Usage Automata (UA) [6] are regular nominal automata recognising data words.
They have been used in [6] to express safety properties of resource usage. Consider
the UA in the example of Figure 1.2. The automaton controls opening, reading
and writing operations on the files. We say that the automaton describes the
usage policy for the files resources. Essentially, it demands that a file f must be
opened before being used (f is a variable standing for a generic file). Starting
from q0, performing the action open on f brings the automaton to q1, so allowing
the file f to be read and written. Instead, an attempt of reading or writing
a different file f ′ brings to the offending state q2, provided that f ′ has not
been previously opened (the sink q3 capture this case). For instance, the string
open(foo.txt) read(bar.txt) is offending, while open(foo.txt) read(foo.txt) is legal.
We assume that a UA remains in the same state by recognising an action that
matches no labels of the outgoing edges. E.g. The self-loops in the state q1 of
Figure 1.2 might then be safely omitted, and are there drawn for clarity.

It is convenient to give some auxiliary definitions. Assume a countable set of
variables Var; from now onwards, let V ⊂ Var.

Definition 1.3.1 (Substitution). A substitution for V is a function σ : V →
R,R ⊆ Σ.

For technical reasons, the domain and the codomain of the substitution functions
are always specified explicitly, so that, whenever a substitution is given, also
these two additional sets are known (e.g. see Definition 1.3.4).

Hereafter a substitution σ is considered to be trivially extended on Σs so
that σ(a) = a for all a ∈ Σs. Hence, if σ : V → R, the set R contains at least
Σs.

8 CHAPTER 1. PRELIMINARIES

q0 q1 q2

q3

open(f)

read(f),write(f)

read(f),write(f)

read(f ′),write(f ′), f 6= f ′

open(f ′), f 6= f ′

Figure 1.2: An example of UA that demands a file f to be opened before being
used.

Below, we recall the syntax and the semantics of guards, that will label the
edges of UA.

Definition 1.3.2 (Guards). Given a set V of variables we inductively define
the set G of guards on Σs ∪ V , ranged over by ζ, ζ ′, as follows:

G1, G2 := true | ζ = ζ ′ | ¬G1 | G1 ∧G2

A given substitution σ : V → R satisfies a guard g, in symbols σ � g,
if and only if: (g = true) or (g = (ζ = ζ ′) and σ(ζ) = σ(ζ ′)) or (g =

¬g′ and it is not the case that σ � g′) or (g = g′ ∧ g′′ and σ � g′ and σ � g′′).

Definition 1.3.3 (Usage Automata). A Usage Automaton (UA) B is a tuple
〈S,Q, q0, F, E〉. The finite set S ⊆ Act× (Σs∪Var) is its alphabet; Q is its finite
set of states; q0 its initial state; F ⊆ Q the set of its final states; E ⊆ Q×S×G×Q
is its finite set of edges with G set of guards on resources and variables in S.

Given a UA B, we will refer to the variables occurring in S with V ar(B).

Definition 1.3.4 (Instantiation of UA). Let B = 〈S,Q, q0, F, E〉 be a UA and
σ : V ar(B) → R be a substitution. The instantiation of B under σ is the
automaton Bσ = 〈R,Q, q0, F, δσ〉, where δσ = Xσ ∪ Compσ(Xσ) with

Xσ = {(q, α (σ(v)) , q′) | (q, α(v), g, q′) ∈ E and σ � g}
Compσ (Xσ) = {(q, α(r), q) | α ∈ Act, r ∈ R and @q′ ∈ Q.(q, α(r), q′) ∈ Xσ}

Note that the completion Compσ (Xσ) may possibly contain infinitely many
self-loops of the form (q, α(r), q) when r ∈ Σd.

Language recognizability by an automaton with infinitely many edges is
defined similarly to that for standard Finite State Automata (FSA, for short):
η ∈ L(Bσ) if there exists a finite path in Bσ from q0 to a q′ ∈ F labelled with η.

1.3. NOMINAL TRACE MODELS 9

Definition 1.3.5 (Language of UA). The string η ∈ L(B) iff there exists a
substitution σ : V ar(B)→ R for some R ⊆ Σ such that η ∈ L(Bσ).

1.3.2 Variable Finite Automata on Data Words

We recall now the Variable Finite Automata [33], extended on data words in
[26].

Definition 1.3.6 (Variable Finite Automata). The tuple A = 〈Act,Ω,Ωs, X ∪
{y}, A〉 is a Variable Finite Automaton (VFA), where X is a finite set of variables;
Act is a finite set of actions; and Ω is a possibly infinite alphabet with Ωs finite
subset of Ω, Ω ∩X = ∅. A = 〈Γ, Q, q0, F, δ〉 is a non deterministic finite state
automaton (NFA, for short) with alphabet Γ = Act × (Ωs ∪ X ∪ {y}) and
y /∈ (Ω ∪X) is a distinguished placeholder.

Given a function m : Ω → (Ωs ∪X ∪ {y}), m is extended to pairs α(a) ∈
Act× Ω such that m(α(a)) = α(m(a)). When unambiguous, we will write m(η)

for m homomorphically applied to η.

Definition 1.3.7 (Language of VFA). A string η ∈ (Act × Ω)∗ is a legal
instance of w ∈ Γ∗ and w is a witnessing pattern of η, if there exists a function
m : Ω→ (Ωs ∪X ∪ {y}) such that m(η) = w and m is a correspondence, i.e.

1. It is the identity on Ωs : ∀a ∈ Ωs.m(a) = a

2. It is injective on the contraimage of X : ∀x ∈ X, a, b ∈ Ω. if m(a) = x and
m(b) = x then a = b

A string η ∈ L(A) iff there exists w ∈ L(A) such that η is a legal instance of w.

Note that here we rephrase differently the definition in [33], by explicitly
presenting the correspondence between strings and witnessing patterns as a
function. Our definition is provably equivalent to the original one when actions
are ignored.

Of course, we are interested in the behaviour of VFA with infinite alphabets,
typically when Ω = Σ,Ωs = Σs,Ω \ Ωs = Σd.

1.3.3 Finite Memory Automata

We recall now the definition of Finite Memory Automata, given in [38]. This
model does not distinguish between static and dynamic symbols, rather it uses
a flat countable infinite alphabet that here we denote Ω.

10 CHAPTER 1. PRELIMINARIES

Definition 1.3.8. Let As be the set of the assignments σ : r → Ω, where
r = {i | 1 ≤ i ≤ r}, that are injective. A Finite Memory Automaton (FMA)
with r registers on the alphabet Ω is a tuple A = 〈Q, q0, σ0, ρ, µ〉 where: Q is the
set of states; q0 is the initial state; σ0 : r→ Ω ∈ As is the initial assignment of
the registers; ρ : Q ⇀ r is the partial reassignment function; δ is the transition
relation, δ ⊆ Q× r×Q.

A configuration is a tuple C ∈ (Q× As× Ω∗), where: the first component
records the current state, the second is the assignment of the registers, and the
last one is the portion of the input to be scanned.

A step between configurations (q, σ, ww′)→ (q′, σ′, w′), w ∈ Ω occurs iff:

• If w = σ(k) for some k then σ′ = σ and (q, k, q′) ∈ δ

• If for all k ∈ r.w 6= σ(k) then ρ(q) is defined and σ′(ρ(q)) = w, for each
k 6= ρ(q).σ′(k) = σ(k) and (q, ρ(q), q′) ∈ δ.

Let →∗ denote the reflexive and transitive closure of →, the language
recognised by a FMA is the set of strings w such that there exists a run
C0 = (q0, σ0, w)→∗ Cn = (qn, σn, ε) such that qn ∈ F .

Extensions

The History-Register Automata [59] extends Finite Memory Automata [38] and
Fresh Register Automata [58].

The automata are equipped with a fixed number m of histories and n of
registers. A history is a finite set of symbols in Ω, while registers are singletons
subsets of Ω. We call place, without distinction histories and registers.

The set of assignment HAs, associating each place with its symbols is defined
as follows:

HAs = {σ : m + n→ ℘f (Ω) | ∀i > m.|σ(i)| ≤ 1}

Let X ⊆ m then define σ@X to be the set ∩i∈Xσ(i) \ ∪i/∈Xσ(i), assuming
∩∅ = Ω. The function σ[X 7→ S] is the set of pairs {(i, σ(i)) | i /∈ X} ∪ {(i, S) |
i ∈ X}. Assume the function σ[a in X] is such that

σ[a in X](i) =

σ(i) \ {a} if i /∈ X
σ(i) ∪ {a} if i ∈ X ∩ m
{a} if i ∈ X \ m

We are now ready to define the History-Register Automata.

1.3. NOMINAL TRACE MODELS 11

Definition 1.3.9. A History-Register Automaton (HRA) of type (m,n) (an
(m,n)-HRA) is a tuple 〈Q, q0, σ0, δ, F 〉 where: Q is the set of states; q0 is the
initial state; F ⊆ Q is the set of final states; σ0 ∈ HAs is the initial assignment
and δ ⊆ Q×Lab×Q is the transition relation, where Lab = ℘(m + n)2∪℘(m + n).

We denote transitions q X,X′−−−→ q′ or q X′′−−→ q′, the latter being called reset
transitions. A configuration C is a a pair C = (q, σ) ∈ Q× HAs.

A step between configuration (q, σ)
x−→ (q′, σ′) occurs iff

• x = a ∈ Ω and there exists q X,X′−−−→ q′ ∈ δ such that a ∈ σ@X and
σ′ = σ[a in X ′]

• x = ε and there exists q X−→ q′ ∈ δ such that σ′ = σ[X 7→ ∅]

The language accepted by A is L(A) = {a1 . . . an ∈ Ω∗ | (q0, σ0) = C1
a1−→

C2 · · ·
an−1−−−→ Cn = (qn, σn), qn ∈ F}

Fresh Register Automaton are a restriction of HRA with only one history.

Definition 1.3.10. A Fresh Register Automaton (FRA) is a (1, n)-HRA such
that:

• σ0(1) =
⋃
i∈1+n σ0(i)

• for all (q, l, q′) ∈ δ it holds l = (X,X ′) and 1 ∈ X ′

• for all (q, ({1}, X ′), q′) ∈ δ there exists (q, (∅, X ′), q′) ∈ δ

1.3.4 Usages

Usages (or History Expressions) [57, 6] are a simple process algebra conceived
to abstract the set of histories that may be generated by a program that uses
unboundedly many resources.

In this thesis we will consider Usages also as pure languages generators. In
this case it is useful to change some aspects of the original definition, to make it
more essential.

This section reviews both definitions of Usages and shows some of their
properties.

The syntax follows, where we assume Nam to be a countable set of names
(Nam ∩Σ = ∅) and Act to be a set of actions containing the action new, and the
actions [φ,]φ for each policy φ.

12 CHAPTER 1. PRELIMINARIES

(epsilon)
ε · U,R ε−→ U,R

(act)
α(a),R α(a)−−−→ ε,R

(rec)
µh.U,R ε−→ U{µh.U/h},R

(dot)
U,R α(a)−−−→ U ′,R′

U · V,R α(a)−−−→ U ′ · V,R′

(plus1)
U,R α(a)−−−→ U ′,R′

U + V,R α(a)−−−→ U ′,R′
(plus2)

V,R α(a)−−−→ V ′,R′

U + V,R α(a)−−−→ V ′,R′

(nu)
νn.U,R new(a)−−−−→ U{a/n},R∪ {a}

if a ∈ Σd \ R

Table 1.2: Operational semantics of the Usages.

Definition 1.3.11 (Usages). Usages are inductively defined as follows:

U, V ::= ε empty

h recursion variable

α(a) α(a) ∈ Act× (Σ ∪ Nam), α 6= new

U · V sequence

U + V choice

µh.U recursion

νn.U resource creation, n ∈ Nam

φ[U] safety framing

The operators of the calculus are similar to those of the π-calculus, but
Usages have full sequentialization (for brevity, we will write UV in place of
U · V), general recursion and no parallel operator; µh and νn are binders, the
first one on recursion variables, the second on names. The usages are endowed
with a safety framing operator φ[U] (see Section 1.2) to record the security
policies to be enforced on the traces. The safety framing φ[U] is an abbreviation
for the usage [φ·U ·]φ, for simplicity we assume that a dummy static resource
is omitted in [φ,]φ, hence being [φ,]φ ∈ Act × Σs. We assume given a fixed a
notion of validity η � ϕ, telling whether a history satisfies a policy or not.

A usage is closed when it has no free names and no free variables; it is initial
when it is closed and with no dynamic resources, i.e. it is never the case that a
resource a ∈ Σd appears as parameter of an action.

1.3. NOMINAL TRACE MODELS 13

The semantics of Usages is specified by the labelled transition system in
Table 1.2. We associate with a usage the language consisting of all the prefixes
of the traces labelling its computations. The configurations of the transition
system are pairs (U,R), where U is a usage and R ⊆ Σd is the set of dynamic
resources generated so far.

Definition 1.3.12 (Semantics of Usages). Given a closed usage U let JUK be
the set of traces (or histories) η = v1 . . . vn(vi ∈ (Act×Σ)∪{ε}, 1 ≤ i ≤ n) such
that:

∃U ′,R′. U, ∅ v1−→ · · · vn−→ U ′,R′

Usages as language generators

When considering the Usages purely as language generators, we will not use the
safety framing operator and we will consider the variation of rule (nu) below,
where new action is hidden.

(nu)
νn.U,R ε−→ U{a/n},R∪ {a}

if a ∈ Σd \ R

The recursion operator µ makes Usages a context-free model (in our terms),
as informally justified by the following example.

Example 1.3.1. The expression νn.µh.(α(n) · h · α(n) + ε) generates a set of
traces of the form {wwR | all the symbols in w are pairwise distinct}.

Properties for program analysis

Validity of Usages Given a history η we denote with η−[] the trace purged
of all framings actions [φ,]φ. For details and examples, see [7].

The multiset ap(η) of the active policies of a history η is defined as follows:

ap(ε) = { } ap(η [φ) = ap(η) ∪ {φ}
ap(η γ) = ap(η) γ ∈ (Act× Σ) \ {[φ,]φ} ap(η]φ) = ap(η) \ {φ}

The validity of a trace η (|= η in symbols), w.r.t. all the active policies appearing
therein, is inductively defined as follows, assuming a notion of policy compliance
η � φ.

� ε (1.1)

� η′v v ∈ (Act× Σ) if � η′ and (η′v)−[] � φ for all φ ∈ ap(η′v)

A usage U is valid when |= η for all η ∈ JUK.
The following lemma states that validity is a prefix-closed property.

14 CHAPTER 1. PRELIMINARIES

Property 1.3.2. If a history η is valid, then each prefix of its is valid.

The following definition is technical:

Definition 1.3.13 (Well formed traces). A trace η is well-formed if it is never
the case that:

1. η = η′new(a)η′′ for some η′, η′′ with a ∈ Σs or

2. η = η′new(a)η′′new(a)η′′′ for some η′, η′′, η′′′, a or

3. η = η′α(a)η′′new(a)η′′′ for some η′, η′′, η′′′, a, α 6= new

The first condition assures that no static resource is the target of a new, the
second guarantees that no resource is the target of a new twice, the third checks
that no resource is used before it has been target of a new.

We recall from [6] the crucial notion of collapsing mapping. Let W be a finite
set of witnesses such that W ⊂ {#i}i∈N, where {#i}i∈N ∩Σ = ∅. We also need a
distinguished symbol _ /∈ Σ ∪ {#i}i∈N.

Definition 1.3.14 (Collapsing). Given a finite set of witnesses W, a collapsing
mapping κ : Σ→ Σs ∪W ∪ {_} of R ⊂ Σd onto W is a function such that:

1. κ(r ∈ Σs) = r 2. κ(R) = W and it is injective 3. κ(Σd \R) = {_}

We write κ(α(a)) for α(κ(a)) and κ(η) for the homomorphic extension of κ to η.

The well-formedness of collapsed traces can be checked by the so-called
unique-witness automaton, that we recall here from [6].

Definition 1.3.15 (Unique Witness Automaton). Let W be a finite set of
witness, the unique-witness automaton NW is defined as the union of the au-
tomaton N#i

for all #i ∈ W, where each automaton N#i
= 〈Act× (Σs ∪W ∪

{_}), {qi0, qi1, qi2}, qi0, {qi2}, δ#i
〉 is defined as follows:

δ#i
= {qi0

new(#i)−−−−→ qi1, q
i
1

new(#i)−−−−→ qi2}
∪ {q0

v−→ q0, q1
v−→ q1 | v 6= new(#1)}

∪ {q2
v−→ q2 | v ∈ Act× (Σs ∪W ∪ {_})}

The unique-witness automaton can guarantee that each witness is created at
most once, as stated below.

Property 1.3.3 (Unique-witness). Given a finite set of witnesses W and an
initial usage U , the unique-witness FSA NW is such that:

1.3. NOMINAL TRACE MODELS 15

• ∀η ∈ (Act× (Σs ∪W ∪ {_}))∗ it holds
η /∈ L(NW) =⇒ ∀#i ∈ W. there is at most one new(#i) in η

• ∀η ∈ (Act× Σ)∗ it holds
η ∈ JUK =⇒ κ(η) /∈ L(NW)

By exploiting the construction given in [6], we can now associate with a usage
U a symbolic pushdown automaton BW(U), the language of which is denoted by
L(BW(U)). The alphabet of BW(U) is a finite set of witness W that represents
in a symbolic manner the relative equalities and dis-equalities of a history η.
It turns out that these relations uniquely characterise the language of U , the
following theorem makes this characterization precise.

Theorem 1.3.4. Given an initial usage U , there exist a finite set W of witnesses
and a pushdown automaton BW(U) on the finite alphabet Act× (Σs ∪W ∪ {_})
such that:

• Given a collapsing κ such that κ(Σd) ⊆ W ∪ {_} then:
∀η. η ∈ JUK⇒ κ(η) ∈ L(BW(U))

• Given a collapsing κ such that κ(Σd) ⊇ W, then:
∀η′. (η′ ∈ L(BW(U)) ∧ η′ /∈ NW)⇒ (∃η. η ∈ JUK ∧ η′ = κ(η))

1.3.5 Quasi Context-Free Languages

In [19] an automata model and a grammar model is presented, provably recognis-
ing the same class of languages, called Quasi Context-Free Languages (QCFL).
We recall here the definition of the automata model, the Infinite Alphabet
Pushdown Automata.

Definition 1.3.16. Let the set As be as in Definition 1.3.8. An Infinite Alphabet
Pushdown Automaton (IAPA) with r registers is a tuple A = 〈Q, q0, σ0, ρ, µ〉
where: Q is the set of states; q0 is the initial state; σ0 : r→ Σ ∈ As is the initial
assignment of the registers; ρ : Q ⇀ r is the partial reassignment function; δ
is the transition function, mapping elements from Q × (r ∪ {ε}) × r to finite
subsets of Q× r∗

A configuration is a tuple C ∈ (Q×As×Σ∗×Σ∗), where: the first component
records the current state, the second is the assignment of the registers, the third
is the portion of the input yet to be read, and the last one is the content of the
stack, read top-down.

16 CHAPTER 1. PRELIMINARIES

A step between configurations (q, σ, ww′, aS) → (q′, σ′, w′, wpS), w ∈ Σ ∪
{ε}, a ∈ Σ occurs iff:

• If ρ is undefined then σ′ = σ, otherwise σ′(ρ(q)) 6= σ(ρ(q)) and for k 6= ρ(q)

holds σ′(k) = σ(k).

• If w = ε then for some i holds σ′(i) = a and there exists (q′, x1 . . . xn) ∈
δ(q, ε, i) such that wp = σ′(x1) . . . σ′(xn).

• If w 6= ε then for some k, i holds σ′(k) = w, σ′(i) = a and there exists
(q′, x1 . . . xn) ∈ δ(q, k, i) such that wp = σ′(x1) . . . σ′(xn).

The language recognised by a IAPA is the set of strings w such that there
exists a run C0 = (q0, w, σ0, σ0(r))→∗ Cn = (qn, ε, σn, ε). Note that the initial
stack assignment is made only by the symbol on the last register and that
acceptance is by empty stack.

Chapter 2

A Semantics for Context-awareness

In this chapter we propose the kernel of a programming language suitable for
the development of complex adaptive software. We will focus on three key
characteristics of adaptive components: (i) the mechanisms to manipulate the
context, (ii) the security policies governing the behaviour and the resource usage,
(iii) the interactions with other components.

As for our model for the interactions with other components, we do not wire
a component to a specific communication infrastructure. Our communication
model is based on a bus, through which messages are exchanged. We assume
given an abstract, declarative representation of the operational environment.

We suitably extend and integrate together techniques from Context Oriented
Programming (Section 1.1), type theory and model-checking. In particular, we
develop a static technique ensuring that a component (i) adequately reacts to
context changes, (ii) accesses resources in accordance with security policies,
(iii) exchanges messages on the bus, complying with a specific communication
protocol provided by the operating environment.

Our proposal requires several stages.

I First, in Section 2.2, we design a core programming language for pro-
gramming adaptive components, called ContextML. ContextML embeds
constructs for resource manipulation and mechanisms to declare and en-
force security policies by adopting the local sandbox approach of [7]. The
language also features message passing constructs for communicating with
external parties.

II Next, we provide ContextML with a type and effect system (Section 2.3). We
exploit it for ensuring that programs adequately react to context changes and
for computing as effect an abstract representation of the overall behaviour.

18 CHAPTER 2. A SEMANTICS FOR CONTEXT-AWARENESS

This representation, in the form of a subset of the Usages (Section 1.3.4),
describes the sequences of resource manipulations and communication with
external parties in a succinct form.

III Finally, we model-check effects to verify that the component behaviour
is correct, i.e. that the behavioural variations can always take place, that
resources are manipulated in accordance with the given security policies
and that the communication protocol is respected. The model-checking is
performed in two phases. The first determines whether security policies are
obeyed, the second one verifies compliance with the protocol (Section 2.4).

In the next section we introduce a motivating example, that is also instrumental
in displaying our methodology at a glance.

2.1 A motivating example: an e-library
application

Consider a simple scenario consisting of a smartphone application that uses
some service supplied by a cloud infrastructure. The cloud offers a repository
to store and synchronize a library of ebooks and computational resources to
execute customised applications (among which full-text search).

A user buys ebooks online and reads them locally through the application.
The purchased ebooks are stored into the remote user library and some books
are kept locally in the smartphone. The two libraries may not be synchronized.
The synchronization is triggered on demand and depends on several factors:
the actual bandwidth available for connection, the free space on the device, etc.
We specify below the fragment of the application that implements the full-text
search over the user’s library.

Consider now the context dependent behaviour emerging because of the
different energy profiles of the smartphone. We assume that there are two: one
is active when the device is plugged in, the other is active when it is using its
battery. These profiles are represented by two layers: ACMode and BatMode.
The function getBatteryProfile returns the layer describing the current active
profile depending on the value of the sensor (plugged):

fun getBatteryProfile x = if (plugged) then ACMode else BatMode

Layers can be activated, so modifying the context. The expression

with(getBatteryProfile()) in exp1 (2.1)

2.1. A MOTIVATING EXAMPLE: AN E-LIBRARY APPLICATION 19

activates the layer obtained by calling getBatteryProfile. The scope of this
activation is the expression exp1 in Figure 2.1(a). In lines 2-10, there is the
following layered expression:

ACMode. 〈do search〉,
BatMode. 〈do something else〉

This is the way context-dependent behavioural variations are declared. Roughly,
a layered expression is an expression defined by cases. The cases are the different
layers that may be active in the context, here BatMode and ACMode. Each layer
has an associated expression. A dispatching mechanism inspects at runtime the
context and selects an expression to be reduced. If the device is plugged in, then
the search is performed, abstracted by 〈do search〉. Otherwise, something else
gets done, abstracted by 〈do something else〉. Note that if the programmer
neglects a case, then the program throws a runtime error being unable to adapt
to the actual context.

In the code of exp1 (Figure 2.1(a)), the function g consists of nested layered
expressions describing the behavioural variations matching the different configu-
rations of the execution environment. The code exploits context dependency
to take into account also the actual location of the execution engine (remote in
the cloud at line -3- or local on the device -4-), the synchronization state of the
library -5,6- and the active energy profile -2,10-. The smartphone communicates
with the cloud system over the bus through message passing primitives -7-9-.

The search is performed locally only if the library is fully synchronized and
the smartphone is plugged in. If the device is plugged in but the library is not
fully synchronized, then the code of function g is sent to the cloud and executed
remotely by a suitable server.

In Figure 2.1(b) we show a fragment of the environment provided by the
cloud infrastructure. The service considered is offering generic computational
resources to the devices connected on the bus by continuously running function
f . The function f listens to the bus for incoming code (a function) and an
incoming layer. Then, it executes the received function in a context extended
with the received layer.

In the code of the cloud it appears a security policy φ to be enforced before
running the received function. This is expressed by the security framing φ[. . .]

that causes a sandboxing of the enclosed expression, to be executed under the
strict monitoring of φ. Take φ to be a policy expressing that writing on the
library write(library) is forbidden (so only reading is allowed). The framing
guarantees that the execution of foreign code does not alter the remote library.

20 CHAPTER 2. A SEMANTICS FOR CONTEXT-AWARENESS

1 fun g x =
2 ACMode.
3 IsCloud . search () ,
4 I sLoca l .
5 LibrarySynced . search (y) ,
6 LibraryUnsynced .
7 sendty[τ](ACMode) ;
8 sendty[τ ′](g) ;
9 receivety[τ ′′] ;

10 BatMode . 〈do something else〉
11 g ()

(a) The definition of exp1

1 fun f x =
2 let l y r = receivety[τ] in
3 let g = receivety[τ ′] in
4 φ[with(l y r) in
5 let r e s = g () in
6 sendty[τ ′′](r e s)
7] ; f ()
8 f ()

(b) The code for a service

Figure 2.1: Fragments of an App and of a service in the cloud

In this example, we simply state that φ only concerns actions on resources, e.g.
the library. Our approach also allows us to enforce security policies governing
behaviour adaptation and communication.

The cloud system constraints communications on the bus by also declaring
a protocol P , prescribing the viable interactions. Additionally, the cloud in-
frastructure will make sure that the protocol P is indeed an abstraction of the
behaviour of the various services of it involved in the interactions. We do not
address here how protocols are defined by the environment and we only check
whether a user respect the given protocol.

The actual protocol guaranteed by the environment is

P = (sendty[τ]sendty[τ
′]receivety[τ

′′])∗

It expresses that the client must send a value of type τ then a value of type τ ′

and then must receive back a value of type τ ′′. These actions can be repeated a
certain number of times. We will discuss later on the actual types τ, τ ′, τ ′′.

Function getBatteryProfile returns a value of type ly{ACMode,BatMode}. This
type means that the returned layer is one between ACMode and BatMode.

The type of function g is τ ′ = unit
P|U−−→ τ ′′, assuming that the value returned

by the search function has type τ ′′. The type τ ′ is annotated by a set of
preconditions P (see below) and a latent effect U (discussed later on).

P = {{ACMode, IsLocal, LibrarySynced} , {ACMode, IsCloud} , . . . }

Each precondition in P is a set of layers. To apply g, the context of the application
must contains all the layers in υ, for a precondition υ ∈ P.

As we will see later on, our type system guarantees that the dispatching
mechanism always succeeds at runtime. In our example, the expression (2.1) will

2.2. CONTEXTML: A CONTEXT-ORIENTED ML CORE 21

be well-typed whenever the context in which it will be evaluated contains IsLocal
or IsCloud and LibraryUnsynced or LibrarySynced. The requirements about
ACMode and BatMode coming from exp1 are ensured in (2.1). This is because the
type of getBatteryProfile guarantees that one among them will be activated
in the context by the with.

An effect U (a restriction of a usage in Section 1.3.4) represents (an over-
approximation of) the sequences of events, i.e. of resource manipulation or layer
activations or communication actions. The effect U in τ ′ is the latent effect of
g, over-approximating the set of histories, i.e. the sequences of events, possibly
generated by running g.

Effects are then used to check whether a client complies with the policy
and the interaction protocol provided by the environment. Verifying that the
code of g obeys the policy φ is done by standard model-checking the effect of g
against the policy φ. Obviously, the app never writes, so the policy φ is satisfied,
assuming that the code for the BatMode case has empty effect.

To check compliance with the protocol, we only consider communications.
Thus, the effect of exp1 becomes:

Usr = sendty · sendty[τ
′] · receivety[τ

′′]

Verifying whether the program correctly interacts with the cloud system
consists of checking that the histories generated by Usr are a subset of those
allowed by the protocol P . In our scenario this is indeed the case.

2.2 ContextML: a context-oriented ML core
ContextML is a fragment of ML extended to deal with adaptation, providing
us with mechanisms to change the context and to define behavioural variations
in a functional style. We extend it by introducing resources manipulation,
enforcement of security properties and communication.

Resources available in the system are represented by identifiers and can be
manipulated by a fixed set of actions.

We enforce security properties by protecting an expression e through the
policy framing φ[e] seen in Section 1.2. Roughly, it means that during the
evaluation of e the computation must respect φ. Our policies turn out to be
regular properties of computation histories; we delay the actual definition of
policy compliance to Section 2.4.

The communication model is based on a bus which allows programs to interact
with the environment by message passing. The operations of writing and reading
values over this bus can be seen as a simple form of asynchronous I/O. We
will not specify this bus in detail, but we will consider it as an abstract entity

22 CHAPTER 2. A SEMANTICS FOR CONTEXT-AWARENESS

representing the whole external environment and its interactions with programs.
Therefore, ContextML programs operate in an open-ended environment.

The syntax and the structural operational semantics of ContextML follow.

Syntax Let N be the naturals, Ide a set of identifiers, LayerNames a finite set
of layer names, Policies a set of security policies, Σs a finite set of resources
identifiers and Act a finite set of actions for manipulating resources. Then, the
syntax of ContextML is:

n ∈ N x, f ∈ Ide L ∈ LayerNames

φ ∈ Policies r ∈ Σs α, β ∈ Act

v, v1, v
′ ::= n | L | () | λf x ⇒ e

e, e1, e
′ ::= φ[e] | v | x | e1e2 | let x = e1 in e2 | e1 op e2 |

if e0 then e1 else e2 | with(e1) in e2 | unwith(e1) in e2 | lexp
sendty(e) | receivety | α(r) | aux

lexp ::= L.e | L.e, lexp
aux ::= φ[e] | with(L) in e2 | unwith(L) in e2

Additionally, we assume the syntactic sugar e1; e2 , (λfx⇒ e2) e1 where x
and f are not free in e2.

The novelties of ContextML with respect to ML are primitives for handling
resources, policy framing and communication and some features borrowed from
COP languages (for their description we refer the reader to Section 1.1). Usually,
COP paradigm have layers as expressible values; the (unwith) with construct
for manipulating the context by (de)activating layers; layered expressions (lexp),
defined by cases, each specifying a context-dependent behaviour. The expression
α(r) indicates that we access the resource r through the action α, possibly
causing side effects. The security properties are enforced by policy framing φ[e]

guaranteeing that the computation satisfies the policy φ. Of course, policy fram-
ings can be nested. The communication is performed by sendty and receivety.
They allow us to interact with the external environment by writing/reading
values of type τ (see Section 2.3) to/from the bus. The auxiliary expressions
(aux) are not intended to be used directly by the programmer, but they are used
by our static and dynamic semantics only.

Dynamic Semantics We endow ContextML with a small-step operational se-
mantics, only defined for closed expressions as usual. Note that, since ContextML

2.2. CONTEXTML: A CONTEXT-ORIENTED ML CORE 23

programs can read values from the bus, a closed expression can be open with
respect to the external environment. For example, let x = receivety in x+ 1 is
closed but it reads an unknown value v from the bus. To give meaning to such
programs, we have an early input rule similar to that of the π-calculus [53].

Our semantics records the events occurring during program execution by
cumulating a history, i.e. the sequence of such events. Events ev indicate
(de)activation layers, selection of behavioural variations and program actions, be
they resource accesses, entering/exiting policy framing and communication. Our
semantics will be history dependent, in that the histories effect the semantics of
a program when a policy framing is encountered, possibly halting the execution.

The syntax of events ev and programs histories η is the following:

ev ::= LL | ML | {L | }L | Disp(L) | α(r) | sendty | receivety | [φ|]φ (2.2)

η ::= ε | ev | η η (2.3)

The event LL (ML respectively) marks that we begin (end), the evaluation of awith
body in a context where the layer L is activated (deactivated). Symmetrically,
the event {L (}L, respectively) signals that we begin (end) the evaluation of a
unwith body in a context where the layer L is masked (unmasked); the event
Disp(L) signals that layer L has been selected by the dispatch mechanism; the
event α(r) marks that the action α has been performed over the resource r;
the event sendty/receivety indicates that we have sent/read a value of type τ
over/from the bus; the event (]φ) [φ marks that we begin (end, respectively) the
enforcement of the policy φ.

A context C is a stack of layers, each layer appearing at most once. We
denote by |C| the set of active layer in the context C, i.e. the set of layers
appearing on the stack. Whenever a layer L is in |C|, we will say that L is active
in C.

We define now two operations on contexts: the first C −L removes a layer L
from the context C if present, the second L :: C pushes L over C −L. Formally:

Definition 2.2.1. We denote the empty context by [] and a context with n

elements with top L1 by [L1, . . . , Ln].
Let C = [L1, . . . , Li−1, Li, Li+1, . . . , Ln], 1 ≤ i ≤ n then

C − L =

{
[L1, . . . , Li−1, Li+1, . . . Ln] if L = Li

C otherwise

Also, let L :: C = [L,L1, . . . , Ln] where [L1, . . . , Ln] = C − L.

24 CHAPTER 2. A SEMANTICS FOR CONTEXT-AWARENESS

The transitions have the form C ` η, e→ η′, e′, meaning that in the context
C, starting from a program history η, the expression e may evolve to e′ and the
history η to η′ in one evaluation step.

The semantic rules are shown in Figure 2.2, most of them are inherited from
ML. We briefly comment on them.

The rules for with(e1) in e2 (unwith(e1) in e2, respectively) evaluate e2

in a context where the layer obtained evaluating e1 is activated (deactivated).
Additionally, we store in the history the events LL and ML ({L and }L) marking
the beginning and the end of the evaluation of e2 (note that being within the
scope of layer L activation is recorded by the auxiliary expressions with(L)).

When a layered expression e = L1.e1, . . . , Ln.en has to be evaluated (rule
lexp), the current context is inspected top-down to select the expression ei to
which e reduces. This dispatching mechanism is implemented by the partial
function Dsp, defined as

Dsp([L′0, L
′
1, . . . , L

′
m], A) =

{
L′0 if L′0 ∈ A
Dsp([L′1, . . . , L

′
m], A) otherwise

that returns the first layer in the context [L′0, L
′
1, . . . , L

′
m] which matches one of

the layers in the set A. If no layer matches, then the computation gets stuck.
The rule (action) establishes that performing an action α over a resource r

yields the unit value () and extends η with α(r).
The rules governing communications reflect our notion of protocol, that

abstractly represents the behaviour of the environment, showing the sequence
of direction/type of messages. Accordingly, our primitives carry types as tags,
rather than dynamically checking the exchanged values. In particular, there is no
check that the type of the received value matches the annotation of the receive
primitive. Our static analysis will guarantee the correctness of this operation.

In detail, sendty(e) evaluates e and sends the obtained value over the bus.
Additionally, the history is extended with the event sendty. A receivety reduces
to the value v read from the bus and appends the corresponding event to the
current history. This rule is similar to that used in the early semantics of the
π-calculus, where we guess a name transmitted over the channel [53].

The rules for framing say that an expression φ[e] can reduce to φ[e′], provided
that the resulting history η′ obeys the policy φ, in symbols η′−[] � φ (see
Section 1.3.4 and Section 2.4 for a precise definition). Also here, placing a
bar over φ records that the policy is active. If η′ does not obey φ, then the
computation gets stuck. Of course, we store in the history through [φ/]φ the
point where we begin/end the enforcement of φ.

2.2. CONTEXTML: A CONTEXT-ORIENTED ML CORE 25

if1
C ` η, e0 → η′, e′0

C ` η, if e0 then e1 else e2 → η′, if e′0 then e1 else e2

if2 C ` η, if 0 then e1 else e2 → η, e2
if3

v 6= 0

C ` η, if v then e1 else e2 → η, e1

let1
C ` η, e1 → η′, e′1

C ` η, let x = e1 in e2 → η′, let x = e′1 in e2

let2
C ` η, let x = v in e2 → η, e2{v/x}

op1
C ` η, e1 → η′, e′1

C ` η, e1 op e2 → η′, e′1 op e2

op2
C ` η, e2 → η′, e′2

C ` η, v op e2 → η′, v op e′2
op3

v = v1 op v2
C ` η, v1 op v2 → η, v

app1
C ` η, e2 → η′, e′2

C ` η, e1 e2 → η′, e1 e
′
2

app2
C ` η, e1 → η′, e′1

C ` η, e1 v → η′, e′1 v

app3
C ` η, (λf x⇒ e)v → η, e{λf x⇒ e/f, v/x}

with1
C ` η, e1 → η′, e′1

C ` η,with(e1) in e2 → η′,with(e′1) in e2

with2
C ` η,with(L) in e→ η LL,with(L̄) in e

with3
L :: C ` η, e→ η′, e′

C ` η,with(L̄) in e→ η′,with(L̄) in e′
with4

C ` η,with(L̄) in v → η ML, v

unwith1
C ` η, e1 → η′, e′1

C ` η,unwith(e1) in e2 → η′,unwith(e′1) in e2

unwith2
C ` η,unwith(L) in e→ η {L,unwith(L̄) in e

unwith3
C − L ` η, e→ η′, e′

C ` η,unwith(L̄) in e→ η′,unwith(L̄) in e′

unwith4
C ` η,unwith(L̄) in v → η }L, v

lexp Li = Dsp(C, {L1, . . . , Ln})
C ` η, L1.e1, . . . , Ln.en → η Disp(Li), ei

action
C ` η, α(r)→ η α(r), ()

send1
C ` η, e→ η′, e′

C ` η, sendty(e)→ η′, sendty(e′)

send2
C ` η, sendty(v)→ η sendτ , ()

receive
C ` η, receivety → η receiveτ , v

framing1
η−[] � φ

C ` η, φ[e]→ η[φ, φ[e]
framing2

C ` η, e→ η′, e′ η′−[] � φ

C ` η, φ[e]→ η′, φ[e′]

framing3
C ` η, φ[v]→ η]φ, v

Figure 2.2: Semantic rules for new constructs

26 CHAPTER 2. A SEMANTICS FOR CONTEXT-AWARENESS

To better explain how does the evaluation of ContextML programs works,
consider the following example of execution, referencing the code in Figure 2.1.

Example 2.2.1. Assume that the layer IsCloud is active in the context and
that getBatteryProfile() returns the layer ACMode, then we have the follow-
ing transition:

[IsCloud] ` η,with(getBatteryProfile()) in exp1 → η′,with(ACMode) in exp1

The expression with(ACMode) in exp1 will now behave in the context [IsCloud]

as the expression search() on line 3 of exp1.
Indeed, the layered expression semantics justifies the following transition

[ACMode, IsCloud] `

η′′, exp2 =
ACMode .

IsCloud . search () ,
...

BatMode . · · ·

−→

η′′′, exp3 =
ACMode .

IsCloud . e ’ ,
...

BatMode . · · ·

where e′ is obtained by evaluating the expression search().

2.3 ContextML types

We provide here ContextML with a type and effect system. We use it for over-
approximating the behaviour of a program and for ensuring that the dispatch
mechanism always succeeds at runtime. The associated effect is a variant of the
Usages in Definition 1.3.11, where the νn primitive is not used and the actions
α(r) are the events ev in Equation (2.2).

Our type and effect system does not use the νn primitive of Usages because
the number of symbols involved in all the computations of a program is finite:
the resources r are finite in Σs, the layers appearing in a program are finite. In
Section 2.5 we will show an extension of ContextML that will be able to use the
(possibly unbounded) resources available in the various contexts, the abstraction
of which behaviour needs the νn primitive.

Recall from [7] the partial ordering U v U ′ on the usages U,U ′ defined over
the quotient induced by the (semantic preserving) equational theory in Figure 2.3.
It is the least relation such that U v U and U v U + U ′. It holds that
U v U ′ implies JUK ⊆ JU ′K. Intuitively U v U ′ means that U is a more precise
approximation than U ′. Note that the theory is not complete, i.e. JUK ⊆ JU ′K
does not implies U v U ′. Moreover, recall from Section 1.3.4 that the semantics
of a usage is a prefix closed set of histories.

2.3. CONTEXTML TYPES 27

H +H ≡ H ≡ ε ·H ≡ H · ε H1 +H2 ≡ H2 +H1

H1 · (H2 ·H3) ≡ (H1 ·H2) ·H3 H1 + (H2 +H3) ≡ (H1 +H2) +H3

H1 · (H2 +H3) ≡ (H1 ·H2) + (H1 ·H3) (H1 +H2) ·H3 ≡ (H1 ·H3) + (H2 ·H3)

Figure 2.3: Equational theory on the Usages

Back to the example in Section 2.1, assume that U is a usage over-approximating
the behaviour of function g. Then, the usage U ′ of the fragment of the cloud
service in Figure 2.1(b) is

U ′ = µh.receivety[τ] · receivety[τ
′] · φ [(ACMode·U · sendty[τ

′′])ACMode] · h

assuming τ = lyACMode.
The semantics of ContextML (in particular the rules for framing) ensures

that, once fixed policy compliance η � φ (provided in Definition 2.4.1), the
histories generated at runtime are all valid, in the sense of Equation (1.1).

Property 2.3.1. If C ` ε, e→ η′, e′, then η′ is valid.

We give now the logical presentation of our type and effect system. We are
confident that an inference algorithm can be developed, along the lines of [57].
Our typing judgements have the form 〈Γ;C〉 ` e : τ . U . This means that in “in
the type environment Γ and in the context C the expression e has type τ and
effect U ”.

Our type system has types for representing integers, unit, layers and functions:

σ ∈ ℘(LayerNames) P ∈ ℘ (℘(LayerNames))

τ, τ1, τ
′ ::= int | unit | lyσ | τ1

P|U−−→ τ2

We annotate types with sets of layer names σ for analysis reason. In lyσ, σ over-
approximates the set of layers that an expression can be reduced to at runtime.
In τ1

P|U−−→ τ2, P is a set of preconditions υ. Each υ ∈ P over-approximates the
set of layers that must occur in the context to apply the function. The usage U
is the latent effect, i.e. the sequence of events generated while evaluating the
function.

Figure 2.4 introduces the rules for subtyping (τ1 ≤ τ2). The rule (Sref) states
that the subtyping relation is reflexive. The rule (Sly) says that a layer type

28 CHAPTER 2. A SEMANTICS FOR CONTEXT-AWARENESS

lyσ is a subtype of lyσ′ whenever the annotation σ is a subset of σ′. The rule
(Sfun) defines subtyping for functional types. As usual, it is contravariant in
τ1 but covariant in P, τ2 and U . The notion of subeffecting (U v U ′) is the
one introduced at the beginning of this section. The ordering on the set of
preconditions is defined as follows P v P′ iff ∀υ ∈ P . ∃υ′ ∈ P′ . υ′ ⊆ υ. By the
(Tsub) rule, we can always enlarge types and effects.

(Sref)
τ ≤ τ

(Sfun)
τ ′1 ≤ τ1 τ2 ≤ τ ′2 P v P′ U v U ′

τ1
P|U−−→ τ2 ≤ τ ′1

P′|U ′−−−→ τ ′2

(Sly)
σ ⊆ σ′

lyσ ≤ lyσ′
(Tsub)

〈Γ;C〉 ` e : τ ′ . U ′ τ ′ ≤ τ U ′ v U

〈Γ;C〉 ` e : τ . U

Figure 2.4: Subtyping rules

Figure 2.5 shows the rules of our type and effect system. We only comment
in detail on the rules for the non standard constructs.

The rule (Talpha) gives expression α(r) type unit and effect α(r). The rule
(Tly) asserts that the type of a layer L is ly annotated with the singleton set
{L} and its effect is empty. In the rule (Tfun) we guess a set of preconditions P,
a type for the bound variable x and for the function f . For all precondition
υ ∈ P we also guess a context C ′ such that it does not contain any additional
layer except those specified by the precondition υ. We determine the type of
the body e under these additional assumptions. Implicitly, we require that the
guessed type for f , as well as its latent effect U , match that of the resulting
function. Additionally, we require that the resulting type is annotated with P.

The rule (Tapp) is almost standard and reveals the mechanism of function
precondition. The application gets a type if there exists a precondition υ ∈ P such
that it is satisfied in the current context C. A context satisfies the precondition
υ whenever it contains all the layers in υ, in symbols |C ′| ⊇ υ, where |C ′|
denotes the set of layers active in the context C ′. The effect is obtained by
concatenating the ones of e2 and e1 and the latent effect U . To better explain
how preconditions work, consider the technical example in Figure 2.6. There,
the function λf x ⇒ L1.0 is shown having type int

{L1}−−→ int (for the sake of
simplicity we ignore the effects). This means that L1 must be in the context in
order to apply the function.

The rule (Twith) establishes that the expression with(e1) in e2 has type τ ,
provided that the type for e1 is lyσ (recall that σ is a set of layers) and e2 has
type τ in the context C extended by the layers in σ. The effect is the union
of the possible effects resulting from evaluating the body. This evaluation is
carried on the different contexts obtained by extending C with one of the layers

2.3. CONTEXTML TYPES 29

(TVar) Γ(x) = τ

〈Γ;C〉 ` x : τ . ε
(Tint)

〈Γ;C〉 ` n : int . ε

(Tunit)
〈Γ;C〉 ` () : unit . ε

(Tly)
〈Γ;C〉 ` L : ly{L} . ε

(Talpha)
〈Γ;C〉 ` α(a) : unit . α(a)

(Tfun) ∀υ ∈ P. 〈Γ, x : τ1, f : τ1
P|U−−→ τ2;C′〉 ` e : τ2 . U υ ⊇ |C′|

〈Γ;C〉 ` λf x⇒ e : τ1
P|U−−→ τ2 . ε

(Tlet) 〈Γ;C〉 ` e1 : τ1 . U 〈Γ, x : τ1, C〉 ` e2 : τ2 . U
′

〈Γ;C〉 ` let x = e1 in e2 : τ2 . U · U ′

(Tif) 〈Γ;C〉 ` e0 : int . U 〈Γ;C〉 ` e1 : τ . U1 〈Γ;C〉 ` e2 : τ . U2

〈Γ;C〉 ` if e0 then e1 else e2 : τ . U · (U1 + U2)

(Twith)
〈Γ;C〉 ` e1 : ly{L1,...,Ln} . U

′ ∀Li ∈ {L1, . . . , Ln}.〈Γ;Li :: C〉 ` e2 : τ . Ui

〈Γ;C〉 ` with(e1) in e2 : τ . U ′ ·
∑
Li

LLi ·Ui·MLi

(Tunwith)
〈Γ;C〉 ` e1 : ly{L1,...,Ln} . U

′ ∀Li ∈ {L1, . . . , Ln}.〈Γ;C − Li〉 ` e2 : τ . Ui

〈Γ;C〉 ` unwith(e1) in e2 : τ . U ′ ·
∑
Li
{Li ·Ui·}Li

(Tlexp) ∀i.〈Γ;C〉 ` ei : τ . Ui L1 ∈ |C| ∨ · · · ∨ Ln ∈ |C|

〈Γ;C〉 ` L1.e1, . . . , Ln.en : τ .
∑

Li∈{L1,...,Ln}

Disp(Li) · Ui

(Tapp) 〈Γ;C〉 ` e1 : τ1
P|U−−→ τ2 . U1 〈Γ;C〉 ` e2 : τ1 . U2 ∃υ ∈ P.υ ⊆ |C|
〈Γ;C〉 ` e1e2 : τ2 . U2 · U1 · U

(Top) 〈Γ;C〉 ` e1 : int . U1 〈Γ;C〉 ` e2 : int . U2

〈Γ;C〉 ` e1 op e2 : int . U1 · U2

(Tphi) 〈Γ;C〉 ` e : τ . U

〈Γ;C〉 ` φ[e] : τ . [φ·U ·]φ
(Trec)

〈Γ;C〉 ` receivety : τ . receivety

(Tsend) 〈Γ;C〉 ` e : τ . U U ′ = U · sendty

〈Γ;C〉 ` sendty(e) : unit . U ′

Figure 2.5: Typing rules for ContextML

30 CHAPTER 2. A SEMANTICS FOR CONTEXT-AWARENESS

〈Γ, x : τ, f : τ
{|C′|}
−−−−→ τ ;C′〉 ` 0 : τ L1 ∈ C′

〈Γ, x : τ, f : τ
{|C′|}
−−−−→ τ ;C′〉 ` L1.0 : τ

〈Γ;C〉 ` λf x⇒ L1.0 : τ
{|C′|}
−−−−→ τ

〈Γ, g : τ
{|C′|}
−−−−→ τ ;C〉 ` g : τ → τ

〈Γ, g : τ
{|C′|}
−−−−→ τ ;C〉 ` 3 : τ |C′| ⊆ |C|

〈Γ, g : τ
{|C′|}
−−−−→ τ ;C〉 ` g 3 : τ

〈Γ;C〉 ` let g = λf x⇒ L1.0 in g 3 : τ

Figure 2.6: Derivation of a function with precondition. We assume that C ′ = [L1],
L1 is active in C, LayerNames = {L1} and, for typesetting convenience, we also
denote τ = int and we ignore effects.

in σ. The special events LL and ML express the scope of this layer activation.
The rule (Tunwith) is similar to (Twith), but instead removes the layers in σ
and use {L and }L to delimit layer hiding.

By (Tlexp) the type of a layered expression is τ , provided that each sub-
expression ei has type τ and that at least one among the layers L1, . . . Ln occurs
in C. When evaluating a layered expression one of the mentioned layers will
be active in the current context so guaranteeing that layered expressions will
correctly evaluate. The whole effect is the sum of sub-expressions effects Ui
preceded by Disp(Li).

The expression sendty(e) has type unit and its effect is that of e extended
with event sendty. The expression receivety has type τ and its effect is the
event receivety. Note that the rules establish the correspondence between the
type declared in the syntax and the checked type of the value sent/received. An
additional check is however needed and will be carried on also taking care of the
interaction protocol (Section 2.4).

For technical reasons, we need the following rules dealing with the auxiliary
syntactic constructs.

(Tbphi) 〈Γ;C〉 ` e : τ . U

〈Γ;C〉 ` φ[e] : τ . U ·]φ
(Tbwith) 〈Γ;L :: C〉 ` e2 : τ . U

〈Γ;C〉 ` with(L) in e2 : τ . U ·ML

(Tbunwith) 〈Γ;C − L〉 ` e2 : τ . U

〈Γ;C〉 ` unwith(L) in e2 : τ . U ·}L

Our type system enjoys the following soundness results, the proofs of which are
delayed to the next sub-section. Given a history η and a usage U , by abuse of
notation, ηU will denote the usage obtained by the sequentialization of η and U ,
where η stands for the usage obtained by sequentialization of all the events in
the history η.

2.3. CONTEXTML TYPES 31

Theorem 2.3.2 (Subject reduction). Let e be a closed expression, if 〈Γ;C〉 `
e : τ . U and C ` η, e→ η′, e′, then 〈Γ;C〉 ` e′ : τ . U ′ with ηU w η′U ′

As a corollary we get that the usage obtained as effect of an expression e
over-approximates the set of histories that may actually be generated during
the execution of e.

Corollary 2.3.3 (Over-approximation). If 〈Γ;C〉 ` e : τ . U and C ` ε, e→∗
η, e′, then η ∈ JUK.

We also have the following result, where C ` η, e9 means that e is stuck.

Theorem 2.3.4 (Progress). Let e be a closed expression such that 〈Γ;C〉 ` e :

τ . U . If C ` η, e9 and ηU is valid, then e is a value.

Subject reduction and progress prove the soundness of our type system.

Corollary 2.3.5. If 〈∅;C〉 ` e : τ . U and U is valid, then e never gets stuck,
i.e. C ` ε, e→∗ η′, e′ with e′ not a value implies C ` η′, e′ → η′′, e′′.

This corollary guarantees that a well-typed expression e will never get stuck
because of policy violations, provided that its effect U is valid and that e complies
with the communication protocol.

2.3.1 Proofs

In this section we give some additional definitions and we prove progress and
subject reduction theorems.

Definition 2.3.1 (Substitution). Given the expressions e,e′ and the identifier
x we define e{e′/x} in Table 2.1.

Lemma 2.3.6 (Substitution Lemma). Let 〈Γ, x : τ ′;C〉 ` e : τ .U and 〈Γ;C〉 `
v : τ ′ . ε then 〈Γ;C〉 ` e{v/x} : τ . U

Proof. We prove the lemma by structural induction over the expressions.

• Case e = φ[e1].
By the precondition of the rule (Tphi) 〈Γ, x : t′;C〉 ` e1 : τ .U ′ holds where
U = [φU

′]φ. By Definition 2.3.1 we know that φ[e1]{v/x} = φ[e1{v/x}],
hence by the applying inductive hypothesis 〈Γ;C〉 ` e1{v/x} : τ . U ′.
So by the rule (Tphi) and by the Definition 2.3.1 we can conclude that
〈Γ;C〉 ` φ[e1]{v/x} : τ . U holds.

32 CHAPTER 2. A SEMANTICS FOR CONTEXT-AWARENESS

n{e′/x} = n, L{e′/x} = L, (){e′/x} = ()

(λfx
′ ⇒ e){e′/x} = λfx⇒ e{e′/x} if f 6= x ∧ x 6= x′ ∧ f, x′ /∈ fv(e′)

x{e′/x} = e′, x′{e′/x} = x′ if x′ 6= x

(e1 e2){e′/x} = e1{e′/x}e2{e′/x}

(e1 op e2){e′/x} = e1{e′/x} op e2{e′/x}

(if e0 then e1 else e2){e′/x} = if e0{e′/x} then e1{e′/x} else e2{e′/x}

(with(e1) in e2){e′/x} = with(e1{e′/x}) in e2{e′/x}

(unwith(e1) in e2){e′/x} = unwith(e1{e′/x}) in e2{e′/x}

(φ[e]){e′/x} = φ[e{e′/x}] α(r){e′/x} = α(r)

(sendty(e)){e′/x} = sendty(e{e′/x}) (receivety){e′/x} = receivety

(L1.e1, . . . , Ln.en){e′/x} = L1.e1{e′/x}, . . . , Ln.en{e′/x}

Table 2.1: Definition of substitution for ContextML expressions

• Case e = with(e1) in e2.
By the precondition of the rule (Twith) we know that 〈Γ, x : τ ′;C〉 ` e1 :

ly{L1,...,Ln} . U
′ and ∀Li ∈ {L1, . . . , Ln}.〈Γ, x : τ ′;Li :: C〉 ` e2 : τ . Ui hold

where U = U ′·
∑

Li
LLi ·Ui·MLi . By the Definition 2.3.1 (with(e1) in e2){v/x} =

with(e1{v/x}) in e2{v/x}. By the inductive hypothesis 〈Γ, x : τ ′;C〉 `
e1{v/x} : ly{L1,...,Ln} . U

′ and ∀Li ∈ {L1, . . . , Ln}.〈Γ, x : τ ′;Li :: C〉 `
e2{v/x} : τ . Ui hold. So by the rule (Twith) and by Definition 2.3.1 we
can conclude that 〈Γ;C〉 ` (with(e1) in e2){v/x} : τ . U .

• Case e = unwith(e1) in e2.
Similar to the case for e = with(e1) in e2.

• Case e = L1.e1, . . . , Ln.en.
By the rule (Tlexp) we know that ∀i ∈ {L1, . . . , Ln} 〈Γ, x : τ ′;C〉 ` ei :

τ . Ui, L1 ∈ |C| ∨ · · · ∨ Ln ∈ |C| and U =
∑

Li∈{L1,...,Ln}Disp(Li) · Ui. By
Definition 2.3.1 we know that (L1.e1, . . . , Ln.en){v/x}. By the inductive
hypothesis we can state that ∀i ∈ {L1, . . . , Ln} 〈Γ;C〉 ` ei{v/x} : τ . Ui.

2.3. CONTEXTML TYPES 33

Since L1 ∈ |C| ∨ · · · ∨Ln ∈ |C| by the rule (Tlexp) and by Definition 2.3.1
we can conclude that 〈Γ;C〉 ` (L1.e1, . . . , Ln.en){v/x} : τ . U hold.

• Case e = sendty(e1).
By the rule (Tsend) we have that 〈Γ, x : τ ′;C〉 ` sendty(e1) : τ . U ′

holds with U = U ′ · sendty. By the Definition 2.3.1 sendty(e1){v/x} =

sendty(e1{v/x}) and by inductive hypothesis that 〈Γ;C〉 ` e1{v/x} : τ .U ′.
So by the Definition 2.3.1 and by the rule (Tsend) we can conclude that
〈Γ;C〉 ` sendty(e1){v/x} : τ . U .

• Case e = n, e = L, e = (), e = α(r), e = receivety.
Since by the Definition 2.3.1 holds for these cases that e{v/x} = e the
property holds.

• The other cases are standard and we do not show them.

Property 2.3.7. If 〈Γ;C〉 ` e : τ . U , then ∀C ′ s.t. |C ′| ⊇ |C| it holds
〈Γ;C ′〉 ` e : τ . U

Proof. By straightforward induction on the shape of the typing derivation.

Lemma 2.3.8 (Decomposition). 〈Γ;C〉 ` λfx ⇒ e : τ
P|U−−→ τ ′ . U ′ and ∃υ ∈

P. |C| ⊇ υ implies 〈Γ, x : τ, f : τ
P|U−−→ τ ′;C〉 ` e : τ ′ . U .

Proof. Sketch: By the rule (Tfun) we know that for all υ ∈ P there exists a

guessed context C ′ such that |C ′| ⊆ υ and 〈Γ, x : τ, f : τ
P|U−−→ τ ′;C ′〉 ` e : τ ′ . U .

Since |C ′| ⊆ |C|, thesis follows by Property 2.3.7.

We prove the following additional property on the partial ordering of Usages.

Property 2.3.9. Given the usages U1, U2, U ′1 and U ′2 such that U1 v U ′1 and
U2 v U ′2 then U1 · U2 v U ′1 · U ′2

Proof. By the definition of v over Usages we know that U ′1 = U1 + U3 for some
U3 and U ′2 = U2 + U4 for some U4. By exploiting the equational properties of
Usages in Figure 2.3

U ′1 · U ′2 = (U1 + U3) · (U2 + U4)

= (U1 · (U2 + U4)) + (U3 · (U2 + U4))

= U1 · U2 + U1 · U4 + U3 · U2 + U3 · U4

34 CHAPTER 2. A SEMANTICS FOR CONTEXT-AWARENESS

So we can conclude that U1 · U2 v U ′1 · U ′2.

Lemma 2.3.10. If 〈Γ;C〉 ` v : τ . U then ∀C ′,Γ′ ⊇ Γ we have that 〈Γ′;C ′〉 `
v : τ . U .

Proof. By straightforward induction on the shape of the typing derivation.

Lemma 2.3.11 (Canonical form). 1. If v is a value such that 〈Γ;C〉 ` v :

ly{L1,...,Ln} . U , then v ∈ {L1, . . . , Ln}

2. If v is a value such that 〈Γ;C〉 ` v : τ1
P|U−−→ τ2 . U

′, then it is of the form
v = λfx⇒ e.

Proof.

1. The type layer with annotation {L1, . . . , Ln} can only be applying the
subtyping rule (Tsub) only starting from a layer type annotated with a
singleton {L} for some L ∈ {L1, . . . , Ln}. This can be obtained by (Tly)
rule only, hence v = L.

2. Standard.

We now recall and prove Theorem 2.3.2.

Theorem 2.3.2 (Subject reduction). Let e be a closed expression, if 〈Γ;C〉 `
e : τ . U and C ` η, e→ η′, e′, then 〈Γ;C〉 ` e′ : τ . U ′ with ηU w η′U ′

Proof. By induction on the depth of the typing derivation, and then by cases
on the last rule applied. We only work out the relevant cases, the proof of the
others being trivial.

• Case (TApp):

(Tapp)
〈Γ;C〉 ` e1 : τ1

P|U−−→ τ2 . U1 〈Γ;C〉 ` e2 : τ1 . U2 ∃υ ∈ P.υ ⊆ |C|
〈Γ;C〉 ` e1e2 : τ2 . U2 · U1 · U

– Case e1 not value, e2 = v.
The transition C ` η, e1e2 → η′, e′1e2 has been deduced with the
(app2) rule, the premise of which is C ` η, e1 → η′, e′1. We prove that
〈Γ;C〉 ` e′1e2 : τ2 . U

′ with ηU2 · U1 · U w η′U ′. By the inductive

hypothesis 〈Γ;C〉 ` e′1 : τ1
P|U−−→ τ2 . U

′
1 with ηU1 w η′U ′1. This

implies the thesis because then 〈Γ;C〉 ` e′1e2 : τ2 . U2 · U ′1 · U and by
Property 2.3.9 ηU2 · U1 · U w η′U2 · U ′1 · U

2.3. CONTEXTML TYPES 35

– Case e1, e2 not value: similar to the proof above.

– Case e1 = λfx⇒ e and e2 = v.
By the typing rules U1 = ε and U2 = ε, hence by the equational
theory on the Usages U2 · U1 · U = U . The transition C ` η, e1e2 →
η, e{v/x, e1/f} has been deduced with (app3) rule. We have to prove
that 〈Γ;C〉 ` e{v/x, e1/f} : τ2 . U

′ with ηU2 · U1 · U = ηU w ηU ′.
By the typing rule and Lemma 2.3.8 we have that 〈Γ, x : τ1, f :

τ1
P|U−−→ τ2;C〉 ` e : τ2 . U . The thesis follows because we have that

〈Γ;C〉 ` e{v/x, e1/f} : τ2 . U by Lemma 2.3.6, showing U ′ = U .

• Case (Tlexp):

(Tlexp)
∀i.〈Γ;C〉 ` ei : τ . Ui L1 ∈ |C| ∨ · · · ∨ Ln ∈ |C|

〈Γ;C〉 ` L1.e1, . . . , Ln.en : τ .
∑

Li∈{L1,...,Ln}

Disp(Li) · Ui

The transition C ` η, L1.e1, . . . , Ln.en → ηDisp(Li), ei has been deduced,
the premise of which is 〈Γ;C〉 ` ei : τ : Ui. The thesis follows because
η
∑

Li∈{L1,...,Ln}Disp(Li) · Ui w ηDisp(Li)U1 by Property 2.3.9.

• Case (Twith):

(Twith)
〈Γ;C〉 ` e1 : ly{L1,...,Ln} . U

′ ∀Li ∈ {L1, . . . , Ln}.〈Γ;Li :: C〉 ` e2 : τ . Ui

〈Γ;C〉 ` with(e1) in e2 : τ . U ′ ·
∑

Li
LLi ·Ui·MLi

– Case e1 not a value.
The transition C ` η,with(e1) in e2 → η′,with(e′1) in e2 has been
deduced with the rule (with1), the premises of which is C ` η, e1 →
η′, e′1. By the inductive hypothesis 〈Γ;C〉 ` e1 : ly{L1,...,Ln} . U

′′

with ηU ′ w η′U ′′. Thesis follows because 〈Γ;C〉 ` with(e′1) in e2 :

τ . U ′′ ·
∑

Li
LLi ·Ui·MLi with ηU ′ ·

∑
Li

LLi ·Ui·MLi w η′U ′′ ·
∑

Li
LLi ·Ui·MLi

by Property 2.3.9.

– Case e1 = L (i.e. is a value), e2 is not.
By Lemma 2.3.11 it is only the case that L = Li for some Li ∈
{L1, . . . , Ln} and by the typing rule (Tly) we have that U ′ = ε. The
transition C ` η,with(Li) in e2 → η LLi ,with(Li) in e2 has been
deduced with the rule (with2). The thesis follows because 〈Γ;C〉 `
with(Li) in e2 : τ .·Ui·MLi and ηU ′·

∑
Li

LLi ·Ui·MLi = η
∑

Li
LLi ·Ui·MLi w

ηLLi ·Ui·MLi .

• Case (Tbwith)

(Tbwith)
〈Γ;L :: C〉 ` e2 : τ . U

〈Γ;C〉 ` with(L) in e2 : τ . U ·ML

36 CHAPTER 2. A SEMANTICS FOR CONTEXT-AWARENESS

– Case e1 = L, e2 not a value.
The transition C ` η,with(L̄) in e2 → η′,with(L̄) in e′2 has been
deduced by the (with3) rule, the premise of which is L :: C ` η, e2 →
η′, e′2. By inductive hypothesis we have that 〈Γ;L :: C〉 ` e2 : τ . U ′

with U w U ′. The thesis follows because 〈Γ;C〉 ` with(L) in e′2 :

τ . U ′ and ηUM w η′U ′M by Property 2.3.9.

– Case e1 = L, e2 = v

Immediate by Lemma 2.3.10.

• Case (Tif):

(Tif)
〈Γ;C〉 ` e0 : int . U 〈Γ;C〉 ` e1 : τ . U1 〈Γ;C〉 ` e2 : τ . U2

〈Γ;C〉 ` if e0 then e1 else e2 : τ . U · (U1 + U2)

– Case e0 similar to the cases above.

– Case e0 = v:
By the typing rules U = ε. The transitions lead to either e1 or
e2 without modifying history η. By the hypothesis of the typing
rule, the thesis follows because U · (U1 + U2) = (U1 + U2) w U1 and
(U1 + U2) w U2.

• Case (Tsend):

(Tsend)
〈Γ;C〉 ` e : τ . U

〈Γ;C〉 ` sendty(e) : unit . U · sendty

– Case e not a value: similar to the cases above.

– Case e = v:
The transition η, sendty(v)→ ηsendty, () has been deduced with rule
(send2) and by the typing rules U = ε. The thesis follows because
〈Γ;C〉 ` () . ε and ηU · sendty w ηsendty · ε.

• Case (Talpha):
(Talpha)

〈Γ;C〉 ` α(a) : unit . α(a)
The transition C ` η, α(r)→ ηα(r), () has been deduced by (action) rule.
Since 〈Γ;C〉 ` () : unit . ε, we can conclude that ηα(r) w ηα(r) · ε.

• Case (Tphi):

(Tphi)
〈Γ;C〉 ` e : τ . U

〈Γ;C〉 ` φ[e] : τ . [φ·U ·]φ
The transition C ` η, φ[e]→ η[φ, φ[e] has been deduced by rule (framing0).
By the premises of the typing rule we get that 〈Γ;C〉 ` φ[e] : τ . U ·]φ. The
thesis is directly obtained because η[φ·U ·]φ w η[φ·U ·]φ.

2.3. CONTEXTML TYPES 37

• Case (Tbphi):

(Tbphi)
〈Γ;C〉 ` e : τ . U

〈Γ;C〉 ` φ[e] : τ . U ·]φ

– case e = φ[v]

The transition C ` η, φ[v] → η]φ, v has been deduced by the rule
(framing2), the premise of which is 〈Γ;C〉 ` v : τ . ε, hence U = ε.
The thesis is immediate because ηU]φ = η]φ w η]φ · ε.

– case e = φ[e1]

The transition C ` η, φ[e1] → φ[e′1] has been deduced with the
rule (framing1). By the premises of the typing rule we have that
〈Γ;C〉 ` e1 : τ . U . Since by the premises of (framing1) rule we have
that C ` η, e1 → η′, e′1, we can use the inductive hypothesis so that
we have 〈Γ;C〉 ` e′1 : τ . U ′ such that ηU w η′U ′. By Property 2.3.9
we have that ηU]φ w η′U ′]φ.

• Case (Tsub)

(Tsub)
〈Γ;C〉 ` e : τ ′ . U ′ τ ′ ≤ τ U ′ v U

〈Γ;C〉 ` e : τ . U
If C ` η, e→ η′, e′, then by inductive hypothesis and by the premises of
the typing rule we have that 〈Γ;C〉 ` e′ : τ ′ . U ′′ with ηU ′ w η′U ′′. Thesis
follows because U w U ′ implies ηU w ηU ′. Then 〈Γ;C〉 ` e′ : τ . η′U ′′ and
ηU w η′U ′′.

Corollary 2.3.3 is restated and proved below.

Corollary 2.3.3 (Over-approximation). If 〈Γ;C〉 ` e : τ . U and C ` ε, e→∗
η, e′, then η ∈ JUK.

Proof. By induction on the length i of the computation, by repeatedly applying
the subject reduction theorem we can prove that 〈Γ;C〉 ` e′ : τ . U ′ with
U w ηU ′. Since by definition η ∈ JηU ′K and since U0 v U1 ⇒ JU0K v JU1K, we
have that η ∈ JUK.

We restate and prove Theorem 2.3.4.

Theorem 2.3.4 (Progress). Let e be a closed expression such that 〈Γ;C〉 ` e :

τ . U . If C ` η, e9 and ηU is valid, then e is a value.

38 CHAPTER 2. A SEMANTICS FOR CONTEXT-AWARENESS

Proof. By induction on the depth of the typing derivation, and then by cases
on the last rule applied. We only work out the relevant cases, the proof of the
other being trivial.

• Case (Tlexp):

(Tlexp)
∀i.〈Γ;C〉 ` ei : τ . Ui L1 ∈ |C| ∨ · · · ∨ Ln ∈ |C|

〈Γ;C〉 ` L1.e1, . . . , Ln.en : τ .
∑

Li∈{L1,...,Ln}

Disp(Li) · Ui

If L1.e1, . . . , Ln.en is stuck, then it is the case that Disp(|C| , {L1, . . . , Ln})
is not defined. However this cannot be the case because one of the
Li, 1 ≤ i ≤ n is in C.

• Case (TApp):

(Tapp)
〈Γ;C〉 ` e1 : τ1

P|U−−→ τ2 . U1 〈Γ;C〉 ` e2 : τ1 . U2 ∃υ ∈ P.υ ⊆ |C|
〈Γ;C〉 ` e1e2 : τ2 . U2 · U1 · U

If e1e2 is stuck, then it is only the case that both e1 and e2 are values.
In this case by Lemma 2.3.11 e1 = λfx ⇒ e, hence rule (app3) applies,
contradiction.

• Case (Tphi):

(Tphi)
〈Γ;C〉 ` e : τ . U

〈Γ;C〉 ` φ[e] : τ . [φ·U ·]φ
If φ[e] is stuck, then it is only the case that not η−[] � φ. Since η[φ·U ·]φ valid,
then η[φ∈ Jη[φ·U ·]φK, hence η[φ is valid and hence η−[] � φ, contradiction.

• Case (Tbphi):

(Tbphi)
〈Γ;C〉 ` e : τ . U

〈Γ;C〉 ` φ[e] : τ . U ·]φ

– Case e is a value: the proof is similar to the one above.

– If e is not a value, then, by inductive hypothesis, it is only the case
that
C ` η, e → η′, e′ but not η′−[] � φ. However, by subject reduction
〈Γ;C〉 ` e′ : τ . U ′ with ηU w η′U ′. Since ηU ·]φ w η′U ′·]φ and
ηU ·]φ is valid then η′U ′·]φ is valid. In particular, there is a history
ηη′ ∈ Jη′U ′]φK with such an unmatched [φ. Since η′η′′ is valid then
(η′η′′)−[] � φ, hence η′−[] � φ by Property 1.3.2, contradiction.

We restate and prove Corollary 2.3.5.

2.4. MODEL-CHECKING POLICIES AND PROTOCOLS 39

Corollary 2.3.5. If 〈∅;C〉 ` e : τ . U and U is valid, then e never gets stuck,
i.e. C ` ε, e→∗ η′, e′ with e′ not a value implies C ` η′, e′ → η′′, e′′.

Proof. Let C ` ε, e→∗ η′, e′ and, by contradiction, let e′ be a non-value that is
stuck. By induction on the length i of the computation, by repeatedly applying
the subject reduction theorem, we have that 〈Γ;C〉 ` e′.τ . U ′ and η′U ′ v U .
Since U is valid also η′U ′ is valid. Then the progress theorem suffices to show
that either that e′ is a value or that e′ is not stuck.

2.4 Model-Checking Policies and Protocols

In this section we introduce a model-checking machinery for verifying whether
a usage is compliant with respect to a policy φ and a protocol P . The idea is
that the environment specifies P , and only accepts a user to join that follows P
during the communication.

Policy checking A policy φ is a safety property (Definition 1.2.2) specified by
a standard Finite State Automaton (FSA). We take a default-accept paradigm,
i.e. only the unwanted behaviour is explicitly mentioned. Consequently, the
language of φ is the set of unwanted traces, hence an accepting state is considered
as offending.

We depict in the left part of Figure 2.7 a simple policy φ2 that prevents the
occurrence of two consecutive actions α on the resource r at the beginning of
the computation.

We now define the meaning of η � φ, completing the definition of validity
presented in Section 1.3.4.

Definition 2.4.1 (Policy compliance). Let η be a history without framing
events, then η � φ iff η /∈ L(φ).

The semantics of a usage may contain histories with redundant framings, i.e.
nesting of the same policy framing. For instance, µh. (φ[α(r)h] + ε) generates
[φα(r)[φα(r)]]. Formally, a history η has redundant framing whenever the active
policies ap(η′) contain a duplicate φ for some prefix η′ of η.

Redundant framing can be eliminated without affecting validity of a his-
tory [7]. This is because the expressions monitored by the inner-framings are
already under the scope of the outermost one and the definition of validity in
Section 1.3.4 uses η−[]. Actually, given U there is a regularisation algorithm
returning his regularized version U↓ such that (i) each history in JU↓K has no

40 CHAPTER 2. A SEMANTICS FOR CONTEXT-AWARENESS

q0 q1 q2

α(r) α(r)
q0 q1 q2

q′0 q′1 q′2

α(r)

α(r)

]φ[φ]φ[φ [φ]φ

α(r)

α(r)

Figure 2.7: On the left: a policy φ2 expressing that two consecutive actions α on
r at the beginning of the computation are forbidden. On the right: the framed
automaton obtained from φ2.

redundant framing, (ii) U↓ is valid if and only if U is valid [7]. Hence, checking
validity of a usage U can be reduced to the problem of checking validity of a
usage U↓ without redundant framings.

Our approach fits into the standard automata based model-checking [60].
Indeed, there is an efficient and fully automata based method for checking the �
relation for a regularised usage U .

Let {φi} be the set of all policies φi occurring in U . From each φi it is
possible to obtain a framed automaton φ

[]
i such that η is valid iff η /∈ L(

⋃
φ

[]
i).

The detailed construction of the framed automaton is in [7]. Roughly the framed
automaton for the policy φ has two copies of φ. The first copy has no offending
states, the second has the same offending states of φ. Intuitively, one uses the
first copy when the actions are made while the policy is not active. The second
copy is reached when the policy is activated by a framing event. Indeed, there
are edges labelled with [φ from the first copy to the second and]φ in the opposite
direction. So when a framing gets activated we can also reach an offending state.
Figure 2.7 shows the framed automaton used to model-check the policy φ2.

Validating a regularised usage U amounts to verify JUK ∩
⋃
L(φ

[]
i) is empty.

Using the fact that for any usage U there exists a pushdown automaton B(U)

that recognises the semantics of U (see Theorem 1.3.4 for the most general
result), we can state the following:

Theorem 2.4.1 (Model-Checking Policies). A given usage U is valid if and
only if L(B(U↓)) ∩

⋃
L(φ

[]
i) = ∅.

Since regular languages are closed by union, context-free languages are
closed by intersection with a regular language and the emptiness of context-free
languages is decidable [36] the above theorem is decidable.

Protocol compliance We are now ready to check whether a program will
well-behave when interacting with other parties through the bus. We take a

2.5. PARAMETRIZED BEHAVIOURAL VARIATION 41

protocol P to be sequence S of sendty and receivety actions designating the
coordination interactions, possibly repeated (in symbols S∗), as defined below:

P ::= S | S∗ S ::= ε | sendty.S | receivety.S

A protocol P specifies the regular set of allowed interaction histories. We require
a program to interact with the bus following the protocol, but we do not force
the program to do the whole interaction specified. For this motivation the
language L(P) of P is a prefix closed set of histories, obtained by considering
all the prefixes of the sequences defined by P . Then we only require that all the
histories generated by a program (projected so that only sendty and receivety

appear) belong to L(P).
Let U sr be a projected usage where all non sendty,receivety events have been

removed. Then we define compliance to be:

Definition 2.4.2 (Protocol compliance). Let e be an expression such that
〈Γ, C〉 ` e : τ . U , then e is compliant with P if JU srK ⊆ L(P).

The theorem below gives us a decidable model-checking procedure to establish
protocol compliance. In its statement, we write L(P) to denote the complement
of L(P). Note that the types annotating sendty/receivety can be kept finite in
both L(P) and L(P), because we only take the types occurring in the effect U
under checking.

Theorem 2.4.2 (Model-Checking Protocols). Let e be an expression such that
〈Γ, C〉 ` e : τ . U and let P be a protocol. Then e is compliant with P iff

L(B(U sr)) ∩ L(P) = ∅

The theorem follows directly by exploiting the property of B(U) used for
justifying Theorem 2.4.1.

2.5 Parametrized behavioural variation

ContextML only supports a finite number of behavioural variation, i.e. the ones
specified by the labels appearing in all the layered expressions. This is a drawback
shared by most of the COP language proposals. However, the applications are
often required to adapt to scenarios where an unbounded number of resources
appear and disappear. This section introduces an extension of ContextML that
overcomes the problem discussed above, by introducing behavioural variations
with parameters.

42 CHAPTER 2. A SEMANTICS FOR CONTEXT-AWARENESS

A parametrised behavioural variation is a chunk of behaviour that depends
on the value of a parameter, representing a resource actually occurring in the
execution environment. We assume that the actual values p of the parameters are
taken from a countable set of symbols Σd. The context is modified accordingly,
becoming a stack of layers with actual parameters. A layered expression depends
on a formal parameter, that is bound with the actual parameter during the
dispatching phase.

The ContextML extended syntax is given below:

n ∈ N x, f ∈ Ide L ∈ LayerNames

φ ∈ Policies r ∈ Σs p ∈ Σd α, β ∈ Act

v, v1, v
′ ::= n | L(p) | p | () | λf x ⇒ e

e, e1, e
′ ::= φ[e] | v | x | e1e2 | let x = e1 in e2 | e1 op e2 |

if e0 then e1 else e2 | with(e1) in e2 | unwith(e1) in e2 |
e1 =P e2 | ν | ke | lexp
sendty(e) | receivety | α(r) | α(e)

lexp ::= L(x).e | L(x).e, lexp

Parameters are created by the operator ν, that picks up a fresh symbol (i.e.
one never used before) p from Σd, representing a resource. A parameter can be
reused if it is disposed by k operator. The values are extended with parameters;
layers are enriched with a parameter and the boolean operator =P is introduced
to check the equality of two parameters. The labels in the layered expressions
are provided with a formal parameter x to be bound with the actual one in the
context. The actions can be performed on parameters, to do this we allow to
execute the action α on the parameter to which e evaluates, written α(e).

The context (in Definition 2.2.1) is extended with parameters as follows:

Definition 2.5.1 (Parametrised context). Let [] be the empty context, a
parametrised context, is denoted by [L1(p1), . . . , Ln(pn)].

The dispatching procedure below is extended to also retrieve the actual
parameter.

Dsp([L′0(p0), L′1(p1), . . . , L′m(pm)], A) ={
L′0(p0) if L′0(x) ∈ A for some x

Dsp([L′1(p1), . . . , L′m(pm)], A) otherwise

2.5. PARAMETRIZED BEHAVIOURAL VARIATION 43

The extended semantics rules are in Figure 2.8. The rule (fresh),(reuse)
reduces ν to fresh resource p, i.e. one that is either never appeared in the history
η generated so far (written p /∈ ‖η‖ in (nu1)) or it has been recently disposed.
The history records the resource creation by the event new(p). The dual operator
ke, in the rule (daleth), reduces e to a resource p and marks the disposal in
the history, so allowing p to be possibly picked up as being fresh later on. Note
that k only modifies the freshness condition of the resource p, still allowing it to
remain in the context. The rules (=1

P),(=2
P) reduce the left and right member of

the equality operator =P . When two parameters are obtained, their equality is
checked ((=3

pt),(=3
pf)). The rules (withi) additionally push the parameter on the

context. The rule (lexp) bounds as well the formal parameter with the actual
parameter obtained by the dispatching procedure. The actions in (actionP) can
be performed on parameter p in Σd, the actions are stored in the history together
with p.

Consider now the following examples exploiting parametrised behavioural
variation, and implementing a bridging component in the spirit of software
defined networks [22].

Example 2.5.1. The code below implements a portion of a network component
that can be plugged in different networking scenarios. Whenever the component
senses two network connections (layers Connection1Found, Connection2Found
are present in the context) it sets up a bridging between the two (abstracted
by the actions BridgeEndPoint1, BridgeEndPoint2). However the bridging
can be performed only if the two networks are different. Hence we assume
that Connection1Found, Connection2Found in the context carry the network
identifiers x, y as parameters, and the bridging is executed only if x! =p y.

fun b r i d g e =
Connection1Found (x) .

Connection2Found (y) .
i f (x !=p y) then

BridgeEndPoint1 (x) ;
BridgeEndPoint2 (y) ;

else
s k i p (x) ;

Abstracting the behaviour of the bridge function requires more expressive
abstractions than the ones used in Section 2.3.
The actions BridgeEndPoint1(x), BridgeEndPoint2(y) are recorded in the his-
tory together with their parameters. Hence the histories have an a-priori
unbounded number of symbols, representing the a-priori unknown resources

44 CHAPTER 2. A SEMANTICS FOR CONTEXT-AWARENESS

fresh
p ∈ Σd p /∈ ‖η‖

C ` η, ν → η new(p), p

reuse
p ∈ Σd η = η1del(p)η2 η2 6= η3new(p)η4

C ` η, ν → η new(p), p

daleth
p ∈ Σd

C ` η,kp → ηdel(p) , ()
parml

C ` η, e→ η′, e′

C ` η, L(e) → η, L(e′)

=1
P

C ` η, e1 → η′, e′1
C ` η, e1 =P e2 → η′, e′1 =P e2

=2
P

C ` η, e2 → η′, e′2
C ` η, p =P e2 → η′, p =P e′2

=3t
P

p ∈ Σd

C ` η, p =P p→ η, 1

=3f
P

Σd 3 p1 6= p2 ∈ Σd

C ` η, p1 =P p2 → η, 0

with1

C ` η, e1 → η′, e′1
C ` η,with(e1) in e2 → η′,with(e′1) in e2

with2
C ` η,with(L(p)) in e→ η LL(p),with(L(p)) in e

with3

L(p) :: C ` η, e→ η′, e′

C ` η,with(L(p)) in e→ η′,with(L(p)) in e′

with4
C ` η,with(L(p)) in v → η ML(p), v

lexp
Li(pi) = Dsp(C, {L1(x1), . . . , Ln(xn)})

C ` η, L1(x1).e1, . . . , Ln(xn).en → η Disp(Li), ei{pi/x1}

actionP
p ∈ Σd

C ` η, α(p)→ η α(p), ()

Figure 2.8: Semantics for ContextML extended with parametrised behavioural
variation

2.5. PARAMETRIZED BEHAVIOURAL VARIATION 45

in the environment. Actually histories have the shape of data-words seen in
Section 1.3. By exploiting Usages, introduced in Section 1.3.4, we can represent
the abstract behaviour of a run of bridge function by the following usage:

(νx. νy. BridgeEndPoint1(x)BridgeEndPoint1(y)) + (νx.skip(x))

where Disp actions are omitted. The expression above represents the fact that
the bridging only takes place when the two parameters x, y are different.

Consider now the following example, inspired by a service oriented sce-
nario [30], focusing on the behaviour arising from parameters creation.

Example 2.5.2. The recursive function worker1 below implements a sort of
load balancer, that activates several services in the context, deploying them to
different locations. We do not detail the code for activating the service or for the
condition COND.

fun worker1 =
i f COND then

l e t l o c = ν in
. . . // a c t i v a t i n g a new s e r v i c e in l o c a t i o n l o c
with(S e r v i c eAc t i v e I n (l o c)) in

worker1 () ;
else

s k i p ;

The set of traces generated by a run of worker1 function above is over-
approximated by the usage

µh.νp.α(p) h+ ε

Note that there is no bound on the number of parameters (the locations) that
this program can generate and they are pairwise distinct. We call the latter
phenomenon unbound freshness.

Note that also security policies φ need to be rethink to capture the behaviour
of parametrised behavioural variations. Indeed, they need to take into account
the unbounded number of parameters that may occur in the history. Examples
of safety policies φ are “No network is part of a bridge twice”, “Bridging always
happen between two different networks”, etc.

Discussions

We investigated language-based methods for the development of complex adaptive
systems following COP paradigm. We introduce static techniques for ensuring

46 CHAPTER 2. A SEMANTICS FOR CONTEXT-AWARENESS

that a component developed in ContextML language (i) adequately reacts
to context changes, (ii) securely manipulates its resources and (iii) correctly
interacts with other parties.

Several COP programming languages have been proposed (see e.g.ContextL [23]
and ContextJ [2]). Usually COP features are introduced within the object ori-
ented paradigm so providing behavioural variations at object level.

Most of the research efforts have mainly tackled implementation issues. To
the best of our knowledge only few papers provide a precise semantic description.

In [34] an extension of Featherweight Java [37] has been proposed. In this
calculus layers are not expressible values. Furthermore, a static type system
ensures that there exists a binding for each dispatched method call. This fact is
based on the strong assumption that layers do not introduce new methods but
only refine existent ones. Our type system relaxes this assumption.

Our approach is much similar to the one of Clarke et al. [21] and the
main difference is that we consider a functional language while [21] considers
Featherweight Java object oriented language.

Our parametrised extension is similar to the context-dependent state in [61],
where dynamic variables (in Python programming language) are added and
deleted depending on the current context.

The next chapters, motivated by Examples 2.5.1 and 2.5.2, investigate
and propose nominal trace models for abstracting both the behaviour and the
properties of programs involving dynamic resources. The reference framework is
the one in this chapter, where model-checking is reduced to verifying properties
of suitably constructed automata.

Chapter 3

Language Theory for
Usage Automata and Usages

This chapter studies how classical language theoretic properties contribute to
assess and better evaluate the expressiveness and the exploitation of nominal
models for program analysis.

Examples 2.5.1 and 2.5.2 above show that nominal models can be considered
to abstract the behaviour and the properties of adaptive programs (in particular
the one arising from parametrised behavioural variations of ContextML). We
focus here on Usages in Section 1.3.4 as abstraction of program behaviour, and
on Usage Automata (UA) in Section 1.3.1 as a formalism to express security
policies φ.

We establish some closure properties of the UA, by studying them as nominal
automata from a language theoretic viewpoint. Closure properties are not only
interesting from a theoretical viewpoint, but they are also deeply connected
with applications of UA to software verification. Indeed, logical connectives
between policies have a counterpart as language operators. Let B,B′ represent
the policies φ, φ′, respectively. The complement of the language of B represents
the negation of φ. The union/intersection of the languages recognised by B,B′

represents the conjunction/disjunction of φ, φ′.
The investigation of language-theoretic properties of UA are also instrumental

for comparing the expressiveness of the UA with that of other automata in the
literature. In particular we compare UA against the VFA (Section 1.3.2). We
prove the latter more expressive.

We set up the machinery to check Usages against security policies expressed
through VFA, so enlarging the class of security policies that fits the verification
framework of [6] depicted in Section 1.2.

48 CHAPTER 3. LANGUAGE THEORY FOR USAGE AUTOMATA & USAGES

To conclude we show some limitations of Usages, which make them unsuitable
to capture all the facets of adaptive programs.

3.1 Usage Automata

We introduce two helpful sub-classes of UA: saturated and frozen UA. Us-
ing these classes we will eventually give an alternative characterisation of the
languages recognised by UA. The introduction of these two models is mostly
justified by technical reasons, as they provide the machinery for proving proper-
ties in Sections 3.1.4 and 3.1.5 and to establish the correspondence between UA
and VFA.

For simplicity, in the proofs of this chapter we will assume that Act is a
singleton and we will write v for α(v). All the proofs straightforwardly extend
when there are more actions.

Additionally, in this section we will always consider an alphabet S containing
all the static resources Σs and variables V , i.e. S = Act × (Σs ∪ V). This is
not a restriction since we can always extend the alphabet of a UA to such an S
while preserving the accepted language. Indeed, it suffices to add a sink and
appropriate edges, labelled with the new symbols.

3.1.1 Saturated UA

Definition 3.1.1 (Saturated UA). Let B = 〈S,Q, q0, F, E〉 be a UA and
let σ : V ar(B) → R be a substitution. Then B is σ-saturated iff given
(q, α(r), q) ∈ Comp(Xσ) in Bσ = 〈R,Q, q0, F, δσ〉 we have that r ∈ Σd and
∀x ∈ V ar(B).σ(x) 6= r.
The automaton B is saturated iff for all substitutions σ, B is σ-saturated.

Example 3.1.1. The automaton in Figure 3.1(a) is not saturated. Under
the substitution σ, with σ(x) = d ∈ Σd, Compσ(Xσ) contains both an edge
(q0, α(b), q0) and (q0, α(d), q0). This violates both the requirements. We can
easily obtain a saturated automaton recognising the same language of (a) by
adding appropriate self loops to it, see Figure 3.1(b).

The following property holds.

Property 3.1.2. Let B be a saturated UA and let σ : V ar(B) → R be a
substitution, then:

∀qi, q′i, qj, q′j ∈ Q, v ∈ Act×R.(qi, v, q′i) ∈ Compσ(Xσ)⇔ (qj, v, q
′
j) ∈ Compσ(Xσ)

3.1. USAGE AUTOMATA 49

q0

α(a) α(x)

(a)
q0

α(a)

α(b), α(x) α(a), α(b) α(a), α(b), α(x)

α(x)

(b)

Figure 3.1: A UA in (a) and its saturated version in (b). The alphabet is
S = Act× ({a, b} ∪ {x}),Act = {α}

Indeed, since the set of the outgoing edges in a saturated automaton is the same
for every state (and for every instantiation), the set of the edges added in the
completion Compσ(Xσ) is the same for every state.

Saturation

Definition 3.1.2 (Saturation of a UA). Let S = Act× (Σs ∪ V), V ⊂ V ar and
let B = 〈S,Q, q0, F, E〉 be a usage automaton. Let C be

C =

(q, α(v), gv, q)

∣∣∣∣∣∣∣∣∣
v ∈ V ar(B) ∪ Σs

α ∈ Act

gv =
∧

(q,α(v′),g′,q′)∈E

g′ → (v 6= v′)

The saturation of B is the usage automaton BS = 〈S,Q, q0, F, E ∪ C〉.

Lemma 3.1.3. The automaton BS is saturated.

Proof. Let (BS)σ be an instantiation of BS with R ⊆ Σ, σ : V ar(BS)→ R. Let
XS ∪ Comp(XS) be the edges of such instantiation.

By contradiction, let (q, r, q) ∈ Comp(XS) and r ∈ Σs. Since Comp(XS) ∩
XS = ∅ (q, r, q) /∈ XS. By definition of C we have (q, r, gr, q) ∈ C, but since
(q, r, q) /∈ XS clearly σ 2 gr. Hence we have a false statement in gr of the form
g′ → v′ 6= r with an associated edge (q, v′, g′, q′) ∈ E such that σ � g′ ∧ v′ = r,
this implies (q, r, q′) ∈ XS, in contradiction with the hypothesis.

By contradiction, let (q, r, q) ∈ Comp(XS) and σ(x) = r for some x. By
definition of C we have (q, x, gx, q) ∈ C, but since (q, r, q) /∈ XS clearly σ 2 gr.
The proof goes on as above.

Lemma 3.1.4. L(B) = L(BS)

50 CHAPTER 3. LANGUAGE THEORY FOR USAGE AUTOMATA & USAGES

Proof. Given R ⊆ Σ and a substitution σ : V ar(B)→ R, let X ∪ Comp(X) be
the edges of the instantiation Bσ of B and let XS ∪ Comp(XS) be the ones of
(BS)σ.

By definition we note the following fact:

Fact 3.1.5.

(q, r, q) ∈ X ∪ Comp(X)⇔
∃g, v.(q, v, g, q) ∈ E ∧ σ(v) = r ∧ σ � g ∨ (3.1)

∀v, g, q′.((q, v, g, q′) ∈ E ⇒ σ(v) 6= r ∨ σ 2 g) (3.2)

To obtain the thesis we only need to prove that given a substitution σ the
set of the edges of the two instantiation of the automata are the same:

(q, r, q′) ∈ X ∪ Comp(X)⇔ (q, r, q′) ∈ XS ∪ Comp(XS)

For q′ 6= q the statement is easy.
For q′ = q the statement become

(q, r, q) ∈ X ∪ Comp(X)⇔ (q, r, q) ∈ XS ∪ Comp(XS)

(⇒)

(q, r, q) ∈ X ∪ Comp(X)⇒ (q, r, q) ∈ XS ∪ Comp(XS)

1. If (q, r, q) ∈ X then there exists an edge (q, v, g, q′) ∈ E such that σ �
g ∧ σ(v) = r, from this (q, r, q) ∈ XS follows easily.

2. If (q, r, q) ∈ Comp(X) then we are in case 3.2 of fact 3.1.5.

a) If r /∈ Σs and does not exists x ∈ V.σ(x) = r then does not exists
any edge (q, v, g, q′) ∈ E such that σ(v) = r. Hence we obtain that
(q, r, q) ∈ Comp(XS).

b) If r ∈ Σs ∨ ∃x ∈ V.σ(x) = r then let

A = {(q, v, g, q) ∈ E ∪ C | σ(v) = r}

If r ∈ Σs then by saturation we have (q, r, g′, q) ∈ A for some guard g′.
If σ(x) = r, for some x, then by saturation we have that (q, r, g′, q) ∈
A for some guard g′. Hence A is not empty and for each r ∈ Σ

such that r ∈ Σs or σ−1(r) 6= ∅ the set A always contains an edge
(q, r, g′, q) ∈ C ∩ A.
It is not possible that the guards of the edges in A are all false.

3.1. USAGE AUTOMATA 51

i. By indirect reasoning, if all guards are false we obtain a contra-
diction. Let (q, v̄, ḡ, q) ∈ A ∩ C, by the hypothesis σ 2 ḡ and this
implies σ � ¬ḡ. Since (q, v̄, ḡ, q) ∈ C the guard ḡ is of the form
∧i∈Igi → v̄ 6= vi. and I is not empty since ∀σ′.σ′ � true. Since
σ � ¬ḡ, we have σ � ¬(gj → v̄ 6= vj) and hence σ � (gj ∧ v = vj)

for some j ∈ I. Associated with gi → v̄ 6= vj we have an
associated edge (q, vj, gj, qi) ∈ E. We obtain a contradiction
since:
A. If qj = q then, since σ � qj and σ(v̄) = σ(vj) = r, there exists

an edge (q, vj, gj, q) ∈ A, in contradiction with the hypothesis
that all guards in A are false.

B. If qj 6= q then we have found (q, vj, gj, qj) ∈ E such that
σ � gj and σ(v̄) = σ(vj) = r, in contradiction with the
hypothesis that (q, r, q) ∈ Comp(X).

Hence, there exists an edge (q, v, g, q) ∈ (E ∪ C) ∩ A such that σ � g
and σ(v) = r. Then we obtain the thesis (q, r, q) ∈ XS.

(⇐)

1. If (q, r, q) ∈ Comp(XS) then, since XS ⊇ X, by definition, Comp(XS) ⊆
Comp(X), obtaining the thesis (q, r, q) ∈ Comp(X).

2. If (q, r, q) ∈ Comp(X) then there exists an edge (q, v, g, q) ∈ E ∪ C, σ �
g, σ(v) = r

a) If (q, v, g, q) ∈ E, σ � g, σ(v) = r then we obtain the thesis (q, r, q) ∈
X.

b) If (q, v, g, q) ∈ C, σ � g, σ(v) = r but, by indirect reasoning, (q, r, q) /∈
X ∪ Comp(X). Since (q, r, q) /∈ X then, by completion, (q, r, q) ∈
Comp(X), contradiction.

Then we have the following theorem:

Theorem 3.1.6. Every UA can be saturated preserving the recognized language.

Proof. It follows directly from Definition 3.1.2, Lemma 3.1.4 and Lemma 3.1.3

52 CHAPTER 3. LANGUAGE THEORY FOR USAGE AUTOMATA & USAGES

3.1.2 Frozen UA

The second class consists of frozen UA. To define them, note that substitutions
and guards melt together the values of some variables. A substitution σ does
this over the whole automaton, and a guard g under σ drives the instantiation
removing or not the edges where it occurs.

Definition 3.1.3 (Freezing Substitution). Given a UA B, a substitution σ :

V ar(B)→ R is freezing if it is injective and ∀x ∈ V ar(B) it holds σ(x) ∈ Σd.

Under a freezing substitution, an automaton has all variables distinct. Theo-
rem 3.1.13 below shows that the needed fusions can be handled anyway through
additional edges and states.

Definition 3.1.4 (Frozen UA). Let B = 〈S,Q, q0, F, E〉 be a UA. The automa-
ton B is frozen iff both conditions hold:

• there exists a sink state ? ∈ Q such that ? /∈ F , and

• for all non freezing substitution σ if (q, α(r), q′) ∈ δσ in Bσ with q′ 6= ?

then
(r /∈ Img(σ) ∧ r ∈ Σd).

A ubiquitous guard for B is any guard g such that for all σ if σ � g then σ is
freezing.

The three Usage Automata in Figure 3.2 are frozen.

Property 3.1.7. Let B be a frozen UA:

1. let σ be a non-freezing substitution on V ar(B) and let Bσ be the instantia-
tion of B, then:
@ (q, α(r), q′) ∈ δσ. q′ 6= q, ? and ∀ (q, α(v), g, q′) ∈ E, q′ 6= ?. σ 2 g

2. for all substitutions σ on V ar(B) if (∃(q, α(v), g, q′) ∈ E, q′ 6= ?, q. σ � g)

then σ is freezing.

Proof. 1. For the first claim of the conjunction: Let us suppose that such
an edge (q, r, q′), q′ 6= q, ? exists. Since q′ 6= q then (q, r, q′) ∈ Xσ, this
implies that there exists an edge (q, v, g, q′) ∈ E, σ � g, σ(v) = r, in
contradiction with ∀x.σ(x) 6= r ∧ r /∈ Σs whenever q′ 6= ?. For the second
claim of the conjunction: By contradiction, let us suppose that there exists
(q, v, g, q′) ∈ E, q′ 6= ?.σ � g, then we have an edge (q, r, q′) ∈ Xσ such
that r = v ∈ Σs ∨ σ(v) = r, in contradiction with ∀x.σ(x) 6= r ∧ r /∈ Σs

whenever q′ 6= ?.

3.1. USAGE AUTOMATA 53

2. Consequence of the contrapositive of 1.

Guards of the edges not leading to the sink play a marginal role in a frozen
UA. They are ubiquitous, hence they are satisfiable by freezing substitutions,
only. Additionally, under a freezing substitution guards are either tautologies or
unsatisfiable.

Property 3.1.8. Let B be a frozen UA. If there exists a freezing substitution σ :

V ar(B)→ R such that σ � g, then for all freezing substitutions σ′ : V ar(B)→ R

it holds σ′ � g.

Proof. By contradiction, if σ � g but σ′ 2 g for some freezing σ′ then there is
an atomic formula g′ in g such that σ � g′ and σ′ 2 g′ or viceversa. Such a g′

does not exists. We have that g′ 6= true since true � σ and true � σ′ for all σ′

Also g′ 6= (x = v) and g′ 6= (x 6= v) with x ∈ V ar(B), v ∈ V ar(B)∪Σs since the
first case implies that σ or σ′ is not freezing, the second case is impossible since
x 6= v is satisfied by any freezing substitution.

We present now some auxiliary definitions, that will be used in Defini-
tion 3.1.11. Roughly, we wish to decompose the language of a UA as the union
of a finite class C of frozen UA. Each frozen UA represents the portion of the
language recognised by using a class of substitutions. Each of these classes
induces and is represented by a respectful equivalence relation (Definition 3.1.5)
that project labels (giving quotients below) and guards (Definition 3.1.6) of the
original UA to obtain its frozen instantiation in C.

We assume to be always able to choose a canonical representative over the
finite subsets of V ar ∪ Σs.

Definition 3.1.5 (Respectful Equivalence Relations). An equivalence relation
R ⊆ (V ar(B)∪Σs)× (V ar(B)∪Σs) respects the identity of the static resources
if (a, b) ∈ R∧ a, b ∈ Σs implies a = b. The set of respectful equivalence relations
≡i over Σs ∪ V ar(B) is RB.

Quotients
Given an equivalence relation ≡i∈ RB, let n̄ ∈ (V ar(B) ∪ Σs)/≡i be the
equivalence class of a generic element n ∈ (V ar(B) ∪ Σs). Then, we denote
with [n]i the canonical representative of {v | v ∈ n̄} and with Mi = {[n]i | n ∈
(V ar(B) ∪ Σs)}.
By definition it follows:

54 CHAPTER 3. LANGUAGE THEORY FOR USAGE AUTOMATA & USAGES

Property 3.1.9. 1. Mi ⊆ (V ar(B) ∪ Σs)

2. Mi = V ari ∪ Σs, V ari ⊆ V ar(B).

Definition 3.1.6. Given a relation ≡i∈ RB, and a guard g over (Σs ∪ V ar(B))

we inductively define the following rewriting system over guards:

[n = m]i ⇒ [n]i = [m]i

[true]i ⇒ true

[¬G]i ⇒ ¬[G]i

[G ∧G′]i ⇒ [G]i ∧ [G′]i

Note that the system admits a normal form for each guard. The guards
modified in this way are still over (Σs ∪ V ar(B)).

Definition 3.1.7. We define

g∗ =
∧

u,v∈Σs∪V ar(B)
u6=v

¬(u = v)

as the ubiquitous guard of our frozen automaton.

It is easy to show that g∗ respects the properties requested by Definition 3.1.4.

Substitutions

Definition 3.1.8 (Closure of a function). Given a function f : A → B, the
reflexive, symmetric, transitive closure is obtained by looking at it as a relation
f ⊆ (A ∪B)× (A ∪B). Hence:

Closurerst(f) = f ∪ {(u, u) | u ∈ A ∪B}∪
∪ {(u, v) | (v, u) ∈ Closurerst(f)}∪
∪ {(u, z) | ∃v.(u, v) ∈ Closurerst(f) ∧ (v, z) ∈ Closurerst(f)}

Definition 3.1.9 (Compatibility). A substitution σ : V ar(B) → R,R ⊆ Σ is
compatible with ≡i⊆ RB iff ≡i⊆ Closurerst(σ). A compatible relation ≡i∈ RB

is maximal with σ, in symbols σ G≡i, whenever does not exists any relation
≡j∈ RB compatible with σ such that ≡i⊂≡j.

3.1. USAGE AUTOMATA 55

Property 3.1.10. Given σ : V ar(B)→ R, if ≡iG σ then ≡i is unique.

Proof. Closurerts(σ)∩((V ar(B)∪Σs)×(V ar(B)∪Σs)) is a respectful equivalence
relation maximal compatible with σ.

Definition 3.1.10 (Freezing of a substitution). Given a substitution σ : V ar(B)→
R and a relation ≡i∈ RB such that σ G≡i we define the substitution [σ]i, the
freezing of σ with respect to ≡i, as follows

∀x ∈ V ari. [σ]i(x) = σ(x)

∀x ∈ V ar(B) \ V ari. [σ]i(x) = d with d dynamic resource not in the image of [σ]i

It is easy to verify that [σ]i is a freezing substitution.

Property 3.1.11.

1. ∀v ∈ V ar(B).[σ]i([v]i) = σ(v).

2. Let σ : V ar(B)→ R be a freezing substitution and ≡i∈ RB a relation then
there exists a unique substitution [σ]−1

i : V ar(B)→ R such that [σ]−1
i G ≡i

and σ �V ari= [σ]−1
i �V ari.

3. Let σ : V ar(B) → R be a freezing substitution, ≡i∈ RB and g a guard
then

[σ]−1
i � g ⇔ σ � [g]i

4. Given σ : V ar(B)→ R and ≡i∈ RB, if σ G≡i then

σ � g ⇔ [σ]i � [g]i

Proof. 1. By compatibility, since [v]i ≡i v, then σ([v]i) = σ(v). Since [v]i ∈
V ari, by definition, [σ]i([v]i) = σ([v]i) obtaining the thesis.

2. Let [σ]−1
i be:

x ∈ V ari ⇒ [σ]−1
i (x) = σ(x)

x /∈ V ari ⇒ [σ]−1
i (x) = σ([x]i)

it is easy to show that [σ]−1
i is compatible with ≡i and that ≡i is maximal

compatible.

56 CHAPTER 3. LANGUAGE THEORY FOR USAGE AUTOMATA & USAGES

3. (⇒)

By contradiction, if [σ]−1
i � g and σ 2 [g]i then there exists an atomic

formula g′ in g such that: [σ]−1
i � g′ and σ 2 [g′]i or vice versa. We

examine the atomic formulas one by one concluding that such a g does
not exists.

• We have that g′ 6= true since then [σ]−1
i � g

′ and σ � [g′]i .

• If g′ = (x = v), x ∈ V ar(B), v ∈ V ar(B) ∪ Σs then, since σ is
freezing, if σ � [g′]i the only case is that x ≡i v, but then, since [σ]−1

i

is maximal compatible with ≡i also [σ]−1
i � g

′. Hence the only case
is that σ 2 [g′]i and [σ]−1

i � g
′. By σ 2 [g′]i we get that x 6≡i v, since

[σ]−1
i � g

′ implies [σ]−1
i (x) = [σ]−1

i (v) we obtain a contradiction with
the fact that ≡i is maximal compatible with [σ]−1

i � g
′.

• If g′ = (x 6= v), x ∈ V ar(B), v ∈ V ar(B)∪Σs we repeat the reasoning
above using the fact that if σ � [g′]i then x 6≡i v and if σ 2 [g′]i then
x ≡i v.

(⇐)

By contradiction, if [σ]−1
i 2 g and σ � [g]i then there exists an atomic

formula g′ in g such that: [σ]−1
i 2 g′ and σ � [g′]i or vice versa. The proof

is then the same as above.

4. (⇒)

By contradiction, let σ � g and [σ]i 2 [g]i. Then there exists an atomic
formula g′ in g such that σ � g′ and [σ]i 2 [g′]i or vice versa. We examine
the atomic formulas one by one concluding that such a g′ does not exists.
The result is obtained as in the proof above using the fact that σ G≡i.

(⇐)

By contradiction, let σ 2 g and [σ]i � [g]i. Then there exists an atomic
formula g′ in g such that σ � g′ and [σ]i 2 [g′]i or vice versa. To prove
that this fact is contrary to the hypothesis we use the reasoning of the
previous case.

3.1.3 Frozen instantiation

We use now saturated and frozen automata to give an alternative characterization
of the languages accepted by UA.

3.1. USAGE AUTOMATA 57

Definition 3.1.11 (Frozen instantiation). Given a relation ≡i∈ RB and a UA
B, we define its frozen instantiation [B]i = 〈S,Q ∪ {?}, q0, F, [E]i〉.

The set [E]i is the smallest set satisfying:

∀u ∈ (Σs ∪ V ar(B)). ((q, u, g, q′) ∈ E ⇒ (q, [u]i, [g]i ∧ g∗i , q′) ∈ [E]i)

∀u ∈ (Σs ∪ V ar(B)), q ∈ Q.(q, u,¬g∗, ?) ∈ [E]i

Theorem 3.1.12. [B]i is frozen.

Theorem 3.1.13. Let B be a UA, there exists then a finite set {Bi}i∈I , Bi

frozen and σ-saturated automaton (for all freezing substitutions σ) such that
L(B) =

⋃
i∈I L(Bi)

Proof. We prove that Li = L(Bi) where Bi are frozen and σ-saturated (for any
freezing substitutions σ) automata from Definition 3.1.11. Let

L∪ =
⋃
{L([B]i) |≡i∈ RB}

we prove that
L(B) = L∪

We rewrite the claim
η ∈ B ⇔ ∃i.η ∈ Bi

that is:

∃σ : V ar(B)→ H,H ′ ⊆ Σ.η ∈ Bσ ⇔ ∃i.∃σ′ : V ar(B)→ H ′, H ′ ⊆ Σ.η ∈ ([B]i)σ′

⇒
We distinguish two cases by looking whether σ is freezing or not.

1. If σ is freezing:

The thesis is obvious since we take the empty equivalence relation ≡j.
This implies that [v]j = v for all v and σ � g∗. Hence the two automata B
and [B]j have the same labels on edges, the guards differs only by g∗, that
is satisfied. The additional edges to the sink are never active, since their
guards are unsatisfiable.

2. If σ is not freezing:

We take j such that ≡jG σ, H = H ′ and σ′ = [σ]j. We show that
η ∈ Bσ ⇒ η ∈ ([B]j)[σ]j by proving that the two automata are the same.
The only thing to check is the equality of edges.

58 CHAPTER 3. LANGUAGE THEORY FOR USAGE AUTOMATA & USAGES

Let X be the edges of Bσ and let [X]j be the ones of ([B]j)[σ]j . The sets
X and [X]j are defined:

X = {(q, σ(v), q′) | (q, v, g, q′) ∈ E ∧ σ � g}
[X]j = {(q, [σ]j([v]j), q

′) | (q, [v]j, [g]j ∧ g∗j , q′) ∈ [E]j ∧ [σ]j � [g]j ∧ g∗j}

We note that [σ]j is freezing by the maximality of ≡j and hence [σ]j � g∗

. The edges to the sink are never replicated in [X]j since their guards
are not satisfied. The equality of X, [X]j follows from the fact that
σ(v) = [σ]j([v]j) by definition and by σ G ≡j By the latter, σ � g ⇔ [σ]j �
[g]j ∧ g∗j by Property 3.1.11 and (q, v, g, q′) ∈ E ⇒ (q, [v]j, [g]j) ∈ [E]j
and (q, v, g ∧ g∗j) ∈ [E]j ⇒ ∃v′, [v′]j = v.∃g′, [g′]j = g.(q, v′, g′, q′) ∈ E by
construction. This proves:

(q, v, g, q′) ∈ E ∧ σ � g ⇔ (q, [v]j, [g]j ∧ g∗, q′) ∈ [E]j ∧ [σ]j � [g]j ∧ g∗j

⇒

1. If σ : V ar(B)→ R is freezing:

Let i = j, then by Property 3.1.11 there exists a unique [σ]−1
j such that

[σ]−1
j G≡j and σ �V arj= [σ]−1

j �V ari .

Let

[X]j = {(q, σ(v), q′) | (q, v, g ∧ g∗, q′) ∈ [E]j ∧ σ � g}
X = {q, [σ]−1

j (v′), q′) | (q, v′, g′, q′) ∈ E ∧ [σ]−1
j � g

′}

be respectively the edges of ([B]j)([σ]−1
j) and Bσ.

The two sets are equals by proving (q, σ(v), q′) ∈ [X]j

1︷︸︸︷⇔ (q, v, g∧g∗, q′) ∈

[E]j∧σ � g∧g∗
︷︸︸︷⇔ 2(q, v′, g′, q′) ∈ E∧ [σ]−1

j � g
′

3︷︸︸︷⇔ (q, [σ]−1
j (v′), q′) ∈ X

with (q, σ(v), q′) = (q, [σ]−1
j (v′), q′).

1︷︸︸︷⇔ by definition.
2︷︸︸︷⇔ by definition.

3.1. USAGE AUTOMATA 59

a) ⇒:
If (q, v, g ∧ g∗, q′) ∈ [E]j then, by construction, there exists an edge
in (q, v′, g′, q′) ∈ E such that [v′]j = v and [g′]j = g. This implies
that v′ ≡j v and since [σ]−1

j G≡j we have [σ]−1
j (v) = [σ]−1

j (v′). By
properties of [σ]−1

j we have [σ]−1
j (v) = σ(v). By Property 3.1.11

[σ]−1
j � [g′]j ⇔ σ � g′.

b) ⇐
By construction of [E]j and by the equalities showed above.

3︷︸︸︷⇔ by definition.

2. If σ : V ar(B)→ R is not freezing:

Let i = j, and let [X]j ∪Comp([X]j) be the edges of ([B]j)σ. Since σ 2 g∗

we have that ∀r ∈ Σs ∪ Img(σ), q ∈ Q.(q, r, ?) ∈ [X]j and nothing else is
in.

If η is recognized by the instantiation ([B]j)σ then it is the only case that
η = a1 . . . an and for all 1 ≤ k ≤ n.(q0, ak, q0) ∈ Comp([X]j), with q0 final,
hence ak /∈ Σs ∪ Img(σ).

This implies that these edges are also edges in Comp(X) of Bσ.

Example 3.1.14. Figure 3.2 shows three frozen automata. The union of their
languages gives the language recognized by the automaton in Figure 3.1. The
state ? is the sink, g∗ is the ubiquitous guard. Clearly if σ � g∗ (i.e. σ is freezing)
the automata are σ-saturated.

3.1.4 Closure properties

Theorem 3.1.15 (Complement of UA). Usage automata are not closed under
complement.

Proof. Consider the following automaton B:

q0
α(x) α(x)

60 CHAPTER 3. LANGUAGE THEORY FOR USAGE AUTOMATA & USAGES

q0

?

a : g∗
b, x : g∗ a, b : g∗ a, b, x : g∗

a, b, x : g∗

x : g∗

x
,a
,b

:¬
g
∗

x,
a,
b
: ¬
g
∗x, a, b

: ¬
g ∗

(a)

q0

?

a : g∗
b, a : g∗ x, b : g∗ b, x : g∗

a, b, x : g∗

a : g∗

x
,a
,b

:¬
g
∗

x,
a,
b
: ¬
g
∗x, a, b

: ¬
g ∗

(b)

q0

?

a : g∗
b, a : g∗ x, b : g∗ b, x : g∗

a, b, x : g∗

b : g∗
x
,a
,b

:¬
g
∗

x,
a,
b
: ¬
g
∗x, a, b

: ¬
g ∗

(c)

Figure 3.2: The automata (a),(b),(c) are frozen. Their alphabet is S = Act×
({a, b} ∪ {x}) with Act = {α}, g∗ = x 6= a ∧ x 6= b. We write here a, b, x for
α(a), α(b), α(x), respectively.

This automaton recognizes the language containing at least twice the same
symbol, hence its complement recognizes the words whose resources are all
pairwise different. This property can not be expressed by a UA. Let B be such
a UA and let η = a1 . . . an be a string with ai 6= aj, i 6= j and n =

∣∣B∣∣ + 2.
η ∈ L(B̄). Recall from Section 1.3.4 the notion of collapsing. Every collapsing κ
such that |κ(Σ)| =

∣∣B∣∣+ 1 will cause κ(au) = κ(av) for some au, av in η. Hence
we obtain that η ∈ L(B̄) but ηκ /∈ L(B̄) obtaining an absurd by Theorem 4.7
in [6].

Theorem 3.1.16 (Closure under Union). Usage Automata are closed under
union.

Proof. We assume w.l.o.g. the union of two saturated automata (since the
saturation is always feasible) on an alphabet S = Σs ∪ V, V ⊆ V ar. Indeed,
we note that extending both variables and static resources in S, the language
recognized by the automaton does not change.

Then, let B = 〈S,Q, q0, F, E〉, C = 〈S,Q′, q′0, F ′, E ′〉 be two saturated au-
tomata, S = Σs ∪ V, V ⊆ V ar. We define

B ∪ C = 〈S,
℘(Q ∪Q′),
{q0, q

′
0} ,

{P ∈ ℘(Q ∪Q′) | ∃q ∈ P ∩ (F ∪ F ′)},
E∪〉

3.1. USAGE AUTOMATA 61

with

E∪ =
{

(P, v, g, P ′)
∣∣ P ′ = {q′ | ∃q ∈ P.(q, v, g, q′) ∈ E ∪ E ′ }

We now show that L(B∪C) = L(B)∪L(C). To do this we will prove that given
a substitution σ : V → R,R ⊆ Σ \ {_} the set E∪ correctly mimes E and E ′.

In symbols, let XB, XC , XB∪C be the edges of the instantiation respectively
of B,C,B ∪ C.

We consider w.l.o.g B and we show that if (q, r, q′) is an edge of Bσ then
for all P ∈ ℘(Q ∪ Q′) if q ∈ P then there exists P ′ such that q′ ∈ P ′ and
(P, r, P ′) ∈ (B ∪ C)σ.

1. If (q, r, q′) ∈ XB then there exists an edge (q, v, g, q′) ∈ E, σ � g, σ(v) = r.
Hence, by taking P ′ = {q′ | ∃q ∈ P.(q, v, g, q′) ∈ E ∪ E ′}, we have that
q′ ∈ P ′. Since σ � g we obtain that (P, r, P) ∈ XB∪C .

2. If (q, r, q) ∈ Comp(XB) then, by saturation r ∈ Σd \ Img(σ). Since the
alphabets of B,C,B ∪ C are the same, clearly (P, r, P) ∈ Comp(XB∪C)

Viceversa, if (P, r, P ′) is an edge of (B ∪C)σ then for every q′ ∈ P ′ ∩Q there
exists q ∈ P ∩Q such that (q, r, q′) ∈ Bσ and q′ ∈ P ′∩Q′ there exists q ∈ P ∩Q′
such that (q, r, q′) ∈ Cσ .

1. If (P, r, P ′) ∈ XB∪C then there exists an edge (P, v, g, P ′) ∈ E∪, σ �
g, σ(v) = r. This implies that for every q′ ∈ P ′ ∩Q there exists q ∈ P ∩Q
such that (q, v, g, q′) ∈ E and for every q′ ∈ P ′∩Q′ there exists q ∈ P ∩Q′
such that (q, v, g, q′) ∈ E ′. The thesis follows by σ � g and σ(v) = r.

2. if (P, r, P ′) ∈ Comp(XB∪C) the thesis follows by noting that the saturation
condition
If (P, r, P) ∈ Comp(Xσ) implies r ∈ Σd and ∀x ∈ V.σ(x) 6= r

holds in E∪ for non-empty P.

The proof of the equality of the languages follows by induction: Given any
path in Bσ it can be replicated stepwise from the beginning. Viceversa, given
any path (P

v,g−→ P ′ . . .
vf ,gf−−−→ P

′f) in (B ∪ C)σ with f ∈ P f ∩ Q(w.l.o.g) final
state, starting from f we can recreate a path from q0 ∈ Q to P f .

Theorem 3.1.17 (Closure under concatenation). Usage Automata are closed
under concatenation

62 CHAPTER 3. LANGUAGE THEORY FOR USAGE AUTOMATA & USAGES

Proof. Sketch: To build the concatenation automaton of the automaton B,B′,
we need to fuse the final states of the first automaton with the initial one of the
second. To do that we need to take as many copies of A′ as the number of final
states of A.

A corollary of the previous theorem is that we can concatenate a UA a
finite number of times with itself. However, the next theorem shows that this
mechanisms does not scale up to the Kleene star.

Theorem 3.1.18 (Closure under intersection). Usage Automata are closed
under intersection.

Proof. Let B = 〈Σs ∪ V,Q, q0, F, E〉, C = 〈Σs ∪ V ′, Q′, q′0, F ′, E ′〉 be two UA
with V ∩ V ′ = ∅

Let ≡i⊆ Σs ∪ V × Σs ∪ V ′ be a respectful equivalence relation. We will
denote with [a]i the equivalence class of a under ≡i. Clearly, there exists a finite
number of such relations ≡i.

Given ≡i, we construct a UA (B ∩ C)i = 〈Σs ∪ V ∪ V ′, Q×Q′, (q0, q
′
0), F ×

F ′, Ei〉 with

Ei = {((p, q), α([r′]), g∧g′, (p′, q′)) | (p, α(r), g, p′) ∈ E and (q, α(r′), g′, q′) ∈ E ′ and r ≡i r′}

We then consider the union of such finite class of automata.
It remains to prove that η ∈ L(B) ∩ L(C) iff η ∈ L(B ∩C). We follow these

deductions

η ∈ L(B) ∩ L(C) ⇔ by definition

η ∈ L(B) ∧ η ∈ L(C) ⇔ by definition

∃σ.η ∈ L(Bσ) ∧ ∃σ′.η ∈ L(C ′σ) ⇔ by definition

∃σ, σ′.η ∈ L(Bσ) ∩ L(C ′σ) ⇔ by the fact below (*)

∃ ≡i .∃σ∗.η ∈ L(((B ∩ C)i)σ∗) ⇔ by definition

∃ ≡i .η ∈ L((B ∩ C)i)⇔ η ∈ L(B ∩ C).

(*) We establish the following relation between σ, σ′, σ∗ and ≡i.

σ(x) = σ′(y) = a⇔ x ≡i y and σ∗([x]i) = a

We show that we can move from a state in one automaton then we can do
the same in the other one. We will use a bold style for states of the automaton

3.1. USAGE AUTOMATA 63

Bσ ∩ C ′σ. It is easy to verify the following deductions:

(p,q)
σ(x)−−→ (p′,q′) ⇔

p
σ(x)−−→ p′ and q

σ(y)−−→ q′ and σ(x) = σ(y) ⇔

p
x−→ p′ and q y−→ q′ ⇔

(p, q)
[x]−→ (p′, q′) ⇔

(p, q)
σ∗([x])−−−−→ (p′, q′)

Theorem 3.1.19 (Kleene Star). The UA are not closed under Kleene star.

Proof. Consider the language recognized by the following automaton B, the
recognized strings must contain exactly one α(a)

q0
α(a) α(x) : x 6= a

α(a)

α(a)

By contradiction let C = 〈S,Q, q0, F, E〉 be the the automaton recognizing
L∗(B). Consider the string η = α(a)α(d1)α(a)α(d2) . . . α(a)α(dn) with a ∈
Σs, di ∈ Σd, i 6= j ⇒ di 6= dj and n ≥ |E|+ 1. The string η ∈ L(C), hence there
exists a substitution σ such that η ∈ L(Cσ). Because |Xσ| = |E| < n di, in the
path recognizing η there must be an edge (q, α(dj), q) obtained by completion.
Hence also η′ = η{ε/α(dj)} ∈ L(Cσ) (obtained by removing α(dj)) and this is a
contradiction. Indeed η′ /∈ L(C) because α(a)α(a) is a substring of η′.

However, Theorem 3.1.19 does not reduce the power of UA in expressing
safety policies. Consider a language of the form L∗ and let η be a trace in the
semantics JUK of a usage U . For any η ∈ L∗ there exists also a prefix η′ ∈ Li,
with η′ ∈ JUK by Definition 1.3.12. This means that checking U against L∗ is
the same as checking it against L.

To sum up, we have the following closure properties for UA

∪ ∩ . · ∗
L(UA) X X × X ×

64 CHAPTER 3. LANGUAGE THEORY FOR USAGE AUTOMATA & USAGES

3.1.5 Expressiveness

We compare now the expressive power of the UA with the one of the Variable
Finite Automata (VFA) recalled in Section 1.3.2.

From UA to VFA

The first step of the construction is to prove the following simple lemma.

Lemma 3.1.20. For each frozen UA there exists a frozen and saturated (for all
freezing substitutions) UA recognising the same language .

Proof. Given a frozen UA automaton B we can saturate it with the construction
in Section 3.1.1. To make it frozen again we add to every edge in the saturation
the ubiquitous guard. This does not change the language recognised by the
automaton since the only state that we can reach in the instantiation of a non
freezing σ is q0 and q0 is already saturated.

Every language recognised by a saturated and frozen UA B on Σ = Σs ∪ Σd

can be recognised by a VFA A = 〈Act,Σ,Σs, V ar(B) ∪ {y}, A〉. Below we
intuitively describe the steps needed to construct the underlying automaton A.

• Remove all the edges with an unsatisfiable guard: they would never be
present in any instantiation.

• Keep the edges with satisfiable guard g and remove g: this step is correct
since if g is satisfiable then any substitution σ such that σ � g is freezing,
and then all freezing substitutions will satisfy g, by Property 3.1.8.

• Remove the sink ? and all the edges involving it.

• Add to every node a self-loop with label α(y) for every action α ∈ Act, so
accounting for completion of edges. The special symbol y can be put in
correspondence with any resource that is different from any value associated
with a variable and any static resource, that turns out to be guaranteed
by saturation.

The formal definition of this construction is in Definition 3.1.12 below.

Definition 3.1.12. Let B = 〈S,Q, q0, F, E〉 with S = Act× (Σs ∪V), V ⊆ V ar

be a UA frozen and saturated for freezing substitutions. We consider the

3.1. USAGE AUTOMATA 65

q0

α(a)
α(b), α(a), α(y) α(x), α(b), α(y) α(b), α(x), α(y)

α(b)

Figure 3.3: a VFA recognizing the same language of the UA in Figure 3.2(c).

VFA A = 〈Act,Σ,Σs, V ar(B) ∪ {y}, A〉 with A = 〈Γ, Q \ {?}, q0, δ, F 〉 with
Γ = Σs ∪ V ar(B) ∪ {y}. The function δ is obtained from E:

δ = {(q, α(v), q′) | ∃g.(q, α(v), g, q′) ∈ E ∧ q, q′ 6= ? ∧ g is satisfiable}
∪ {(q, α(y), q) | q ∈ Q}

The result of the transformation above, applied to Figure 3.2(c), is in
Figure 3.3.

We now state two lemmata showing a correspondence between freezing
substitutions of UA and legal instances of VFA.

Lemma 3.1.21. Let σ : V ar(B) → R be a freezing substitution and σ−1 its
inverse. Let c be σ−1 ∪ {(d, y) | d ∈ Σd \ Img(σ)}. Then, if c(η) = s then η is a
legal instance of s in A.

Lemma 3.1.22. Given B and A from the definition above, if η is a legal instance
of s in A then any σ = {(si, ηi) | si 6= y ∧ si /∈ Σs} can be extended to a freezing
substitution for B.

Proof. Clearly if (u, v) ∈ σ then u ∈ X = V = V ar(B). The relation σ is a
function and it is freezing by the property 2 of the legal instances. The extension
to the domain V ar(B) can be obtained by assigning a fresh dynamic resource
to each x ∈ V ar(B) that is not mentioned in σ.

We can now prove the correctness of the construction in Definition 3.1.12.

Lemma 3.1.23. Given a UA B, let A be the VFA obtained from the construction
in Definition 3.1.12, then L(A) = L(B).

Proof. Preliminaries: Let η be a legal instance of s, and let σ be the associated
freezing substitution (obtained as in Lemma 3.1.22). Then:

1. (q, v, q′) ∈ δ, s 6= y ⇒ (q, σ(v), q′) ∈ Xσ ∪ Comp(Xσ) in Bσ

2. (q, y, q′) ∈ δ ⇒ ∀a ∈ Σd \ Img(σ).(q, a, q) ∈ Xσ ∪ Comp(Xσ) in Bσ

66 CHAPTER 3. LANGUAGE THEORY FOR USAGE AUTOMATA & USAGES

Now, let η ∈ L(Bσ) with σ freezing substitution, and let c be the associated
correspondence between η and c(η) (obtained as in Lemma 3.1.21).

1. (q, a, q′) ∈ Xσ ⇒ (q, c(a), q′) ∈ δ

2. (q, a, q′) ∈ Comp(Xσ)⇒ (q, y, q) ∈ δ ∧ c(a) = y

η ∈ L(A)⇒ η ∈ L(B)

The proof can be easily completed by induction on the length of η.
η ∈ L(B)⇒ η ∈ L(A)

The proof can be easily completed by induction on the length of η. The properties
in the preliminaries can be used since the thesis is trivial for a non freezing
substitution σ. Indeed, the characters in η would be in Σd \Img(σ) and yyyy . . .
would be the witnessing pattern in (A).

The following theorem holds.

Theorem 3.1.24. For each UA there exists a VFA recognising the same lan-
guage.

Proof. Every UA can be decomposed (preserving the language) into the union
of a finite set of frozen automata:

B∪ =
⋃
{[B]i |≡i∈ RB}

Each [B]i can be transformed into an equivalent VFA [A]i by saturating and
applying the construction in Definition 3.1.12. Since VFA are closed by union,
by taking

A∪ =
⋃
{[A]i}

we obtain a VFA whose language is equivalent to B∪ and hence to B.

Actually, UA are less expressive than VFA, as stated by the following theorem.

Theorem 3.1.25. No UA accepts the language recognised by the VFA in Fig-
ure 3.4.

Proof. By contradiction, let B = 〈S,Q, q0, F, E〉 be the automaton recognizing
the language of the VFA A in Figure 3.4. Let η = α(a)α(d1) . . . α(a)α(dn)α(dn)

with di ∈ Σd, di 6= dj, a ∈ Σs and n ≥ |E| + 1. Since η ∈ L(A) then
η ∈ L(Bσ) for some σ. Since |Xσ| = |E|, by the pigeonhole principle, in
the path recognizing η there is an edge (q, dj, q) ∈ Compσ(Xσ). Hence, also
η′ = α(a)α(d1) . . . α(dj−1)α(a)α(a)α(dj+1) . . . α(a)α(dn)α(dn) ∈ L(Bσ) and this
implies η′ ∈ L(B) but η′ /∈ L(A)

3.2. MODEL-CHECKING USAGES AGAINST VFA 67

q0

α(a)α(y)

α(a), α(y)

α(y)

α(a)

α(a), α(y)

Figure 3.4: The language recognized by this VFA is not accepted by any UA.
The alphabet is Ω = Σd ∪ {a} with Act = {α}. Informally the safety policy
expressed by this automaton requires to take a token α(a) before performing
any other kind of action, if two tokens are taken, any sequence of actions is then
allowed.

A corollary of the previous theorem is that VFA are more expressive than
UA to express security properties of programs.Indeed, the language in Figure 3.4
is actually a safety property that can not be expressed by any UA.

Consider now a variant VFA, the following fact can be easily proved.

Property 3.1.26. The restriction of VFA, obtained by only permitting the
distinguished placeholder y to occur in self-loops, has the same expressive power
of UA.

3.2 Model-Checking Usages against VFA

We carry over to VFA the symbolic technique for model-checking Usages against
UA (developed in [6]). Theorems 3.1.24 and 3.1.25 prove that there are safety
policies that a VFA can express and a UA can not. Hence using VFA one can
verify a larger class of safety properties of programs.

We start by re-defining policy compliance, similarly to Definition 2.4.1, but
with VFA in place of finite state automata.

Definition 3.2.1 (Policy compliance). Let A be a VFA, then U � A if and
only if η ∈ JUK⇒ η /∈ L(A).

We introduce now symbolic VFA. Following [6], we let their alphabet be the
finite set of witnesses W ⊂ {#i}i∈N, where {#i}i∈N ∩ Σ = ∅. We also need a
distinguished symbol _ /∈ Σ ∪ {#i}i∈N.

Definition 3.2.2 (Symbolic VFA). Let A = 〈Act,Σ,Σs, X ∪ {y}, A〉 be a VFA.
Given a finite set of witnesses W, let ΣW = Σs ∪W ∪ {_}.
The symbolic VFA onW isAW = 〈Act,ΣW,Σs, X∪{y}, A〉. Language recognition
for symbolic VFA additionally requires the correspondence m to be such that
m(_) = y.

68 CHAPTER 3. LANGUAGE THEORY FOR USAGE AUTOMATA & USAGES

The collapsing seen in Definition 1.3.14 is the technical machinery that links
VFA with their symbolic automaton, as shown in the following theorem.

Theorem 3.2.1. Let A = 〈Act,Σ,Σs, X ∪ {y}, A〉 be a VFA, and let W be a
set of witnesses such that |W| = |X|, AW as in Definition 3.2.2 and let K be the
set of the collapsing κ : Σ→ Σs ∪W ∪ {_} such that κ(Σd) = W ∪ {_}, then:

• ∀η.(η ∈ L(A)⇒ ∃κ ∈ K.κ(η) ∈ L(AW))

• ∀κ ∈ K, η.(κ(η) ∈ L(AW)⇒ η ∈ L(A))

Proof. • If η ∈ L(A) then there exists a correspondence m : Σ→ (Σs ∪X ∪
{y}) and s ∈ L(A) such that m(η) = s. Since |X| = |W|, then there exists
an isomorphism ι : X → W. We define a collapsing κ̂ in the following way:

κ̂(a) =

ι(x) if m(a) = x

_ if m(a) = y

a if m(a) = a, a ∈ Σs

It is easy to verify that the function m̂ = ι−1 ∪ (_, y) ∪ {(a, a)}a∈Σs is a
correspondence such that m̂(κ̂(η)) = s, s ∈ L(A). Hence κ̂(η) ∈ L(AW).

• Let C ⊂ Σ be the subset of the symbols of η. Since κ(η) ∈ L(AW) then
there exists a correspondence m and a witnessing pattern s ∈ L(A) s.t.
m(κ(η)) = s with m(_) = y. We now consider the function

m′(a) =

(κ;m)(a) a ∈ C
y if a = y

g(a) otherwise

with

g any function such that

g(Σ \ C) = (X \ Img(κ;m)) ∪ {y}, injective on X \ Img(κ;m)

Then, the correspondence m′ : Σ→ Σs ∪X ∪ {y} makes η a legal instance
of s. Hence η ∈ L(A).

We carry over to symbolic VFA the notions of substitution and instantiation,
which transforms a symbolic VFA into a Finite State Automaton. The language
recognised by a symbolic VFA can then be represented under collapsing by a
finite class of its instantiations.

3.2. MODEL-CHECKING USAGES AGAINST VFA 69

Definition 3.2.3 (Instantiation of VFA). Let AW = 〈Act,ΣW,Σs, X ∪ {y}, A〉
be a symbolic VFA with A = 〈Γ, Q, q0, F, δ〉, Γ = Act× (Σs ∪X ∪ {y}).
Given a function m : X ∪ Σs → Σs ∪W it is a substitution for AW if it is the
identity on Σs and it is injective on X.
Given a substitution m the instantiation of AW is AmW = 〈ΣW, Q, q0, F, δ

∗〉, where

δ∗ ={(q, α(m(v)), q′) | (q, α(v), q′) ∈ δ, v 6= y}∪
{(q, α(d), q′) | (q, α(y), q′) ∈ δ, d ∈ (ΣW \ (Σs ∪ Img(m))}

Note that, by the finiteness of W, AmW is a standard FSA on a finite alphabet.

Theorem 3.2.2. Let AW = 〈Act,ΣW,Σs, X ∪ {y}, A〉 be a symbolic VFA:

η ∈ L(AW)⇔ ∃ substitution m.η ∈ L(AmW)

Proof. ⇒
If η ∈ L(AW) then there exists a correspondence m : ΣW → (Σs ∪X ∪{y}) with
m(_) = y such that m(η) = s for some s ∈ L(A). By definition m is injective
on Σs ∪X, then we take the inverse m = (m �(Σs∪X))

−1. We note that:
If m(α(a)) = α(v), v 6= y and (q, α(v), q′) ∈ δ then (q, α(a), q′) ∈ δ∗ by construc-
tion.
If m(α(a)) = α(y) and (q, α(y), q′) ∈ δ then by construction and by the fact
that m is a correspondence we have (q, α(a), q′) ∈ δ∗.
Hence if η ∈ L(AW) then there exists a path in A for s leading to a final state.
This path can be reproduced in L(AmW).
⇐
The proof is the same as above, using an extension ofm−1 as correspondence.

We recall now the well-known weak-until operator AW B between automata [3,
6], meaning that A holds until B holds or B always holds.

Definition 3.2.4 (Weak Until Operator). Let A = 〈S,QA, q
A
0 , FA, δA〉, B =

〈S,QB, q
B
0 , FB, δB〉 be two FSA on the alphabet S such that for each state q

and label v there exists a transition from q that is labelled v. The weak until
automaton AW B = 〈S,Q, q0, F, δ〉 is defined as follow:

• Q = QA ×QB

• F = FA × (QB \ FB)

• q0 = (qA0 , q
B
0)

70 CHAPTER 3. LANGUAGE THEORY FOR USAGE AUTOMATA & USAGES

•

δ ={(qA, qB)
v−→ (q′A, q

′
B) | qA

v−→ q′A ∈ δA, qB
v−→ q′B ∈ δB, qB ∈ QB \ FB}

∪{(qA, qB)
v−→ (qA, qB) | qB ∈ FB}

To simplify the technical development, the next theorem will use the unique-
witness automaton (NW) seen in Definition 1.3.15 and the weak-until operator.

Theorem 3.2.3 (Model-checking). Let U be an initial usage on the resources
Σ = Σd ∪ Σs; let A = 〈Act,Σ,Σs, X ∪ {y}, A〉 be a VFA; and let W be a set of
witnesses such that |W| = |X|. Then U � A if and only if:

∀ substitution m : X ∪ Σs → Σs ∪W. L(BW(U)) ∩ L(AmW W NW) = ∅

Proof. • (correctness)⇐
We prove the contrapositive:
Let us assume η′ ∈ JUK with η ∈ L(A)

– By the properties of VFA:
By Theorem 3.2.1 there exists a collapsing κ with κ(Σd) = W ∪ {_}
such that κ(η) ∈ L(AW). By Theorem 3.2.2 there exists a substitution
m such that κ(η) ∈ L(AmW).

– By the properties of Usages: By Theorem 1.3.4, given the collapsing
κ above, κ(η) ∈ L(BW(U))

Since η is well-formed κ(η) /∈ L(NW).
Thesis follows since then κ(η) ∈ L(BW(U)) ∩ L(AmWWNW).

• (completeness)⇒
We prove the contrapositive:
The only case is that η ∈ L(BW(U)) and η ∈ L(AmW) and η /∈ L(NW).
Indeed, by definition of weak-until automaton, η ∈ L(NW) implies η /∈
L(AmW W NW)

– By the properties of Usages:
Let κ be an injective collapsing such that κ(Σd) = W ∪ {_}. By
Theorem 1.3.4 there exists η′ such that η = κ(η′) and η′ ∈ JUK.

– By the properties of VFA:
By Theorem 3.2.2 η ∈ L(AW). By Theorem 3.2.1, since the collapsing
above is such that κ(Σd) = W ∪ {_}, we obtain that η′ ∈ L(A)

3.3. USAGES 71

Hence we have proven that U 2 A since η′ ∈ JUK ∩ L(A).

This theorem gives us the means for an efficient model-checking proce-
dure. Given a substitution m, it is indeed decidable to check whether L(BW) ∩
L(AmW W NW) = ∅ and there are finitely many substitutions m, because Σs, X

and W are finite.
We can then re-use the model-checker LocUsT [4] for verifying Usages against

VFA. As for complexity issues, we can restate the theorem established in [6]
for VFA. The proof is mostly the same with only minor changes regarding the
number of instantiations of VFA.

Theorem 3.2.4. The worst-case asymptotic behaviour of model-checking an
usage U against an automaton B with n variables is O(|U ||n|+1).

The model-checking framework presented in this chapter requires to reduce
the problem of verifying a Usages against a property expressed by a VFA to
standard automata-based model checking. This paradigm relies on the fact that
VFA are able to distinguish only a finite number of symbols, so allowing to
consider only a finite number of resources in Usages (Theorem 1.3.4).

3.3 Usages

We start our investigation of the Usages by proving the theorem below.

Theorem 3.3.1. The language ({α} × Σ)∗ is not generated by any Usages.

Proof. The proof has the following structure: for simplicity we consider the
Usages as language recognisers seen in Section 1.3.4 and without actions, i.e.
U, V ::= a ∈ Σ| . . . A few lemmata are proved to provide support for the final
argument.

In the following we will use the word redex to identify the source of a
transition deduced by only applying an (instance of an) axiom.

Lemma 3.3.2. If U0,R
ε−→ U1,R′ and µh.U is its redex, then U0{µh.U/h} = U1.

Proof. (By induction on the depth of the proof)
There are two cases:

• Base case: U0 = µh.U and the thesis follows easily.

72 CHAPTER 3. LANGUAGE THEORY FOR USAGE AUTOMATA & USAGES

• Inductive case: U0
ε−→ U1 has been proved by rule (seq) as last step, as

below:
U ′0

ε−→ U ′1

U ′0 · V
ε−→ U ′1 · V

By the inductive hypothesis we have that U ′1 = U ′0{µh.U/h} and the thesis
follows easily.

Lemma 3.3.3. If U0,R0
a0−→ U1,R1

a1−→ · · · an−1−−−→ Un,Rn and k is the least
index such that µh.U is the redex of Uk

ak−→ Uk+1 and rule (rec) is never used in
reducing Ui, i < k then Ui = Ci[µh.U] for some Ci and ak = ε.

Lemma 3.3.4. Let U0,R0
a0−→ U1,R1

a1−→ · · · an−1−−−→ Un,Rn be a computation and
let k be the least index such that µh.U is the redex of Uk

ak−→ Uk+1 and rule (rec)
is never used in reducing Ui, i < k then ∃U ′i ≡ Ui, i < k such that
U ′0,R0

a0−→ U ′1,R1
a1−→ · · ·U ′k

ak+1−−→ Uk+2,Rk+2
ak+2−−→ · · · an−1−−−→ Un,Rn and (rec) is

never used reducing Ui, 0 ≤ i ≤ k.

Proof. By Lemma 3.3.3 Ui = Ci[µh.U], i ≤ k, also µh.U is never the redex of
Ui, i < k, hence also U ′i = Ci[U{µh.U/h}],Ri

ai−→ U ′i+1 = Ci+1[U{µh.U/h}],Ri+1.
By Lemma 3.3.2 U ′k = Uk[U{µh.U/h}] = Uk+1.

Lemma 3.3.5. Let U0,R0
a0−→ U1,R1

a1−→ · · · an−1−−−→ Un then ∃U ′0 ≡ U0 such that
U ′0,R0

a0a1...an−1−−−−−−→ U ′m,Rm for some U ′m,Rm such that ∀i.U ′i ,Ri
ai−→ U ′i+1,Ri+1 is

deduced using (rec) rule.

Proof. By repeated application of Lemma 3.3.4.

Property 3.3.6 (of capture avoiding substitutions). Given µh.U , if h occurs
in the scope of νn in U , then U{µh.U/h} contains a term νn′.U ′, n′ 6= n and n
does not occur in U ′.

Proof. Follows because unfolding a recursion is capture-avoiding and all the
bound names are different.

For simplicity , we write an for the dynamic resource replacing a name n in
U when the rule (new) is applied.

Let U with k occurrences of νni be such that JUK = Σ∗ and let
s = an1an2 . . . ank+1

an1an2 . . . ank+1
. By Lemma 3.3.5, there exists U ′ ≡ U such

that U ′, ∅ s−→ U, {an1 , . . . , ank+1
} ∪ R with no transition deduced using rule (rec).

3.3. USAGES 73

Since ν.nk+1 does not occur in U , then there exists a subterm of U of the
form µh.U , with νni.U ′′, (0 < i ≤ k) in U . Therefore, U ′ = U{µh.U/h} and the
replacing term contains νnk+1.U

′′{nk+1/ni}, nk+1 6= ni for some i because our
assumption of keeping bound names apart.

Therefore νnk+1.U
′′{nk+1/ni} occurs in U ′ for some U ′′ (by Lemma 3.3.5)

and ni does not occur in U ′′{nk+1/ni}. Also nk+1 must occur at least twice
in U ′′{nk+1/ni} and nowhere else. Since U ′′{nk+1/ni} cannot generate ani, it
cannot generate ank+1

an1 . . . ankank+1
.

We now show a consequence of Theorem 3.3.1 above. Let us consider again
the load balancer example in Example 2.5.2. Note that there, the locations loc
where the services are deployed, are never released. This feature inhibits the
reuse of locations, that is useul in many cases.

To allow locations reuse we can use the k operator, as follows.

Example 3.3.7.

fun worker2 =
i f COND then

l e t l o c = ν in
. . . // a c t i v a t i n g a new s e r v i c e in l o c a t i o n l o c
with(S e r v i c eAc t i v e I n (l o c)) in

k l o c ;
worker2 () ;

else
s k i p ;

The abstract behaviour of a computation of the worker2 function is a trace
of the form:

new(a1)del(a1)new(a2)del(a2) . . . new(an)del(an)

where a1, a2, . . . , an are the locations obtained by invoking the operator ν and
they are not necessarily distinct. By Theorem 3.3.1 there is no usage recognising
such traces.

We compare now Usages with quasi context-free languages(of Section 1.3.5)
Our comparison takes care of the fact that quasi context-free languages are not
defined on data words, i.e. they have no actions on resources, while Usages do.
The strings generated by a usage belong to (Act× Σ)∗. Our choice here is to
consider Act as a singleton, then to ignore the only actions in strings, e.g. the
string α(a1)α(a2)α(a3) is equivalent to a1a2a3.

74 CHAPTER 3. LANGUAGE THEORY FOR USAGE AUTOMATA & USAGES

Property 3.3.8. There exists

1. a language generated by a usage U that is not quasi context-free;

2. a quasi context-free language that can not be generated by any usage U .

Proof. For showing statement (1), consider the usage U = µh.(νn.α(n)) · h. As
a matter of fact, there is no bound on the number of fresh resources that can
occur in a string generated by U , while in a quasi context-free language the
bound is given by the number of the registers. The statement (2) holds because
there is no usage U such that JUK = Σ∗.

Discussions

We have first studied some language theoretic properties of UA. We showed
that the expressive power of UA is weaker than the one of VFA.

We slightly extended the symbolic technique of [6] to model-check the compli-
ance of the traces generated by a Usages against a property expressed in terms
of a VFA.

We investigated the expressiveness of Usages, showing that they are not able
to express the behaviour of classes of ContextML programs and they are not
able to recognise Σ∗

The lack of expressiveness of Usages in both cases comes from the absence
of an explicit mechanism for disposing and reusing resources.

This observations foster in the next chapter the development of more expres-
sive automata, capturing the expressiveness of both Usages and quasi context-free
languages and allowing resource disposal and reuse.

Chapter 4

Automata-Based Models

In this chapter we propose two novel automata models for representing the
behaviour of programs that uses fresh resources. Our automata will overcome
some of the limitations of Usages shown in Theorem 3.3.1, and will be able
to represent the behaviour arising from adaptive programs highlighted by the
ContextML examples below.

We introduce a new variant of our running example in Examples 2.5.2
and 3.3.7, where the k operator has been moved after worker3 invocation.

Example 4.0.9.

fun worker3 =
i f COND then

l e t l o c = ν in
. . . // a c t i v a t i n g a new s e r v i c e in l o c a t i o n l o c
with(S e r v i c eAc t i v e I n (l o c)) in

worker3 () ;
k l o c ;

else
s k i p ;

Intuitively, the abstract behaviour of a computation of the worker3 function
is a trace of the form:

new(a1)new(a2) . . . new(an) del(an) . . . del(a2)del(a1)

where a1, a2, . . . , an are the distinct locations obtained by ν. The locations
appear in a pattern that have the same structure of the words in the context-free
language {wwR}, where wR stands for the reverse of w.

We can add a further ingredient to our running examples by extending
Example 3.3.7.

76 CHAPTER 4. AUTOMATA-BASED MODELS

Example 4.0.10.

fun worker4 =
i f COND then

l e t l o c = ν in
. . . // a c t i v a t i n g a new s e r v i c e in l o c a t i o n l o c
with(S e r v i c eAc t i v e I n (l o c)) in

k l o c ;
worker4 () ;

else
c l i e n t s () ;

fun c l i e n t s =
i f COND2
Se r v i c eAc t i v e I n (x) . I n vo k eSe r v i c e In (x) ;
unwith(S e r v i c eAc t i v e I n) in c l i e n t s ()

else
s k i p ;

After all services are deployed, function worker4 serves the clients by calling
clients. The clients function invokes and removes the services active in the
context one by one.

The traces generated by the program above are of the form

new(a1)del(a1) . . . new(an)del(an)InvokeServiceIn(an) . . . InvokeServiceIn(a1)

where a1, . . . , an ∈ Σd.
The main point here is that the locations a1, . . . , an are referred in the invo-

cation of InvokeServiceIn after their disposal. This example emphasises that
the interaction between freshness and disposal adhere to a different mechanisms
than standard variable scoping. We refer to this phenomenon as late usage of a
resource.

We address the various aspects highlighted above in an abstract model that

(i) expresses the context-free behaviour highlighted in Example 4.0.9

(ii) handles unboundedly many resources (as required in Example 2.5.1),

(iii) with unbounded freshness, as seen in Example 2.5.2

(iv) with a resource disposal mechanism, as seen in Example 3.3.7

(v) grants the late use of resources of Example 4.0.10.

77

We express context-free resource usage traces through Pushdown Nominal
Automata (PSNA), that extend classical pushdown automata, so satisfying
requirement (i). The alphabet of PSNA is infinite, so we undertake item (ii)
above in the style of nominal techniques [31].

To guarantee freshness of resources (i.e. of the symbols of the alphabet),
PSNA exploit (finitely many) additional structures, called m-registers, that store
resources. A resource is fresh if no m-register contains it. Since m-registers
have unbounded capacity, we guarantee unbounded freshness (item (iii)). As
expected, when a resource is released, it is removed from the m-register that
stores it, and so it can be re-used as fresh later on, so addressing item (iv). We
grant a late usage of resources allowing them to be mentioned after they have
been disposed, as required by item (v). The stack of the PSNA is the key to
obtain such a behaviour: a resource in use, i.e. occurring in a m-register, say
N , can be mentioned in the stack, and appear on its top also after it has been
removed by N . In the over-simplified example above, the picked locations awill
be recorded in a m-register N , and pushed on the stack. After ka, one can still
access a because it is still recorded on the stack.

To keep low the complexity of the definitions and proofs, our formal develop-
ment will not consider actions, but resources only.

Here we also investigate the problem of handling unboundedly many resources
and of unbounded freshness for regular languages. To do that, we introduce
the new model of Finite State Nominal Automata (FSNA), that are finite state
automata enriched with a finite number of m-registers.

We then prove that the languages recognized by both FSNA and PSNA are
closed under union, and the first ones are also closed under intersection, provided
that symbols are not released. The intersection of a language accepted by a
FSNA with that of a PSNA is recognised by a PSNA, provided that neither
automata release resources. Neither the languages of FSNA and PSNA, instead,
are closed under complement and concatenation.

We also establish the decidability of the emptiness problem for FSNA and
for the subclass of PSNA in which symbols are not released. Consequently, it
is feasible to model-check a property expressed as a (resticted) FSNA against
a model expressed as a (restricted) PSNA, by verifying the emptiness of their
intersection, in the style of [60].

We also compare the expressiveness and some properties of our models
with other proposal in the literature. In particular, we considered the regular
languages over infinite alphabet and their recognizers investigated in [33, 38, 6,
58, 59, 14, 44, 20, 40], as well as the context-free languages over infinite alphabet

78 CHAPTER 4. AUTOMATA-BASED MODELS

of [19, 6, 13, 15, 48, 46, 49].
We start by introducing the mindful registers (m-registers for short).

4.1 m-registers

An m-register N is actually a stack S of symbols in Σd and an activation state
(x ∈ {1, 0}). An empty stack makes the m-register empty, as well, and we
denote it by _. When the tag x is 1 then the m-register is active, otherwise
the m-register is inactive. The operations on an m-register N are built on the
standard push, top and pop operations as follows:

s-push(a, 〈x, S〉) = 〈1, push(a, S)〉
s-top(〈1, S〉) = top(S)

s-pop(〈x, S〉) =

{
〈0, pop(S)〉 if S 6= _

〈0, S〉 if S = _

An s-push operation makes an m-register active, regardless of its activation state.
The operation s-top yields a value only if the m-register is active, otherwise it is
undefined, as well as when the m-register is empty. Finally, after a s-pop, the
m-register N becomes inactive. Note that s-popping an empty m-register results
in a no-operation, so making it impossible to discern an inactive m-register from
an empty one.

A symbol is fresh with respect to an m-register when it does not appear in
its stack.

4.2 Finite State Nominal Automata

Before formally defining Finite State Nominal Automata (FSNA for short) we
intuitively illustrate their recognising mechanisms through the automaton R0

in Figure 4.1. A run on R0 recognising a word w is a sequence of configurations
leading from its initial state q0 to its final state q2. We assume that R0 has two
m-registers that will be part of configurations. In the initial configuration the
m-registers are empty and we render them as

[
,

]
.

The leftmost edge is q0
ε−→

2+
q1, and following it the automaton reads no symbol

(recorded by ε) and goes from the configuration 〈q0,
[
,

]
〉 to a configuration

of the form 〈q1,
[
_, a

]
〉 where a symbol a ∈ Σd is s-pushed in the m-register

number 2, as dictated by the label 2+, provided it is fresh w.r.t. both the

4.2. FINITE STATE NOMINAL AUTOMATA 79

q2q1q0
2
ε

ε

2+

1
ε

ε

1+

ε
1−

Figure 4.1: The FSNA R0 recognising the language {aw | a ∈ Σd, w ∈ Σ∗d, a /∈
|w|}

m-registers of R0. By using the edge q1
2−→
ε
q2 the automaton reaches the

configuration 〈q2,
[
_, a

]
〉 and reads a, i.e. the s-top symbol of the m-register

number 2, while nothing is done on the m-registers because of the label ε.
There are three edges looping in state q2. The edge q2

ε−→
1+

q2 s-pushes a fresh

symbol in the m-register number 1 and reads no symbol; q2
1−→
ε
q2 recognises

the s-top symbol of m-register number 1 and leaves the m-registers untouched.
Slightly differently, the edge labelled q2

ε−→
1−

q2 s-pops a symbol from the m-

register number 1 (because the label is 1−) and recognises no symbol. After
following it the m-register number 1 becomes inactive and the edge q2

1−→
ε
q2 can

not be followed.
A run on R0 is 〈q0,

[
,

]
〉 ε−→〈q1,

[
_, a

]
〉 a−→〈q2,

[
_, a

]
〉 ε−→〈q2,

[
b , a

]
〉

b−→〈q2,
[
b , a

]
〉 ε−→〈q2,

[
_, a

]
〉 ε−→〈q2,

[
c , a

]
〉 c−→〈q2, ε,

[
c , a

]
〉.

The reader may convince himself that the language recognised by R0 is
{aw | a ∈ Σd, w ∈ Σ∗d, a /∈ |w|}.

In the formal definition and hereafter we use some notation and abbreviation
introduced in Chapter 1. We denote the set of the natural numbers by N, r
is the segment of the natural numbers {i | 1 ≤ i ≤ r}, w is a word in Σ∗ with
length |w|, the set ‖w‖ denotes the symbols used in w, ε is the empty word.

Definition 4.2.1 (Finite State Nominal Automata).
A finite state nominal automaton (FSNA) is R = 〈Q, q0,Σ, δ, r, F 〉 where:

• Q is a finite set of states, q, q1, q
′, · · · ∈ Q

• q0 ∈ Q

• Σ = Σs∪Σd is the infinite alphabet (Σs is finite, Σd denumerable, Σs∩Σd =

∅)

80 CHAPTER 4. AUTOMATA-BASED MODELS

• r ∈ N is the number m-registers

• δ is the transition relation between pairs (q, σ) and (q′,∆), σ ∈ Σs ∪ r ∪
{ε},∆ ∈ {i+, i− | i ∈ r} ∪ {ε}
We call a transition new when ∆ = i+; delete when ∆ = i−; update when
∆ 6= ε.
For brevity, we write q σ−→

∆
q′ ∈ δ whenever (q, σ, q′,∆) ∈ δ

• F ⊆ Q is the set of final states

A configuration is a tuple C = 〈q, w, [N1, . . . , Nr]〉 where q is the current
state, w ∈ Σ∗ is the word to be recognised and [N1, . . . , Nr] is an array of r
m-registers with symbols in Σd. The configuration 〈qf ∈ F, ε, [N1, . . . , Nr]〉 is
final.

The application of a transition is detailed in the following definition:

Definition 4.2.2 (Recognizing Step). Given an FSNAR, a step 〈q, w, [N1, . . . , Nr]〉 →
〈q′, w′, [N ′1, . . . , N ′r]〉 occurs if and only if there exists a transition q

σ−→
∆
q′ ∈ δ

such that both conditions hold:

1.

σ = ε ⇒ w = w′ and

σ = i ⇒ w = s-top(Ni)w
′ and

σ ∈ Σs ⇒ w = σw′

2.

∆ = i+ ⇒ N ′i = s-push(b,Ni) ∧ ∀j.b /∈ ‖Nj‖ ∧ ∀j (j 6= i).Nj = N ′j and

∆ = i− ⇒ N ′i = s-pop(Ni) ∧ ∀j (j 6= i).Nj = N ′j and

∆ = ε ⇒ ∀j.Nj = N ′j

Finally, the (nominal) language accepted by R is
L(R) = {w ∈ Σ∗ | 〈C1 = 〈q0, w, [_, . . . ,_]〉 →∗ Ck,with Ck final} and we

call it regular.

A couple of examples follow.

Example 4.2.1. The FSNA R1 in Figure 4.2 recognises Σ∗. The run ρ1 recog-
nises the word aab. Note that any symbol can be chosen in place of b, even a

itself, because the m-registers are empty when a fresh symbol is required by the
edge labelled 1+.

By removing the edge q0
ε−→

1−
q0 from R1 we obtain the automaton R2 in

Figure 4.2. Without that deletion edge, there is no way to forget a symbol from

4.2. FINITE STATE NOMINAL AUTOMATA 81

q0

1
ε

ε

1+

ε
1−

R1

q0 q1
1
ε

ε

1+

R2

q′0 q′1 q′2 q′3

new(1)

ε

ε

1+

ε

2+

new(2)

ε

del(1)

ε

R3

ρ1 = 〈q0, aax,
[
_
]
,_〉 ε−→ 〈q0, aax,

[
a
]
〉 a−→ 〈q0, ax

[
a
]
〉 a−→ 〈q0, x,

[
_
]
〉 ε−→ 〈q0, x,

[
x
]
〉 x−→

〈q0, ε,
[

x
]
〉

ρ2 = 〈q0, abc,
[
_
]
〉 ε−→ 〈q1, abc,

[
a
]
〉 a−→ 〈q0, bc,

[
a
]
〉 ε−→ 〈q1, bc,

[
a
b
]
〉 b−→ 〈q0, c,

[
a
b
]
〉 ε−→

〈q1, c,
[

a
b
c]〉 c−→ 〈q0, ε,

[
a
b
c]〉

ρ3 =〈q′0, new(a)new(b)del(a),
[
,

]
〉 ε−→ 〈q′0, new(a)new(b)del(a),

[
new(a) ,_

]
〉 ε−→

〈q′0, new(a)new(b)del(a),
[
new(a) , new(b)

]
〉 new(a)−−−−→ 〈q′1, new(b)del(a),

[
new(a) , new(b)

]
〉 new(b)−−−→

〈q′2, del(a),
[
new(a) , new(b)

]
〉 del(a)−−−−→ 〈q′3, ε,

[
new(a) , new(b)

]
〉

Figure 4.2: Three examples of FSNA Ri and of their runs ρi. The automaton R1

accepts Σ∗; note that the dynamic symbol x can be any symbol in Σd, even a,
because the m-register is empty when x is s-pushed and there is no restriction on
its freshness. The automaton R2 accepts L0 in Example 4.2.1; and R3 accepts
strings new(a)new(b)new(a) (a 6= b).

the m-registers. Hence all the issued symbols are recorded in the m-registers stack,
and when a new symbol is s-pushed it must be fresh with respect to all of them.
The language accepted by the FSNA R2 is L0 = {w ∈ Σ∗d | ∀i, j. w[i] 6= w[j]}.
The run ρ2 recognises the string abc.

The next example considers traces of data-words, the symbols of which
consist of an action applied to a resource. As shown below, only minor variations
of our automata are required to handle a finite number of actions acting on both
static and dynamic resources.

Example 4.2.2. Consider again the worker3 function in the Example 4.0.9.
We consider traces in the form of data-words, where the actions are new and
del, standing for picking and disposing resources. The FSNA R3 in Figure 4.2
accepts the unwanted traces where a second resource is picked (new(2)) before
having released the last one picked (del(1)). Note that the symbols σ assume
the form new(u), del(u), u ∈ 2 ∪ Σs.

We introduce now a sub-class of FSNA where no delete transitions are allowed,
as for the automaton R2 in Figure 4.2. It will come out that this restriction

82 CHAPTER 4. AUTOMATA-BASED MODELS

reduces the expressiveness of FSNA, e.g. none of this restricted automata can
accept Σ∗.

Definition 4.2.3 (FSNA+). An FSNA+ is a FSNA with no delete transition
q

σ−→
i−

q′.

In the statement below L(FSNA+),L(FSNA) denote the classes of language
of FSNA+,FSNA, respectively.

Property 4.2.3. L(FSNA+) ⊂ L(FSNA)

Proof. By contradiction, assume there exists a FSNA+ with r m-registers that
accepts Σ∗. Consider a string ww with |w| = |‖w‖| = r + 1 and let b ∈ ‖w‖ be
such that b 6= s-top(Ni) after w has been scanned; note that such a b always
exists. However, ww cannot be accepted because b still occurs in one of the r
m-registers and thus cannot be s-pushed again.

We enable now our FSNA+s to update more than one m-register in a single
transition. This variation will be useful in the proof of Theorem 4.3.5, as
expected, this parallelization does not extend the expressiveness of the FSNA.
For simplicity, we permit below to update two m-registers only, the extension to
any finite number being straightforward.

Definition 4.2.4 (Finite Nominal Automata 2). A finite state nominal automa-
ton 2 (FSNA2) is a tuple R = 〈Q, q0,Σ, δ2, r, F 〉 where:

• Q, q0,Σ, r and F are as in Definition 4.2.1

• δ2 is a relation between triples (q, σ) and (q′, (∆1,∆2)) such that ∆1 = ∆2

only if they are both ε and ∀i ∈ r.∆1,∆2 6= i−

Definition 4.2.5 (Computation step).
A step 〈q, w, [N1, . . . , Nr]〉 → 〈q′, w′, [N ′1, . . . , N ′r]〉 occurs iff there exists
q

σ−−−−→
(∆1,∆2)

q′ ∈ δ2 such that

1. As in Definition 4.2.2

2.

∀j ∈ r (j 6= ∆1,∆2). Nj = N ′j and

∆1 6= ε⇒ N ′∆1
= s-push(b1, N∆1),∀j ∈ r. b1 /∈ ‖Nj‖, b1 6= s-top(N ′∆2

) and

∆2 6= ε⇒ N ′∆2
= s-push(b2, N∆2),∀j ∈ r. b2 /∈ ‖Nj‖, b2 6= s-top(N ′∆1

) and

As anticipated, the FSNA2 have the same expressive power of FSNA+.

4.2. FINITE STATE NOMINAL AUTOMATA 83

Theorem 4.2.4. Given a FSNA2 A there exists an FSNA+ A′ accepting the
same language.

Proof. Let R = 〈Q, q0,Σ, δ2, r, F 〉 and define
R′ = 〈Q×{1}∪Q×{2}, (q0, 1),Σ, δ, r, F ×{1}〉 where (q, 1)

σ−→
∆1

(q, 2), (q, 2)
ε−→

∆2

(q′, 1) ∈ δ iff q σ−−−−→
(∆1,∆2)

q′ ∈ δ2. Now it is immediate proving the equality of the

accepted languages.

4.2.1 Some Properties

This section studies some language theoretical properties of the two classes of
automata FSNA and FSNA+ introduced so far.

The introduction of m-registers is not sufficient for breaking the barrier
between regular and context-free languages, beacause m-registers are not full-
fledged stacks: they become inactive after an s-pop. This is shown by the
following “classical” example. Although it is immediate to see that increasing
the number of m-registers increases the expressive power of FSNA, we can only
have finitely many m-registers, and so the following Dyck-like language is not
regular.

Example 4.2.5. Let Lr = {wwR ∈ Σ∗d | |w| = r and ∀i, j. w[i] 6= w[j]} then no
FSNA R with less that r states and r m-registers accepts Lr. Indeed, a standard
argument on FSA proves that r states are required. Assume now that R has less
than r registers Ni and accepts wwR. By the pigeonhole principle, there is at
least a symbol of w, say a, such that ∀i.a 6= s-top(Ni) when w has been read.
Since a ∈ ‖w‖, a needs to be s-pushed while traversing wR, but it is fresh so it
can be replaced by any other (fresh) different symbol, which makes R to accept
also ww′R, where w′ 6= wR: contradiction.

We establish now a few closure properties w.r.t. standard language operations:
union (∪), intersection (∩), complementation (.), concatenation (·) and Kleene
star (∗).

To simplify and structure the proofs of these properties we need some auxiliary
definitions.

Definition 4.2.6 (Merge function). Let m : {1, 2} × r → 2r be a function.
Stipulating m1(x) = m(1, x),m2(x) = m(2, x), m is a merge iff m1 and m2 are
injective.

The registers i, j are merged by m, in symbols i m←→ j, when m1(i) = m2(j),
we write i 66 m←→ j when they are not merged and whenever i = ε or j = ε.

84 CHAPTER 4. AUTOMATA-BASED MODELS

We stipulate that m extends to a relation between m-registers such that
m[N1

1 , . . . , N
1
r , N

2
1 , . . . , N

2
r] = [M1, . . . ,M2r] iff ∀i ∈ r, j ∈ 2r. N1

i , N
2
i ,Mj are

active and ∀i, j ∈ r

1. s-top(N1
i) = s-top(Mm1(i)) and s-top(N2

i) = s-top(Mm2(i))

2. s-top(N1
i) = s-top(N2

j) then i m←→ j

3.
⋃
i∈r ‖N1

i ‖ ∪
⋃
i∈r ‖N2

i ‖ =
⋃
i∈2r ‖Mi‖

Definition 4.2.7 (Effective Update). Given two merge functions m,m′, the

effective update
m

m′
(
∆1,∆2

)
of ∆1,∆2 ∈ r ∪ {ε} is the pair (∆1,∆2) where:

if ∆1
m′←→ ∆2 then ∆1 = m′1(∆1) and ∆2 = ε;

if ∆1 66
m′←→ ∆2 then

• ∆1 is such that:

– if ∆1 = ε then ∆1 = ε

else if m1(∆1) 6= m′1(∆1) then ∆1 = ε else ∆1 = m′1(∆1)

• ∆2 is such that:

– if ∆2 = ε then ∆2 = ε

else if m2(∆2) 6= m′2(∆2) then ∆2 = ε else ∆2 = m′2(∆2)

Definition 4.2.8 (Evolution). Given a merge m we say that the merge m′ is
the evolution of m with respect to ∆1,∆2, in symbols m

∆1,∆2ym′, iff

1. ∀i ∈ {1, 2}, j ∈ r (j 6= ∆1,∆2). mi(j) = m′i(j)

2. if ∆1
m←→ j, j 6= ∆2 then ∆1 66

m′←→ j

3. if i m←→ ∆2, i 6= ∆1 then i 66 m
′
←→ ∆2

To intuitively illustrate the definitions above, in Figure 4.3 we show a portion
of the automaton R = R1 ∩R2 recognising the intersection of the two FSNA+

R1 and R2.
The intersection automaton R is obtained by the standard construction that

builds the new states as the product of the old ones. Additionally, each pair
〈q1, q2〉 (q1, q2 ∈ R1, R2 resp.) is enriched with a merge function m. The m
describes how the m-registers of the two automata are mapped into those of R

The idea underlying m is to guarantee the following invariant I along the
runs: if R1 and R2 are in configurations 〈q1

0, w, [y]〉 and 〈q2
0, w, [x]〉 then R

4.2. FINITE STATE NOMINAL AUTOMATA 85

q10R1 : q11
1+

1

q20R2 : q21
1+

1

q10 , q
2
0

m
A′ :

q11 , q
2
1

m′

q11 , q
2
1

m

(2+, 1+)

2

(2+, ε)

2

m :

R1 : []

R : [,]

R2 : []
m′ :

R1 : []

R : [,]

R2 : []

Figure 4.3: R is a portion of the FSNA2 automaton recognizing the intersection
of the languages of R1 and R2, the diagrams at the bottom represent the merges
m,m′, where m1(1) = 2,m2(1) = 2,m′1(1) = 2,m′2(1) = 1.

will be in configuration 〈〈q0, q
′
0,m〉, w, [h , z]〉 and if two m-registers have the

same s-tops then they are merged by m (and vice versa). This is illustrated in
the left-most configurations of Figure 4.4: if x = y = a then m maps the two
registers to one register of R (here the second one), and z = a. The edges of
the automaton are also defined in the standard way. However, the m-register
mentioned in σ of R is the one merged by m, provided that R1 and R2 agree on
σ. Also the updates (∆,∆′) in R are determined by the updates ∆1 of R1 and
∆2 of R2 under the merge m, and form an effective update (see Definition 4.2.7).

Consider again Figure 4.3. The transition t : 〈〈q1
0, q

2
0〉,m〉

2−→
2+
〈〈q1

1, q
2
1〉,m〉 is

present because there are q1
0

1−→
1+

q1
1 and q2

0
1−→

1+
q2

1 and m maps the first m-register

of R1 and that of R2 to the second of R. Instead, the state 〈〈q1
0, q

2
0〉,m′〉 (omitted

in the figure) has no outgoing edges, because the symbols read by R1 and R2

are kept apart by m′.
There are transitions that only differ for the merge function in their tar-

get state. Not all the possible merges respect however the invariant I men-
tioned above. Indeed, we only keep those that are evolution (in the sense of
Definition 4.2.8) of the merge in the source state, according to the updates
∆1,∆2 of R1, R2 respectively. For example, the transition 〈〈q1

0, q
2
0〉,m〉

2−−−−→
(1+,2+)

〈〈q2
1, q

2
1〉,m′〉 permits the recognizing step C a−→ C ′, where the m-register of R1

now has got a d, while that of R2 has got c, and m′ keeps them apart.
Instead, if both m-registers store the same dynamic symbol c, the merge is

still m, and the transition t above enables the step C a−→ C ′′ and guarantees the
invariant.

We are now ready to state and prove some closure properties of FSNA and

86 CHAPTER 4. AUTOMATA-BASED MODELS

〈q10 ,
[
a
]
〉 〈q11 ,

[
a
c
]
〉 〈q11 ,

[
a
d
]
〉

C = 〈〈q10 , q20 ,m〉,
[

_ , a
]
,_〉

C′ = 〈〈q11 , q21 ,m′〉,
[
d , a

c
]
, a 〉

C′′ = 〈〈q11 , q21 ,m〉,
[

_ , a
c
]
, a 〉

〈q20 ,
[
a
]
,_〉

〈q21 ,
[

a
c
]
, a 〉

m′

m′
m′

m′

m

m

a

a

a

a

a

Figure 4.4: Two recognizing steps of R (middle), built from steps of R1 (top), and
steps of R2 (bottom). The step C a−→ C ′ simultaneously updates two m-registers.

FSNA+:

Theorem 4.2.6 (Closure properties).

∪ ∩ . · ∗
L(FSNA) X × × X X
L(FSNA+) X X × × ×

Proof. Union: it suffices a new initial state with two outgoing ε-transition to
the old initial states.

Concatenation (and Kleene star) for FSNA: a sequence of transitions from the
final states of the first FSNA make inactive all the m-registers, leading to state
qc having loops that can empty them all. Then an ε-transition goes from qc to
the initial state of the second automaton (see Figure 4.6(a)).

Complement of FSNA: Consider L = {w | ∃a.w[i] = a and a appears 2n + 1

times in w} that is recognized by the FSNA in Figure 4.6(b). Assume that its
complement L = {w | ∀a.(∃i.w[i] = a)⇒ a appears 2n times} is recognized by
an automaton R with r m-registers. This automaton also accepts ww, where
w = a1, . . . , ar+1,∀i, j.ai 6= aj. However, after recognizing w, there exists some
ai that is not s-top of any m-register. The word ww′ where w′ is obtained by w
by replacing ai with a fresh symbol b is accepted by R, as well: contradiction
because L 3 ww′ /∈ L.

Complement for FSNA+: Property 4.2.3 (Σ∗ is the complement of ∅) suffices.

Concatenation (and Kleene star): Consider L = {ww′ | w ∈ L and w′ ∈ L′},
with L,L′ languages of two FSNA+ R,R′. If R accepts a string w such that

4.2. FINITE STATE NOMINAL AUTOMATA 87

q0 q1 q2 q3 q4 q5

ε

1+

1
ε

p

1+

q

1− ε

1+

1
ε

ε
ε

Figure 4.5: The language L2 = {apnqmb | a ∈ Σd, a = b⇒ m > n}

a ∈ w, a ∈ w′ but a 6= s-top(Ni) for all the m-registers in the final configuration
of all accepting runs, then we obtain a contradiction because a cannot be s-
pushed since not fresh.

Intersection of FSNA Let L1 = {apnqma}, with a ∈ Σd and p, q be chosen
symbols in Σs. Clearly, L1 is regular. Consider the language recognized by the
automaton in Figure 4.5: L2 = {apnqmb | a ∈ Σd, a = b ⇒ m > n}. Now, the
language L1 ∩ L2 = {apnqma | m > n} can not be recognized by any FSNA.

Intersection of FSNA+ We formalise here the intuitive construction given in
Figure 4.3, the proof uses Definition 4.2.9 and Lemmata 4.2.7 and 4.2.8 given
below. Given two automata R1 and R2, we construct the intersection automaton
R1 ∩R2 recognising L(R1) ∩ L(R2).
The proof of the equivalence L(R1 ∩ R2) = L(R1) ∩ L(R2) can be obtained
by induction using Lemmata 4.2.7 and 4.2.8. Without loss of generality, we
consider the simplifying assumption that all the registers are active in the initial
configuration. Note that this constraint does not alter the expressiveness of
FSNA+.

Definition 4.2.9 (Intersection Automaton). The intersection automaton of two
FSNA+s
R1 = 〈Q1, q

1
0,Σ, δ1, r, F1〉 and R2 = 〈Q2, q

2
0,Σ, δ2, r, F2〉 is the following FSNA2:

R1 ∩R2 = 〈Q, q0,Σ, δ, 2r, F 〉, where

• Q = Q1 ×M ×Q2 where M is a set of merge functions

• q0 = 〈q1
0,m

∗, q2
0〉, with m∗ s.t. m∗1,m∗2 are the identity functions

• F = {〈q1,m, q2〉 | q1 ∈ F1, q2 ∈ F2}

• 〈q1,m, q2〉
σ−−−−→

∆1,∆2

〈q′1,m′, q′2〉 ∈ δ iff m
∆1,∆2ym′ and

q1
σ1−−→
∆1

q′1 ∈ δ1 and q2
σ2−−→
∆2

q′2 ∈ δ2 and

– if σ1, σ2 ∈ r then σ = m1(σ1) = m2(σ2) and

88 CHAPTER 4. AUTOMATA-BASED MODELS

q1 · · · qr q0 R2
...R1

qf1

qfk

(a)
ε

1−
ε

1−ε
1−

ε

1− ε

2−
ε

r−

ε

1−

ε

2−

...

ε

r−

(b) q0 q1 q2
ε

1+

1
ε

1
ε

ε

2+

ε

2−

2
ε

ε

2+

ε

2−

2
ε

Figure 4.6: (a) The concatenation automaton of two automata R1 and R2

has the states and the transition of both of them, as initial state the one of
R1, as final states the ones of R2. The final states of R1 are connected to
qr, qr is connected to the initial state of R2. The self-loops in qr are used to
empty the r m-registers. (b) An automaton recognizing L = {w | ∃a.w[i] =
a and a appears 2n+ 1 times in w}

– if σ1, σ2 ∈ Σs then σ = σ1 = σ2 and

– (∆1,∆2) =
m

m′
(
∆1,∆2

)
or q1

ε−−→
∆1

q′1 ∈ δ1 and

– σ = ε and
– q′2 = q2 and

– (∆1,∆2) =
m

m′
(
∆1, ε

)
or q2

ε−−→
∆2

q′2 ∈ δ2

symmetric to the previous case.

Now we prove the two lemmata used before for proving that R1 ∩R2 accepts
L(R1) ∩ L(R2). Intuitively, the first states that whenever two automata R1, R2

make a step with the same label, also the automaton R1 ∩R2 can perform the
very same step.

4.2. FINITE STATE NOMINAL AUTOMATA 89

Lemma 4.2.7. Let R1 and R2 be two FSNA, let a 6= ε and
step1 : 〈q1, aw, [N

1
1 , . . . , N

1
r]〉 −→ 〈q′1, w, [N

′1
1 , . . . , N

′1
r]〉 and

step2 : 〈q2, aw, [N
2
1 , . . . , N

2
r]〉 −→ 〈q′2, w, [N

′2
1 , . . . , N

′2
r]〉

be steps of R1 and R2 respectively.
Then for any m and [M1 . . . ,M2r] m-registers of R1 ∩R2 such that

m([N1
1 , . . . , N

1
r , N

2
1 , . . . , N

2
r]) = [M1, . . . ,M2r]

there exists the step of R1 ∩R2

step : 〈〈q1,m, q2〉, aw, [M1, . . . ,M2r]〉 −→ 〈〈q′1,m′, q′2〉, w, [M ′
1, . . . ,M

′
2r]〉 with

m′([N
′1
1 , . . . , N

′1
r , N

′2
1 , . . . , N

′2
r]) = [M ′

1, . . . ,M
′
2r]

Proof. Assume that q1
σ1−−→
∆1

q′1 and q2
σ2−−→
∆2

q′2 justify step1 and step2. Then we

have the following cases, depending on the labels of these transition.

• σ1, σ2 ∈ r

Define m′ such that ∀i, j ∈ r (i 6= ∆1, j 6= ∆2).m
′
1(i) = m1(i),m

′
2(j) =

m2(j).

If s-top(N
′1
∆1

) = s-top(N
′2
∆2

) (∆1,∆2 6= ε)

– if ∀i.i 66 m←→ ∆2 ∧ ∆1 66
m←→ i then let m′1(∆1) = m2(∆2) and m′2(∆2) =

m2(∆2).

– Otherwise if k m←→ ∆2 or ∆1
m←→ k then let m′1(∆1) = m′2(∆2) = h /∈

Img(m).

If s-top(N
′1
∆1

) 6= s-top(N
′2
∆2

) but

– m′1(∆1) (resp. m′2(∆2)) is such that s-top(N
′1
∆1

) = s-top(N
′2
k),∆1 6= ε

for some k 6= ∆2 then let m′1(∆1) = m2(k).

– Otherwise,

∗ if ∆1
m←→ k for some k 6= ∆2, then let m′1(∆1) = h /∈ Img(m).

∗ Otherwise, if ∆1 66
m←→ k for all k 6= ∆2 then let m′1(∆1) ∈ {h} ∪

m(∆1), with h /∈ Img(m).

Recall that m is a merge and that note that m m′ may possibly differ
in ∆1,∆2. Now we show that also m′ is a merge, by showing its pro-
jections injective. By contradiction, assume m′ is not injective, then if
m′(∆1) 6= m(∆1) (resp. for ∆2), by construction, it is only the case that
m′1(∆1) = m′2(k) for some k. If k = ∆2 then m′1(∆1) = m′2(k) /∈ Img(m),

90 CHAPTER 4. AUTOMATA-BASED MODELS

contradiction because m′1,m′2 are injective since there is no k s.t. m′1(k) =

m′1(∆1) or m′2(k) = m′2(∆2). If k 6= ∆2 then we have that only m′2 can be
non-injective, but this requires m′2(∆2) = m′2(k), k 6= ∆2 but this is not
possible by construction.

We show that m
∆1,∆2ym′: condition (1) is trivially satisfied by construction,

conditions (2-3) are taken explicitly into account in the construction.

Since step1 and step2 fulfil the hypothesis, by condition 1.2 of Defini-
tion 4.2.2, it turns out that both N1

σ1
, N2

σ2
are active and a = s-top(N1

σ1
) =

s-top(N2
σ2

). This last fact implies that m1(σ) = m2(σ) since m is merge.
By letting σ = m1(σ), conditions (1) and (2) imply that s-top(Mσ) = a.

By construction of A1 ∩ A2 we then have the transition

t : 〈q1,m, q2〉
σ−−−−→

∆1,∆2

〈q′1,m′, q′2〉 ∈ δ

where (∆1,∆2) =
m

m′
(
∆,∆′

)
.

Next we shall prove that m′ is a merge of m-registers through which
[M ′

1, . . . ,M
′
2r] can be obtained from [M1, . . . ,M2r] and step is justified by

t.

First, ∀i ∈ r(i 6= ∆1,∆2).Mi = M ′
i . If ∆1 6= ε ∧m(∆1) = m′(∆1) then let

M ′
∆1

= s-push(b1,M∆1
) with b1 = s-top(N

′1
∆1

) otherwise let M ′
∆1

= M∆1
.

Symmetrically for M ′
∆2

(note that ∆1 6= ∆2).

We prove now that m′([N ′11 , . . . , N
′1
r , N

′2
1 , . . . , N

′2
r]) = [M ′

1 . . . ,M
′
2r]. The

conditions (1) and (2) are satisfied because for all i, j ∈ r s.t. i 6= ∆1, j 6=
∆2 we have m′1(i) = m1(i),m′2(j) = m2(j), the involved m-register are left
untouched and m is a merge of m-registers. By construction of M ′

m′(∆1)

(resp. M ′
m′(∆2)) we also have that s-top(M ′

m′(∆1)) = s-top(N ′∆1
). The

condition (3) is implied by the construction of m′, condition (4) holds
because b1, b2 are in

⋃
i∈2r ‖M ′

i‖ only if they are in
⋃
i∈r ‖N

′1
i ‖ or

⋃
i∈r ‖N

′2
i ‖

respectively.

We now show that the condition 2 of Definition 4.2.5 is satisfied. With the
construction above

⋃
i∈2r ‖Mi‖ =

⋃
i∈r ‖M ′

i‖ \ {b1, b2}. Since
⋃
i∈r ‖N1

i ‖ ∪⋃
i∈r ‖N2

i ‖ =
⋃
i∈2r ‖Mi‖, if b1 ∈

⋃
i∈r ‖N2

i ‖ then b1 ∈
⋃
i∈r ‖Mi‖, other-

wise, by condition 2 of Definition 4.2.2 for step1, b1 /∈
⋃
i∈r ‖N1

i ‖. This
holds symmetrically for b2. Then if b1, b2 are pushed on top of M∆1

,M∆2

then they are fresh, i.e. b1, b2 /∈
⋃
i∈r ‖Mi‖. Also, when both are pushed

on top of M∆1
,M∆2

we have b1 6= b2, so satisfying condition 2 of Defini-
tion 4.2.5.

4.2. FINITE STATE NOMINAL AUTOMATA 91

Since a satisfies condition 1 of Definition 4.2.5 for t, the following step
exists:

〈〈q1, aw,m, q2〉, [M1, . . . ,Mr]〉
a−−→ 〈〈q′1, w,m′, q′2〉, [M ′

1, . . . ,M
′
r]〉

• if σ1, σ2 ∈ Σs, the proof is analogous to that of the previous case: take m′

as above, then by construction of R1 ∩R2 we have the following transition,
where σ = σ1 = σ2

t : 〈q1,m, q2〉
σ−−−−→

∆1,∆2

〈q′1,m′, q′2〉

With the same construction of [M ′
1, . . . ,M

′
r] above, we obtain

〈〈q1, aw,m, q2〉, [M1, . . . ,Mr]〉
a−−→ 〈〈q′1, w,m′, q′2〉, [M ′

1, . . . ,M
′
r]〉

• σ1 = ε or σ2 = ε, trivial.

The following lemma states that whenever the automaton R1 ∩R2 makes a
step, also the automata R1 and R2 can perform the very same step.

Lemma 4.2.8. Let R1 and R2 be two FSNA, let a 6= ε and let
step : 〈〈q1,m, q2〉, aw, [M1, . . . ,M2r]〉 −→ 〈〈q′1,m′, q′2〉, w, [M ′

1, . . . ,M
′
2r]〉 be a

step of R1 ∩R2

then for any [N1
1 . . . , N

1
r], [N2

1 . . . , N
2
r] such that

m([N1
1 , . . . , N

1
r , N

2
1 , . . . , N

2
r]) = [M1, . . . ,M2r]

there exist two steps of R1 and R2

step1 : 〈q1, aw, [N
1
1 , . . . , N

1
r]〉 −→ 〈q′1, w, [N

′1
1 , . . . , N

′1
r]〉 and

step2 : 〈q2, aw, [N
2
1 , . . . , N

2
r]〉 −→ 〈q′2, w, [N

′2
1 , . . . , N

′2
r]〉 and

m′([N
′1
1 , . . . , N

′1
r , N

′2
1 , . . . , N

′2
r]) = [M ′

1, . . . ,M
′
2r]

Proof. Assume that 〈q1,m, q2〉
σ−−−−→

∆1,∆2

〈q′1,m′, q′2〉 justifies step.

• if σ 6= ε then
by construction of R1 ∩ A2 we have that t1 : q1

σ1−→
∆1

q′1 and t2 : q2
σ2−→
∆2

q′2.

We only prove the case σ ∈ r; the others follow from a similar argument.

92 CHAPTER 4. AUTOMATA-BASED MODELS

– if σ ∈ r:
let [N

′1
1 , . . . , N

′1
r] (resp. [N

′2
1 , . . . , N

′2
r]) be such that ∀i ∈ r (m′1(i) 6=

∆1 ∧m′1(i) = m1(i)).N
′1
i = N1

i . If ∆1 6= ε then take

N
′1
∆1

= s-push(s-top(M ′
m′1(∆1)), N

1
∆1

)

Condition 1 of Definition 4.2.2 for t1 is satisfied because s-top(Mσ) =

s-top(Nσ1) = a since σ = m1(σ1) by construction and m is a merge
of m-registers.
We prove now condition 2 of Definition 4.2.2. For b = s-top(M ′

m′1(∆1))

we consider the two cases: ∆1 6= ε and ∆1 = ε. In the first case the
condition is guaranteed by the fact that b 6∈

∑
j∈2r ‖Mj‖, hence, since

m is a merge of m-registers (condition 3) b 6∈
∑

j∈r ‖N1
j ‖. When ∆1 =

ε then we have m′1(∆1) 6= m′2(∆2), in this case m′1(∆1) 6= m1(∆1),
by injectivity of m′1, by the fact that m is a merge of m-registers
and by the fact that m′1 only differs from m1 in ∆1 we have that
∀i ∈ r.s-top(Mm′1(∆1)) 6= s-top(N1

i).
For c = s-top(M ′

m′2(∆2)). We consider two cases: ∆2 6= ε and ∆2 = ε.
In the first case the condition is guaranteed by the fact that c 6∈∑

j∈2r ‖Mj‖, hence, since m is a merge of m-registers (condition 3)
c 6∈

∑
j∈r ‖N2

j ‖. When ∆2 = ε then we have two cases: m′2(∆2) =

m′1(∆1) = ∆1 or m′2(∆2) 6= m′1(∆1). In the first case the condition is
satisfied by the same reasoning above because c = s-top(M ′

∆1
), the

second case is verified only when m′2(∆2) 6= m2(∆2), in this case,
by injectivity of m′2, by the fact that m is a merge of m-registers
and by the fact that m′2 only differs from m2 in ∆2 we have that
∀i ∈ r.s-top(Mm′2(∆2)) 6= s-top(N2

i).
Hence all the conditions for t1, t2 are satisfied, so both step1 and step2

exist.
We are left to prove thatm′([N ′11 , . . . , N

′1
r , N

′2
1 , . . . , N

′2
r]) = [M ′

1 . . . ,M
′
2r].

The conditions (1) and (2) are satisfied because for all i, j ∈ r

s.t. i 6= ∆1, j 6= ∆2 we have m′1(i) = m1(i),m
′
2(j) = m2(j),

the involved m-register are left untouched and m is a merge of
m-registers. By construction of N ′∆1

(resp. N ′∆2
) we also have

that s-top(M ′
m′(∆1)) = s-top(N ′∆1

). The condition (3) is implied
by the construction of N ′∆1

because (for some j) m′1(∆1) = m′2(j)

implies s-top(N
′1
∆1

) = s-top(M ′
m′(∆1)) = s-top(N

′2
j), condition (4)

holds because b, c are in
⋃
i∈r ‖N

′1
i ‖ or

⋃
i∈r ‖N

′2
i ‖ only if they are in⋃

i∈2r ‖M ′
i‖ respectively.

4.2. FINITE STATE NOMINAL AUTOMATA 93

Having proved both Lemmata 4.2.7 and 4.2.8, we conclude the proof of the
whole theorem.

Note that the same argument used in the proof of the intersection of two
FSNAs suffices to establish the following property.

Property 4.2.9. There exists languages L1 and L2, accepted by FSNA and
FSNA+, respectively such that L1 ∩ L2 is not a regular nominal language.

We now study the decidability of some typical problems, namely those of
membership, universality and emptiness. Given an automaton R, the first and
the second problems amount to check if a word w and Σ∗ are accepted by R;
the third if L(R) = ∅.

Theorem 4.2.10.

1. The membership problem for FSNA is decidable

2. The universality problem is undecidable for FSNA, while for FSNA+ it is
decidable, and the answer is always negative

3. The emptyness problem is decidable for FSNA

Proof.

1. A trivial linear non-deterministic procedure suffices

2. Theorem 4.2.11 proved in the next sub-section guarantees that FSNA are
more expressive than FMA. Now the proof follows because universality is
undecidable for FMA [46].
Since FSNA+ cannot generate Σ∗, the second claim is proved.

3. The actual content of the m-registers is negligible when reasoning about
emptiness, only their activation states are important because a step can
be inhibited by an inactive m-register. So, we can abstract a configuration
〈q, w, [N1, . . . , Nr]〉 as a pair 〈q, [x1, . . . , xr]〉, where xi is the activation
state of Ni. Suppose now that there exist an accepting run for w. We
build another accepting run, possibly for a different word w′, where no
pair 〈q, [x1, . . . , xr]〉 occurs twice, in a pumping lemma fashion. Since the
abstract configurations are finite, we only need to check a finite number of
runs.

94 CHAPTER 4. AUTOMATA-BASED MODELS

∪ ∩ . · ∗
L(FSNA) X × × X X
L(FSNA+) X X × × ×
L(VFA) X X × ?? ??
L(FMA) X X × X X
L(UA) X X × X ×
L(FRA) X X × × ×
L(HRA) X X × X X
L(CRA) X X × ?? ??
L(NFMA) X X × X X

Table 4.1: A comparison of the closure properties of FSNA,PSNA automata
with the ones of other automata in the literature, namely VFA [33], FMA [38],
UA [6], FRA [58], HRA [59], CRA [14] and NFMA [39]

Note in passing that Theorem 4.2.10.2 implies that there is no algorithm for
minimizing an FSNA. Indeed if such a minimisation algorithm exists, then we
could answer the universality problem by checking if the minimised automaton
is isomorphic to the automaton in Figure 4.2, that is the minimum automaton
recognising Σ∗ (up to renaming of states).

4.2.2 Comparisons

In the literature there are many nominal languages, working on infinite alphabets
or on data-words. We consider here only those that are intuitively regular, in
that they cannot express Dyck-like languages, e.g. the language {wwR} when |w|
is not bounded (see Example 4.2.5). An incomplete list of the regular languages
in the literature includes variable finite automata (VFA) [33], finite memory
automata (FMA) [38] and their extension with non-deterministic reassignment
(NFMA) [39], Usage Automata (UA) [6], fresh-register automata (FRA) [58] and
their evolution history register automata (HRA) [59], class register automata
(CRA) [14], Data Walking Automata (DWA) [44], the variant of HD-automata
in [20] and fp-automata [40].

A notion similar to the one of the m-register can be found in HRA [59] and
in the chronicles of the chronicle deallocating automata [42].

Table 4.1 recalls the closure properties of FSNA and FSNA+ and of those
models above for which the literature provides these results.

4.2. FINITE STATE NOMINAL AUTOMATA 95

The next theorem investigates the relationship among our models and the
(regular) ones in the literature in terms of expressiveness. When considering
data words, we assume for simplicity that there is a single action α on resources,
that will be omitted in words, i.e. we write a instead of α(a). We write A 6Q B

when two sets A,B are incomparable, i.e. A * B,B * A.

Theorem 4.2.11 (Comparison).

1. L(FSNA) ⊃ L(VFA) ⊃ L(UA)

2. L(FSNA) ⊃ L(FMA)

3. L(FSNA+) ⊃ L(UA)

4. L(FSNA+) 6Q L(VFA)

5. L(FSNA+) 6Q L(FMA)

6. L(FSNA) 6Q L(HRA)

7. L(FSNA+) 6Q L(fp-automata)

8. L(FSNA) ⊇ L(fp-automata)

Proof. Sketch:

1. L(FSNA) ⊃ L(VFA) ⊃ L(UA)

The VFA have been proved more expressive than UA in [26]. A FSNA
simulates a VFA by using m-registers associated to each variable (and
never s-popping them), the y can be mapped to a m-register that is always
s-popped after being used. The last condition matches the one of VFA
requiring the symbols associated to each occurence of y in the witnessing
pattern to be different from the other variables, but possibly equal to
another symbol associated with y. The language L0 in the Example 4.2.1
belongs to L(FSNA) but not to L(VFA).

2. L(FSNA) ⊃ L(FMA)

The main differences between the two models are the following. The
registers of FMA have an initial assignment, while FSNA have static
resources playing the same role (and initialization can anyway be done by
initial ε-transitions that FMA have not). FMA associate the reassignment
function ρ with states rather than with edges, and their effects are obtained
by FSNA when all the edges starting from a state q have the same ∆.
Additionally, ρ reassigns a register using the input symbol, while FSNA

96 CHAPTER 4. AUTOMATA-BASED MODELS

update an m-register (through an ε-transition) and then recognizes the
fresh symbol in it. In FMA, all the registers have to be different, and a
reassignment may update a register with the same symbol it contains, and
FSNA have two edges ∆ 6= ε and ∆ = ε. So, L(FSNA) ⊇ L(VFA) and
the language L0 in Example 4.2.1 shows that inclusion is strict.

3. L(FSNA+) ⊃ L(UA)

The expressiveness of UA is the same of VFA without the y (see [28]),
so the construction in item 1 suffices (note that there will be no delete
transitions).

4. L(FSNA+) 6Q L(VFA) and 5. L(FSNA+) 6Q L(FMA)

Consider L0 = {w ∈ Σ∗d | ∀i, j. w[i] 6= w[j]} of Example 4.2.1. We
have that L0 ∈ L(FSNA+) but L0 /∈ L(VFA) ∪ L(FMA). Also Σ∗ ∈
L(FMA) ∩ L(VFA) but Σ∗ /∈ L(FSNA+).

6. L(FSNA) 6Q L(HRA)

Consider the language L = {a0b0 . . . anbn | ai 6= aj, bi 6= bj}, L is not
recognised by any FSNA but it is recognised by an HRA because of the
capability of using multiple stories. On the other hand the language
L′ = {a1 . . . anb1 . . . bn | i 6= j ⇒ ai 6= aj ∧ bi 6= bj, n− i ≥ j ⇒ bi 6= aj} is
in L(FSNA) but not in L(HRA). This is because m-registers are stacks
while places are sets.

7. L(FSNA+) 6Q L(fp-automata) and L(FSNA) ⊇ L(fp-automata)

Both FSNA,FSNA+ recognise the language {a1 . . . an | i 6= j ⇒ ai 6= aj},
that instead is not by any fp-automata. However FSNA+ cannot recognise
Σ∗, a language in L(fp-automata). However fp-automata expressiveness
does not go beyond the one of PSNA, deallocation of fp-automata can be
reproduced in PSNA by delete transitions; swapping the contents of two
registers in fp-automata via a permutation (there are only a finite number
of them) can be done by PSNA by suitably mentioning/updating/deleting
the corresponding registers in the next states.

4.3 Pushdown Nominal Automata

In the beginning of the chapter we motivated our interest in developing a model
that is able to address the five points (i-v). Below, we extend FSNA with a

4.3. PUSHDOWN NOMINAL AUTOMATA 97

stack, so obtaining our version of nominal context-free automata. Of course, the
nominal language wwR of Example 4.2.5 is accepted by one of these automata.
We allow stacks to store elements of the infinite alphabet Σ, and to push on them
strings of symbols in Σ, possibly retrieved through the indexes of m-registers.
E.g., one may wish to push the string a 3 b that actually pushes a s-top(N3) b. A
preliminary definition is in order to handle these cases.

Definition 4.3.1. Let ζ ∈ (Σs ∪ r)∗ and let S be a stack. Then, Pushreg(ζ, S)

extends the standard push operation as follows

Pushreg(ε, S) = S

Pushreg(z ζ ′, S) = Pushreg(ζ ′, push(σ, S)) where σ =

{
z if z ∈ Σs

s-top(Nz) if z ∈ r

Definition 4.3.2 (Pushdown Nominal Automata). A Pushdown Nominal Au-
tomata (PSNA) is A = 〈Q, q0,Σ, δ, r, F 〉 where:

• Q, q0, r, F are as in FSNA (Definition 4.2.1)

• δ is a relation between triples (q, σ, Z) and (q′,∆, ζ) where σ ∈ Σs ∪ r ∪
{ε,>}, Z ∈ Σs ∪ r ∪ {ε, ?},∆ ∈ {i+, i− | i ∈ r} ∪ {ε}, ζ ∈ (Σs ∪ r)∗.
For (q, σ, Z, q′,∆, ζ) ∈ δ we use the notation q σ,Z−−→

∆,ζ
q′

A configuration is a tuple C = 〈q, w, [N1, . . . , Nr], S〉 where q, w, [N1, . . . , Nr] are
as in FSNA and S is a stack with symbols in Σ.
A configuration 〈qf ∈ F, ε, [N1, . . . , Nr],_〉 is final.

As defined below, PSNA may use in a richer way than standard pushdown
automata the top of the stack, call it a. First, we can compare the current
symbol in the input with a, if the symbol σ in the transition to be applied is >.
Also, if Z = ε the string obtained from ζ is pushed on the stack, as explained
above. Instead, if Z = i the top a is popped from the stack, provided that the
s-top of the ith m-register is a. Finally, if Z =? a pop occurs, with no further
constraints.

Definition 4.3.3 (Recognizing Step).
Given a PSNA A, the step 〈q, w, [N1, . . . , Nr], S〉 → 〈q′, w′, [N ′1, . . . , N ′r], S ′〉
occurs iff q σ,Z−−→

∆,ζ
q′ ∈ δ and the following hold

1. condition 1 of Definition 4.2.2 and σ = > ⇒ w = top(S)w′ and

2. condition 2 of Definition 4.2.2 and

98 CHAPTER 4. AUTOMATA-BASED MODELS

(a)

q0 q1

q2

ε, ε

1+, ε

>, ?
ε, ε

1, ε

1−, 1ε, ε

ε, ε

ρ1 = 〈q0,
[
_
]
,_〉 ε−→ 〈q1

[
a
]
,_〉 a−→ 〈q0,

[
_
]
, a 〉 ε−→ 〈q1,

[
a
]
, a 〉 a−→

〈q0,
[
_
]
,

a
a 〉 ε−→ 〈q1,

[
b
]
,

a
a 〉 b−→ 〈q0,

[
_
]
,

a
a
b 〉 ε−→

〈q2,
[
_
]
,

a
a
b 〉 b−→ 〈q2,

[
_
]
,

a
a 〉 a−→ 〈q2,

[
_
]
, a 〉 a−→ 〈q2,

[
_
]
,_〉

(b)

q0 q1

q2

ε, ε

1+, ε

>, ?
ε, ε

new(1), ε

ε, del(1)ε, ε

ε, ε

ρ2 = 〈q0,
[
_
]
,_〉 ε−→ 〈q1

[
a
]
,_〉 new(a)−−−−→ 〈q0,

[
a
]
, del(a) 〉 ε−→

〈q1,
[

a
b
]
, del(a) 〉

new(b)−−−→ 〈q0,
[

a
b
]
,

del(a)

del(b) 〉 ε−→

〈q2,
[

a
b
]
,

del(a)

del(b) 〉 del(b)−−−→ 〈q2,
[

a
b
]
, del(a) 〉

del(a)−−−−→ 〈q2,
[

a
b
]
,_〉

Figure 4.7: (a) A PSNA accepting {wwR | w ∈ Σ∗d}, and a run on aabbaa.
(b) A PSNA+ for the data word language of the Example 3.3.7 and a run on
new(a) new(b) del(b) del(a) (n and r stand for new and release). Strings are
omitted in configurations.

3.

Z = ε⇒ S ′ = Pushreg(ζ, S) and

Z = i⇒ S ′ = Pushreg(ζ, pop(S)) ∧ top(S) = s-top(Ni) and

Z =?⇒ S ′ = Pushreg(ζ, pop(S))

Finally, the (nominal) language accepted by A is
L(A) = {w ∈ Σ∗ | ∃ρ : 〈C1 = 〈q0, w, [_, . . . ,_],_〉 →∗ Ck,with Ck final}

and we call it context-free.

Example 4.3.1. Figure 4.7(a) shows a PSNA accepting Lp = {wwR | w ∈ Σ∗d},
and a run accepting aabbaa (for brevity, we do not write the strings to be recog-
nized in the configurations, as the current symbols label the steps). The automaton
behaves just as a FSNA in the 1st, 3rd, 5th and 7th steps of ρ1. Additionally, in
this initial part of the run, the stack is involved in the 2nd, 4th and 6th step. They
all occur because of edge q1

1,ε−−→
1−,1

q0, that causes the symbol in the m-register 1

to be pushed on the stack. In steps 8th, 9th, 10th the edge q2
>,?−−→
ε,ε

q2 causes the top

of the stack to be (succesfully) matched with the current symbol (as dictated by
the label >) and popped (because of ?).

As done for FSNA we introduce the class of automata that update two m-
registers at the same time, and the sub-class of PSNA without delete transitions.

4.3. PUSHDOWN NOMINAL AUTOMATA 99

Definition 4.3.4 (PSNA2 and PSNA+).

• A PSNA2 is a PSNA with transitions of the form q
σ,Z−−−−−→

(∆1,∆2),ζ
q′ (cf. Defini-

tion 4.2.4)

• A PSNA+ is a PSNA with no edges q σ,Z−−→
i−,ζ

q′.

Just as done for FSNA, we can prove that PSNA2 and PSNA have the same
expressive power. As expected, the class of languages accepted by PSNA strictly
includes that accepted by PSNA+. Indeed, the same proof of Property 4.2.3
applies here. In spite of the reduced expressiveness, PSNA+ can accept a wide
class of (Dyck-like) context-free languages, as shown by the following example.

Example 4.3.2. Consider again the new-release (abbreviated new, del) lan-
guage on data words of the Example 3.3.7. The PSNA+ accepting this language
is in Figure 4.7(b). The labels of transitions, but ∆, contain new(u), del(u), u ∈
r ∪ Σs. Figure 4.7(b) also shows the run for new(a) new(b) del(b) del(a); also
here we omit the strings in configurations and we only mention the symbols
in the m-registers. Note that, only keeping the names of the resources, we get
∪r∈NLr, for Lr of Example 4.2.5.

4.3.1 Some Properties

Obviously, the class of pushdown nominal languages includes that of the regular
ones.

Property 4.3.3. L(FSNA) ⊂ L(PSNA)

Proof. Inclusion is trivially proved: from a give FSNA obtain the equivalent
PSNA by adding labels ∆ = ε, ζ = ε, Z = ε to each edge. Example 4.2.5 suffices
to prove that the inclusion is strict.

We now study under which operators the classes of languages accepted by
PSNA and PSNA+ are closed.

Theorem 4.3.4 (Closure properties).

∪ ∩ . · ∗
L(PSNA) X × × X X
L(PSNA+) X × × × ×

100 CHAPTER 4. AUTOMATA-BASED MODELS

q0 q1 q2 q3 q4 q5 q6 q7 q8 q9

ε

1+

1
ε

p

1+

r

1− ε

1+

1
ε

ε

2+

2
ε

q

2+ ε
ε

2
ε

s

2− ε

2+

Figure 4.8: A FSNA recognising the language L1 = {apnbqmrn′csm′d | a = c⇒
n′ > n, b = d⇒ m′ > m, a 6= b, c 6= d}

Proof. Union:
The construction is the same of Theorem 4.2.6 in both cases; of course the initial
ε-transitions do not alter the stack (ζ = Z = ε).
Intersection and complement:
Follows from the classical results on context-free languages.
Concatenation and Kleene star:
The proof in Theorem 4.2.6 applies here as well; note that the stack is empty in
the initial and final configurations.

A classical result in automata theory is that the class of context-free languages
is closed by intersection with the class of regular ones. We investigate the same
property in the nominal case, and we find that only the intersection of FSNA+

and PSNA+ is a PSNA+ (hence a PSNA).

Theorem 4.3.5 (Intersection).

is a FSNA ∩
PSNA

FSNA ∩
PSNA+

FSNA+ ∩
PSNA

FSNA+ ∩
PSNA+

PSNA × × × X
PSNA+ × × × X

Proof. Consider the FSNA language L1 = {apnbqmrn′csm′d | a = c ⇒ n′ >

n, b = d ⇒ m′ > m, a 6= b, c 6= d} in Figure 4.8 and the PSNA+ language
L2 = a{p}∗b{q}∗{r}∗c{s}∗d. The language L1 ∩ L2 = {apnbqmrn′csm′d | n′ >
n,m′ > m, a 6= b}, by classical reasoning on context-free languages, is not
recognised by any PSNA+ nor PSNA. Note that L1 can be recognised by the
PSNA obtained by adding Z = ε, ζ = ε to the edges in Figure 4.8 and L2 is a
nominal regular language recognised by both a FSNA+ and a FSNA. Hence,
also L1 ∩ L2 is not a PSNA+ nor a PSNA.
We prove now that PSNA+ ∩ FSNA+ is a PSNA+:
The proof follows step by step that of Theorem 4.2.6, with additional care to

4.3. PUSHDOWN NOMINAL AUTOMATA 101

manage the stack, which however is only determined by how the PSNA handles
it. The detailed construction follows.

Given the PSNA+ 〈Q1, q
1
0,Σ, δ1, r, F1〉 and the FSNA+ 〈Q2, q

2
0,Σ, δ2, r, F2〉,

their intersection automaton (of type PSNA+2) is 〈Q, q0,Σ, δ, 2r, F 〉, where

• Q = Q1 ×Q2 ×M , with M set of merge functions

• q0 = 〈q1
0, q

2
0, 〈idr, idr〉〉 − F = {〈q1, q2,m〉 | q1 ∈ F1, q2 ∈ F2,m ∈

M}

• 〈q1, q2,m〉
σ,Z−−−−−→

∆1,∆2,ζ
〈q′1, q′2,m′〉 ∈ δ iff m

∆1,∆2ym′ and

q1
σ1,Z−−−→
∆1,ζ

q′1 ∈ δ1 and q2
σ2−−→
∆2

q′2 ∈ δ2 and (σ1, σ2 ∈ r or σ1, σ2 ∈ Σs) and

– if σ1, σ2 ∈ r then σ = m1(σ1) = m2(σ2) and

– if σ1, σ2 ∈ Σs then σ = σ1 = σ2 and

– (∆1,∆2) =
m

m′
(
∆1,∆2

)
, Z = m1(Z), ζ = m1(ζ)

or q1
>,Z−−−→
∆1,ζ

q′1 ∈ δ1 and q2
σ2−−→
∆2

q′2 ∈ δ2 and σ2 ∈ r, σ = m2(σ2) and ζ = m1(ζ)

and either Z = k ∈ r implies k m←→ σ2, Z = m2(σ2), (∆1,∆2) =
m

m′
(
∆1,∆2

)
,

or Z =? implies Z = m2(σ2), (∆1,∆2) =
m

m′
(
∆1,∆2

)
or q1

ε,Z−−→
∆1ζ

q′1 ∈ δ1 and σ = ε, (∆1,∆2) =
m

m′
(
∆1, ε

)
, Z = m1(Z), ζ =

m1(ζ)

or q2
ε−−→

∆2

q′2 ∈ δ2 σ = ε, (∆1,∆2) =
m

m′
(
∆1, ε

)
, Z = ε, ζ = ε

We finally prove that the emptiness problem is decidable for PSNA+. The
proof relies on a variant of the classical pumping lemma. Roughly it says that
given a language L recognised by a PSNA+ there exists a constant n, such
that any string w ∈ L, |w| > n can be decomposed as w = uvxyz, such that
also w′ = u′x′z′ belongs to L with u′, x′, z′ obtained from u, x, z by carefully
substituting (distinguished) dynamic symbols and erasing v and y. Before
proving it, we need some auxiliary definitions and lemmata.

Since we focus on the emptiness problem, we are interested in the existence
of a word, rather than in its actual shape. Therefore, whenever immaterial, we

102 CHAPTER 4. AUTOMATA-BASED MODELS

feel free to omit from now onwards the word in configurations and the input
symbol in transitions.1

Notation From now onwards, assume as given a PSNA+ and let
C = 〈q, [N1, . . . , Nr], S〉 be a configuration;
ρ = C1 →∗ Ck, Ci = 〈qi, wi, [N i

1, . . . , N
i
r], Si〉 be a run;

B = [B[1], . . . , B[n]] denote an array, and let B[i, . . . , j], i ≤ j denote the portion
of the array between the i-th and j-th positions. We will also use the array
notation for stacks, assuming that the leftmost item S[1] is the bottom and S[i]

is the i-th element in it.
Also, call swap f an injective partial function f : Σd ⇀ Σd, and its homomorphic
extensions to strings, tuples, array and stacks.

What follows extends similar definitions and proofs of [1].

Definition 4.3.5 (C-rep). Let ES be the set of symbols occurring in the stack
S of a configuration C such that e ∈ ES iff ∀i.top(Ni) 6= e. Let

first(e, S) =

{
1 if top(S) = e

first(e, pop(S)) + 1 otherwise

Let fS : ES → {1, . . . , |S|} to be such that fS(e) = first(e, S) (note that fS is
injective).

The function C-rep(S) that returns a stack of symbols in Σs ∪ {i | 1 ≤ i ≤
r} ∪ {i | 1 ≤ i ≤ |S|} is defined by:

1Consequently, we have that 〈q, [N1, . . . , Nr], S〉 → 〈q′, [N ′1, . . . , N ′r], S′〉 iff there

exists q σ,Z−−→
∆,ζ

q′ ∈ δ satisfying the conditions (2−3) of Definition 4.3.3 and the following

holds:

(1m)

{
σ = > ⇒ top(S) is defined
σ = i⇒ s-top(Ni) is defined

If 〈q, [N1, . . . , Nr], S〉 → 〈q′, [N ′1, . . . , N ′r], S′〉 because there exists q σ,Z−−→
∆,ζ

q′ ∈ δ

satisfying the conditions (1m, 2, 3) then by setting for any w′ the word w such that
σ = ε⇒ w = w′

σ = > ⇒ w = aw′

σ = i⇒ w = aw′

we have that also 〈q, w, [N1, . . . , Nr], S〉 → 〈q′, w′, [N ′1, . . . , N ′r], S′〉. By induction, if
〈q, [N1, . . . , Nr], S〉 →∗ 〈q′, [N ′1, . . . , N ′r], S′〉 then for any word w′ there exists a word
w such that 〈q, w, [N1, . . . , Nr], S〉 →∗ 〈q′, w′, [N ′1, . . . , N ′r], S′〉.

4.3. PUSHDOWN NOMINAL AUTOMATA 103

• C-rep([]) = []

• C-rep(b :: S ′) = a :: C-rep(S ′) iff

– b ∈ Σs, a = b or

– b ∈ Σd,∃i.b = top(Ni), a = i or

– b ∈ Σd,∀i.b 6= top(Ni), a = fES(b)

Definition 4.3.6 (Activation state). The activation state of a configuration
C is an array m = [m[1], . . . ,m[r]] where m[i] = 1 iff Ni is active, m[i] = 0

otherwise.

Definition 4.3.7 (Representative state). The representative state of a configu-
ration C is the triple (q,m,R) where m is the activation state of the mindful
registers and R =C-rep(S), i.e. R represents S on C. We write C ∼ C ′ to
indicate that C has the same representative state of C ′.

Lemma 4.3.6. Let C1 → C ′1 then for any configuration C2 such that C2 ∼ C1

there exists C ′2 such that C2 → C ′2 and C ′2 ∼ C ′1.

Proof. Let t = (q′,∆, ζ) ∈ δ(q, σ, Z) be used for justifying the transition C1 →
C ′1. We first show that t justifies also C2 → C ′2 by constructing a suitable
C ′2 = 〈q′, [M ′

1, . . . ,M
′
r], T

′〉. First of all, note that, being C1 ∼ C2, the main
stacks S and T have the same depth and the m-registers Ni and Mi have the
same activation state. Therefore, since C1 satisfies (1m), also C2 does, i.e. :{

σ = > ⇒ top(T) is defined

σ = i ⇒ s-top(M1) is defined

For the same reason, in condition (3), the operations pop(T), top(T) and
s-top(Mi) are defined and so are the arguments of the operation Pushreg. Note
that ζ may contain a reference to a register j and again we have that the required
s-top(Mj) is defined, because the activation state of Mj is the same of Nj.

We are left to prove that condition (2) can be fulfilled by the M ′
j and to

prove that C ′1 ∼ C ′2. We proceed by cases on ∆.

Case ∆ = i+) Let ∀j(j 6= i).M ′
j = Mj, M ′

i = s-push(c,Mi) with c to be
T [first(c,Mi)] if b ∈ S to preserve the representative state, that requires

104 CHAPTER 4. AUTOMATA-BASED MODELS

to relate T ′ with S ′. Otherwise we choose c /∈ Mj, ∀j ∈ r and c /∈ T .
We are left to prove that C ′2 ∼ C ′1. Trivially C ′2 and C ′1 have the same
state q′. The activation state of the m-registers is also the same, because
in both configurations only the i-th is affected (if active it is left such
as well it becomes active because of the s-push), while the activation
state of the others is the same in C ′1 and C ′2 because C1 ∼ C2. Also
ES = ET and the same ζ is pushed on both stacks, so ES′ = ET ′ . Now
fS′(s-top(Ni)) = fT ′(s-top(Mi)), that proves C ′1 ∼ C ′2.

Case ∆ = i−) Let M ′
j = Mj,∀j(j 6= i) and M ′

i = s-pop(Mi) which is defined
because C1 ∼ C2. The proof that the tuple (q′,∆, ζ) ∈ δ(q, σ, Z) justifies
C2 → C ′2 is similar to the case above. Only the i− th m-register is affected,
if active it gets deactivated, it is left deactivated otherwise.

Case ∆ = ε) Letting M ′
j = Mj,∀j ∈ r suffices to fulfil condition (2). The proof

that the tuple (q′,∆, ζ) ∈ δ(q, σ, Z) justifies C2 → C ′2 is similar to the case
above. Only the i− th m-register is affected, if active it gets deactivated,
it is left deactivated otherwise.

Definition 4.3.8 (Level). A level G = (i, j, h) with height l on ρ is a triple
(i, j, h) such that 1 ≤ i < j < h ≤ k and

• |Si| = |Sh| , |Sj| = |Si|+ l

• |Si| ≤ |Su| ≤ |Sj| for all u.i ≤ u ≤ j.

• |Sh| ≤ |Su| ≤ |Sj| for all u.j ≤ u ≤ h

Given a level on ρ, define two indices lG↓ , fG↑ , called respectively last-push
and first-pop of G.

lG↓ = max{y ≤ j | |Sy| = |Si|} fG↑ = min{y ≥ j | |Sy| = |Si|}

Figure 4.9 shows an example of levels, l↓ and f↑.

Property 4.3.7. Given a level (i, j, h) with height l on ρ, for each k < l there
exists a level (u, j, v) for some u, v with height k.

Definition 4.3.9 (Full state). LetG be a level on ρ and let ClG↓ = 〈q, [N1, . . . , Nr], a ::

S〉, CfG↑ = 〈q′, [N ′1, . . . , N ′r], S ′〉.
The full state of a level G on ρ is the tuple (c, q,m, q′,m′) such that:

4.3. PUSHDOWN NOMINAL AUTOMATA 105

• If a ∈ Σs then c = a, if a ∈ Σd and ∃i.top(Ni) = c then c = i, if a ∈ Σd

and ∀i.top(Ni) 6= c then c = ?.

• m,m′ are the activation states of the m-registers in ClG↓ , CfG↑ , respectively.

Property 4.3.8. Let C1 = 〈q1, [N
1
1 , . . . , N

1
r], S1〉 →n Cn = 〈qn, [Nn

1 , . . . , N
n
r], Sn〉

and let G = (1, j, n) be a level on the above run with height l, for some j.
Then there exists a cutoff run DlG↓

, . . . , DfG↑
with Di = 〈qi, [N i

1, . . . , N
i
r], S

′
i〉,

S ′i = T :: Si[1, . . . , |Si| − l] for any T with top(T) = top(SlG↓).

Proof. Sketch: by definition of level the transitions does not depend on the
content of the stack below the height of SlG↓

We now prove our restricted pumping lemma.

Lemma 4.3.9 (Pumping Lemma). Let A = 〈Q, q0, δ, r,Σs ∪Σd, F 〉 be a PSNA+

and let p′ = 2r |Q|2 (|Σs| + r + 1) and p = 2r |Q| (|Σs| + r + p′ + 1)p
′
+ 1. For

each word w ∈ L(A) such that |w| > p and ρ is an accepting run of minimum
length, we can construct a word w′ ∈ L(A) with a shorter accepting run.

Proof. Let w ∈ L(A) such that |w| > p; take ρ = C1 → · · · → Ck, Ci =

〈qi, wi, [N i
1, . . . , N

i
r], Si〉 out of the set of the shortest accepting runs; and let l

be the maximum height of the stack in ρ.

Case l ≤ p′) Recall that |w| > p, hence ρ contains at least p configurations.
There are at most 2r |Q| (|Σs|+r+ l+1)l < p different representative states
of the configurations of ρ. Hence there are at least two configurations
Cx, Cy, x < y with the same representative state. By applying Lemma 4.3.6,
from the run Cy →∗ Ck we obtain that also Cx →∗ F for some F with the
same representative state of Ck. Therefore, also F is a final configuration.
The thesis follows because the run ρ′ = C1 →∗ Cx →∗ F is shorter than ρ.

Case l > p′) Note that there is a level on ρ with height l, say G = (i, j, h). By
Property 4.3.7, there exist at least l levels (u, j, v) with different heights
that are levels on ρ.

There are only p′ < l different full states that can be associated with these
levels, hence there exist two levels, say U = (u1, j, v1) and V = (u2, j, v2)

with the same full state. Assume w.l.o.g. nU = |Su1| = |Sv1| < |Su2 | =

|Sv2| = nV . Let ClU↓ , ClV↓ be the configuration with index last-push and
let CfU↑ , CfV↑ be the configuration with index first-pop of level U and V
respectively (see Figure 4.9).

106 CHAPTER 4. AUTOMATA-BASED MODELS

ClU↓ ClV↓ CfV↑ CfU↑
Run

St
ac

k
he

ig
ht

U -level

V -level

Figure 4.9: An example of V-level and G-level on a run.

By Property 4.3.8, from the run ClV↓ →
∗ CfV↑ it is possible to obtain a cut

off run

DlV↓
= 〈qlV↓ , wlV↓ , [N

lV↓
1 , . . . , N

lV↓
r], TlV↓ 〉 →

∗

DfV↑
= 〈qfV↑ , wfV↑ , [N

fV↑
1 , . . . , N

fV↑
r], TfV↑ 〉

where Ti = SlU↓ :: Si[nV , . . . , |Si|].
Since TlV↓ = TfV↑ = SlU↓ = SfU↑ and ClU↓ , CfU↑ have the same full state of
ClV↓ , CfV↑ , respectively, it follows that DlV↓

∼ ClU↓ and DfV↑
∼ CfU↑ .

Consequently, by Lemma 4.3.6, from the run DlV↓
→∗ DfV↑

we obtain the
run ClU↓ →

∗ H for some H ∼ DfV↑
∼ CfU↑ . By the same lemma, from

the run CfU↑ →
∗ Ck we obtain a run H →∗ F , where F has the same

representative state of Ck, hence it is final.

The thesis follows because the run D1 →∗ ClU↓ →
∗ H →∗ F is shorter than

ρ.

We eventually prove the decidability of the emptyness problem for our push-
down nominal automata with no delete transitions; we conjecture that it is
instead undecidable for PSNA.

Theorem 4.3.10. Given a PSNA+ A, it is decidable whether L(A) = ∅.

Proof. (Sketch) By repeatedly applying the Pumping Lemma 4.3.9, L(A) is non
empty if it contains a word w′, made of distinguished symbols, and such that
|w′| ≤ n.

4.3. PUSHDOWN NOMINAL AUTOMATA 107

∪ ∩ . · ∗
L(PSNA) X × × X X
L(PSNA+) X × × × ×
L(QCFL) X × × X X
L(Usages) X × × × ×
L(NPA) X ?? ?? ?? ??
L(Pebble) X ?? ?? ?? ??

Table 4.2: A comparison of the closure properties of our automata with the ones
of QCFL [19], Usages [6] and NPA [12].

PSNA+ PSNA QCFL Usages DMPA Pebble
Emptiness X ?? X X × ×

Table 4.3: Decidability of the emptiness problem for QCFL [19], Usages [6],
DMPA [15] and Pebble [46] automata.

4.3.2 Comparisons

To the best of our knowledge, the literature has different notions of nominal
context-free languages, i.e. able to express Dyck-like languages: quasi context-free
languages (QCFL) [19], Usages introduced in [6], the context-free automata (that
we call here NPA) in [13], DMPA [15], HOPAD [48] and Pebble automata [46].

Below, we compare the properties and the expressive power of PSNA with
that of above models for different notions of nominal context-free languages.

Table 4.2 shows some closure properties of our automata with those of the
other models, when presented in the literature. To the best of our knowledge,
the closure of a context-free nominal language with a regular one has not
been investigated explicitly for other nominal models, even if it is folklore
that intersecting a QCFL with a FMA automaton can be done mimicking the
construction of the intersection between FMA.

The decidability and the complexity of the emptiness problem has been
investigated for QCFL,Usages, DMPA and Pebble automata, because of the
relevance of this problem in verification. Table 4.3 summarises the decidability
results of the emptiness problem for the above models and for ours.

We now compare the expressiveness of PSNA and PSNA+ in comparison
with that of other models in the literature. Also here, we assume that data

108 CHAPTER 4. AUTOMATA-BASED MODELS

words have a single action, not displayed in words (see Theorem 4.2.11).

Theorem 4.3.11 (Expressivness Comparison).

– L(PSNA+) 6Q L(QCFL)

– L(PSNA) ⊃ L(QCFL)

– L(PSNA+) = L(Usages)

– L(PSNA) ⊃ L(Usages)

– L(PSNA) 6Q L(DMPA)

Proof.

• L(PSNA) ⊃ L(QCFL)

We consider the infinite alphabet pushdown automata (IAPA) that recognize
L(QCFL) [19]. The same argument in Theorem 4.2.11, item 2 (L(FSNA) ⊃
L(FMA)) suffices for showing the inclusion, which is strict, because L0 in
the Example 4.2.1 is not recognised by any IAPA.

• L(PSNA+) = L(Usages)
Usages are built from (static and dynamic) symbols n (actually α(n),
where α is an action on n) with operation of sequentialization ·, nondeter-
minism +, recursion and creation of a new dynamic symbol, through νn
(see Table 1.2).
When sequentialising two processes, the second cannot use any dynamic
symbol used by the first one, just as it happens when two PSNA+ are
sequentialised by connecting the final states of the first with the initial one
of the second. Since there is no deletion, the m-registers monotonically
grow.
Nondeterministic choice + directly corresponds to the union of two au-
tomata.
Recursion can be dealt with as done in [7] by transforming an expression
in a BPA, that has an immediate counterpart as a PSNA+.
For each occurrence of a νn in the usage at hand we associate an m-register.
Creation of a new symbol, i.e. reducing the νn, corresponds to updating
the corresponding m-register. When a νn occurs within a recursive expres-
sion, a renaming occurs to guarantee freshness of the dynamic symbol to
be generated. Note that only a finite number of m-registers is necessary,
as the number of νn occurring in a usage is fixed and Property 3.3.6 holds.

4.3. PUSHDOWN NOMINAL AUTOMATA 109

• L(PSNA) ⊃ L(Usages)
Σ∗ ∈ L(PSNA), while Σ∗ /∈ L(Usages) by Theorem 3.3.1.

• L(PSNA+) 6Q L(QCFL)

The proof of Theorem 8, item 5 suffices (FSNA+ ⊃ FMA).

• L(PSNA) 6Q L(DMPA) Using their multiple stacks, the DMPA can express
the language (of patterns) {anbncn}, that cannot be recognized by a PSNA.
However, their notion of freshness also requires that a new symbol cannot
occur in the stacks, which is not the case for PSNA.

Discussions

Nominal languages are a suitable behavioural abstraction of many software
systems dealing with an unbounded number resources, see e.g. [55, 15, 11]. Their
properties often involve the usage patterns of these resources. In particular,
Examples 2.5.1, 2.5.2, 3.3.7 and 4.0.9 illustrate these facts for ContextML
programs.

We proposed novel automata for nominal languages, that we intuitively
classify as context-free and regular (able and not, respectively, to recognise Dyck-
like languages). The context-free and regular automata are called PSNA and
FSNA, respectively, we also considered their sub-classes, PSNA+ and FSNA+,
that inhibit disposal.

We studied some closure properties of our models: union, intersection,
complementation, concatenation and Kleene star. We related their expressive
power to that of analogous models in the literature and we investigated the
decidability of the problems of emptiness and universality.

Decidability of the emptiness problem is important for verification, because,
e.g. the standard automata-based model-checking procedure [60] requires to
represent both the model and the properties as languages L and L′ and to verify
the emptiness of the intersection of L with the complement of L′.

To the best of our knowledge, no class of nominal languages proposed in the
literature is unfortunately closed under complementation (except for limited
forms e.g.[41]). However, this is not a problem when the properties of interest
follow the so-called default-accept paradigm in which the unwanted behaviour is
specified, because complementation is unnecessary at all. This is typically the
case for security policies.

110 CHAPTER 4. AUTOMATA-BASED MODELS

We have characterized the largest known classes for which the automata based
model-checking is feasible for default-accept properties. We propose to take
PSNA+ to express the model and to intersect it with the FSNA+ for the property.
Our findings about intersection of these automata and about the decidability
of emptiness problem for PSNA+ guarantee that this verification technique is
doable in the nominal setting. Further investigation is required to understand
the impact of the disposal mechanism on the feasibility of model-checking.

A different approach to verification is proposed in [8]: compliance of a model
with respect to a property is checked through a notion of simulation between
automata. We can easily adapt this technique to our case, although at the
moment decidability of simulation is still unresolved.

Conclusions

We studied and proposed models to abstract resource usage of adaptive systems.
Our path departed from ContextML, an ML-like programming languages with
primitives for adaptivity. We gave a formal semantics of ContextML and set up
a machinery to obtain an abstraction of the behaviour of the programs, that
can be model-checked against security properties.

We have shown an extension of ContextML that allows a program to be
parametric with respect to the actual resources in the environment, so giving
it the opportunity to fit better the actual environment. The only assumptions
made on the resources are that they can be picked fresh from the environment,
released and checked for equality.

In this case, the behaviour of ContextML programs depend on an unbound
a-priori number of resources. The models used to model these behaviour need to
deal with that unboundedness. We exploited nominal techniques to investigate
the feasibility and the pragmatic utility these models.

In particular we investigated three nominal models: Usages [5], UA [6],
VFA [33]. We proved VFA more expressive than UA. We showed a model-
checking technique that verifies Usages models against VFA properties.

However, Usages turned out to be not fully adequate to capture the behaviour
of programs involving the reuse of resources.

We made our own proposal, by defining two models of automata aimed at
representing the properties and the behaviour of adaptive programs. Our most
powerful model is intuitively context-free, in that it express Dyck-like language.
We studied the language-theoretic properties of our automata, with a focus on
the decidability issues of the properties that we felt useful for verification.

Our methodological contribution is the multi-tier approach we adopted. We
distilled from the programming language the key primitives that we brought in
the abstractions. The abstractions have been investigated from two different
perspectives: process algebras and automata. In [6] it has been shown how to
mechanically derive a process algebra as abstractions of a programming language.
This derivation uses compositionality and structural congruences. Automata

112 CHAPTER 4. AUTOMATA-BASED MODELS

have been used to obtain verification procedures in the style of automata-based
model-checking [60].

Future research is needed to fill in the gap between our foundational results
and prototypical implementations of our abstract model-checking procedure. In
this thesis we have shown the connections between the tiers mainly by examples.
However, an interesting topic would be mechanically obtain a provable over-
approximation of the behaviour of ContextML programs.

As for the specification of system properties, an interesting topic is the logical
characterisation of PSNA languages, as [43] does for context-free languages. Such
characterization can be useful to specify in a clear way and in abstract terms
the behaviour of a software system in a top down approach.

Bibliography

[1] Antoine Amarilli and Marc Jeanmougin. A proof of the pumping lemma for
context-free languages through pushdown automata. CoRR, abs/1207.2819,
2012.

[2] M. Appeltauer, R. Hirschfeld, M. Haupt, and H. Masuhara. ContextJ:
Context-oriented programming with java. Computer Software, 28(1), 2011.

[3] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT
Press, 2008.

[4] M. Bartoletti and R. Zunino. LocUsT: a tool for checking usage policies.
Technical Report TR08-07, University of Pisa, 2008.

[5] Massimo Bartoletti, Pierpaolo Degano, Gian Luigi Ferrari, and Roberto
Zunino. Types and effects for resource usage analysis. In Foundations
of Software Science and Computational Structures, pages 32–47. Springer,
2007.

[6] Massimo Bartoletti, Pierpaolo Degano, Gian Luigi Ferrari, and Roberto
Zunino. Model checking usage policies. In Christos Kaklamanis and
Flemming Nielson, editors, TGC, volume 5474 of LNCS, pages 19–35.
Springer, 2008. Extended version to appear in Math. Stuct. Comp. Sci.

[7] Massimo Bartoletti, Pierpaolo Degano, Gian Luigi Ferrari, and Roberto
Zunino. Local policies for resource usage analysis. ACM Trans. Program.
Lang. Syst., 31(6), 2009.

[8] Walid Belkhir, Yannick Chevalier, and Michael Rusinowitch. Guarded
variable automata over infinite alphabets. arXiv preprint arXiv:1304.6297,
2013.

[9] Michael Benedikt, Clemens Ley, and Gabriele Puppis. Automata vs. logics
on data words. In Anuj Dawar and Helmut Veith, editors, CSL, volume
6247 of LNCS, pages 110–124. Springer, 2010.

114 BIBLIOGRAPHY

[10] Chiara Bodei, Pierpaolo Degano, Gian Luigi Ferrari, Letterio Galletta, and
Gianluca Mezzetti. Formalising security in ubiquitous and cloud scenarios.
In Agostino Cortesi, Nabendu Chaki, Khalid Saeed, and Slawomir T. Wierz-
chon, editors, CISIM, volume 7564 of Lecture Notes in Computer Science,
pages 1–29. Springer, 2012.

[11] M. Bojanczyk. Data monoids. In Christoph Dürr and Thomas Wilke, editors,
STACS 2011, volume 9, pages 105–116. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2011.

[12] Mikołaj Bojanczyk, Bartek Klin, and Sławomir Lasota. Automata theory
in nominal sets.

[13] Mikolaj Bojanczyk, Bartek Klin, and Slawomir Lasota. Automata with
group actions. LICS, pages 355–364, Washington, DC, USA, 2011. IEEE
Computer Society.

[14] Benedikt Bollig. An automaton over data words that captures EMSO logic.
In Joost-Pieter Katoen and Barbara König, editors, CONCUR 2011, volume
6901 of LNCS, pages 171–186. Springer, 2011.

[15] Benedikt Bollig, Aiswarya Cyriac, Paul Gastin, and K. Narayan Kumar.
Model checking languages of data words. In Lars Birkedal, editor, FOSSACS
2012, volume 7213 of LNCS, pages 391–405. Springer, 2012.

[16] P. Bouyer. A logical characterization of data languages. Information
Processing Letters, 84(2):75–85, 2002.

[17] R. Bruni, A. Corradini, F. Gadducci, A. Lluch Lafuente, and A. Vandin. A
conceptual framework for adaptation. In FASE 2012, volume to appear of
LNCS. Springer, 2012.

[18] Betty H. C. Cheng et al. Software engineering for self-adaptive systems:
A research roadmap. In Software Engineering for Self-Adaptive Systems,
volume 5525 of Lecture Notes in Computer Science, pages 1–26. Springer,
2009.

[19] Edward Y. C. Cheng and Michael Kaminski. Context-free languages over
infinite alphabets. Acta Inf., 35(3):245–267, 1998.

[20] V. Ciancia and E. Tuosto. A novel class of automata for languages on
infinite alphabets. Technical report, CS-09-003, University of Leicester, UK,
2009.

BIBLIOGRAPHY 115

[21] Dave Clarke and Ilya Sergey. A semantics for context-oriented programming
with layers. In International Workshop on Context-Oriented Programming,
COP ’09, pages 10:1–10:6, New York, NY, USA, 2009. ACM.

[22] ONF Market Education Committee et al. Software-defined networking:
The new norm for networks. ONF White Paper. Palo Alto, US: Open
Networking Foundation, 2012.

[23] Pascal Costanza and Robert Hirschfeld. Language constructs for context-
oriented programming: an overview of contextl. In Proceedings of the 2005
symposium on Dynamic languages, pages 1–10. ACM, 2005.

[24] Pierpaolo Degano, Gian Luigi Ferrari, Letterio Galletta, and Gianluca
Mezzetti. Types for coordinating secure behavioural variations. In Mar-
jan Sirjani, editor, COORDINATION, volume 7274 of Lecture Notes in
Computer Science, pages 261–276. Springer, 2012.

[25] Pierpaolo Degano, Gian-Luigi Ferrari, Letterio Galletta, and Gianluca
Mezzetti. Typing context-dependent behavioural variations. In PLACES
2012, volume to appear in EPTCS, 2012.

[26] Pierpaolo Degano, Gian Luigi Ferrari, and Gianluca Mezzetti. Nominal
automata for resource usage control. In Nelma Moreira and Rogério Reis,
editors, CIAA 2012, volume 7381 of LNCS, pages 125–137. Springer, 2012.

[27] Pierpaolo Degano, Gian Luigi Ferrari, and Gianluca Mezzetti. Towards
nominal context-free model-checking. In Stavros Konstantinidis, editor,
CIAA, volume 7982 of Lecture Notes in Computer Science, pages 109–121.
Springer, 2013.

[28] Pierpaolo Degano, Gianluca Mezzetti, and Gian-Luigi Ferrari. Nominal mod-
els and resource usage control. Technical Report TR-11-09, Dipartimento
di Informatica, Università di Pisa, 2011.

[29] Javier Esparza. On the decidability of model checking for several µ-calculi
and Petri nets. In Proc. 19th Int. Colloquium on Trees in Algebra and
Programming, volume 787 of Lecture Notes in Computer Science. Springer,
1994.

[30] Christopher Ferris and Joel Farrell. What are web services? Commun.
ACM, 46(6):31–, June 2003.

116 BIBLIOGRAPHY

[31] M.J. Gabbay and A.M. Pitts. A new approach to abstract syntax with
variable binding. Formal aspects of computing, 13(3):341–363, 2002.

[32] Andrew D. Gordon. Notes on nominal calculi for security and mobility. In
Riccardo Focardi and Roberto Gorrieri, editors, FOSAD 2000, volume 2171
of LNCS, pages 262–330. Springer, 2001.

[33] Orna Grumberg, Orna Kupferman, and Sarai Sheinvald. Variable automata
over infinite alphabets. In Adrian Horia Dediu, Henning Fernau, and Carlos
Martín-Vide, editors, LATA, volume 6031 of LNCS, pages 561–572. Springer,
2010.

[34] R. Hirschfeld, A. Igarashi, and H. Masuhara. ContextFJ: a minimal core
calculus for context-oriented programming. In Proceedings of the 10th
international workshop on Foundations of aspect-oriented languages, pages
19–23. ACM, 2011.

[35] Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. Context-oriented
programming. Journal of Object Technology, March-April 2008, ETH
Zurich, 7(3):125–151, 2008.

[36] J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to automata
theory, languages, and computation, volume 2. Addison-wesley Reading,
MA, 1979.

[37] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight
Java: a minimal core calculus for Java and GJ. ACM Trans. Program. Lang.
Syst., 23:396–450, May 2001.

[38] M. Kaminski and N. Francez. Finite-memory automata. TCS, 134(2):329–
363, 1994.

[39] Michael Kaminski and Daniel Zeitlin. Finite-memory automata with non-
deterministic reassignment. Int. J. Found. Comput. Sci., 21(5):741–760,
2010.

[40] Alexander Kurz, Tomoyuki Suzuki, and Emilio Tuosto. A characterisation
of languages on infinite alphabets with nominal regular expressions. In
Theoretical Computer Science, pages 193–208. Springer, 2012.

[41] Alexander Kurz, Tomoyuki Suzuki, and Emilio Tuosto. On nominal regular
languages with binders. In Foundations of Software Science and Computa-
tional Structures, pages 255–269. Springer, 2012.

BIBLIOGRAPHY 117

[42] Alexander Kurz, Tomoyuki Suzuki, and Emilio Tuosto. Nominal regular
expressions for languages over infinite alphabets. extended abstract. CoRR,
abs/1310.7093, 2013.

[43] Clemens Lautemann, Thomas Schwentick, and Denis Thérien. Logics
for context-free languages. In Selected Papers from the 8th International
Workshop on Computer Science Logic, CSL ’94, pages 205–216, London,
UK, UK, 1995. Springer-Verlag.

[44] Amaldev Manuel, Anca Muscholl, and Gabriele Puppis. Walking on data
words. In Computer Science–Theory and Applications, pages 64–75. Springer,
2013.

[45] Ugo Montanari and Marco Pistore. π-calculus, structured coalgebras, and
minimal hd-automata. In Nielsen Mogens and Rovan Branislav, editors,
MFCS 2000, volume 1893 of LNCS, pages 569–578. Springer, 2000.

[46] Frank Neven, Thomas Schwentick, and Victor Vianu. Finite state machines
for strings over infinite alphabets. ACM Transactions on Computational
Logic (TOCL), 5(3):403–435, 2004.

[47] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of
Program Analysis. Springer Publishing Company, Incorporated, 1999.

[48] Pawel Parys. Higher-order pushdown systems with data. In Marco Faella
and Aniello Murano, editors, GandALF, volume 96 of EPTCS, pages 210–
223, 2012.

[49] D. Perrin and J.E. Pin. Infinite words: automata, semigroups, logic and
games, volume 141 of Pure and Applied Mathematics. Elsevier, 2004.

[50] Andrew M. Pitts. Nominal sets names and symmetry in computer science:
Names and symmetry in computer science. volume 57 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press.

[51] Andrew M. Pitts and Ian D. B. Stark. Observable properties of higher
order functions that dynamically create local names, or what’s new? In
M. Borzyszkowski Andrzej and Sokolowski Stefan, editors, MFCS 1993,
volume 711 of LNCS, pages 122–141. Springer, 1993.

[52] M. Salehie and L. Tahvildari. Self-adaptive software: Landscape and
research challenges. TAAS, 4(2), 2009.

118 BIBLIOGRAPHY

[53] Davide Sangiorgi and David Walker. The Pi-Calculus - a theory of mobile
processes. Cambridge University Press, 2001.

[54] Fred B Schneider. Enforceable security policies. ACM Transactions on
Information and System Security (TISSEC), 3(1):30–50, 2000.

[55] Luc Segoufin. Automata and logics for words and trees over an infinite
alphabet. In Zoltán Ésik, editor, CSL 2006, volume 4207 of LNCS, pages
41–57. Springer, 2006.

[56] Christian Skalka and Scott Smith. History effects and verification. In
Programming Languages and Systems: Second Asian Symposium, APLAS
2004, Taipei, Taiwan, November 4-6, 2004. Proceedings, volume 3302, page
107. Springer, 2004.

[57] Christian Skalka, Scott Smith, and David Van Horn. Types and trace
effects of higher order programs. Journal of Functional Programming,
18(2):179–249, 2008.

[58] N. Tzevelekos. Fresh-register automata. ACM SIGPLAN Notices, 46(1):295–
306, 2011.

[59] Nikos Tzevelekos and Radu Grigore. History-register automata. In Founda-
tions of Software Science and Computation Structures, pages 17–33. Springer,
2013.

[60] Moshe Y. Vardi and Pierre Wolper. An automata-theoretic approach to
automatic program verification. In LICS, pages 332–344. IEEE Computer
Society, 1986.

[61] Martin Von Löwis, Marcus Denker, and Oscar Nierstrasz. Context-oriented
programming: beyond layers. In Proceedings of the 2007 international con-
ference on Dynamic languages: in conjunction with the 15th International
Smalltalk Joint Conference 2007, pages 143–156. ACM, 2007.

	Contents
	Introduction
	Preliminaries
	Context Oriented Programming
	Resource usage analysis
	Nominal Trace Models
	Usage Automata
	Variable Finite Automata on Data Words
	Finite Memory Automata
	Usages
	Quasi Context-Free Languages

	A Semantics for Context-awareness
	A motivating example: an e-library application
	ContextML: a context-oriented ML core
	ContextML types
	Proofs

	Model-Checking Policies and Protocols
	Parametrized behavioural variation

	Language Theory for Usage Automata & Usages
	Usage Automata
	Saturated UA
	Frozen UA
	Frozen instantiation
	Closure properties
	Expressiveness

	Model-Checking Usages against VFA
	Usages

	Automata-Based Models
	m-registers
	Finite State Nominal Automata
	Some Properties
	Comparisons

	Pushdown Nominal Automata
	Some Properties
	Comparisons

	Conclusions
	Bibliography

